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Summary. Considerable attention has been recently paid to the use of surrogate endpoints in clinical
research. We deal with the situation where the two endpoints are both right censored. While proportional
hazards analyses are typically used for this setting, their use leads to several complications. In this article,
we propose the use of the accelerated failure time model for analysis of surrogate endpoints. Based on
the model, we then describe estimation and inference procedures for several measures of surrogacy. A
complication is that potentially both the independent and dependent variable are subject to censoring. We
adapt the Theil–Sen estimator to this problem, develop the associated asymptotic results, and propose a
novel resampling-based technique for calculating the variances of the proposed estimators. The finite-sample
properties of the estimation methodology are assessed using simulation studies, and the proposed procedures
are applied to data from an acute myelogenous leukemia clinical trial.
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1. Introduction
Recently, surrogate endpoints have become of great interest
in clinical research (Biomarkers Working Group, 2001). These
are endpoints that can be collected in a shorter time period
and/or using fewer subjects than those normally considered
in a classical clinical trial (e.g., survival). Surrogate endpoints
are proposed based on biological considerations within a pro-
gression model of disease. One example is CD4 count levels
in AIDS; the CD4 count can potentially serve as a surrogate
endpoint for death. Another example from cancer studies is
using tumor shrinkage as a surrogate endpoint for survival
or disease-free survival. Formulation of an appropriate surro-
gate endpoint to use depends on the mechanism upon which
the treatment acts. For example, a new treatment to prevent
stroke may directly influence blood pressure; therefore, mea-
suring the effect of treatment against blood pressure rather
than the incidence of stroke would be appropriate. Here and in
the sequel, we assume that an appropriate choice of endpoint,
based upon pathway considerations, has been made.

Modeling surrogate endpoints has been the focus of much
recent statistical research (Burzykowski, Molenberghs, and
Buyse, 2005). A seminal paper in this area is that of Prentice
(1989), who gave several conditions for inference for a sur-
rogate endpoint to be the same as that for the true clinical
endpoint. However, the criteria proposed by Prentice are very
strict. In addition, they have come under criticism by sev-
eral authors (Begg and Leung, 2000; Berger, 2004). Instead
of using the testing-based criteria of Prentice (1989), we focus
on estimation of measures of surrogacy, several of which have
been proposed in the literature. We describe these quantities
in Section 2.2.

Our interest is in the situation where the true and surrogate
endpoints are right-censored failure timed. The major work
in this area has been that of Lin, Fleming, and DeGruttola
(1997) for proportion of treatment effect explained (PTE)
and Burzykowski et al. (2001) for adjusted association and
relative effects (RE; Buyse and Molenberghs, 1998). The re-
gression model used by these authors was the proportional
hazards model (Cox, 1972). While its use is widespread in
the analysis of time-to-event data, there are several limita-
tions in the surrogate endpoint setting. First, as noted by Lin
et al. (1997), when fitting failure time models for the true
endpoint and treatment in the absence and in the presence
of the surrogate endpoint, proportional hazards cannot hold
for both models. Second, the failure time is not directly mod-
eled with the Cox model; instead, it is the hazard function,
which is a nonintuitive quantity for clinicians. In this arti-
cle, we consider inference for surrogate endpoints based on
the accelerated failure time (AFT) model (Cox and Oakes,
1984, Section 5.2). It has a very similar form to that of a lin-
ear regression model and is much simpler to interpret than
the proportional hazards model. We consider four measures
of surrogacy in the article. For some of these measures, a ma-
jor complication is that we will have to consider AFT mod-
els with right-censored covariates. To handle this problem,
we extend the famous Theil–Sen estimator (Theil, 1950; Sen,
1968); we also develop a novel resampling-based scheme for
variance estimation. The structure of the article is as follows.
In Section 2, we define the data structures and describe four
measures of surrogacy that have been proposed in the litera-
ture. In Section 3, we develop the new estimation procedure
that extends the Theil–Sen estimator. There, the asymptotic
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properties are derived as well. Novel resampling techniques for
variance estimation are provided. We then describe estimation
and variability assessment of the measures of surrogacy. The
finite-sample behavior of the proposed methods are assessed
by simulation studies and applications to data from an acute
myelogenous leukemia clinical trial in Section 4. Finally, we
conclude with some discussion in Section 5.

2. Preliminaries and Definitions
2.1 Data Structures
Let a ∧ b denote the minimum of two numbers a and b. De-
fine I(A) to be the indicator function for the event A. Let
T be the failure time of the clinical endpoint, S the failure
time for the surrogate endpoint, and C time to independent
censoring. Let Z denote a treatment indicator (0 for control,
1 for treatment). We assume that (T, S) is independent of C
given Z. We observe the data (Xi , δ

X
i , Yi , δ

Y
i , Zi ), i = 1, . . . , n,

n independent and identically distributed observations from
(X, δX , Y, δY , Z), where X = logS ∧ logC, δX = I(logS ≤
logC), Y = logT ∧ logC and δY = I(logT ≤ logC).

2.2 Measures of Surrogacy
Before describing the measures of surrogacy, we first point
out that to calculate the appropriate measures, we will need
methods of estimation for the following regression models:

log T = βZ + ε1, (1)

logS = αZ + ε2, (2)

and

log T = η logS + γZ + ε3, (3)

where ε1, ε2, and ε3 are error terms and β, α, and (η, γ) are
unknown regression coefficients to be estimated. If we use the
AFT formulation for the three regression models, then fitting
models (1) and (2) is straightforward, while fitting (3) is not.
In Section 3.1, we propose a new method for its estimation.

The first measure of surrogacy that appears to have been
proposed in the literature is the proportion of treatment
effect explained (PTE), proposed by Freedman, Graubard,
and Schatzkin (1992). The idea behind PTE is analogous to
the attributable fraction in epidemiology. We wish to seek
how much of the effect of treatment on the true endpoint
is mediated through the surrogate endpoint. If the surro-
gate endpoint is valid in the sense of Prentice (1989), then

the population PTE should equal one. At the other extreme,
a population PTE of zero implies that the surrogate has no
mediation effect between treatment with the true endpoint.
The PTE is given by the following formula:

PTE =
β − γ

β
, (4)

where β and γ are the regression coefficients for Z in mod-
els (1) and (3).

The PTE measure has been criticized by Molenberghs et al.
(2002) and Wang and Taylor (2002) for a variety of reasons.
One criticism is related to that of Lin et al. (1997), namely
the potential incompatabilility of models for T given Z and T,
given S and Z, which are required for the calculation of PTE.
Another problem is that PTE cannot handle interactions be-
tween S and Z in a natural way; in fact, PTE is not even well
defined for this situation.

Buyse and Molenberghs (1998) have argued that for a sur-
rogate endpoint to be useful, the treatment effect on the sur-
rogate endpoint should be able to predict the treatment ef-
fect on the true endpoint. This motivates two new measures
of surrogacy. The first is RE, defined by Buyse and Molen-
berghs (1998) as the ratio of the treatment effects on the true
and surrogate endpoints. If the treatment effects on the two
endpoints are the same, then RE would equal one. Buyse and
Molenberghs (1998) argue that it might also be of interest to
study the correlation between T and S, adjusting for the ef-
fects of Z. They term this the adjusted association measure.
When T and S have a multivariate normal distribution, the
adjusted association, on a standardized scale, reduces to the
partial correlation of T and S given Z. Note, however, that its
interpretation depends upon standardizing based on the vari-
ance of T and S. The framework of Buyse and Molenberghs is
much different from that of Prentice in that the former only
considers bivariate distributions and their associations, while
the latter is based on a causal framework in which for a sur-
rogate to be valid, it must lie on the causal pathway between
Z and T and must capture the entire effect of Z on T. The
Prentice framework cannot be verified in any strict statisti-
cal way, while the Buyse and Molenberghs framework can.
Because these paradigms have such different starting points,
conceptually it is hard to resolve analyses based on these two
approaches.

Inspired by a technique utilized by Tsiatis et al. (1995),
Wang and Taylor (2002) proposed an alternative measure
to PTE, which they call the F measure. Their approach is
to compare the distribution of the surrogate endpoints be-
tween the two treatment groups in which the distributions
are weighted by the conditional distribution of the true end-
point, given treatment and the surrogate endpoint. With a
time-to-event endpoint, Wang and Taylor (2002) suggest to
make the endpoint binary based on dichotomization at a sin-
gle time point. The F measure of Wang and Taylor (2002),
adapted to our setting, is defined as the following:

F ≡

∫
Pr(T > c |Z = 0, s)f(s |Z = 0) ds −

∫
Pr(T > c |Z = 0, s)f(s |Z = 1) ds∫

Pr(T > c |Z = 0, s)f(s |Z = 0) ds −
∫

Pr(T > c |Z = 1, s)f(s |Z = 1) ds

, (5)

where c > 0 is a prespecified time point. Note that we have
suppressed dependence of F on c. Also, note that the surro-
gacy measure (5) requires specification of (2) and (3). Wang
and Taylor (2002) argue consequently that because of this
property, the F measure is more flexible than the PTE mea-
sure because it does not require specification of (1). Ideally,
an F value of zero corresponds to the surrogate endpoint be-
ing useless, while that of one implies it is a perfect surrogate.
However, there are issues with the F measure as well. First, it
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is not guaranteed to be between zero and one as a population
quantity; Wang and Taylor (2002) provide a set of necessary
and sufficient conditions for these to hold. Second, because
of the ratio nature of the quantity, the confidence limits for
the F measure can go outside the limits of zero and one. This
criticism also applies to the PTE and RE measures.

Some further intuition about the F measure can be gleaned
in the situation with uncensored data. Suppose we have
models (1) and (2) holding jointly with (ε1, ε2) having a zero-
mean bivariate normal distribution. Then for this situation,
Wang and Taylor (2002) show that their F measure reduces to
the PTE. We use a slightly different definition of the F mea-
sure with censored data because that of Wang and Taylor
(2002) would use the mean of logT given log S and Z, which
is harder to estimate with censored data. However, because
we lose the feature of linearity of the mean as a function of
the regression parameters, in our definition of (5), it is pos-
sible for the F measure of a perfect surrogate to be less than
one.

3. Proposed Methodology
3.1 Semiparametric Regression Model and Estimation
We now describe the main new methodological development
in this article. To construct the PTE and F measures, we need
to be able to fit model (3), where ξ ≡ (η, γ) are regression
coefficients and ε3 is an error term with an unspecified distri-
bution. Note that a complicating feature of this model is that
both the covariate and the response variable are potentially
censored. For γ = 0, model (3) was previously considered
by Akritas, Murphy, and LaValley (1995). They propose to
estimate η using the Theil–Sen estimator (Theil, 1950; Sen,
1968). Note that in (3), η has a simple interpretation as a
dependence parameter between logT and log S, adjusting for
Z. Equivalently, η measures the change in the average of logT
associated with a one-unit change in log S, holding treatment
constant. Because of censoring, it is difficult to estimate an
intercept term in the linear regression model (3).

Another advantage of (3) is that it is possible for both
(3) and (1) to hold simultaneously. From results on ordinary
linear models, the two models can potentially hold simulta-
neously because of linearity. By contrast, the proportional
hazards versions of these models can never be true at the
same time (Lin et al., 1997). This led Lin et al. (1997) to con-
sider inference for the estimated regression coefficients based
on model misspecification theory. The model and attendant
theory presented here is conceptually simpler.

We now consider estimation of ξ in (3). We can estimate
the regression coefficients mimicking the approach of Akritas
et al. (1995). In particular, we define the following class of
estimating functions:

U(ξ) ≡ U(η; γ)

=
∑
i<j

δX
i δX

j {I(Xi < Xj) − I(Xj < Xi)}

×
{
δY

i I(Yi − ηXi − γZi < Yj − ηXj − γZj)

− δY
j I(Yj − ηXj − γZj < Yi − ηXi − γZi)

}
. (6)

Then ξ̂ ≡ (η̂, γ̂) is defined to be the solution to U(ξ) = 0.
Note that for fixed γ, U is a monotone function of η and is
hence guaranteed to have a zero-crossing. We can solve (6) to
get η̂ using iterated bisection root search. By symmetry, for a
fixed value of η, the estimating function (6) is monotone in γ,
so bisection root search can be used there as well. Thus, our
algorithm is a componentwise iterated bisection root search.
Let η0 and γ0 denote the true values of η and γ. We show in
the Web Appendix that E{U(ξ0)} = 0.

Assume that Pr(T > x, S > y |Z)Pr(C > x |Z) is bounded
away from zero for sufficiently large x and y. We know that
in a neighborhood of (η0, γ0), n−2U(η; γ) converges uniformly
to E[U(η0; γ0)] ≡ 0. By the strong law of large numbers for
U-statistics (Van der Vaart, 2000, p. 192) and the continuous
mapping theorem, (η̂, γ̂) is consistent for (η0, γ0). In the Web
Appendix, we prove the following theorem.

Theorem 1. (a) Under the usual regularity conditions,
n−3/2U(ξ0) converges in distribution to a normal random vector
with mean zero and variance matrix

J ≡ J(ξ) = 4ρ,

where ρ = Var[E{g(X1, Y 1, Z1, X2, Y 2, Z2) |X1, Y 1, Z1}] and

g(X1, Y1, Z1,X2, Y2, Z2)

= δX
1 δX

2 {I(X1 < X2) − I(X2 < X1)}

×
{
δY

1 I(Y1 − ηX1 − γZ1 < Y2 − ηX2 − γZ2)

− δY
2 I(Y2 − ηX2 − γZ2 < Y1 − ηX1 − γZ1)

}
.

(b) n1/2(ξ̂ − ξ0) converges in distribution to a normal random
vector with mean zero and variance

A−1JA−1, (7)

where

A = lim
n→∞

n−2 dU(ξ0)

dξ
.

Note that if we want to estimate the asymptotic variance of ξ̂
consistently based on (7), then this will require consistent es-
timation of a density function. Smoothing is needed and may
be sensitive to the choice of bandwidth. We will use a resam-
pling method for estimating the variance of the test statistics.
Note that (6) has the following form:

U(ξ) =
∑
i<j

Tij (ξ), (8)

where

Tij (ξ) = δX
i δ

X
j {I(Xi < Xj) − I(Xj < Xi)}

×
{
δY

i I(Yi − ηXi − γZi < Yj − ηXj − γZj)

− δY
j I(Yj − ηXj − γZj < Yi − ηXi − γZi)

}
.

We generate n independent and identically distributed normal
(0, 1) random variables (G1, . . . ,Gn) and calculate perturba-
tions of (8):

U ∗(ξ) =
∑
i<j

Tij(ξ̂)(Gi ×Gj). (9)
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Notice that in (9), the only stochastic components are
(G1, . . . ,Gn). The only requirement is having mean and vari-
ance one. In the Web Appendix, we sketch a proof of the
following theorem:

Theorem 2. The conditional distribution of n−3/2U∗(ξ0) and
the unconditional distribution of n−3/2U(ξ0) have the same lim-
iting distribution.

This leads to the following algorithm for calculating the
variance of ξ̂:

(1) Generate (G1, . . . ,Gn).
(2) Set (9) equal to zero and solve for (η̂∗, γ̂∗).
(3) Repeat steps 1 and 2 M times.

This resampling procedure is quite fast. In practice, we usu-
ally take M = 1000. Using Theorem 2 and Taylor series ar-
guments, it can be shown that the conditional distribution of
n1/2(ξ̂∗ − ξ̂) approaches that of the unconditional distribution
of n1/2(ξ̂ − ξ0). We can construct confidence intervals in two
ways. The first is to calculate an estimator of standard error
based on the empirical distribution of ξ̂∗. The second is based
on the α/2th and (1 − α/2)th percentiles of the empirical dis-
tribution of ξ̂∗. The algorithm described here can be viewed
as being related to the commonly used bootstrap algorithm.

3.2 Estimation of Surrogacy Measures
We now return to the four measures of surrogacy described
in Section 2.2 and describe their estimation and inference
procedures. We first start with PTE. We estimate β in (1)
using any existing estimation procedure for the AFT model
with univariate censored data (e.g., Jin et al., 2003); we es-
timate ξ in (3) using the estimation procedure described in
Section 3.1. Based on these estimates, we estimate PTE by

P̂TE = (β̂ − γ̂)/β̂. To calculate the variance of PTE, we use
the nonparametric bootstrap (Efron and Tibshirani, 1986).
Note that we are fitting models (1) and (3) simultaneously
so that the estimation algorithms are applied to the same
bootstrapped data sets.

Next, we consider the RE measure. To calculate it, we es-
timate β and α from models (1) and (2) using rank-based
estimating equations for the AFT model with censored data
(Jin et al., 2003), obtain estimators β̂ and α̂ and estimate RE

as R̂E = β̂/α̂. We can again use the nonparametric bootstrap
(Efron and Tibshirani, 1986) to obtain confidence intervals
for RE in a manner similar to that described in the previous
paragraph.

To calculate the adjusted association measure, we formu-
late dependence between logT and log S, adjusted for Z, using
a Clayton–Oakes model (Clayton, 1978; Oakes, 1986), where
the marginal failure time distributions are modeled using (1)
and (2). For the Clayton–Oakes model, the crossratio function
is constant; specifically,

λ(t̃ | S̃ = s)

λ(t̃ | S̃ ≥ s)
= θ, (10)

where λ(t̃ | S̃ = s) and λ(t̃ | S̃ ≥ s) are the hazard func-
tions of T̃ ≡ log T conditional on S̃ ≡ logS = y and S̃ ≥
y, respectively. This has been the dependence model
used by Burzykowski et al. (2001); however, the marginal

models used there were based on the proportional hazards
model.

For i = 1, . . . , n, define eT
i and eS

i to be the residual for the
ith individual from the estimates in model (1) and (2). A key
result of Fine and Jiang (2000) is that the population resid-
uals corresponding to (1) and (2) do not depend on the error
distribution. Using the Clayton–Oakes model, one can esti-
mate the dependence parameter θ in (10) using the following
formula:

θ̂ =

∑
i<j

Rijψij

∑
i<j

Rij (1 − ψij )
,

where Rij = I(Xi ∧ Xj ≤ Ci ∧ Cj , Y i ∧ Y j ≤ Ci ∧ Cj)
and ψij = I{(eT

i − eT
j )(eS

i − eS
j ) > 0}, i, j = 1, . . . , n. Note

that we are using the estimator from Fine and Jiang (2000,
Section 2) with the weight function being equal to one. More
general weight functions could be considered. Alternatively,
one could take the residuals and estimate dependence using
the pseudolikelihood method of Shih and Louis (1995). In
the example in Section 5, we will use the procedure of Fine
and Jiang (2000). Note that the residuals come from the es-
timates from the two models using the method of Jin et al.
(2003).

Fine and Jiang (2000) show that n1/2(θ̂ − θ) has an asymp-
totically normal distribution with mean zero and variance
that can be consistently estimated by observed data quan-
tities. Here, we propose an alternative method of variance
estimation. The procedure proceeds as follows:

(1) Generate n independent and identically distributed nor-
mal (0, 1) random variables with mean one, (V1, . . . ,
Vn).

(2) Calculate for this bth data set,

θ̂∗b =

∑
i<j

RijψijViVj

∑
i<j

Rij (1 − ψij )ViVj

.

(3) Repeat steps 1 and 2 M times.

This procedure is computationally quite fast. In practice, we
take M = 1000. Using Taylor series arguments and modifying
the proof of Theorem 2 (see Web Appendix) to the estimating
function for θ, it can be shown that the asymptotic distribu-
tion of n1/2(θ̂∗ − θ̂), conditional on data, is equivalent to that
of n1/2(θ̂ − θ). This theoretically justifies the use of the per-
turbation algorithm described above.

The last measure of surrogacy we consider is the F measure
of Wang and Taylor (2002). We can construct a model-based
estimate of (5) by using estimates from model (2) to esti-
mate F(s | z) and those from model (3) to estimate Pr(T >
u | z, s) for z = 0, 1. Note that differentiating F(s | z) gives
f(s | z). For these computations, the baseline distributions for
the models (2) and (3) are required. We estimate F(s | z) from
(2) by F̂0{s exp(−α̂z)}, where α̂ is the estimate from Jin
et al. (2003), and F̂0 is one minus the Kaplan–Meier estimator
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of the transformed survival times (Xie
−α̂Zi , δX

i ), i = 1, . . . , n.
Similarly, we estimate Pr(T > t | z, s) as Ŝ0{t exp(−η log s−
γz)}, where η̂ and γ̂ are the estimates using the methodology
in Section 3.1, and Ŝ0 is the Kaplan–Meier estimator applied
to the times (Yie

−η̂ log Xi−γ̂Zi , δY
i ), i = 1, . . . , n. Again, the non-

parametric bootstrap can be used for constructing confidence
intervals, following the recommendations of Wang and Taylor
(2002).

4. Numerical Examples
4.1 Simulation Studies
We conducted simulation studies to assess the finite-sample
properties of the proposed estimators in the article. First, we
assess the finite-sample properties of the estimation method-
ology in Section 3.1. Let Z denote a binary indicator. Data
are generated using a bivariate normal distribution for (logT ,
logS) conditional on Z with mean vector (µTZ, µSZ) and co-
variance matrix (

1 ρ

ρ 1

)
.

Note that we assume a common covariance matrix for both
populations. Since we are mimicking a clinical trial situation,
we assume that P (Z = 1) = 0.5 for the simulation. We set
µT1 − µT0 = 1.2 and µS0 = µS1 = 0. The conditional dis-
tribution of logT given log S and Z satisfies model (3) with
η = ρ and γ = µT 1 − µT 0. We considered n = 50, 100, and
150 and ρ = 0, 0.2, and 0.8. Independent censoring (C) was
generated using a Uniform[0,5] random variable distributed
independently of (S, T). This yielded on average 30% cen-
soring for S and 45% censoring for T. For each simulation
setting, 1000 simulation samples were generated and 1000 re-
samplings were generated for each simulation sample. The
results are presented in Table 1. We find that the proposed
estimators perform satisfactorily in finite samples.

Next, we conducted simulation studies of the PTE and F
measure to assess their finite-sample performance. We focus
on these two measures because their estimation requires that
from Section 3.1. We use the same simulation setup as above.

Table 1
Simulation results for proposed estimator

Estimate of γ Estimate of η

n β Bias SE SEE CI1 CI2 Bias SE SEE CI1 CI2

50 0 0.02 0.35 0.42 0.96 0.97 0.01 0.30 0.26 0.97 0.96
0.2 0.01 0.37 0.40 0.95 0.96 0.01 0.28 0.26 0.97 0.96
0.8 −0.01 0.39 0.41 0.96 0.96 0.03 0.30 0.26 0.97 0.96

100 0 0.02 0.25 0.24 0.95 0.95 0.02 0.21 0.20 0.96 0.95
0.2 −0.01 0.24 0.26 0.96 0.96 0.01 0.21 0.20 0.96 0.95
0.8 −0.02 0.27 0.28 0.95 0.95 −0.01 0.21 0.20 0.96 0.95

150 0 0.01 0.19 0.19 0.95 0.94 0.0 0.17 0.16 0.96 0.95
0.2 0.02 0.21 0.20 0.94 0.94 0.02 0.17 0.17 0.96 0.95
0.8 0.01 0.22 0.21 0.95 0.94 0.02 0.18 0.18 0.96 0.95

Note: SEE denotes average of standard errors based on empirical distribution of ξ̂∗; CI1 denotes coverage probability of 95% CI using standard
error calculated from empirical distribution of ξ̂∗; CI2 denotes coverage probability of 95% CI using 2.5th and 97.5th percentiles calculated from
empirical distribution of ξ̂∗.

Following the arguments of Section 3.3 of Wang and Taylor
(2002), we find that

PTE =
ρ(µS1 − µS0)

(µT 1 − µT 0)
. (11)

As mentioned earlier, the population F value from (5) will be
different from (11) because of the presence of the conditional
survival functions in lieu of the mean, as done by Wang and
Taylor (2002). We set c = 2. Several settings were used. In the
first, we set (µT 0, µT 1) = (1, 2), (µS0, µS1) = (1, 2) and ρ = 1.
This yields a population PTE measure of one, corresponding
to a perfect surrogate. The F measure, calculated using (5), is
0.97; it is less than one because of the use of the survival prob-
ability in (5). Second, we set (µT 0, µT 1) = (1, 2), (µS0, µS1) =
(0.5, 0.5) and ρ = 0, which yields a population value in (11)
of zero and corresponds to the surrogate being useless; here
the F measure will also be zero. Finally, we set (µT 0, µT 1) =
(1, 2), (µS0, µS1) = (1, 2) and ρ = 0.5, which yields a (11)
of 0.5 and represents a practical value of the surrogate. The
F measure will be 0.48. The censoring percentages for S and
T were similar to those in the previous paragraph. Again,
sample sizes n = 50, 100, 200 were considered. We again gen-
erated 1000 simulated data sets with 1000 perturbed data
sets within each simulation. The results are given in Table 2.
Based on the table, we find that the F measure and the PTE
measure estimators perform well, with the F measure be-
ing slightly more efficient. There is some slight negative bias
in the estimators for smaller sample sizes, but it diminishes
in larger samples. A small fraction of the confidence inter-
vals fall outside (0, 1), but this tends to be a fairly small
percentage.

4.2 Leukemia Data
We now apply the proposed methodology to a Phase III clin-
ical trial dealing with therapies for acute leukemia (Berman
et al., 1991). Acute leukemia is a severe form of hematological
cancer in which blood-forming cells undergo changes resulting
in uncontrolled, malignant growth. This disease is character-
ized by excessive numbers of abnormal white blood cells that
are limited in their ability to fight infections. Because the
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Table 2
Simulation results for F and PTE measures

F measure PTE

n ρ Bias SE SEE CI NO Bias SE SEE CI NO

50 0 −0.07 0.32 0.29 0.97 1 −0.08 0.41 0.37 0.96 1
0.5 −0.06 0.34 0.31 0.96 2 −0.06 0.43 0.38 0.97 1
1 −0.09 0.36 0.32 0.96 1 −0.07 0.42 0.37 0.97 2

100 0 −0.02 0.21 0.21 0.95 2 0.02 0.30 0.27 0.96 1
0.5 −0.01 0.23 0.21 0.96 2 0.01 0.30 0.28 0.96 1
1 −0.02 0.24 0.22 0.95 1 −0.01 0.28 0.27 0.95 3

200 0 −0.01 0.17 0.17 0.95 1 0.01 0.21 0.20 0.95 1
0.5 0.00 0.18 0.17 0.94 1 0.02 0.20 0.20 0.95 2
1 −0.01 0.17 0.17 0.94 1 −0.02 0.19 0.18 0.95 2

Note: See note to Table 1. CI denotes coverage probability of 95% CI using standard error calculated from empirical distribution of ξ̂∗. NO
(number of confidence intervals outside [0,1]) indicates number of 95% confidence intervals where the left endpoint is smaller than zero or the
right endpoint is bigger than one.

cancerous cells replace the blood-forming cells in the bone
marrow, leukemia patients will also have low numbers of
platelets in the circulating blood. Here, the standard ther-
apy was daunorubicin (DNR) and cytosine arabinoside (Ara-
C), while the experimental therapy was idarubicin (IDR) and
Ara-C, all of which are chemotherapeutic agents. Note that a
placebo group with no treatment is not utilized in this study
because the standard of care is the DNR/Ara-C combination
therapy.

We explore the issue of the usefulness of the effect of
IDR/Ara-C on survival, as mediated through the surrogate
endpoint of complete remission. Remission refers to the end-
point of leukemia cells being killed by the chemotherapies.
Thus, T represents time to death, while S represents time
to complete remission, both of which are potentially right-
censored random variables.

There are 130 patients in the study, 65 in each treatment
arm. Kaplan–Meier plots of the survival distributions for T
and S, by treatment group, are given in Figures 1 and 2. A
log-rank test for time to remission between the two treatment
arms yielded test statistic of 9.04, which corresponds to a p-
value of 0.003. A log-rank test for time to death between the
two treatment arms yielded a test statistic of 5.3, which cor-
responds to a p-value of 0.02. Based on these analyses, we find
that IDR/Ara-C leads to earlier remission times and increased
survival, suggesting its benefit relative to DNR/Ara-C.

Next, we fit marginal AFT models for time to complete re-
mission and for time to death with the covariate being treat-
ment. This was done using the estimation procedure proposed
by Jin et al. (2003). Based on these models, the estimated ef-
fect of treatment on complete remission is −0.69 with an as-
sociated standard error of 0.34, while the corresponding value
for survival is 0.51, with an associated standard error of 0.24.
This yields a RE of 0.74 in magnitude. Interestingly, the same
analysis using proportional hazards regression model yields a
RE estimate of 0.79, which is very similar to the AFT analy-
sis. A nonparametric bootstrap using 1000 replications yields
a 95% CI of (0.40, 1.15) for the magnitude of the RE using
the percentile method.

Next, we study the dependence of the surrogate and true
endpoints, adjusting for the treatment using the Clayton–
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Figure 1. Kaplan–Meier plots for time to remission by
treatment group: the dashed line represents the IDR/Ara-C
arm, while the solid line represents the DNR/Ara-C arm.

Oakes copula model, which leads to computing the RE and
adjusted association. The estimate of the dependence param-
eter using the Fine and Jiang (2000) estimator is 0.61; the
95% confidence interval based on the resampling method pro-
posed in Section 2.2 with 1000 resamplings is (0.47, 0.83).
Thus, after adjusting for treatment, there is statistically sig-
nificant negative association between the surrogate endpoint
(time to remission) and the true endpoint (time to death).
This is consistent with the biology of the disease (Haferlach
et al., 2005).

Next, we construct the estimates of PTE and F using the
methods in Section 3. First, we fit the linear regression model
(3) to get an estimate of the treatment effect on death, ad-
justing for remission status. The parameter estimates are



Semiparametric Inference for Surrogate Endpoints 155

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (days)

E
st

im
at

ed
 S

ur
vi

va
l P

ro
ba

bi
lit

y

Figure 2. Kaplan–Meier plots for time to death by treat-
ment group: the dashed line represents the IDR/Ara-C arm,
while the solid line represents the DNR/Ara-C arm.

Table 3
Regression coefficient estimates and associated 95% confidence

intervals of (3) for AML clinical trial data

95% CI 95% CI
Leukemia type Estimate (percentile) (SE)

Time to remission −0.23 (−0.01, −0.47) (−0.02, −0.42)
Treatment 0.09 (−0.10, 0.34) (−0.04, 0.20)

Note: Treatment is coded as 0 for DNR/Ara-C and 1 for IDR/ARA-
C. Time to remission and survival time are on a logarithmic scale.

summarized in Table 3. Based on the results, we still find
a significant effect of time to remission on death, adjusted
for treatment. However, the treatment effect on death is no
longer significant if we adjust for the surrogate.

Based on the results in Table 3, we are now ready to cal-
culate the measures of surrogacy described in Section 3.2.
The PTE by remission is (0.51 − 0.09)/0.51 = 0.82, with
an associated 95% CI of (0.54, 1.05) using the nonparamet-
ric bootstrap. This suggests that remission mediates a large
proportion of the effect of IDR/Ara-C on survival. The es-
timates for (5) for several values of c, along with associated
95% confidence intervals using the nonparametric bootstrap
with 1000 replications, is given in Table 4. Note that most of
the estimates of (5), along with the upper confidence limits
are greater than one. This reflects the underlying variability
associated with the use of the ratio-based measures of sur-
rogacy. A practical recommendation is to conclude that an
endpoint serves as a useful surrogate for the true endpoint
if the lower limit for the 95% CI for the PTE exceeds 0.5
(Freedman et al., 1992; Petrylak et al., 2006). Based on this
rule, we find that there is evidence that the treatment effect

Table 4
Estimates of the F measure from (5) and associated 95%

confidence intervals for AML clinical trial data

c Estimate 95% CI (percentile)

1 years 1.10 (0.85, 1.16)
2 years 1.15 (0.75, 1.34)
3 years 1.10 (0.72, 1.46)
5 years 1.47 (0.61, 1.84)
7 years 1.06 (0.71, 2.03)

Note: c represents the cutoff time in (5). Estimate is the estimated
value of F, defined in (5). 95% CI is based on the 2.5th and 97.5th
percentiles of the empirical distribution based on 1000 bootstrap
samples.

on survival is mediated through the remission endpoint. The
same conclusion is obtained if we apply the same rule to the
F measure. Given the biology of leukemias, this is consistent
with the current medical opinion as to managing the disease
(Haferlach et al., 2005).

5. Discussion
As argued by many authors, the Prentice criterion is a notori-
ously difficult one to prove in order to demonstrate validness
of a surrogate. We have taken the approach of quantifying sur-
rogacy using several measures. We have focused on the use of a
linear regression model for the analysis of surrogate endpoints.
There are advantages of using such a model in terms of inter-
pretability of regression coefficients and compatibility of the
models being fit. While much of the surrogacy calculations are
straightforward, what becomes more difficult to calculate are
measures of surrogacy such as PTE (Freedman et al., 1992)
or the F measure of Wang and Taylor (2002). This is because
these approaches require fitting a model for T given S and Z,
and such a model has right-censored covariates and response
variables. We have extended the estimation procedure of Akri-
tas et al. (1995) to this setting and developed novel variance
estimation procedures along with the needed asymptotic the-
ory. Our simulation study results suggest that the proposed
estimation procedures perform well in small samples. In prin-
ciple, our methodology can be extended to the general case
in which there are arbitrary numbers of right-censored and
uncensored covariates in the model. One issue is that poten-
tially the maximum of the F measure (5) may be less than
one. How to calibrate it is an open question and should be
studied further.

For the example considered in the article, it was possible for
subjects to die without having achieved remission. This raises
the issue of whether one should treat death as a competing
risk. The topic is controversial, although there has been work
done on treating the data as so-called semicompeting risks
data (Fine, Jiang, and Chappell, 2001). For the purposes of
the article, we ignored that issue here.

We used both the perturbation algorithm and the nonpara-
metric bootstrap to assess the variability of estimators in the
algorithms used here. Efron (1981, p. 314) writes that the va-
lidity of the bootstrap with censored data requires that the
censoring mechanism not “look into the future.” While the
simulation studies suggest that the use of the bootstrap is
valid, further theoretical investigation is needed here.
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We focus on both the PTE and the F measure in this article.
One could imagine letting the value of c vary in (5), which
yields a time-dependent extension of the F measure proposed
here. This extension is currently under exploration.

6. Supplementary Materials
The Web Appendix referenced in Sections 3.1 and 3.2 is avail-
able under the Paper Information link at the Biometrics web-
site http://www.tibs.org/biometrics.
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