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ABSTRACT

A method is presented which can be used for the caleulation
of the distribution of energy reflected from irregular surfaces,
The formulation is useful for the first boundary value problem and
can be used 1n either two-or three-dimensional problems with any
given incident field, The solution is reduced to quadrature with
negligible error when the average sqguare of the slope of the re-
flecting surface is small and when the wave iength of the inci-
dent radiation is not small compared with the displacement of
the surface from its average value, A numerical example is worked,
the sinusoidal surface, and is compared with experiment and with
& method due to Rayleigh, It is found that the Fourler transform
ﬁethod is preferable to previous methods, notably those which can
be classified as physical optics (such as Rayleigh's), since the
error in the transform method is of second order in the surface
slope whereas the error in previous methods is of first order in

the same quantity,
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I. INTRODUCTION
In the past there has been a considerable amount of work
done on the problem of the reflection of radiation from non-plane,
or irregular, surfaces, The attention given this problem has
increased in recent years partly as a result of the expanded in-
terest in centimeter wave length electromagnetic and acoustic
radiation, The approximations which have been used in the past
have centered for the most part around perturbation treatmentsl’2’3

and around the Kirchhoff approximationu and 1its adaptation8596

which may be classed under the broad title of physical optics,

1, Lord Rayleigh, Roy. Soc., Proc. 794, 399 (1907),
2, J.W, Miles, J. Acoust. Soc., Am, 26, 191 (195)
3, S.,0, Rice, Comm, on Pure and Appl, Math, L, 351 (1951).

l{s B,B. Baker and E,T. Copson, The Mathematical Theory of Huygens'
Principle (2nd ed,; London:0xford University Press, 1950].

5. LeM, Brekhovskikh, Zh. exsper, teor, Fiz, (USSR) 23, 275 (1952).
Translated by G.N. Goss, U.S.N. Electronics Lab,, San Diego,Cal,

6. C. Eckart, J. Acoust. Soc. Am. 25, 566 (1953),
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It is the purpose of this paper to present a new method
for the treatment of reflection problems, The method is obtalned
as follows, From the Helmholtz formula (see below) one can ob=-
tain, through the use of the boundary condition applicable to the
problem,»an.integral equation of the first kind whose solutlon
can be used to calculate the field reflected from a given surface,
It will be shown that under certain conditions (when the square
of the slope of the reflecting surface is small and when the
wave length of the incident radiétion is not small compared with
the displacement of the surface from its average value) one can
approximate the kernel of the integral equation in such a way
that the modified equation can be solved through the use of the
Fourier integral transform, It will be seen that the method is
primarily suited to the treatment of the type of boundary value
problem in which the field function is assumed to vanish at the
reflecting surface (often called the first boundary value prob-
lemj, Peculiarly enough it does not seem thatvthere is a parallel
formulation for the second boundary value problem, where the
normal derivative of the field function is assumed to vanish at
the reflecting surface. This is true because of the special
form which the kernei of the integral equation must assume in
order that the central approximation of the method be useful,
The method can be applied to either two- or three~dimensional
(scalar) problems; it will be outlined in detail only for the
two-dimensional problem, it being an easy matter to extend the
formulation to the analogous three-dimensional problems,

The problem to be considered here will now be described

in detail, One is given a half-space of homogeneous meterial
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bounded by the two-dimensiocnal surface 7 (x); the function
Z (x) is assumed to be continuous, single-valued, bounded, and
to possess a plece-wise continuous and bounded first derivative,
It is supprosed that radiation is incident upon the surface ;(x)
from the half-space 2z < ¥ (x) (see Fig, 1),

®

Fig, l. Diagram used in the description of the

Helmholtz formula,
This incident radiation may consist either of a plane wave
(called the first incident field) or it may be set up by a line
source assumed to be located at (x,,25) (called the second inci-
dent field), One must distinguish between these two cases in
the general formulation, although the distinction disappears in
the speclal method of solution to be presented below,

If the incident function consists of a plane wave, it is

supposed that the propagation vector lies in the x-z plane, One
wishes then to find a function @(xgzpt) which satisfies the
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wave equation in two dimensions,
322@ 2 1 2
+‘§—-%= “a-"% (1)
3 x° dz o2 ot

where ¢ 1s the phase velocity, assumed to be constant, In
acoustical problems the function @ represents the velocity
potential,

¥=-90 (2)

where V(x,z,t) is the veloecity at (x,z,t); the surface is
assumed to be pressure release, For electromagnetic problems,
it is supposed that the surface g(xﬂ is perfectly conducting,
and that the incident radiation is polarized with the electric
vector perpendicular to the x-z plane; then the function @ :
is taken to represent the electric field, which, under the given
assumptions, lies entirely in the direction perpendicular to the
x=g plane, It will be supposed that the source radiates a

sihgle (angular) frequehcy‘ W , so that one can write
§ (x,2,t) = 1% (x,2) (3)

Substituting Eq. (3) in Eq. (1) one obtains,

S SEeeo, ®

with k = % ; the function ¢ 1is to satisfy Eq, (L) throughout
the half-space 1f the incident function consists of a plane wave,
and at all points of the half-space except the point (x,,z,) if

the incident field is set up by a line source, In the latter
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case the field near the source is to behave like

(1)

where
’ 1/2
ro = [(x«-xo)2 + (zmzo)zj 5
and Hél) is the zgroth order Hankel function of the first kind,

For three-dimensional problems the Hankel function is replaced

ikr, .

by & » To continue, it is supposed that at the surface 7 (x)
o

the function @ vanishes,

glx, T(x)) =0 3 (6)

as stated above this is equivalent to supposing that the surface
is ‘pressure release or perfectly conducting, for acoustics and
electromagnetics respectively, Finally let ¢1(P) represent the
value which the field would assume at the point (P) if the sur-
face z (x) were hot present, that is if the source system

were located in an infinite homogeneous medium with phase velocity

¢, Then one can write,

g =203+ fp (7)

where ¢r represents the reflected field (by definition), The

function @; 1s, of course, given while the function @, re-

presents the unknown,

II, DERIVATION OF THE METHOD
It will be shown in this section that when

i) (Q_AE)Z (£ 1 and

dx



11) kxZ¥ g1,

it is possible to reduce the problem to quadrature with negligible
error, The symbol ~ indicates ''is of the order of magnitude'?,
§ M represents the bound on z (x), and éé%E represents the
bound on Qj%éilo The first of the restrictions i) and ii) is
the more impdrtant,

To proceed with the derivation, the Weber two-dimensional
analogue of the Helmholtz formula is needed, By using Green's

formula in connection with Eq. (L), one is able to derive the

following result (see Fig, 1):(

(1)

g(p ¢1(P) + H"" §£¢(2 3\’1 (krop)

- (1)(kr2P)§rb_¢(2)§ ds, (8)
2

subject to the restrictions that =-
a, The function @(x,z) is continuous with continuous
first and second order partial derivatives for all
points (x,z) satisfying the condition z £ 7 (x),
with the exception of the source point for problems
involving the second type of incident field, 1In this
case

#lx,z) —> Hél)(kro) as ro = 0,

b, The function @ shall represent outgoing waves at

great distances from the surface T (x).

7. Baker and Copson, loc, c¢it., chap, II,
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The integral in Eq. (8) is to be carried over the entire surface

{ (x). The symbol: 5%%- Indicates the derivative with respect
to the outward normal dirgction at the surface point (2)., We
have let @(2) represent the value of the function 7# at the
point (2), and @(P) represent the value of the function at a
space point P; similar notation will be used for other functions
appearing later,

Now allowing (P) to approach the surface point (1)

and utilizing the boundary condition given by Eq. (6), Eq. (8)

becomes,

g, =} §Hgl)(kr12) %%%l asy, (9)
4

where,
rp = [mxp)? + (2(xp) - 1(x,002] Y2 . (10)

If Eq. (9) could be solved for the function gg, its value could
be substituted in Eq, (8) to obtain the solution to the problem,

One is tempted to let

ryp = ]xlwxal 5 (11)

since in such a case Eq. (9) could be solved, Let us examine

the error incurred by making this assumption. First let

_Ix1=%5|
cO8a

12 (12)

where a 1s the acute angle between Pqio and the x direction
(see Fig, 1), Then define the difference between the exact and

the approximate kernel for Eq. (9) as
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K(xq1,x2) = H(l)(k lfl_féi) - H( )(k/X1~X2/)o (13)
cosa
In considering the error made in adopting the assumption

represented by Eq., (1l), it is convenient té treat the following
regions separately: I, k|xj=-xp|<< 1; II, k|xj-xo| D> 1; III,
all other values of the argument, klxlmxgl » Also suppose in
this connection that a <<1 indicates a £ 0.1, and similarly
a >>1 indicates a 2 10,0, Because of the (integrable) singu=~
larity of H{1)(y) at y =0, it is to be expected that I 1is
the most important region of the integrand in qu_(9)o Hence
begin by considering it,

The Hankel function is defined by,

(1)(3’) = Joly) +°m [b”-b?n('gy)]J (y)

’n’ . 'I 2 o6 0 E’

n1=1 (m} )2

where ¥ = 0,5772... . Upon referring to Eqs., (1) and (12)

it is seen that in I

&l ~ 2h 2 . (15)

M
or from the definition of a , assuming Qﬁ%_ small one has,

dghﬁ 2

dx (16)

k] ~ 2

For region II use the asymptotic form for the Hankel function,8

(1)(y) = Z;-$i7§ [} + 0(= )J (17)

8. E, Jahnke and F, Emde, Tables of Functions (Lth ed,; New York;
Dover Publications, 19457,




in Eq, (13) to find

iklx =X5 |
A i 7 (cosa)l/2 [exp 1k|xq XZI(cosa ] - lj
(‘21k,X1=X2’) (18

omitting O(%) as a term of higher order, It is easily seen

that y
27

'lexg

la] £ ) (19)

so that Eq. (18) becomes,

iklxl”XZI 2 M. 2
'3 LV ('3 410 Tulll B\
(x2™)*
or ignoring the term- = > , Wwhich is of higher order,
(klxl“xgl )
iklxlmXZI
2
K~ 8 2i 40! . (21)
v 1/2 k|xy-x,]
=ik |xq -xo]

Finally region III is considered. Note first that for

a small,

a (l)
K:g[a(klxlale) (klxlwleJk'xl XZ,{cosa '1) ,

gl)(y) = °H§ )( ),

or from the known relation g—y-H
AL (1) - - 1
KR =Hy" (k|xy le)ijl x2}<;os = 1) o (22)

From the pertinent tables in Jahnke and Emde,9 it is seen that

9, Jahnke and Emde, loc, cit., pp. 157 and 191,
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the largest value of H{l)(kixlmle)klxl—xgl

for

0.1 ¢ k|xy=xp| % 10 occurs at k|xj-x5| = 10 and,
I}I§1)(10) ‘ 10, = 2,53 . (23)

Again from the definition of a and using Eq. (23) (replacing

2,53 by 3.0), Eq. (22) becomes

Mi2
k)~ 3 |92 (2)

To summarize, it is seen that K 1s negligible in region
I if hypothesis 1) is fulfilled (cf, Eq. (16)); the same hypo-
thesis makes X small in region III (cf. Eq. (24)). Finally
from Eq. (21) we see that K 1is negligible in region II if
hypothesis ii) is fulfilled, It is noted however that in region
II the kernel of Eq, (9) is small so that an error in this region
is not’so important as errors in the other two, Thus in some
problems the approximation may lead to a useful result even
though the hypothesis 1ii) is not fulfilled,

Now proceed with a method of solution based upon the as=-

sumption that K is small, Rewrite Eq. (9), using Eq. (13),

¢i(1) = &I-§—[Hgl)(k|xl=x2]) + K(xl,x2{] %gééﬁ ds, . (25)

Before continuing it is desireable to make some changes

in notation, }Let

= 1 9g(2) ,
l:P (X2) = OOS%(XE) _agp 5 (26)

Fx,) = b1 4,(1) , (27).



and note

ds, = 2 (28)
S2 T Tos X (x, .

Here X (x) 1is the acute angle made by the tangent to the sur-
face at X, with the x-axis, Then substituting in Eq. (25) we

have
00

F(xy) = g [Hgl)(kixlnle) + K(x]_,xz)] L_P (x5)dx,.  (29)

As the next step consider K(xl,xé) as a perturbation., Let

K(xqy,%5) = & K(x,%5) (30)
P x)= POz + £ DM@+ 202 () ... (31)

where it is assumed that q) (x) is an analytic function of &
for £ £ 1, The solution is obtained by allowing £->1, By
substituting Eqs. (30) and (31) in Eq. (29), and equating equal
powers of £ it is evident that:

)

S Hél)(k)xlnxal ) P (O)(xz)dxz

I

Fx,), 2

K(xy,%x5) P (O (xp)ax,,
(33)
K(xl,xz) EP (1)(x2)dx2,

11 (e Jxy-xp)) P Pixp)ax, =

(1) - (2) =
iy (}{lxl xo]) P (2 () ax,

|

[

There is a well known method due to Levi-Civitalo which

¥

may be used for the solution of integral equations of the above

10, T. Levi-Civita, R. Accademia della Scienze dl Torino Atti
31, 25 (1895), See also E.C., Titchmarsh, Introduction to
the Theory of Fourier Integrals (Oxford: The Clarendon Press,

77, chap., . X1,
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type in which the kernel is a function of the difference of its
two variables, The method begins by taking the Fourier trans=-
form of the integral equation, Accordingly take the Fourier

transform of Eq. (32) and Eq., (33). We have,

(2m/2n(5) W (O (g) = £(t) , (3L)

00
(2m1/2n(e) W (L) (4) = - P, T, {S K(xq,x5) \ (O)(xz)dng (35)
-~

0
(em1/2n(t) ¥ (@)(t) = = ror. ) ( K(xg,xp) 4>(1)(x2)dx%:§(36)
| -0
|
|

where o0
f(t) = ———}‘Tﬁ" geitx F(X)dx P (37)
(2m

]

~o0
F,T, {F(x) ; .
h(t) = F.T, {ngl)(k|x|>§
i qi<0><x):§ : (38)

¢ U(e) = r.r, E 43<1)cx>§
' |
]
|

Similarly,

w

Il
e
-]
=3
o

w0 e)

©

In order to guarantee that the transforms of Eq. (32) and Eq. (33)
will exist and yield Eq. (34) and Egs. (35) and (36), it is suffi-
cient to require that @ (O)s, @(1), oo. and Hgl)(k\xl) be

o

absolutely integrable and that F(xq) and SK(XI’XZ) Lp(n)(xz)dxz
-00
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have Fourier transforms, If these conditions are not satisfied
by ? (n_z the solution is subject to verification, For the
function Hél)(k[xl) let k = k! + 16, 6 >0, in order to guarantee
 absolute integrability, then allow 6 —> 0 in the solution,

Now if we add the restriction that \P (n)(x) be section=
ally continuous we can, after solving Egs, (34), (35), and (36)

for W (n)(t),9 take the inverse Fourier transform, It is known

that, 1l
2\/2 o a1/
h(t) =(¢—r) (k==t°) o (39)
We have then from Eqs. (3L), (35), and (36):
[~}
@(O)(X) = ?;;—17—5 g (kamte)l/ze”imf(t)dt, (40)
2 A
(1)(3() - . 1 (kzmta)l/Ze“iXtdt
P 2(2m) /2 s&
0
' {F.T, g K(xyoxy) (O (x,)an, | 1, (41)
-0
0
(P(Z)(x) = - 1 S (kamtz)l/zemiXtdt
2(2m? L3
[~
¢YF.T. SK(XPXZ) O (M (x)ax,|( (L2)
-

I
!

l
The solution, \P (x), is obtained from

Px)= 0Oy + PWxy + ... . (L3

11, G.A, Campbell and R.M, Foster, Fourier Integrals for Practical
Applications, Bell Telephone System Tech, Pub,, 1931; Mono-
graph B=58l., No. 918,
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The symbols in Eqs. (40), (41), and (42) are defined by:

B 1) = sorbery 8 2
-V~
£(t) = L gReith(x)dxg (37)
(2m 7
-
F(x) = bi fy(x) , o @en
R(xy,%,) = B0V Oew,) - 8P (xlxy -z (13)

One obtains the solution, @(P), from

4(») = #;(p) - %;—i-gaé”mlp) %ﬁ\gﬁasl s ()

this equation is obtained by ggplying Eg. (6)1to Eq., (8).
It is seen from Egs, (41) and (L2) that the corrections
to the first approximation, Q_D (O), are small if K isv small

enough,

ITII, SPECIALIZATION TO PROELEMS INVOLVING
PLANE WAVES INCIDENT ON PERIODIC SURFACES

In this secticn attention will be restricted to the class
of problems Ilnvolving plane waves incident upon periodic sur-
faces, For such problems the result given by Egs, (40), (26) and
(Lly) may be simplified somewhat, Coaéider only the zeroth order
result, as given in LEg., (LO); the development will be formal,

Let it be éupposed that a plane wave is incident upon a

neriodic surface from the negative 2z direction (see Fig, 2);
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the propagation vector for the plane wave makes an angle €y

with the 2z axis, Then,

ei.k(x sin @4 + z cos ©4)

¢i = (45)

E A | Z(x)

N~

.

S

| Trcident
Plame Wave

Fig. 2, The figure shows a plane wave incident upon a
periodic surface, v

Upon substituting Eq. (45) in Eq. (37), one finds,

| s0
£(p) = —4 S-exp {i[txwksineix'-i-kc'osei;(x' )Jj ax', (46)
(21 1/2 ,
-l :
or

o0 A
f(t) = (—24—;)'-177 Z ~(exp {i [tx'+ksineix'+kcosei Z(x")

ma ~0 0 + (t+ksin91)m./u§ dx!' , - (47)

where /\. is the repeat distance of the periodic surface. Now

if one makes use of the identity (which is easily established)
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O o)
:E; orims/b _ ;EE: § (s=mx ) (48)
me -0 Me =0

where 0(x) is the Dirac delta function and X = 5%; , it is

found, upon interchanging the summation and integration, that

Eq., (447) can be written

, . ;f?:
£(t) = _3_7?1 S 0°(t)K 5(t - mK + k sin 65)  (L9)
(27)1 mse =00 i * Ll-
when
A
o’(t) = \(exp{i[tx' + k sin @4 x' + k cos 91?“‘"]} dx!',
3 .

(50)

Now substituting Eq. (49) in Eq. (40) and carrying out the indi-

cated integration, one obtains

) .
=1 =ksin@y
Q?(O)(x) = 21:55? e ix(nK <s.n l)k cos ©p ri,n(cos 64) (51)
, Nz =0 '

when

k cos &, = [k2 = (nKk = % sin @1)%J 1/2 (52) .
and

J 4 ]
fatoos o) = A [ otirikeoss By ()
O .

These latter quantities are, aslde from a constant, the complex

11
Fourier coefficients of e~ C°° ©1 4 (X)o

By using Sommerfeld's contour integral representation for
the Hankel function one may construct the plane wave representa-
tion for that function,

(1) (o) -1 (68201 2 (2 2y )
HO (krlP) = —'n—’-.g‘ e
-0

7 és , (5h)

2 2
-8

(k )
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valid when zp=-z4 £ 0; for z?ézl;> 0 one changes the sign of the
radical in the exponential of the integrand. Upon substituting
the representation given by Eq. (54) for the Hankel function in
the integrénd of Eq. (4l4) and remembering the definition of f,

(see Eq. (7)), one obtains

[~
A0 = - g § POy
-od

o fwexp [is(xpaxl)—i(k‘ansa)l/z(z};n ;(xl) )]
> 71/ = as\ax,
-cd (k =s )

(55)

where Q’(O) is defined in Eq. (51). It is suppoéed that
Zp £ - ;M so that Eq. (54) is valid for all surface points xq.
Now noting from Eq., (51) that, |

P (O) (xy +A) = xp(o)(xl)ei/lk sin 63 (56)

and breaking the integration into parts as was done in Eq. (47),

one finds

o A
e =2 Z g‘P('O)(Xi)eim./Lk sin 01 g
Lt =1

o0

S exp [is(kP=x1~mA)~i(kaosz)l/a(zlw 0 (xq) )]
[ ds .
=00

(kzi-sz)l/2

5(57)

the superscript on ¢r has been dropped for convenience, Utilizing
the identity given by Eq. (48), assuming the validity of the re-
quired interchanges of summations and integrations, and substi=-

tuting the value of 4?(0) given by Eq. (51), Eq., (57) can be
)

<
g.2) = 2 #™ (xp,2p) &y (58)
me =00

written,
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when =0
cos en
by = = o5 8y [tnlcos 81) [y p(eos o) (59)
N= =00
and
Pz(=,m) = exp [mi(rﬂK”k sin gi)XP“‘ik cos @mZPJ o (60)

The quantities Rl(mgm) represent plane waves moving in the

negative 2z direction; the waves are homogeneous when

(mK - k sin 04)° & %2 (61)

and inhomogeneous for other values of m, The quantities Ap,
are then recognized as the reflection coefficients for the plane

waves (mth

order diffracted waves), The quantities cos e, are
defined in Eq. (52); tkn in Eq. (53).

Before proceeding, 1t 1s of interest to show that for a
given m the series solution for the reflection cocefficients
given by Eq., (59) always converges, under the restrictions on

\g (x) which have already been given, We begin, as usual, by

observing from Eq. (59) that

oD
Ayl & ==L ; Opl |} pon(cosey) || py(cosey)
' m' Tcoson F:ngtcos nl 't m-n\COSOy ' (t&n cosey la
(62)
Now from Eq. (52) it is easily seen that
eos e, & xr|n] (63)

for n#0, K' is some positive constant independent of n, Also

upon integrating by parts one sees from Lg, (53) that

Kt

,t_.men(cos @m)l é THT 5 m#n (6l)
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where the plecewise continuilty and the boundedness of %%’ have
been utilized (of course the boundedness follows from the assump=-
tion of piecewise continuity if attention is restricted to periodic
surfaces as above);vK&“ is some positive constant dependent on m,
Finally since § (x) is contlnuous with a plecewise continuous

first derivative and since }in(cos 8;) are essentially the

Fourier coefficients of elk COS 015 (x) it follows that,l?®
)

= [ fpteos o) & o (65)

ns -
Upon using Egs., (63), (6bl), and (65) it is seen that

+ C

KiRIIRKs o1
o] € 25
m

' cos o, r o (66)

wnich is the desired relation, The positive constant Cr arises

from the terms n=0 and n=m,

IV, REFLECTION OF A PLANL WAVE FROM A SINUSOIDAL SURFACE
In order to illustrate the foregoing theory, the re-
flection of radiation from a sinusoidal surface will be consi=
dered, This problem was first treated systematically by Rayleigh, 13
For a normally incident plane wave he reduced the problem to the
solution of an infinite system of linear equations, Under the

restriction that %%((1 he was able to invert this system,

12, See R,V. Churchill, Fourier Series and Boundary Value Problems
(lst edi;New York: MeCTaw<IT1l Book Co., 1941), pp., G3-65,

13, Lord Rayleigh, Theory of Sound (2nd ed; New York: Dover Publi=-
cations, 19L5), vol, II, DP. b9
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(Actually there is another, implicit assumption in Rayleigh's
development, the effects of which are difficult to evaluate,lu
The implicit assumption concerns the question of the representa-
tion of the reflected field near the reflecting surface in terms
of plane waves; one of the restrictions necessary for the validity
of Rayleigh's treatment is the additional requirement that the
slope of the reflecting surface be small,) The reflection co=
efficients obtained by Rayleigh are given by (for the first

boundary value problem):l5

(R)

A

= m(i)me(Zka cos 8;) (67)

The constant a 1s defined by the assumption that the reflecting

surface 1s

zg(x) = a cos Kx , (68)

The reflected plane wave, whose coefficient is given by Eq. (67),
has a propagation vector whose direction cosine in the 2z direc-
tion is given by Eq. (52) with n replaced by m,

Now let the method pfesented in this paper be considered,
‘Substituting Eq. (68) in Eq., (53), and using a known integral

representation for the Bessel function of order n , one finds,
. - + \ 11
?Ln(cos @i) = (1) Jn(ka cos @i) R (69)

Then using Eq. (69) in connection with Eq, (59), one finds for

the reflection coefficients,

1, B.A, Lippmann, J, Opt, Soc. Am, L3, L08 (1953).

15, Actually Rayleigh treated only the case of normal incidence,
84=0, He states the result given by Eq. (62) for m=0; it
i; not difficult to extend his method to cover other orders,
m#0,
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o0
EE cos ©
Am- == e 00 cos @m }’”Jn(kacosei)Jm_n(kacosgm), (70) v

The series is rapidly convergent so long as ka 1is not too
large, _
Now, as a check, let the assumption %<311 be adopted,

‘Then neglecting terms of order % (see Eq., (52)), Eq. (70)

becomes,
0
Aéo) = -i™ ZE Jn(ka cos@i)Jmnn(ka cos@i) ’ (71)
Nna =0

or upon using a known addition formula for Bessel functions

al0) = _(1)M7 (2ka cose.) , (72)
m m 1

which is in agreement with Rayleigh's result given by Eq. (67).

V., COMPARISON WITH EXPERIMENT AND WITH THE RAYLEIGH THEORY
Experiments have recently been performed by LaCasce and

16 which can be used as a check on the above théory. In

Tamarkin
these experiments a directional beam of ultrasonic energy orig=
inating in water was allowed to impinge upon a sinuéoidally-
shaped cork surface which floated on the surface of the water,
The amplitude of the reflected radiation as a function of angle
was then recorded,

In Figs. 3, L}, and 5 appear some of the data obtained by

LaCasce and Tamarkin, these data being compared'with calculations

16, E.O, LaCasce, Jr, and P, Tamarkin, Underwater Sound Scattering
from a Corrugated Surface, to be published,
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made on the basis of the formulation in the orosgent work, The

data presented wsre Ly LaCasgeo and Yamaprkin from tacir
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Furthermore from the nrincinle of the conservation of energy one

finds the followin; relation,

, 5
cog & = ﬁ;/ 208 Gm"%1‘& s (7ly)

o

Govnonnages

m
where the sum runs over rcal values of co0s 9y For a reflecting

surface of finite size, or equivalently for a surface radiated by

..... (£) )

a Tinite beam, 1t 1s possible to obtailn B, ) the fraction of

th orger for a finite reflecting sur-
the
face, as follows. Supnose thatAreflecting region of surface is

the incident energy in the m

of width L; then the mb2 opder will have a diffraction pattern of

~angular width

Doy ~ (75)

L cos @m

Suppose that a, is the maximum amplitude of the mth order
diffraction pattern, and that ag; 1is the maximum amplitude of

the diffraction vattern (in the specular direction) when the re=-

flecting surface is replaced by a plane, Then 1t follows by



L0 -

Y

1 020}

v Q
e o

“seotb

, \\ 7EReTH ORDER
e Fo

% sk \r— URIER TRANSFORM

ry

”; N\ ~ RayLeieH

k44 0.20" [

N~ EXPERIMENTAL :
7 & 5 ©° o
2.0

3

£x0HO~

1]

iﬁé 030L

|- 020

Z

L

e OA‘O -

0

z

H

J
&£
|- o0,
O (@)
F (@)
3 ECOND RDER
020 \
Zz L T
9 ™~
2 4 ~
é 0.0
b
| 4 } {
0.5 ‘qo l'5 2-0

ka

Figse, 3, L, and 5, The fipures show the energies calculated and
observed in the zeroth, first and second diffracted orders re=-
flected from a sinusoidal surface under the excitation of a nor-
mally incident plane wave; a¥” = 0,117,
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cylinder, whose axls is parallel to the generating elemsnt of

PO

- co e s ay}

S}

=
pai3
e
C

m COS u.

Using apeain the conservation of energy requlrement one sees,

é cos @3 8 2 ) B
cos o, a s =1, (77)
m 244

[y
i

ig roal,

the sum hoing carried over those m for which cos 9y
Returning n@w.to a congideretion of the cdata, the rela-

the relative energy in cach order

8m

———_

ago

tion (75) was used to deter

- -

(LaCasce and Temerkin renorted the quantities Jo It is

Tfound that their resuvlts visld hetween 1,0 and 2,0 for the left

side of kqe (77)3 accordingly, the resgults were divided by the
gum on the left hand gide of g (77)e The adjusted quantitles

are the plotted exvnerimental values in Figs. 3, 1, and 5,
It is seen from the fipures that the agresment between

experiment and the Fourier transform theory 1s pood for values of

ka less than 1.5, It is to be emphasized that for values of
ka above ls5, orders hicher than the second may anpear, Since

taese orders were not revorted in the experiments (they are diffi-

cult to measure because of the large angles which tlev make with
the normal) it is to bhe expected that the true normalized experi-
mental values are somewhat lower than thosé'shown in the figures,
Furthermore it 1s seen in the [ipures that the Raylelgh method

of

sives resvlts which are in error by as much as 20% (referred to

the energy in a given order), One finds an energy deficlt of
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twenty-five nercent upon summing up the snergy carricd away by
~all real orders as calculated using the Raylelgh method, The
corresponding defleit for the Fourier transform method is ten
percente

Finally it is remarked that the results of the Hayleligh
theory are in many resvects almost identicsl with those obtained
from the methods of brekhovskikhS and‘Eckarté (see LaCasce and

Tamarkinlé). For the recasons given above, then, the present ,

B
method 1s to be nreferred over these other methods as well,

VI, COHCLUSIONS AND ACENOWLLDCGEMENTS

The advantage of the present method over previous methods
ap?licable.to the same class of problems lies in the fact that
the error incurred through its use is of second order in the slone
of the reflecting surface (sec assumption (i) of Section II)e The
error incurred through the use of physieal ontles is on the other
hand of first order in the surface slope,17 (The error in Ray-
deigh's method is of the game order as that in physical optics,)

It 1s a pleasure to acknowledge many helpful discussions
with Dre David Mintzer during the »nrogress of this work, The
eauthor wishes also to acknowledge the help of Mr, C.Hs Church

in the performance of some of the calculations,

17¢ Wele Meecham, On the Use of the Kirechhoff Anproximation for
the soluglon of heflection Problems, to be nublished in the
Jeurnal of Letional HMe@hanics,
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