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I. INTRODUCTION

In the past there has been a considerable amount of work done on
the problem of the reflection of radiation from non-plane (frequently termed
irregular) surfaces. Of the various approximations used in approaching this
problem, perhaps the most popular is the one due to Kirchhoff [:l]. (For work
using this approximation see references [2] B [5] , and [6].) It is assumed
in this approximation that the field near every region of the surface is es-
sentially what it would have been if the surface had been flat with a slope
equal to that of the irregular surface at the point in question. The approxi-
mation has been assumed to be useful when the surface variations are in some
sense large compared with the wave length of the incident radiation. Using
this assumption concerning the value of the field at the bounding surface in
conjunction with the Helmholtz formula (see below) it is possible to obtain
an estimate of the field in regions removed from the reflecting surface. De-
spite the prevalence of the Kirchhoff approximation in the treatment of the
problem of the reflection of radiation from an irregular surface there does not
exist, to the author's knowledge, a systematic derivation of the approximation
which demonstrates the way in which it may be corrected, nor for that matter,
which shows conclusively the size of the errors incurred through its use. For
this reason it is hoped that the derivation in the present paper may prove of

some interest.
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For simplicity consideration will be restricted to two dimensional
problems in which the field function is assumed to vanish at the irregular sur-
face (in acoustical work, a pressure release surface). It is a simple matter
to extend the arguments to cover the case where the normal derivative of the
field vanishes at the surface as well as to extend them to cover analogous
three dimensional (scalar) problems. One wishes to find then a function

@ (x,2,t) which satisfies the wave equation in two dimensions,
92@ . 82@- 1 a%

L 9% , 1.1
J x° 022 2 t2 ( )

at all points except the source point (xg,zp) of the field; c¢ 1is the phase
velocity,and is assumed to be constant. In acoustics, the function @ re-

presents the velocity potential,

v=--V% (1.2)

where ?r(x,z,t) is the velocity at (x,z,t).
It will be supposed that the source radiates a single (angular) frequency O ,

so that one can write
it
@(X,z,t) = e 1w B(x,z) . (1.3)

Substituting Eq. (1.3) in Eq. (1.1) one obtains,

2 2
52+32+k2 b(x,2) =0 (1.4)
ox oz
with k = %—); the function ¢ is to satisfy Eq. (l._h) at all points except

at (xo,zo). Near this point the field is to behave like

b(x,2) ~ B (r) (1.5)

)2] 1/2

where r = [(x - xo)2 + (z - zg
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For three dimensiocnal problems the Hankel function is replaced by

r

To continue, it is supposed that at the surface é:(x), the function ¢
vanishes,

B(x, Z(x)) =0 . (1.6)
The function g (x) 1is assumed to be continuous, single-valued, and bounded
with continuous first and second derivatives; the function is defined for all
values of x. Finally let ¢i be the value which the field would assume if &G

were not present; in our case ¢i = H(é)(kr) . The Kirchhoff approximation con-

sists of supposing that Zl@ ~ 22)¢i on the boundary, where °_ is the
oV ~ ¥ oy

outward-directed derivative normal to Z(x). It is supposed in this work

that k is complex, that is that the medium is slightly absorptive. Com-

ment will be made upon this assumption at the end of Section 2 (following

Eq. (2.35)). We now proceed with the derivation of the approximation.

II. DERIVATION OF THE KIRCHHOFF APPROXIMATION

In the treatment to be presented here we shall attempt to develop the
Kirchhoff approximation in a systematic way. The Helmholtz formula is considered
in connection with the determination of the normel derivative of the field func-
tion on the boundary; an integral equation is obtained. The solution by itera-
tion of this integral equation will then be considered. It will appear that
using the first term is equivalent to adopting the Kirchhoff approximation.
We then investigate the next term of the iteration soclution, in particular ob-
serving that it has the order property,

az¥

dx

PR VL - . (2.1)

7l = w kIR,

Here I 1is the first term neglected in the solution; Ry 1is the minimum radius

M
of curvature and ‘1Z
ax

is the maximum slope of Z(x); M' and M" are
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constants independent of surface properties. On the basis of this property,

it seems reasonable to suppose that the Kirchhoff approximation is valid if --

M
dC‘
| <<

i)

and ii) kIR, >> 1
We proceed with the outlined program. First the Weber two-dimensional
analogue of the Helmholtz formula is needed. By using Green's formula in con-

nection with Eq. (1.4), one is able to derive the following result (see Fig. 1)

[l] :
B(2) = #,(P) + i g V(“ S w0 - mY ) %—,— ¢<1)} as,
z (2.2)

subject to the restrictions that --

a. The function @(x,z) possesses a singularity of the type

1
B(x,z) => Hé )(krPO) s as Tpy—> O;
- - _ RV ., y211/2
(Xo,zo) is the source point and r,) = [gx xo) + (z ZO) J .

b. The function @(x,z) is continuous with continuous first and second
order partial derivatives for all points (x,z) satisfying the condi-

tion z = Z(x), with the exception of the source point.

¢c. The function @(x,z) shall be of order e ™ a5 r—>¢o , where

r = (x2 + 22)1/2. The constant « is the imaginary part of k de-

fined by
k = kg t ic , a > 0 . (2.3)

The integral in Eq. (2.2) is to be carried over the entire surface

C (x). The symbol E%\; indicates the derivative with respect to the out-
\

ward normal direction at the surface point (1). We have let @(P) stand for

the value of the function ¢ at some space point P and similarly for other

functions appearing in Eq. (2.2) and later. We now use the boundary condition

given by Eq. (1.6); Eq. (2.2) becomes



g(P) = ¢;(P) - i3 \ 8§ (k) S g1) as; (2.4)

.

If we allow P to approach the surface at the point (2), we see

(2.5)

(O)=(x,2)

Fig. 1. Diagram used in the discussion of the Helmholtz formula.

Once the function 3%2§}l is known, the solution to the problem can
|
be obtained from Eq. (2.4). 1In order to obtain an estimate for this function
we set up an integral equation of the second kind and propose a solution by
iteration.l
o)
We take the derivati i o directio of Eg. (2.4); the
e derivative in some direction, —Enu;: a. ( );

point (P) is then allowed to approach the surface along the normal at the

point (2); at the same time the derivative 9 approaches 2 . One

2 fe Iv;

obtains

1. The integral equation to be developed here (Eq. (2.16)) has been obtained
previously by Maue [8] for both boundary conditions for the three-dimensional
problem. It is repeated here in order to show the detailed development for
the two-dimensional case. For the use of integral equations in the treatment
of diffraction problems one can also refer to references [h] and [7].
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(1)
285 (2) H krip)
od(2) _ O% 1 Lim ( o8y "(kr1p) 2 g(1) a5 (2.6)

3v, 2v, HE=>0) 2f, 2V,
oz

That it is legitimate to differentiate under the integral sign for Tpo 2 S > 0

may be seen in the following way. From the asymptotic formula for the Hankel

function one has,

(1) 2

1/2
R 71> 1. (2.7)

Using this representation together with the radiation condition, hypothesis

c) above, it is evident that the integrand of Eq. (2.6) is less in absolute

-2 |x1-x2|

value than Me for some M so longas r_ .2 § > 0. It follows

P2
. , . oHy )(krlp)
that the integral is uniformly convergent; furthermore 3
Mp

continuous for rp, 28 , as is %g by hypothesis for =z Zg(x). Hence

is

the interchange of different(;ie)ttion and integration is Justified.
1
2Hp

2P
dipoles. It is a well known result of potential theory that limiting processes

The quantity in the integrand represents a distribution of

such as the one in Eq. (2.6) introduce integrable singularities in the inte-
grand. In order to evaluate the limit, the integral of Eq. (2.6) is split up

as follows:

1 Lim aH(()l)(krlP) DP(1) ds. =
ki (P)=>(2) ° Y
- P’P 1
(1)
1 Lim OHy "(kr1p) Dg(1) a1
4i (P)>(2) arxp oY,
L=, )
1 Lim SHy " (krip) a¢(1) 1s (2.8)
- 5 N ,
i (P)=>(2) a’u.P aVl
2<%,

The limit in the first term on the right side of Eq. (2.8) can be moved inside

the integral sign. Then we are left with the task of evaluating the second
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term on the right side of Eq. (2.8). For convenience we write

1 Lim 215" (kryp) 24(1) dsy =
Ta€E, I

Li (P)=»(2) D oY
<3, P :
1 Lim aﬁél)(krlp) 24(1)  4(2)
- (212> (2) S - ds; . (2.9)
n.z<§° BHP Vl a.VE‘

The Hankel function is defined by,

H(()l)(y) = Joly) + % [_“d‘”r ln(%y) } Jo(y)

”‘ m 2m
_e_i_z('” b) {l+l+---+i§ (2.10)
1 2 1l 2 m ’ )

—  (m)

W=

or

18 (y) = 2L angy) 5 (5) + o) (2.11)
0 7 0 '

where G(y) is analytic at y = 0, and ¥ is Euler's constant, 0.5772... .
Using the assumption that ; (x) has a continuous derivative, together with
the expression for the Hankel function for small values of its argument, one

obtains the following result:

1
Lim {.L Lim ch() )(krlP) od(2),. (- 1282
£-30 | ki (P)=(2) B}.L 2y 1= 2 > (2.12)
rz,=<§° P 2 2

To see this, g 0 is chosen small enough so that the region of surface
(rp € EO ) 1s essentially flat. Then using Eq. (2.11), Eq. (2.12) follows

directly. Also since by hypothesis %% is continuous, we see that
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7 1
Lim {1 Lim 216" (1) 24(1) _ 24@)\,.. -,
C’.a,c ll—l P > B b 1 - )
> 2 ¥ AV
P 1

2 (2.13)
Now allowing %o=> O in BEq. (2.8) and substituting in Bq. (2.6) we find,

Q“-’\ch

of(2) _ 285(2) L 128(2) _ l < (l)(kr12) 28(1) 4 (2.14)
Y,  2¥, 2 2V )Y, E '
4
Equivalently Eq. (2.14) may be written,
28(2) _ ,2%1(®) 1 285 () 26(1) ..
XA a\f; 21 avg v ' (2.15)

<

Now we consider the solution of Eq. (2.15) by iteration. The procedure is

as follows n6] : one substitutes the right side of Eq. (2.15) for the quan-

tity _S_Q appearing in the integrend. This again gives the quantity %gﬁg
ay

appearing on the right side, now under a double integral. By repeating the

substitution process indefinitely, one generates an infinite series of terms

in which each term involves, in general, a multiple integral with the known

function appearing in the integrand. This process then yields the series,

(1)
2oe) _, 258 1 (0 2R U 2h)
¥ ov el Y Y

2 2 z 2 1

’

BR-E RGOS ____é_aH‘Sl)(krl)[z LIS O

21 2V 2i EN% Y A
1 1 3
Z o (2.16)
Under the assumptions on Z;(x) and using Eq. (2.10) it is not difficult to
1
aHg )(krl2) . . . . .
show that > is continuous in x; and x, with the exception of
o7V

a removable singularity at xj = xp. Then from Egs. (2.3) and (2.7) it is seen
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that each integral in each term of the series given in Eq. (2.16) is absolutely
and uniformly convergent and moreover that each term is continuous. Finally

sufficiently small and for lk\RM

it will be seen below that for [diM
sufficiently large, the series which forms the iteration solution is absolutely
and uniformly convergent. Then one sees that Eq. (2.16) is a solution to

Eq. (2.15). The series can be integrated term by term since each term is con-
tinuous and the series is uniformly convergent. It also follows that under

the given conditions the series represent$a continuous function of x,. Fur-
thermore, it is not difficult to show that the iteration solution when it con-
verges is the only continuous solution of Eq. (2.15). We now retain only the

first term of Eq. (2.16) assuming for the moment that the remainder of the

series is negligible in comparison to it; this gives,

24(2) . , 2%:(® | (5.17)
'a\ég 'B'V;

As a check on the result, it is not difficult to see that for §(x) =0
(a flat surface), Eq. (2.17) is exact.

To complete the solution, Eq. (2.17) is substituted in Eq. (2.4) to
obtain

26,(1)

3V,

g (p) = gy (p) - i—ig B () 2 as; ,  (2.18)
g

when ¢(l)(P) represents the first approximation to the field §.
We shall now consider the first term neglected in the approximation

represented by Eq. (2.17). We make use of the relation

%} Hél)(y) = - Hﬁl)(y) p (2.19)
and also
3332 = 8in T, s (2.20)

1
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with & 1 defined as the angle between the tangent to the surface at the
point (1) and the radius vector comnecting (1) and (2) (see Fig. 1).

Then we have for the second term of Eq. (2.16)

8 (k. ) [ 26, (1
RECTETIT

dPi(1)
)k sing ,———— ds
s (2.21)

We shall label this quantity I; it must be small if Eq. (2.17) is to be

valid.
We need the expression for the function Hil) corresponding to
Eq. (2.10):
(1) oy = i 1 2
BV () -0 e 2y e( ¥ v mgy| 20 -3
(2]
my 1+2m 5 9o
(-1) Ey) 11 1 1 1 1 (2.22)
- —+ =+ .ttt —-+ -+ .+ —
m! (m+l)! 1 2 m 1 2 l+m &) !
W ap
From Bq. (2.22) it follows that for kri, € 1,
(1) \4“’11
H (¥)= — 2.2
{ 1 | ¥ (2.23)
Using the asymptotic expansion for the function H§l) 3
(1) o \1/2 i(y'g") 1
B (y) = <;§) e [_1 + o(-:);)] (2.24)
one finds that for krq, 2 1,
(1) \z -or)p
\ Hl (krle) < MHe . (2.25)
Finally from the definition of @; ; it follows that,
PY2
i
<
S5V | = | k{M; . (2.26)

In these expressions my, My, and M; are all of order unity.



-11-
With these definitions in mind, we proceed with the consideration
- of the function 1. We examine separately the regions of the integrand of

Eq. (2.21) where (k]rl2 £ 1 and where lklrl2 > 1. We have

I-= I, + 12 s (2.27)
wh
ere ) ( | a¢i(1)
I, = 3 (krio)ein 2 5 —=—5— >V kis; , (2.28)
Helm«a_- 1
and 1
I2 :li g H:(Ll)(krl2)sin 62 a¢i( ) kdsq . (2.29)
Vel >1 ‘

Let I, be considered first. To begin we note that,

To"Ca

—— ; (2.30)

dx

since the quantity on the left is Jjust the average slope of the segment of
surface between the points (1) and (2). By examining Fig. 1, and using the

result given by the relation (2.30), it is easily seen that

M
ig
= , (2.31)

sinzg‘

Upon using Egs. (2.25), (2.31), and (2.26) one then finds without difficulty

that

(2.32)

fa M
L M2
PR L SR

We now proceed by considering Eq. (2.28). The following relation

is easily established (cf. Fig. 1):

Ir
_12 , (2.33)

ol fog
o

\sin?: ‘é

2
when R, 1is the minimum radius of curvature. One then finds upon using

Egs. (2.23), (2.33), and (2.26) that,

\Iﬂ < k| MimH 1+ \k|Rm - (2.34)
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Hence from Eg. (2.27) it follows that,

2 M\27v73' i e m ~
i ! yd __‘k‘ jd= H
1| = Myl F .ﬁMH all el B %k‘Rmé. (2.35)

dx

/

It is noted here that as one considers media of smaller attenuation (&), one
is also forced to restrict consideration to surfaces with smaller slope in
order to guarantee a given bound on the error using the present development.

In order to remove this difficulty, one must deal with conditionally convergent
integrals and in particular consider the question of whether or not they are

uniformly convergent. To continue, one sees upon examining Eq. (2.16) that,

‘Eigéilj € 2 (k| M {:l + 8+ 8%+ ... } (2.36)
where \
1 ca-M2i1/z k| |ag" m .
8 = P (l + “;—5}?—/ ) ELI'MH "l—d" "'a‘;“ + Wi—m- ] (2'57)

the series in Eq. (2.36) converges for

s < 1.

This proves the assertion made above that for l sufficiently

d§M
a

X
small and for \klRm sufficiently large, the series in Eq. (2.16) converges
absolutely and uniformly.

It is worth commenting that for \klRm <K 1 the terms neglected in
the approximation represented by Eq. (2.17) are of the same order as the'terms

retained for regions of the surface where the radius of curvature is small.

III. THE RECIPROCITY THEOREM

We now show that the approximate result, expressed by Eg. (2.18),

satisfies the reciprocity theorem if there is but one source, i.e.,

1)

6.(2) = 58V (krpo) (3.1)
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A general transformation of Eq. (2.18) is first shown. We consider a system
having sources giving a field @; without the bounding surface & (x), so

that the sourcesradiate in an infinite homogeneous medium. Then applying

Eq. (2.2) (1)
1 ( (kryp)
¢1(P) = ¢1(P) 41 S)‘Qsi(l) X
» . BV
® 1
(1) o%,(1)
- H (k ) —— ds
° T TSy o (3.2)
1
or
(1)
1 (1) 28:(1) | 9ty (kryp)
T SHO (kryp) dsy = v SQS (1) dsy
2Y
5 ™M z 1 (3.3)
Now Eq. (3.3) is used in Eq. (2.18) to obtain,
i@ -8, - ip ) S E ) 0 e, (3.4)
g
Tt is evident that if we specialize the problem by applying Eq. (3.1),
Eq. (3.4) is unchanged by the interchange of (0) and (P), for we have,
g @) - B P ey - S “Ba‘w“g B e eV ) )) s, L (5.9)

T

Thus when a single source excites the field, Eq. (2.18) satisfies the reci-
procity theorem.

We now examine the value of the approximate result, given by Eq. (2.18),
on the boundary. From the boundary condition, Eq. (1.6), the function
¢(l)(2) should vanish. Subtracting Eq. (2.18) from Eq. (2.4) we see,

28,(1)
3(p) - ¢(1)(P) = - %g H(()l)(krlP)La'ag((:ﬁ - 3:1’ } ds; . (3.6)
Z 1 ' 1

When (P) 1lies on the boundary at the point (2), Eq. (3.6) becomes,

C g.(1)

) 2 g(1) :3

FJ <() (kryp) [ 3\) alv } asy
1

z

_¢(l)(2



“1h.
Hence if the error in the determination of the value of é%ﬁg on the boundary

is made small by hypotheses i) and ii), one may expect the value of the approxi-

mation given by Eq. (2.18) to be small there, and indeed to be of the same order.

IV, CONCLUSIONS AND ACKNOWLEDGEMENT

It is shown that the Kirchhoff approximation is really the first
term in the solution by iteration of an integral equation governing the value
of the normal derivative of the field function at the surface. The neglect of

M
the remaining terms of the solution is seen to be justified for Qé%_

sufficiently small and for lk,Rm sufficiently large. Correction terms for

the approximation are given. Finally it is shown that the approximation to
the solution obtained from the Kirchhoff assumption satisfies the reciprocity
theorem.

There is one further point of interest in connection with the pre-
sent approximation. It is easily seen from Egs. (2.21) and (2.31) that the
first term neglected in the approximation contains a term of first order in
the surface slope. It seems reasonable to suppose that the effect of this error
would be greatest in regions where the reflected radiation is far removed
from the specular direction. Brekhovskikh, cited in reference [QJ, finds
such deviations in comparing calculations using the present approximation with
an exact formulation due to Rayleigh.

It is a pleasure to acknowledge the helpful criticism of Dr. David

Mintzer and of Dr. C.L. Dolph on several points concerning this work.
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