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Summary. This research sequentially monitors paired survival differences using a new class of nonpara-
metric tests based on functionals of standardized paired weighted log-rank (PWLR) and standardized paired
weighted Kaplan–Meier (PWKM) tests. During a trial, these tests may alternately assume the role of the
more extreme statistic. By monitoring PEMAX, the maximum between the absolute values of the stan-
dardized PWLR and PWKM, one combines advantages of rank-based (RB) and non-RB paired testing
paradigms. Simulations show that monitoring treatment differences using PEMAX maintains type I error
and is nearly as powerful as using the more advantageous of the two tests in proportional hazards (PH)
as well as non-PH situations. Hence, PEMAX preserves power more robustly than individually monitored
PWLR and PWKM, while maintaining a reasonably simple approach to design and analysis of results. An
example from the Early Treatment Diabetic Retinopathy Study (ETDRS) is given.
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1. Introduction
At the design stages of clinical trials comparing survival out-
comes in independent groups, a common plan is to base the
design upon a log-rank (LR) statistic of some form (see,
for example, Gehan, 1965; Gill, 1980). Another approach for
stochastically ordered alternatives is to compare areas un-
der survival curves (see, for example, Pepe and Fleming,
1989). Versatile tests combining rank-based (RB) and non-
RB statistics for independent groups are studied by Chi and
Tsai (2001), while Kosorok and Lin (1999) develop sophisti-
cated methods for combining various RB tests. Fundamental
independent group sequential methods for families of weighted
LR (WLR) tests have been developed and studied by Tsiatis
(1981, 1982), Sellke and Siegmund (1983), Slud (1984), and
Gu and Lai (1991), among others, and sequential methods
for comparing areas under survival curves were developed by
Murray and Tsiatis (1999).

For paired censored survival data, where optimality prop-
erties for the paired WLR (PWLR) have not been studied,
competing methodologies exist to a lesser extent. Some RB
and frailty methods are presented by O’Brien and Fleming
(1987), Dabrowska (1986, 1990), Murray (2000), and Oakes
and Jeong (1998), among others, and paired Pepe–Fleming
tests are developed by Murray (2001, 2002). Paired survival
data arise in various situations including time to death, dis-
ease occurrence or other morbidity in twins, time to vision
loss in paired eyes, or failure of matched allografts. For exam-
ple, 3711 patients with diabetic retinopathy in both eyes were

enrolled in the Early Treatment Diabetic Retinopathy Study
(ETDRS, 1991a,b) from April 1980 to July 1985, with one
eye per patient randomly assigned to early photocoagulation
and the other to deferral of photocoagulation until detection
of high-risk proliferative retinopathy.

In paired settings such as ETDRS, little research involving
multiple test statistics is available. Further complicating the
design choice in the group sequential setting, the preferred
test may change from one interim analysis to the next.

This research is motivated by a desire to formalize inference
in the following scenario. Assume that in a paired censored
survival analysis with group sequential monitoring, an investi-
gator first uses a PWLR and fails to reject the null hypothesis
by a narrow margin. Then, a paired weighted Kaplan–Meier
(PWKM) test is recalled as an attractive alternative and it
leads to statistical significance. Or perhaps at different analy-
sis times, statistical advantages are attributed alternately to
PWLR or PWKM. In this setting, we provide a middle ground
that allows monitoring of both tests, while adjusting for their
joint use over time. The proposed test, PEMAX, which is the
maximum of the absolute values of the standardized PWLR
and PWKM, will be seen to preserve type I error and to
have power comparable to the better of these competing
tests.

The rest of this article is organized as follows. In Sec-
tion 2, the sequential joint limiting distribution of PWLR
and PWKM is outlined, from which the joint distribution
of PEMAX over time is estimated. Although this section is
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useful in reviewing some general notation for group sequential
analysis of clinical trials and for understanding how to
program the methodology, some practitioners may skip it
if only interested in the operating characteristics of the
method. Technical details regarding closed-form asymptotic
covariances and corresponding estimates are relegated to
the Appendix. Section 3 presents simulations assessing the
moderate-sized sample performance of PEMAX as compared
to PWLR and PWKM. Sequential monitoring of the ETDRS
using PEMAX is shown in Section 4, and Section 5 is dedi-
cated to comments and conclusions.

2. Joint Sequential Distribution of PWLR
and PWKM

2.1 Background and Notation
During accrual, n i.i.d. data pairs (e.g., n pairs of twins) are
enrolled (at least one pair member) in a prospective study
ending at time τ . Although in practice pair members usu-
ally enter the study simultaneously, this research allows for
differential pair member entry times. Suppose that pair l =
1, . . . ,n, member g = 1, 2, enters the study at time Egl (a cal-
endar time during accrual), has underlying survival time Tgl ,
and potential censoring or loss-to-follow-up time Lgl (both re-
garded as study times measured since Egl ). Further assume
that within group g, (Egl , Tgl , Lgl , l = 1, . . . ,n) are i.i.d.
continuously distributed with survival functions P (Egl > e),
Sg(s) = P (Tgl > s), and Cg(c) = P (Lgl > c), respectively.
For technical reasons, the correlation between paired survival
times is assumed to be strictly less than 1.

At analysis time t, ng(t) =
∑n

l=1 I(Egl ≤ t) pair members g
have entered the study, while Xgl (t) = min{Tgl , Lgl , max(t −
Egl , 0)} and ∆gl(t) = I{Tgl ≤ min(Lgl , t − Egl )} are the follow-
up time and the censoring indicator, respectively, for pair l,
member g. There are ng1g2(t1, t2) =

∑n

l=1 I(Eg1l ≤ t1, Eg2l ≤
t2) pairs whose member g1 has entered the study by analy-
sis time t1 and member g2 has entered by analysis time t2.
Let Ng(t, u) =

∑n

l=1 I{Xgl(t) ≤ u,∆gl(t) = 1} and Yg(t, u) =∑n

l=1 I{Xgl(t) ≥ u} be the number of failed and, respectively,
the number of at-risk pair members g at analysis time t and
study time u.

2.2 PWLR(t) and PWKM(t) Test Statistics
Let

J(t, u) = I(0 ≤ u ≤ τ)I{Y1(t, u)Y2(t, u) > 0},

p(t, u) = I(0 ≤ u ≤ τ)I[P{X1l(t) ≥ u}P{X2l(t) ≥ u} > 0]

and assume that J(t, u)
P−→ p(t, u), for all fixed t.

At time t,

PWLR(t) =
√

n∗(t)

∫ ∞

0

J(t, u)K(t, u)

×
2∑

g=1

(−1)g+1{Yg(t, u)}−1Ng(t, du),

with

n∗(t) =

{
2∏

g=1

ng(t)

}{
2∑

g=1

ng(t)

}−1

,

K(t, u) = Wpwlr (t, u)

{
2∏

g=1

Yg(t, u)

}{
n∗(t)

2∑
g=1

Yg(t, u)

}−1

,

and the weighting function Wpwlr (t, u) converging in proba-
bility to a deterministic function wpwlr (t, u) on [0, t]. Weights
such as Wpwlr (t, u) = 1 or Wpwlr (t, u) =

∏
2
g=1Yg(t, u) {ng(t)}−1

yield the paired LR and the paired Gehan test, respectively.
Also at time t, PWKM(t)=(n∗(t))1/2

∫ ∞
0 J(t, u)Ŵpwkm(t, u)×∑2

g=1(−1)g+1Ŝg(t, u) du, where Ŝg(t, u) is the Kaplan–Meier
(KM) estimator of Sg(u) based on time t data and the

weighting process Ŵpwkm(t, u) converges in probability to a
deterministic function wpwkm(t, u) on [0, t]. With π̂g(t) =

ng(t){
∑2

h=1 nh(t)}−1 and Ĥg(t, u) being the KM estimator of

Hg(t, u) = P (Lg ≥ u, t − Eg ≥ u |Eg ≤ t), possible Ŵpwkm(t, u)

choices are {
∏2

g=1 Ĥg(t, u−)}{
∑2

g=1 π̂g(t)Ĥg(t, u−)}−1, which
is in the spirit of the weighting recommended by Pepe and
Fleming (1989), or alternatively Ŵpwkm(t, u) = 1, interpreted
as paired years-of-life saved (PYLS) over τ years of study.

For stochastically ordered survival curves, the null hypoth-
esis is H0 :S1(·) = S2(·) = S(·) on [0, τ ]. If t1 < t2 < · · ·<
tD are successive analysis times such that the statistical
information expected between them is sufficient to war-
rant additional analyses, then it follows that {PWLR(t1),

PWKM(t1), . . . ,PWLR(tD),PWKM(tD)}T D−→ N2D(02D,Σ).
The covariance matrix Σ is described in the Appendix,
together with consistent estimators of its entries.

One may now obtain quantiles for any functional of PWLR
and PWKM by means of Monte Carlo simulations of the es-
timated joint sequential distribution. Instructive examples of
Monte Carlo simulations used in the group sequential moni-
toring context are given, for example, in Murray (2002) and
the companion technical report by Andrei and Murray (2004).

3. Simulation Studies
Simulations are conducted under four different scenarios with
stochastic ordering to assess the finite-sample behavior of
PEMAX as compared to PWLR and PWKM, when pairing
in data is accounted for, and separately when pairing is ig-
nored. In the latter case, we denote the statistics of interest
by EMAX rather than PEMAX. We chose PYLS to represent
the PWKM family because of its simple interpretation as the
number of years-of-life saved while on study. Under each sce-
nario, both under the null and the alternative hypotheses,
1000 Monte Carlo simulation runs consisting of 100 pairs of
correlated survival times are generated with correlation of ap-
proximately 0.25 and we employ an O’Brien–Fleming error-
spending function, using calendar time as a surrogate for the
total information accrued, to spend an overall 5% type I error.
Also of major interest is to understand how correctly account-
ing for the paired nature of the data improves the operating
characteristics of PEMAX.
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Under scenario piecewise exponential (PE), paired PE sur-
vival times are generated. We assume a common pair entry
time to be uniform (0, 0.25) and conduct interim analyses
at times 0.5, 1, and 2. In both groups, the hazard rates are
piecewise constant equal to 0.7, 1.3, and 1 in group 1 and
1.3, 0.7, and 1, respectively, in group 2, with changes occur-
ring at times 1 and 1.5. This formulation gives approximately
proportional hazards (PH) at the first two interim analyses
and crossing hazards at the last one. For the second scenario
paired Weibull (PW), PW survival times are generated from
Weibull (2.8, 0.5) and Weibull (1.5, 0.8), the common entry
times are U(0, 1), and interim analyses are conducted at times
1, 2.5, and 4. Under the third scenario accelerated failure time
(AFT), the common entry times are U(0, 2), and the sur-
vival times (T 1, T 2) are based upon AFT models log(Tg) =
µg + 0.5Zg + 0.25Wg , g = 1, 2, where µ1 = 1, µ2 = 1.2,
Z1, Z2 are correlated U(0, 1)-distributed, and the error terms
W 1, W 2 are i.i.d. N(0, 1). Interim analyses are performed at
times 2, 4, and 6. Finally, under the PH scenario, the com-
mon entry times are U(0, 12), and the correlated survival
times are based upon PH models with hazards hg(t |Xg , Yg) =
h0,g exp{αgXg + βgYg}, g = 1, 2, where h0,1 = 0.05, h0,2 =
0.02857, α1 = 0.2, β1 = 0.4, α2 = 0.3, β2 = 0.6, X1, X2 are in-
dependently Gamma(0.2, 1) and Gamma(0.4, 1)-distributed,
respectively, and Y 1, Y 2 are independently generated from
N(0, 0.03). Then, i.i.d. pairs (U 1, U 2) of correlated U(0, 1)
random variables are generated. If Tg = −{hg(t |Xg , Yg)}−1×
log(1 − Ug), then (T 1, T 2) are correlated survival times gener-
ated based on PH structures. Interim analyses are conducted
at times 12, 18, and 24.

Size and power simulation results are presented in Table 1.
The PLR, PYLS, and PEMAX tests (those accounting for
pairing) maintain size close to the nominal 0.05 level. Ignor-
ing pairing results in size levels diminished by almost 50%,

Table 1
Size and power simulation results for paired and unpaired YLS , LR, and EMAX based on 1000

replications with an overall type I error α = 0.05. Power loss results under each scenario (in percentages)
are relative to the more powered test (indicated by ∗) under the respective scenario.

Paired Unpaired

Scenario Test PYLS PLR PEMAX YLS LR EMAX

PE Size 0.047 0.047 0.046 0.026 0.025 0.019
Power 0.897∗ 0.848 0.882 0.840 0.755 0.819
Power loss 0% 5.46% 1.67% 6.35% 15.83% 8.69%

PW Size 0.049 0.045 0.045 0.022 0.019 0.019
Power 0.687 0.726∗ 0.703 0.595 0.630 0.603
Power loss 5.37% 0% 3.17% 18.04% 13.22% 16.94%

AFT Size 0.056 0.049 0.048 0.035 0.028 0.027
Power 0.780∗ 0.725 0.759 0.703 0.648 0.690
Power loss 0% 7.05% 2.69% 9.87% 16.92% 11.54%

PHa Size 0.058 0.045 0.047 0.028 0.029 0.027
Power 0.782∗ 0.769 0.772 0.699 0.691 0.689
Power loss 0% 1.66% 1.28% 10.61% 11.64% 11.89%

aUnder the PH scenario, PYLS is negligibly better powered than PLR, the latter being most powerful under PH with
independent groups. However, when correlation is introduced to the PH setting, there is no theory asserting similar PLR
properties, and it might not be surprising that PLR does not seem to take advantage as well as PYLS of the fact that
the hazard rates, and implicitly the survival curves, vary in tandem.

implying overconservativeness for all three tests. Under each
scenario, the power loss percentages exhibited by the other
tests are presented with respect to the most powered test un-
der the respective scenario. As expected, the paired versions
of the tests observed are all more powerful than any of those
that ignore pairing. Under the four scenarios, using PEMAX,
power gains of 3.79%, 2.20%, 4.36%, and, respectively, 0.38%
over the disadvantaged test are observed. Power losses using
PEMAX as opposed to the more powered test are minimal
under each scenario. The competing PYLS and PLR tests oc-
casionally take turns in being more powered as follow-up in-
creases under the various scenarios presented, but monitoring
based on PEMAX produces power comparable to the more
powered of PLR and PYLS, when the alternative hypothesis
is in doubt. Ignoring pairing induces serious power losses of
at least 10% in most cases, some even as large as 18.04%,
associated with the unpaired YLS test under PW.

4. Example
Recall the ETDRS example described in the introduction.
The 3711 patients enrolled between April 1980 and July 1985
were followed in order to detect vision loss defined as visual
acuity less than 5/200 at two consecutive visits, but due to
either loss-to-follow-up or administrative censoring, this pri-
mary endpoint was not observed for everybody.

In order to make the analysis more interesting, we restrict
to about 25% of the data consisting of 999 patients enrolled
prior to February 15, 1983 who were taking a placebo pill
in a separate randomization process. Because the causes that
may ultimately lead to vision loss are common, there tends
to exist a mild-to-moderate positive correlation between the
loss of visual acuity in the left and right eye of an individ-
ual. The staggered entry feature, the presence of censoring,
and the ethical reasons requiring a periodic examination of
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Table 2
Paired and unpaired versions of (P)YLS and (P)LR tests together with the O’Brien–Fleming (P)EMAXb
stopping boundaries of the corresponding (P)EMAX test for the 999 patients enrolled prior to February

15, 1983 who are taking a placebo pill

Paired Unpaired
Analysis
time Error spent PYLS PLR PEMAXb YLS LR EMAXb

1 2.85 × 10−5 −2.119 1.900 4.453 −1.169 1.441 4.051
2 1.42 × 10−4 −2.530 2.340 4.031 −1.970 1.810 3.663
3 5.74 × 10−4 −3.060 3.006 3.517 −2.453 2.437 3.287
4 1.18 × 10−3 −2.846 3.006 3.320 −2.272 2.472 3.106
5 1.31 × 10−3 −2.482 2.674 3.197 −1.928 2.165 2.940
6 2.34 × 10−3 −2.700 2.653 2.988 −2.095 2.140 2.722
7 1.33 × 10−3 −2.716 2.423 2.996 −2.074 1.909 2.715
8 ← 2.27 × 10−3 −3.106 2.828 2.892 −2.412 2.284 2.590
9 8.29 × 10−4 −3.179 2.886 2.918 −2.490 2.348 2.585

Bold font indicates that the PEMAXb boundary has been exceeded.

the data make this example suitable for analysis using group
sequential methods and PEMAX will be employed. A num-
ber of nine interim analyses are planned, proceeding after the
first 50 events have occurred and continuing every 6 months
thereafter and the overall 1% type I error is spent using an
O’Brien–Fleming error-spending function. The proportion of
deaths observed at each analysis time is used as a surrogate
for the proportion of total information in the spending func-
tion. Strategies for error spending are discussed in O’Brien
and Fleming (1979), Lan and DeMets (1983), and summa-
rized in Jennison and Turnbull (2000).

For the 999 placebo patients, the results in Table 2 show
that the PEMAX rejects at the eighth interim analysis,
where the standardized PYLS exceeds the PEMAX sequential
boundary. Interestingly, PLR and PYLS take turns in getting
closer to statistical significance as the monitoring process un-
folds, making it attractive to monitor both throughout the
study. When data pairing is ignored, not one of the tests em-
ployed detects significant survival differences between the two
treatment groups. Using PEMAX to repeat the same testing
procedure for the 1010 patients that receive an aspirin pill in-
stead of placebo results in the detection of significant survival
differences at the sixth analysis time, when PLR exceeds the

Table 3
Paired and unpaired versions of (P)LR and (P)YLS tests together with the O’Brien–Fleming (P)EMAXb
stopping boundaries of the corresponding (P)EMAX test for the 1010 patients enrolled prior to February

15, 1983 who are taking an aspirin pill

Paired Unpaired
Analysis
time Error spent PYLS PLR PEMAXb YLS LR EMAXb

1 2.85 × 10−5 −0.518 0.660 3.847 −0.405 0.512 4.318
2 1.42 × 10−4 −0.742 1.058 3.661 −0.587 0.828 3.769
3 5.74 × 10−4 −1.271 1.218 3.501 −1.050 0.982 3.795
4 1.18 × 10−3 −2.458 2.806 3.179 −2.023 2.305 3.177
5 1.31 × 10−3 −2.097 2.630 3.103 −1.670 2.124 3.106
6 ← 2.34 × 10−3 −2.528 3.155 2.933 −2.021 2.531 2.939
7 1.33 × 10−3 −2.556 3.166 2.896 −2.047 2.539 2.981
8 2.27 × 10−3 −2.483 2.965 2.834 −1.997 2.394 2.823
9 8.29 × 10−4 −2.583 3.046 3.112 −2.077 2.453 3.185

Bold font indicates that the PEMAXb boundary has been exceeded.

corresponding PEMAX boundary, while PYLS does not (see
Table 3). Hence, under a very similar study design, PEMAX
detects survival differences driven this time by PLR.

This example illustrates how the favored design choice is
not always obvious since the only protocol difference between
the two patient cohorts was the assignment to placebo or as-
pirin in addition to the paired design for studying early ver-
sus delayed photocoagulation. In each case, PEMAX tracked
well with the more favored design, detecting the difference of
interest.

5. Discussion
The newly proposed test, PEMAX, has several features that
distinguish it from the individual tests. Although RB tests are
generally favored when a PH situation is anticipated, Pepe
and Fleming (1989) have shown a lack of sensitivity to the
magnitude of the difference between the survival curves and
have proposed WKM statistics. PEMAX is set to balance the
advantages and disadvantages associated with these families
of tests in the paired censored survival data setting. Thus,
it should not be surprising that it might provide a degree
of robustness to detect ordered survival curves, when dealing
with PH or crossing hazards situations.
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Associated with PEMAX come the advantages of being
able to: (1) account for correlation between paired outcomes,
(2) account for correlation between PWLR and PWKM, and
(3) control type I error within the group sequential monitor-
ing framework. Testing frameworks that fail to account for the
source of correlation in (1) are generally inefficient. Frame-
works that ignore repeated testing in (2) and (3) will have in-
flated size. Although the focus is on PEMAX, other tests built
upon functionals of PWLR and PWKM, such as linear combi-
nations of these, could be devised as seen fit. Their sequential
limiting behavior is readily available, given the closed-form
expressions for the joint limiting distribution of the PWLR
and PWKM.

This methodology adds to the literature available for the
analysis of clinical trials involving paired survival outcomes.
With overconservativeness being an issue when paired struc-
tures are overlooked, using PEMAX would account for the
true nature of the data and give the benefits of using the cor-
relation in the data. Although statistical literature has been
rapidly advancing in broadening the ability to monitor differ-
ent types of test statistics with different forms of alternatives
in the independent setting, this availability is still in its in-
fancy in the paired setting. This procedure reduces the temp-
tation to use methods designed for independent settings when
the censored survival data are paired.
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Appendix

The asymptotic proportion πg(t) of pair members g entered by

analysis time t is estimated by π̂g(t) = ng(t){
∑2

h=1 nh(t)}−1.
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For group g, the probability πg(t1 | t2) of study entry by anal-
ysis time t1, given entry by analysis time t2, where t1 ≤ t2, is
consistently estimated by π̂g(t1 | t2) = ng(t1){ng(t2)}−1. The
number of dependent pairs in groups g1 and g2 at analysis
times t1 and t2, respectively, is equal to ng1,g2(t1, t2), so the
proportion θg1,g2(t1, t2) of such dependent observations is con-

sistently estimated by θ̂g1,g2(t1, t2) = 2ng1,g2(t1, t2){ng1(t1) +
ng2(t2)}−1. The asymptotic proportion γg1,g2(t1, t2) of pair
members g1 that have entered by analysis time t1, among the
pairs where the other member has entered by analysis time
t2, is estimated by γ̂g1,g2(t1, t2) = ng1(t1){ng1(t1) + ng2(t2)}−1.
For 0 < p < 1, let OR(p) = p(1 − p)−1 and ψg1,g2(t1, t2) = 0.5 ×
θg1,g2(t1, t2) (π3−g1(t1)π3−g2(t2))

1/2 [(OR{γg1,g2(t1, t2)})1/2+
(OR{γg2,g1(t2, t1)})1/2].

The marginal cause-specific hazard function for pair
member g at study time 0 ≤ u ≤ t is defined as λg(u) =
limδu→0

1
δu

P{Xgl(t) < u + δu,∆gl(t) = 1 |Xgl(t) ≥ u}. Using
information on pair member g1 at analysis time t1 and pair
member g2 at analysis time t2, the joint hazard at study
time 0 ≤ u ≤ t1 (for member g1) and study time 0 ≤ v ≤ t2
(for member g2) is λg1,g2{(t1, u), (t2, v)} = limδu,δv→0

1
δuδv

×
P{Xg1l(t1)<u+ δu,Xg2l(t2)<v+ δv,∆g1l(t1) = 1,∆g2l(t2) =
1 |Xg1l(t1) ≥ u,Xg2l(t2) ≥ v}. The cause-specific conditional
hazard for pair member g1 at study time 0 ≤ u ≤ t1, given
that pair member g2 is at-risk at study time 0 ≤ v ≤
t2, is λg1 |g2{(t1, u) | (t2, v)} = limδu→0

1
δu

P{Xg1l(t1) < u + δu,
∆g1l(t1) = 1 |Xg1l(t1) ≥ u,Xg2l(t2) ≥ v}. Let

Rg1,g2{(t1, u), (t2, v)}

= λg1,g2{(t1, u), (t2, v)}

−λg1|g2{(t1, u) | (t2, v)}λg2(v)

−λg2|g1{(t2, v) | (t1, u)}λg1(u) + λg1(u)λg2(v),

Bg1,g2{(t1, u), (t2, v)}

= P{Xg1l(t1) ≥ u,Xg2l(t2) ≥ v |Eg1l ≤ t1, Eg2l ≤ t2}

× [P{Xg1l(t1)≥u |Eg1l ≤ t1}P{Xg2l(t2)≥ v |Eg2l ≤ t2}]−1,

and Gg1,g2 = Rg1,g2Bg1,g2 .
If Qg(t, u) denotes Sg(u)Hg(t, u) and, as a reminder,

Hg(t, u) = P (Lg ≥ u, t − Eg ≥ u |Eg ≤ t) is the cen-
soring survival function among group g members entered
by analysis time t, then k(t, u) = limn1(t),n2(t)→∞ K(t, u) =

wpwlr (t, u){
∏2

g=1 Qg(t, u)}{
∑2

g=1 πg(t)Qg(t, u)}−1 on [0, t]. For

0 ≤ u ≤ t, define Ag(t, u) =
∫ ∞
u

p(t, y)wpwkm(t, y)Sg(y) dy.

A.1 Description of Σ
The entries of Σ are of the form cov{PWLR(ti ), PWLR(tj )},
cov{PWKM(ti ), PWKM(tj )}, cov{PWLR(ti ), PWKM(tj )},
or cov{PWKM(ti ), PWLR(tj )}, where 1 ≤ i ≤ j ≤D. If we let
ηg,3−g(ti , tj ) = (π3−g(ti )π3−g(tj )πg(ti | tj ))1/2 and p(t, u)k(t,
u) = r(t, u), results detailed in a technical report by Andrei
and Murray (2004) lead to cov{PWLR(ti),PWLR(tj)} =∑2

g=1 [ηg,3−g(ti, tj)
∫ ∞

0 r(ti, u)r(tj , u) {Qg(tj , u)}−1 λg(u) du−
ψg,3−g(ti, tj)

∫ ∞
0

∫ ∞
0 r(ti, u)r(tj , v)Gg,3−g{(ti, u), (tj , v)} dv du].

Also,

cov{PWKM(ti),PWKM(tj)}

=

2∑
g=1

[
ηg,3−g(ti, tj)

∫ ∞

0

Ag(ti, u)Ag(tj , u)

×{Qg(tj , u)}−1λg(u) du− ψg,3−g(ti, tj)

×
∫ ∞

0

∫ ∞

0

A(ti, u)A(tj , v)Gg,3−g{(ti, u), (tj , v)} dv du
]
.

Similarly,

cov{PWLR(ti),PWKM(tj)}

=

2∑
g=1

[
−ηg,3−g(ti, tj)

∫ ∞

0

r(ti, u)Ag(tj , u)

×{Qg(tj , u)}−1λg(u) du + ψg,3−g(ti, tj)

×
∫ ∞

0

∫ ∞

0

r(ti, u)A3−g(tj , v)Gg,3−g{(ti, u), (tj , v)} dv du
]
.

Finally,

cov{PWKM(ti),PWLR(tj)}

=

2∑
g=1

[
−ηg,3−g(ti, tj)

∫ ∞

0

Ag(ti, u)r(tj , u)

×{Qg(tj , u)}−1λg(u) du + ψg,3−g(ti, tj)

×
∫ ∞

0

∫ ∞

0

Ag(ti, u)r(tj , v)Gg,3−g{(ti, u), (tj , v)} dv du
]
.

A.2 Estimation of Σ
Let Y g1,g2{(ti,u),(tj , v)} be the number of pairs in which, at
analysis time ti pair member g1 is at-risk at study time u and
at analysis time tj pair member g2 is at-risk at study time
v. Define Ng1,g2{(ti, du),(tj , dv)} to be the number of pairs in
which group g1 member, who has entered by analysis time ti ,
fails at study time u and group g2 member, who has entered
by analysis time tj , fails at study time v. Finally, the num-
ber of pairs for which the group g1 member, who has entered
by analysis time ti , is at-risk until and fails at study time u
and group g2 member, who has entered by analysis time tj ,
is still at-risk at study time v is denoted by Ng1|g2{(ti, du) |
(tj , v)}. An estimator for P{Xg(ti ) ≥ u |Eg ≤ ti} is Yg(ti , u)×
{ng(ti )}−1, while P{Xg1(ti) ≥ u, Xg2(tj) ≥ v |Eg1 ≤ ti, Eg2

≤ tj} is estimable by Y g1,g2{(ti,u), (tj , v)}{ng1,g2(ti, tj)}−1.
Nelson–Aalen-type estimators of λg(u)du, λg1,g2{(ti,u),
(tj , v)} du dv , and λg1|g2{(ti,u) | (tj , v)} du are available
through {Yg(tj , u)}−1Ng(tj , du), Ng1,g2{(ti, du),(tj , dv)}×
[Y g1,g2{(ti,u),(tj , v)}]−1, and Ng1|g2{(ti, du) | (tj , v)} [Y g1,g2

{(ti,u), (tj , v)}]−1, respectively. A consistent estimator of
Gg,3−g{(ti , u), (tj , v)} dv du can be obtained based on pre-
viously described estimators of its components. Thus, an es-
timator of the covariance matrix Σ is now available. More
details can be found in Andrei and Murray (2004).


