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A STATISTICAL MODEL FOR THE PROPAGATION OF RADTIATION

IN REFRACTION DUCTS BOUNDED BY ROUGH SURFACES
Abstract

In certain physical problems involving the propagation of
acoustic (or electromagnetic) radiation in inhomogeneous media near a
bounding surface, conditions are such as to set up a "surface-bounded
refraction duct". Such a duct occurs, for example, when the phase
velocity of the radiation depends only on the distance from the bound-
ing surface and when 1t depends upon this distance in such a way that
the velocity increases to some finite distance and decreases thereafter.
In such a case some of any radiation originating near the bounding sur-
face will be refracted by the medium and subsequently be reflected from
the surface; in this way some radiation is trapped by the duct and may
propagate to large digtances by the combined refraction and reflection
process. Exact treatment of this problem is possible (using the "theory
of normal modes") when the bounding surface is sufficiently smooth so
that little error is made in assuming it plane.

When the bounding surface is so rough that most radiation im-
pinging upon it is diffusely scattered, it is shown that it is possible
to treat the problem through the use of a statistical model. The model
takes the form of an integro-difference equation which is derived by
considering in detail the average amount of energy reflected by an ele-

ment of surface per second per element of angle. The basic equation

vit



is derived from the wave equation after applying a number of restrict-
ing assumptions. The three most important of these are: a) it is
assumed that the frequency is high enough or the surface rough enough
so that radiation is reflected from the surface primarily diffusely;
b) it is supposed that the properties of the material medium vary
slowly enough so that one may use geometrical optics to treat the
propagation of radiaﬁion within the volum¢; and c) it is required that
the surface be such that one can treat an individual reflection event
through the use of physical (or geometrical) optics. Criteria for the
validity of these assumptions are given.

Two methods of golution of the basic integro-difference equa-
tion are presented. The first of these is a solution by iteration,
while the second depends upon taking the Laplace transform of the equa-
tion., ©Existence, uniqueness, and continuity properties of the solution
are shown. Finally a numerical example is treated, and plots of the
field strength versus range are presented for various positions of the
gource and receiver. It is found that the attenuation of the field
depends strongly upon the fraction of energy trapped within the duct
after a surface reflection.

A review of the more important methods useful in the treatment
of the reflection of radiation from non-plane surfaces is given, the re-
sults being used extensively in the derivation of the model equation
from the wave equation. First the method of geometrical optics is
reviewed; then a perturbation method, due to Rayleigh, is presented.
Next the method of physical optics (depending upon the Kirchhoff as-

sumption) is presented by treating an integral equation derived from
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the Helmholtz formula; it is shown that the usual result of physical
optics is obtained from the first term in the solution by iteration

of the integral equation while the next term may be used to obtain the
criteria of applicability for the method. Following this review a new
method depending upon the use of a Fourier transform in connection
with a certain approximation to the Helmholtz formula is presented.
This last method is applicable when the slope of the reflecting surface
is small and when the wavelength of the radiation is greater than, or
of the same order of magnitude as, the displacement of the surface from

its average value.



CHAPTER I

INTRODUCT ION

This thesgis is concerned with certain aspects of the propagation of
radiation (either acoustic or electromagnetic) in a half-space of inhomo-
geneous material bounded by an irregular surface. It is assumed that the
properties of the material medium at a given space point depend only upon
the distance from that point to the bounding surface. When the velocity
of propagation increases with distance from the surface over some finite
region, some fraction of any radiation originating at or near the surface
is refracted back to the surface. In such a case a surface-bounded duct
is said to have been set up. The radiation refracted back to the surface
is said to be trapped. If no energy is lost from the duct, the intensity
of the field within the duct will decrease like % where r 1is the dis-
tance between the source and the field point; this is to be compared with
the %5 dependence for the corresponding propagation within a homogencous
medium with no bounding surface. There are however certain ways in which
energy is lost from the duct. Among these may be listed losses due to dif-
fraction out of the duct and losses due to the scattering of energy out of
the duct by the surface. This work is concerned with the latter loss mech-
anism.

The problem of duct propagation has evoked a considerable amount of
interest on the part of physicists, largely as a result of the many prac-

tical applications which have arisen. The problem of over-the-horizon
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propagation of radio waves, of such interest at the beginning of this cen-
tury, probably constitutes the first important example of duct propagation.
Since that time, still other important exemples have arisen. When radar
was developed early in the Second World War it became evident that under
certain conditions atmospheric ducts contributed appreciably to the ob-
gerved propagation characteristics of such centimeter wavelength radiation.
At about the same time the effects of ducts on the propagation of acoustic
energy underwater were being observed.

Theoretical treatments of the duct propagation problem have almost
invariably assumed that the bounding surface is quite regular (usually
plane). Probably the most successful treatment is the "theory of normal
modes" developed during and after the Second World War [1].* In this
theory one first constructs solutions of the wave equation for the given
inhomogeneous medium which solutions satisfy some boundary condition on
the (assumed plane) bounding surface. These solutions are then added to-
gether in such a way as to reproduce the source. This method correctly
accounts for losses from the duct due to diffraction. It is evident how-
ever that such a treatment cannot account for losses due to surface scat-
tering, since the bounding surface has been assumed to be plane. Under
certain conditions, the losses due to surface scattering can be shown to
be negligible. In particular is this so if khsin41 is small enough;

k is the propagation constant ( k = 2% where A 18 the radiatioa wave-
length), h 1is the rms deviation of the surface from its average value,
and }1 is the largest angle made with the bounding surface by radiation
trapped within the duct. That the scattering losses are then negligible

can be seen by treating the reflection problem using a perturbation method

* The symbol [1] refers to reference one in the bibliography at the
end :0of this thesis.
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(cf. Section 3.3); by so doing, one finds that the reflection of radiation
in such a case is essentially specular (that is, as if the bounding sur-
face were plane), with little scattered radiation.

It is possible to assess the losses due to surface scattering when
khsin’&(( 1 by using a perturbation treatment based upon the normal mode
solution [2]. However when khsin.h is of order unity or greater, the per-
turbation treatment can no longer be expected to apply and one must resort
to other methods. Indeed in such a case, the scattered radiation becomes
predominant in a reflection event, the specular component becoming negli-
gible (cf. Section 4.4).

In Chapter II a heuristic presentation will be made of a model which
is useful in the treatment of duct propagation problems in which the re-
flection of trapped radiation from the surface is primarily diffuse.* In
such a case the loss of energy from the duct due to surface scattering
may become important. In order to set up the model, a two-dimensional
problem is considered. It is assumed that all quantities depend upon the
two Cartesian coordinates x and 2z alone; it is supposed that =z 1lies
normal to the bounding surface. The bounding surface is supposed to be
cylindrical (generated by a line moving parallel to itself and following
a curve in a plane, the x-z plane, perpendicular to the line). A repre-
sentative profile taken from the bounding surface in the physical problem
ig chosen as the generating curve for the two-dimensional surface.

In order to complete the model, we must define certain quantities
connected with the reflected radiation. Let tQ(G,x)d@dx represent

the average energy per second per length,x*reflected from the element of

* Occasionally the word "diffuse", in comnection with reflected radiation,
1g reserved for cases where the reflected radiation obeys Lambert's cosine
law. In the present connection diffuse refers to all reflected radiation
which is not specular.

*¥%¥  This extra length unit is associated with the direction parallel to
the generating element for the bounding surface; in the interests of con-
ciseness, this unit will in general be suppressed in what follows.



e
surface lying between x and x+dx, the radiation making an angle with the
positive x direction which lies between © and ©0+dO0. Similarly
gS(Q,x)dde ig defined as the average energy per second reflected once
from the surface with x and © 1lying within the above increments. Further
suppose that an average of one unit of energy per second is incident upon
a section of surface from the direction ©' (the angle being measured
from the positive x direction). Then A(0,0')d0 is defined as the aver-
age energy per second reflected from the section of surface which energy
has an angle lying between © and ©0+d0. Finally L(Q) is defined as
the distance travelled between surface reflections by a trapped ray.

(This function is determined entirely by the dependence of the velocity of
propagation upon the spatial position z.) Then it will be shown in

Chapter II that the following relationship results,*

dee,x) = (o) + { Dot xrenace,nonaer (1.1)
&

where @ET represents the set of all angles made by rays trapped within
the duct. Once the function EQ(G,X) is known, one obtains the energy
received at a field point by adding up the contributions of all surface
points sending energy to the point in question. The required formulae are
given in Section 2.1.

A model somewhat similar to the one proposed here has been used by
Bateman and Pekeris [5] in the treatment of the propagation of radiation in
a homogeneous slab of material bounded on either side by a surface which
reflects incident energy according to Lambert's cosine law. The authors
comment that their model could be extended to cover situations where the

bounding surfaces have more general reflection characteristics.

* Equations will be numbered in the remainder of the work with the first
number indicating the chapter, the second indicating the section and the
third indicating the equation number within the section. In the present
instance, there is no section number.
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Chapters III and IV are devoted to the justification of the model
and to the derivation of the conditions of applicability for Eq. (1.1).

It is evident that the problem of the reflection of radiation from an
irregular surface is of central importance in assessing the effect of sur-
face scattering upon duct propagation. Accordingly Chapter III is devoted
to this problem. A method of treatment utilizing geometrical optics is
presented in Section 3.2;* Section 3.3 is devoted to a perturbation method;
in Section 3.4 the method of physical optics, utilizing the Kirchhoff ap-
proximation is set forth; in Section 3.5 a new method based upon a Fourier
transform is considered.

In Chapter IV the Helmholtz formula for inhomogeneous media is de-
veloped (Section 4.1). In Section 4.2 a review of geometrical optics as
applied to the propagation of radiation through an inhomogeneous medium
is presented; in Section 4.3 the formulae of geometrical optics are spe-
cialized to stratified media. Finally in Sections 4.4 and 4.5, using cer-
tain restrictibns, Eq. (1.1) is derived from the Helmholtz formule. There
are three restrictions of primary importance: the first is the requirement
that radiation trapped within the duct shall be reflected from the surface
primerily diffusely (which has already been mentioned). Secondly, it is
required that the properties of the material medium vary slowly enough so
that one may use geometrical optics to treat the propagation of radiation
within the volume. Finally it is required that the amount of radiation
received by a region of the surface from nearby surface regions be small
compared with the amount received from more distant regions. This last
requirement will be seen to be essentially equivalent to requiring that
the conditions for the applicability of the Kirchhoff approximation be

fulfilled (see Section 3.4).

*  The term geometrical optics will be used in referring to acoustic as
well as electromagnetic problems.
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In Chapter V, two methods of solution of Eq. (l.l) are presented.
The first of these is a solution by iteration. When the bounding surface
is such that it scatters much energy out of the duct, the iteration solu-
tion is rapidly convergent in regions near the source.

A second method of solution of Eq. (1.1l) is presented in Section 5.2.
The Laplace transform of Eq. (1.1) is first taken; one obtains a linear
integral equation of the second kind to be solved. It is then assumed
that the normalized scattering function A(©,0') can be represented by
a finite sum of products of functions of © and ©' alone. In such a
case the integral equation is said to be degenerate, and is readily solved.
Finally the inversion integral is used to represent the inverse Laplace
transform. This integral is evaluated by summing up the residues of the
poles of the laplace transform. The Laplace transform method provides
a representation of the solution of Eq. (1l.1l) which converges rapidly
when the distance between the source and the field point is large.

A numerical example is presented in Section 5.3. The problem con-
sidered is that of the propagation of high frequency acoustic radiation
under water in an isothermal duct. It is supposed that the surface re-
flects radiation according to a modified Lambert's cosine law. The re-

sults are compared with the analogous problem in an isovelocity medium.



CHAPTER II

A HEURISTIC PRESENTATION OF THE STATISTICAL MODEL

FOR DUCT PROPAGATION

In this chapter we shall first present the model to be used in the
treatment of the propagation of radiation in surface-bounded ducts. In
the presentation the various necessary approximations will be pointed out.
However the Jjustification for these approximations and the establishment
of criteria of applicability will be reserved until Chapter IV. Once
this presentation is completed, it will be shown in Section 2.2 that the

suggested model conserves energy.

2.1 BStatement of the Problem and Development of the Model

We shall first state the problem to be solved. A half-space of in-
homogeneous material bounded by an irregular surface is given. It 1is
assumed that the properties of the medium depend only on the distance
from the bounding surface (the 2z coordinate). The problem is restricted
to be two-dimensional (coordinates x and 2z ). It is assumed that a
scurcgJof-eiﬁhér‘acdusti0‘br“éiéctrcmagnetic radiation is introduced in
the medium. If an acoustic field is being considered, it is supposed
that the bounding surface is a "pressure-release surface", (i.e. a sur-

face on which the excess pressure of the acoustic field is zero). On

_7_
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the other hand if the field is electromagnetic, it is supposed that the
radiation is polarized with the electric vector parallel to the generating
element of the bounding surface and that the bounding surface is perfectly
conducting. Hence the electric field must vanish on the surface.
It will be supposed that the field function, @ , satisfies the

wave equation,

2 2
va-Log, (0.1
c at
2 22 28
where ‘7 = axz + 622 and ¢ 1is the phase velocity. Furthermore in

this work we restrict the field to a single angular frequency, W , so

that we can write;*
~iwt
é (x,z;t) = e * B(x,z) (2.1.2)

and Eq. (2.1.1) becomes:

(7% + K5(2))f = 0 (2.1.3)

w
c

where k =
It is assumed that the dependence of k wupon 2z 1is such that some
of any radiation originating at or near the bounding surface will be re-
fracted back to it. For this purpose it is sufficient to have k(z) de-
crease from 2z=0 to some finite value of 2z, and increase thereafter.
If an acoustic problem is being considered, @ represents the velo-

city potential defined by,

—
O =-V$. (2.1.1)
It can be shown that Eq. (2.1.1) follows from the Navier-Stokes equation

upon linearizing the latter [4].

* Physical quantities are represented by the real parts of complex
quantities
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On the other hand for electromagnetic problems ‘@ is to be taken
as the component of the electric field in the direction of the generating
element of the bounding surface. It can be shown that Eq. (2.1.1) follows
from Maxwell's equations if it is assumed that the perméability of the
propagating medium is constant in space and time and that the dielectric
congtant does not change with time.

It is convenient to write down an expression for the average intensity
of the field, or in other words for the average energy flow per second per

——t

unit of area. The intensity, J , is given by
- 1
J =3°Re{—i ¢*V¢}, (2.1.5)

where Re stands for the real part of the expression following the symbol,
the star indicates the complex conjugate, ‘7 indicates the gradient and

for the acoustic field,

2 (2.1.6)

1
¥ = 2pe (2.1.7)

where QL represents the average density of the medium at the point under
consideration and fL represents the magnetic permeability of the medium.
The Eq. (2.1.5) follows for the acoustic field from the known relationship
that,

T = (2.1.8)

where ©p 1is the pressure excess over the average pressure and 7? is the
particle velocity. In the case of the electromagnetic field, Eq. (2.1.5)

follows from a consideration of the Poynting vector. In dealing with the
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field intensity, since we.are most often interested only in relative in-
tensities, it is frequently convenient to set - 1. (It is supposed
that the variation in Qb is negligible in the region of physical interest.)
If absolute intensities are desired, the quantity % can be reintroduced.

To continue with a presentation of the problem, the bounding surface
will be described by the function 4 (x). It is assumed that this function
is single-valued, bounded, and continuous; other restrictions on Z (x)
will be applied as they are needed in later developments. In certain

physical problems, the surface is also a function of time. In such a

oM M
a't‘ « 1 where 31T is the maximum value
c

of the time derivative of the surface. This of course offers no restriction

case it will be assumed that

in the case where electromagnetic radiation is being treated; even for
acoustic problems, it is seldom of importance. If the surface velocity
fulfills this restriction one can treat each individual reflection event
as if the surface were stationary, the time dependence entering only inso-
far as the surface, from which reflection occurs, changes slowly.

In view of the description of the bounding surface given above we

know that,

#(x,2(x)) =0 . (2.1.9)
Y,

This follows for the acoustic field since p = Q,E;E
We now desire a solution of Eg. (2.1.3) satisfying the boundary
condition given in Eg. (2.1.9). Furthermore the function ¢ is to reduce

to out-going waves at infinity and is to have a singularity of the type,

¢(x,z)-—>H(§)(kr), as r=»0 (2.1.10)
1
at the source point (xg,zg); T = {:(X—XO)2 + (z-zo)2] 2,
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As was pointed out in Chapter I, much progress has been made in recent
years on the above problem for the special case Z = O (more accurately
the problem ordinarily considered in normal}mode theory is the three-di-
mensional analogue of the above problem). However the added complication
caused by the introduction of an irregular bounding surface has been suffi-
clent to prevent an exact treatment to the present date. In view of this
fact we shall apply & number of simplifying assumptions designed to render
the problem more manageable and still yield results of physical interest.

In the treatment of this section the assumptions are for the most
part implicit in the definitions of the quantities to be used. The desired
quantities will be defined again (they have already been defined in Chapter
I )iand the underlying assumptions emphasized. To avoid unnecessary re-
petition it is remarked at the outset that the approximations involved
in this section are discussed in Sections 4.4 and 4.5 unless otherwise
stated.

The quantity tQ(Q,x)dde has been defined as the average energy
per second reflected from the surface element dx at x in the angular
element d0 at O (measured from the horizontal). Similarly 13 (6,x)d0dx
wes defined as the average once-reflected energy per second reflected
from dx 1in the angular element dO©. The normalized scattering function
has been defined by: A(0,0')d0 represents the average energy per second
scattered in the angular element d0 from a section of surface on which
unit enefgy per second falls from the direction ©'. It is also convenient
to define the scattering function ?:: ﬁk@,@‘)d@dx repregents the average
energy per second scattered in the angular element dO6 from the surface
element dx due to a beam of unit intensity incident upon the surface
from the direction ©'. (It is supposed that the medium in which the re-

~
flection occurs is homogeneous.) The two functions A and A are related
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by,
~J
A(0,0')

A(0,01) = =od, (2.1.11)

as can be seen from their definitions. Finally the function L(O) is
defined as the horizontal distance travelled between surface reflections
by a ray trapped within the duct,where the ray makes an angle © with the

positive x axis wupon reflection from the surface. The sign is fixed by:

L(6) 2 0,0 & @g%;L(o)é 0,24 0£ =

ST

To begin the discussion of these quantities, the average referred to
above is to be an average either over space or time, depending upon whether
or not the bounding surface is fixed in time. Tt is to be noted that the
definitions of the quantities tD , J , A , and x depend upon
the concept of "the energy contained within an angular element". Thus,
if these definitions are to have meaning the energy contained in an
angular element must remain within that element. Of course this is not
true in general; in particular, it does not hold in the regibn of space
near the element of surface from which the reflection occurs. However it
is one of the characteristics of the "far field" that energy per angle
is a meaningful quantity; it will be necessary to restrict the problem
80 that most of the radiation involved in the duct propagation can be
characterized, upon reflection, as far-field radiation.

In this connection there is still another implicit assumption. It
has been assumed in the above definitions that the angular element is
measured from an origin placed on the surface; a consequence of this

is that the radiation undergoes geometric spreading from the surface.

Again it is not in general true that this is so. Indeed if the reflection

is completely specular, that is if the surface is flat, the reflected
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radiation will appear to emerge from the image (in the surface) of the
source point. It will be seen that the conditions sufficient to guaran-
tee diffuse reflection will also mean that reflected radiation does ap-
pear to spread from the surface in many cases of interest.

If the definition of the normalized scattering function is to be
ugseful it should be possible to treat a single reflection event as if it
occurred in a homogeneous medium, the refraction properties of the medium
entering only after reflection. If the function k(z) varies sufficiently
rapidly, this is not so. It will be seen that this particular property
of the reflection process follows quite naturally from the restrictions
fixed to guarantee the far field property mentioned above.

Proceeding with the development, reference is made to Fig. 1.

- e q]

Fig. 1. Diagram used in the derivation of the statistical model
equation.
It is desired to find the total amount of energy per second leaving the
surface element dsp, between the angles © and © + do. First let us

find the total energy falling upon ds, from the direction = - O'.
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Now QQ(Q',X-L(Q')) is the energy per angle per length per second leaving
the surface at the position x - L(©'). Thus the total energy per second

falling upon ds, from the direction = - ©' is

dE, = ds;d04 Q(or,x-1(0)) , (2.1.12)

where de5 1is the angle subtended by dsp, at ds; taking into account

the refracting properties of the medium. It is to be noted that,

_ JL(eY)

dsy 50 de; , (2.1.13)
and
_ QL) o,
d52 = 50 dl(;)2 ) (2.1.14)

From the definitions of EQ(O,X) and of A(O,x-0'), it is seen that
the energy per second reflected from the surface at an angle between ©O
and ©6+d© from the element dse due to radiation incident from the di-

rection =n-0' 1is given by

d[&(@,x)}d@dsg = QQ(Q,’X-—L(Q'))A(O,n-@')d@dsld@g’ s (2.1.15)

or

dE:Q(@,xi] = tQ(Q;X-L(O'))A(O,ﬁ—@')d@i , (2.1.16)

using Egs. (2.1.13) and (2.1.14).

It is to be noted that this treatment has the implicit assumption
that radiation enclosed by a pair of rays (defining an angular element
d0) remains between the pair of rays during refraction. If the frequency
is sufficiently high to allow the use of geometrical optics in the treat-
ment of the progress of the radiation through the volume, this will be so

(cf. Section L4.2).
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In order to proceed, it is desirable to add up the various contribu-
tions to the radiation moving in the direction © as a result of energy
incident on dsp, from different directions ©'. No mention has yet been
made of the phase of the reflected radiation; in fact the expressions
which have been so far defined treat only the intensity of the radiation
and related quantities. In order to obtain the energy leaving the element
dsp , the intensities of the various contributions will be added together.
This is justified if the phases of the different contributions are random;
this addition property will be seen to hold if the reflected radiatioh is
diffuse. To continue, it is found upon adding up the various quantities

obtained from Eq. (2.1.16) for different values of 0!,

Lr(0,x) = QE;Q(@,X-L(@'))A(g,n-@r)dov , (2.1.17)

where QQR represents the multiply-reflected radiation leaving the element
dsp. When the singly-reflected radiation is added to Eq. (2.1.17) the

following result is obtained:
tQ(O,x) =23 (6,x) + L&(Q',X—L(O'))A(O,n-@‘)d@' . (2.1.18)
T

The symbol Qih represents the get of all angles corresponding to rays
trapped within the duct; these angles will be termed "trapped" in what
follows. 8Similarly, <ENT is to represent the set of all angles between
0 and n which are not trapped within the duct.

The function TQ can now be found by solving Eg. (2.1.18%‘using one
of the methods.to be given in Chapter V; by so doing one obtains the energy
per angle per length per second leaving the surface. This is not however
the quantity ordinarily measured in experiments. The remainder of this
section will be devoted to determining the experimentally measured qﬁantity

once the function tiz has been found.
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To begin, it is supposed that the sensing element consists of a cir-
cular cylinder of radius a with its axis perpendicular to the =x-z
plane. The cylinder is assumed to absorb all incident radiation (a "black"
cylinder); let the coordinates of the center of the cylinder be (xR,zR).
It is assumed that the radiation from a given element of surface is ap-
proximately constant over the surface of the receiving cylinder (equiva-
lently, ZR)> a ) and that the receiving element is small enough so that
it does not appreciably affect the field. To find the total energy per
second received by the cylinder, one adds up the contributions from all

elements of the surface. Reference will be made to Fig. 2.

\ &3

dx

2
@ , o
S0

z' (R)
20,
(0)

Fig 2. Diagram used in determining the amount of energy received
per second.

It is convenient to let J(2,0) stand for the magnitude of the in-
tensity at the point (2) due to a source located at the point (0), and
similarly for the function J(R,2). Tt will be shown (cf. Eg. (4.3.17))
that a singularity of the type given in the relation (2.1.10) radiates
2

< units of energy per second per angle.* Then using the assumption that

* The quantity 8 of Eq. (2.1.5) has been set equal to unity.
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the intensity of the radiation does not vary appreciably over the "black"
receiving cylinder and the definition of the scattering function TK), it
is seen that the singly-reflected energy per second received by the cylin-

der is given by,

F__.. = 2a

=
'.._l
TR

g J(z,O)J(R,Q)K(oRg,o'go)dxz . (2.1.19)
A

There is an alternate expression for the quantity Fgry. It is obtained

from the definition of the function £8 s

Fpy = 28 %S J(R,e)gg (0gp0%,)d%, (2.1.20)
4

Similarly the total reflected energy per second received by the cylinder

is given by,

F, = 2a )dx (2.1.21)

S J(®,2)d) (o
z

E X
2 R2’ %2/ %2

The energy per second (received by the cylinder) which has travelled from

the source to the receiver without reflection is seen to be given by

Fy = 2a J(R,0) , (2.1.22)

and finally the total energy per second received by the cylinder is,

F=F +F . (2.1.23)

The integrals in Egs. (2.1.19), (2.1.20), and (2.1.21) are to be
carried over all sections of the surface so located that rays exist con-
necting the point (R). The integrals then ordinarily have finite limits
due to the supposed refraction within the medium. Using geometrical optics,
an expression will be given for J in Section 4.3 for the case of the
gtratified medium (k a function of 2z ). ZExpressions for the angles

Orpo and 059 will also be given in terms of the function k .
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To sum up, in this section the basic equation of the model was de-
rived (Eq. (2.1.18)); a function representing the total energy per second

received by a black cylinder was also developed (Eq. (2.1.23)).

2.2, Conservation of Energy

Tt will be shown in this section that Eq. (2.1.18) conserves energy.
Of the energy radiated per second by the source, a certain fraction is
reflected from the surface; from the definition of Lg this quantity

is seen to be given by,

T o
g gé (6,x)dxde, (2.2.1)
0 -w

where it is assumed that the integral converges (as is the case in any
problem of physical interest). Some of the radiation once reflected by

the surface, is refracted by the duct to be re-reflected one or more times
from the surface. However if the bounding surface is such that some energy
is reflected out of the duct regardless of the incident angle, then all

of the energy reflected from the surface is ultimately reflected out of

the duct. The total amount of energy per second reflected out of the duct

is seen to be given by,
o

g‘tg(gpx)dxdg , (2.2.2)

L0
it being supposed that the integral converges. It will be seen that in
many cases the function T_O has the property that ‘tQ]é Me—BlX\ where
M and B are positive and can be chosen independent of © ; 1in such a

case convergence is guaranteed. It is the purpose of this section to

show that the expressions (2.2.1) and (2.2.2) are equal.
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In order to show this equality let Eq. (2.1.18) be integrated over

x from -00 to +@ ,

~) o A
tﬁ(@) = 48(9) + g A(Q,ﬂ—@')d@’g\:A}(Q',X-L(Q'))dx, (2.2.3)
-0

-
where
~ (2]
(o) - StQ , (2.2.4)
-
and
S0) = \ o (6,x)ax . (2.2.5)

In Eq. (2.2.3) the order of the integrations over ©' and x has been
changed; this is surely possible if the function A 1is bounded and if
the function YQ satisfies the exponential condition cited above. Now
the variable of integration in the inner integral of Eg. (2.2.3) is

changed by a simple translation to give,

~
Joe Qaorordone . e
e,
Using Egs. (2.2.4) and (2.2.5), the expressions (2.2.1) and (2.2.2) be-
come T
"N
3@ B (2.2.7)
and

g@:Q(O)d@ . (2.2.8)
NT

To continue let Eq. (2.2.6) be integrated over the set of angles

gg?f(g)ag: §g<@)dg+ Sd@& a(e,n-0') M (07)ae" .(2.2.9)
v e

Bur "
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From the definitions of @y end Q@yp it is known that

@ + By = (0,%) , (2.2.10)

where (O,n) represents the set of all angles between O and = . Using

this fact it is seen that Eq. (2.2.9) can be written

SJ(O)dO=g 0)ae - 28 Q)doe + dOg A(Q,n-0' tQ )ae!
Q.

- g dog A(9,n-0" )tQ(Q')dO' : (2.2.11)
e @

Now from the definition of the normalized scattering function, A ,
and from the conservation of energy at a surface reflection (which follows

from the boundary condition given in Eq. (2.1.9)) it is seen that,

T

SA(Q,G')dQ =1. (2.2.12)
(-]

Assuming that the order of integration in the third term on the right

side of Eq. (2.2.11) may be changed, and using Eq. (2.2.12), Eq. (2.2.11)

becomes,
T
~ [} 0 ~
g\-,Q(@mo: g£(@)ao+ g{ (©) - o
Or ° -
-gA(@yn-e Je(6" )dd}a (2.2.13)
O
When Eq. (2.2.13) is compared with Eq. (2.2.6) it is seen that
T
th(O)dO - gg(@)d@ 5 (2.2.14)
GDNT (o]

asg desired.



CHAPTER ITI

THE REFLECTION OF RADIATION FROM A NON-PLANE SURFACE

In Chapter II an integro-difference equation (Eq. (2.1.18)) was ob-
tained heuristically. Under certain conditions this equation governs the
propagation of radiation in a surface-bounded duct. In Chapter IV re-
strictions will be established under which Eq. (2.1.18) will be derived
from the wave equation. In that development an understanding of the basic
characteristics of the reflection of radiation from a non-planar surface
bounding a homogeneous medium will be essential. It is for this reason

that we digress in this chapter and consider such reflection problems.

3.1. The Statement of the Problem

A great amount of work has been done on the problem of the reflection
of radiation from non-plane surfaces. Our main interest here is not in
the reflection problem itself but rather in gaining the information ne-
cessary for the further treatment of the problem of the propagation of
radiation in ducts. Accordingly we will content ourselves with a descrip-
tion of some of the more important techniques available. We proceed with
a definition of the problem. We assume that the problem is two-dimensional
so that all quantities depend on the coordinates x and 2z alone. A

function Z(}q) is given which bounds a half space of homogeneous, isotropic

01~
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material, the half space lying in the positive 2z direction. We assume

that we can define a mean, <Z> ; of T (x),
L
<c>=L§£§f§§<mmc. (5.1.1)
L
Without loss of generality we may set {{ ) = 0. Now we suppose that we

are given incident radiation, ¢i , falling upon the surface £ (x) from
the positive =z direction. The ¢i is here the field function (say the
velocity potential) set up by the sources, which would have existed had
the surface not been present. We wish to determine the reflected radia-
tion, ¢r , subject to the condition that it shall consist only of out-
going radiation at large distances from the surface.

We wish then to find a function § (x,z,t) which satisfies the wave
equation in two dimensions,

0%8 %% o°®

1
D x° dz° 2 Dt2 ’

(3.1.2)

at all points except the source points of the field. The quantity c¢ is
the velocity of propagation. It will be supposed that the source radiates

a single (anguler) frequency (O , so that we can write

B (x,2,8) = e (x,2) . (5.1.3)
Substituting Eq. (3.1.3) in Eq. (3.1.2) we obtain,

2 2
(gx—e + OQZ_E- + k2)¢(x,z) =0 (3.1.4)

W

with k =7,

We define

¢ =gy + 0, . (3.1.5)
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en
We shall also let A = ¢ . From its definition it follows that ¢i
satisfies Eq. (3.1.4) everyshere except at the source points of the field;
from this we see that the reflected radiation, ¢r , must also satisfy
Eq. (3.1.4). It will be supposed that the function @ vanishes at the

surface, so that we have
(B + de) |z—;(x) -0 . (3.1.6)

Ideas similar to those set forth below will obtain for other boundary
conditions. The reader is referred to the references given.
Two parameters connected with the surface, € (x) , will be defined.

It is first assumed that £ (x) is bounded, so that,

M

lcx)| « ¢~ . (3.1.7)
. ag . . =~
It is also assumed that ¢ and = are continuous functions of x;_[\

is defined as the average separation of neighboring maxima of the function
C . Finally we suppose that §' is a single-valued function of x.

Before proceeding, it is convenient to discuss the reciprocity theorem.
The theorem may be stated as follows: ¥ if a point source acts at (0O)
and if the value of the field is observed at (P), the field function @
has the same value as would be observed if the points (0) and (P) were
interchanged. The reciprocity theorem applies to a line source (in two
dimensions) as well as to point sources. In some problems it is convenient
to choose a plane wave for the source of the field. It is not difficult
to extend the theorem to cover such a source. To do this we suppose that
the incident field near the reflecting surface is set up by a source suffi-

ciently distant so that its field in the region of physical interest is

*  See Rayleigh, [5], p. 145.



-2l
essentially a' plane wave; the strength of the source is assumed to be in-
creased so that the amplitude of the field is finite in the physical re-
gion.
We now take up a method of solution of the reflection problem based

upon geometrical optics.

3.2. The Use of Geometrical Optics in the Solution of the Reflection Problem

Geometrical optics may be used to approximate the field reflected
from a non-plane surface if kR sin@')) 1 where R, is the minimum radius
of curvature of the surface and ©' 1is the angle made by the incident
radiation with the horizontal [6],[7],[8). The justification for the given
restriction can be found in Section 4.4 (cf. the relation (4.5.27)) . The
method of this section has been used in the past in attempts to find the
physical foundation for Lembert's cosine law of reflection [9].

In Fig. 3 we have singled out a small section of surface, which has
been approximated by a circular arc with radius R . An increment of the
incident energy, AE , falls on this section. The reflected radiation
appears to diverge from the point f with opening angle A© s lying in a
direction determined by the relation that the angle of incidence should

equal the angle of reflection. We have
@ =n - Q' +2% ) (3°2°l)

with XA defined as the angle made by the tangent to the surface with the
x direction.

We now consider the combined effect of many such increments of energy
falling upon an irregular surface. Consider first the image points f .

(Although the image point shown in Fig. 3 is in non-physical space, z<{Z(x),
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. (P)

Fig. 3. Diagram used in the derivation of the reflecting properties
of a surface through the use of geometrical optics.
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it is of course quite possible for image points to fall in the region
z ¢ ;(x)). By the use of simple geometry in comnection with Fig. 3 it
can be shown that Q-‘- R/2. (It is well known that for a parallel beam
normally incident on a cylinder, 6): R/2.) DNow suppose that the incident
radiation congists of a beam of unit intensity and of width 2 ; the pro-
jection of the width on the x axis is then . J&gin ©'. It is supposed
that the length l ié large enough so that the statistical properties of
the surface within this segment are essentially the same as those of the
surface as a whole. The statistics of the surfaces considered in this
work are discussed in detail in Section 4.4,

The energy reflected from the surface due to the incident beam will
be distributed in angle in a manner dependent upon the distribution of
slopes of the radiated section of surface. From Fig. 3 it is seen that
the radiation received at (P) as a result of reflection occuring at a
region of the surface with focal point (f) Dbehaves like 'FT?%ET where
R(P,f) is the distance from (f) to (P) . The various values of R
obtained from different reflection regions may be replaced by r , where
r 1is the distance from the center of the region of surface %?ging' to
(P) , if r)) R and r » gin@'. Here R indicates some maximum
radius of curvature of the surface; the error is of order %% or j&é%ﬁﬁl P
whichever is larger. Now suppose that we examine radiation in the angular
element AO at a distance r , where we choose the increments of incident

energy small enough so that
A 3) AD , for all AD .

Then the energy contained in the angular element A© divided by the total

incident energy will be equal to the probability that the reflected angle
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© lies between © and © + AQ (if there is no multiple scattering).

We now define Py /2(%)d% as the probability that the surface angle
lies between & and %+ d'z when the surface is viewed from the
direction ©' = 1r/2. We wish to find the corresponding probability when
the surface is viewed from the direction ©'. From the definition of
Pﬁ/e it is .seen that the projection on the x-axis of those segments of
the surface which make an angle lying between % and A+ dZ is given
by f/sinQ'Pﬁ,/Q(%)d% (it is assumed that the end points of the section
of radiated surface lie on the axis). By considering the corresponding

projection on an axis normael to the direction of the incident beam one finds

ng(%)d'ﬁ = ﬂ/g(%)_:%%é%;';s_%'pl a% ’ (3.2.2)
where the left:side is defined as the probability that the surface angle
lies between % and %+ a% when the surface is viewed from the di-
rection ©' . It is assumed implicitly in Eq. (3.2.2) that there is no
shadowing (equivalently that P /2 =0, >0 or NALO'-x )

We can now form two expressions for the energy contained in the angular
element AQ, the energy so contained arising from the total incident energy,
,Q, . On the one hand we use the definition of the normalized scattering
function, A(6,0'), and on the other we use the distribution function,
given by Eq. (3.2.2), in the manner outlined above. Thus we obtain the
relation

Q-O')

1 0+0 ' =1t cos( 2
A(6,0") = 5ToE Prr/2< 2 ) N )
o122

(3.2.3)

where we have used Eq. (3.2.1). It is supposed that Pﬁ/g(’)ﬁ) vanishes

unless ‘A 1is such that 0% 04 n (cf. Eq. (3.2.1)); this is a necessary
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condition if there is to be no multiple scattering. It is noted that the
N,

quantity sin0'A(Q,0') (which has been defined as A) is symmetric in
the directions © and ©'. It can also be seen that the expression,

W

SA(Q,G')dQ -1, (3.2.4)

c
is satisfied, as is necessary from the definition of A(6,0') (cf. Eq.

(2.2.12)). PFinally, if AKLO' and XK1, Eq. (3.2.3) reduces to,

(see Eq. (3.2.2)),

Q+Q'-ﬁ>

A(e,0") = % Pﬂ/e(—é— (3.2.5)

8o that, as one might expect, the transformation of the distribution func-
tion for non-normal incidence is not necessary in this case.
The normalized scattering function is given correctly by Eq. (3.2.3)--
a. If the condition for the validity of the use of geometrical optics
in the reflection problem is fulfilled, or kRysine')) 1.
b. If there is no shadowing so that Eq. (3.2.2) is correct. With
shadowing present, Eq. (3.2.2) should be replaced by the correspond-
ing relation for the section of the surface which is illuminated.

The restriction for no shadowing may be written

P(%) =0, RX)O' or ALO'-n
c. If there is no multiple scattering, so that Eq. (3.2.3) is correct.
The restriction may be written in the form P(%L) = O unless
-g—'- - %é & % . It 1s possible to have multiple scattering
even though % 1lies within this range; however the restriction
Jjust given will serve in the present connection.
In general, in order to take into account shadowing and multiple

scattering, it is necessary to have a more detailed description of the

surface than that used here.



-29-

3.3. A Perturbation Method for the Reflection Problem

We now consider problems in which one must take into account the wave
properties of the radiation. We proceed with a perturbation method.
Probably Rayleigh was the first to consider reflection problems for which,
in the present notation, kﬁM<<J_) [10]. Since then a large amount of
work has been done using this approximation [ll],[lQ],[ljJ. Under this
hypothesis the field will be shown to consist mainly of the incident radia-
tion and the specularly reflected radiation. (Specularly reflected radia-
tion is, except for a constant multiplier, that radiation which would
have been set up had the bounding surface been flat.) Now although the
»direct and specularly reflected radiation are the most important part of
the field, interest really centers on the diffusely reflected radiation
which in general accompanies these two major components. The amplitude
of the diffuse radiation is in general of order kzM

We will now present the perturbation solution. Let us represent the
reflected field, ¢r , by a sum of plane wave solutions of Eq. (3.1.4)
with each elementary plane wave proceeding in the poéitive z direction.*
In order to represent the solution by such a sum, one must include complex
directions of propagation (inhomogeneous waves).‘ These must be chosen in
a way such that the solution remains bounded for all x and as z= +00 .
The correct plane wave representation is given by

)eiKX+i(k2-KQ)l/ez

0o
;¢r(x,z) = S B(K dK . (3.3.1)
e

Now if we substitute Eq. (3.3.1) in Eq. (3.1.6) we have

@0
B1(x,L(x)) + g B(K)eixk+i(k2'Ke)l/2§(x) dK = 0 . (3.3.2)
-0

* For a discussion of such plane wave representations see Whittaker
and Watsony [ 14], sec. 18.6 .
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We wish to find B(K), which in conjunction with Egs. (3.1.5) and (3.3.1)
will define the solution to the problem. Now let us take advantage of the
hypothesis, kéw<<]n In order to do this we adopt a procedure familiar
in the treatment of perturbation problems.*

First replace &(x) by € Z(x) . Then assume that @;(x,6Z (x)) and
B(K) are analytic functions of § 1in the interval 0£ € <« 1 . Ex-
pand all functions invpowers of &£ and equate corresponding coefficients

in Eq. (3.3.2). We have first

(l)(

0,(x,e2(x) = 800 + £7@eMN ) + €282 ) 5 ..., (5.3.3)

and,
B(g) =3 + £330 (x) + @)+ ... . (3.3.4)

The solution B(K) 1is obtained by setting £ =1 in Eq. (3.3.4). We

find from Eq. (3.3.2), upon equating equal powers of & ,

-
+ (3 g =0
i
Z (x) + SB (%) o 12 (x) (1P -%) ¥/ 2ak
-00
00
p(t &K=0 ,
- (3.3.5)
* 2 x2)1/2
7P x) + §B<°><K) S e ke (S
..oooo
# ) 38 (k) [106212) Y27 x)] ax
—”m |
¢ \ 3 (0)e™ ek = 0 )

*  See Schiff, [ 15], chap. VII.
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We will suppose that @; and Z(x) are such as to cause all of the inte-
grals given in Egqs. (3.3.5) to converge. The question of the convergence
of Bq. (3.3.4) (that is, the question of the validity of the assumption
of analyticity) will not be considered.
Now consider Eq. (3.3.5). If all of the quantities given there have
Fourier transforms we teke the Fourier transform of the entire system.

The transform is defined by

o
ikx

1
F.T.{F(x)} - oI ge F(x)ax . (3.3.6)

(If some of the Fourier transforms do not exist, one may use more general
transforms; we consider the simpler case here where Eq. (3.3}6) converges

for all F(x) considered.) The result of taking the transform of Egs.

(3.3.5) 1is
00
3% ) - - L ge‘m" 38 (x)ax, (3.5.7)
3V(x) - - £ [ ™ gl (mex (5.3.8
-%;gedm%xSBwNKwJK“[im%KQﬂmgxﬂdr
~00 - 0o
]
5(2) (k) - - %Se‘m‘f(x)szﬁge)(x)dx (3.3.9)
- 00
0o 00
- ;—ﬂge_lKde g ]3(1)('I§')eiK'X [i(kE-K'E)l/Qg(x)] dK!
““; ‘: 2 1/2
(o (e sl
- -00

Let us now examine the first two terms in the solution as given by

Egs. (3.3.7) and (3.3.8). First it can be seen that B(O)(K) 1is the
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value which B(K) assumes in the problem where Z (x) is zero (a plane
surface). We have the result

00
g ein+i(k9-K2)l/2z 50

-0

4% (x,2) (K)aK

i}

- Bi(x,-2) . (3.3.10)

This is the specularly reflected radiation mentioned above. Now consider
the first order term B(l>(K). In Eq. (3.3.8) we see that =B(l)(K) is
of first order in Z (x). This was the result proposed above. We have,

to terms of firet order in kZ(x) , the following result:

[+
S“ein+i(k2-K2)l/2zB(1)

-00

B.(x,2) = - @, (x,-2) + (K)aK + ... (3.3.11)

where gV (K) is given by Eq. (3.3.8). Finally we see that Eq. (3.3.11)
together with Eq. (3.1.5) gives the solution to the problem through terms
of first order in kgﬂ . We gee from Eg. (3.3.9) that the first term ne-
glected is of order (k;M)2 .
Before turning to the next approximation method, let us consider

the second term of Eg. (3.3.11). We Wish to obtain the far-field approxi-
mation (x and z large) for the function ¢r(x,z) by using the method
of stationary phase to evaluate this integral.* We become interested then

in those points, K;, at which the phase of the integrand becomes station-

ary. They are determined by the relation,
a_e‘k.[Kx + (ke—_KQ)l/Qz] =0 (3.3.12)

which yields the single stationary point K, where,

e x
(kQ_KOE)l;Q = -Z—

*  See Lamb, [ 161, sec. 241.



_55-

We now expand the phase about the point Kp. We have,

Ky + (ke Ka 1/2 - Egx+ (ka_Koe)l/ez (3.3.13)
2
+_32L_'%52_[Kx+(k2_21/2] _Koe
1 9’ K2.x2) 1/2 3,
= —— | Kx K- K
¥ 3 aK5 [ ¥ ] (
with
2 r
abK—z' [K:X + (ke-Ke)l/QZ]KzKO = —(k sin20> P (5.5.1)-1-)
and
9’ 2 .2,1/2 _ 3rcosd
a—ég [KX + (k ~-K ) Z]K=Ko = _(kesinu'g ) 9 (5.5.15)
where © 1is defined by
Ky = kcos® (3.3.16)
and
r = (x2+zg)l/2 (3.3.17)

If we substitute in Eq. (3.3.11) we have (using the first two terms of

B (3.3.13)),

00
y 1 - (K-Ky)®
¢rs _ B(l)(KO)ei[kbx+(k2-Kg ) /22] g.e 2ks 120 &K , (3.3.18)
2 e
where

¢r = -¢i(X,—Z) + ¢rs )
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2 w2\1/2
and where it has been assumed that ei[KX+(k - ) / i] varies much more
rapidly than does B(|)(K). The neglect of the third term in Eq. (3.3.13)

is Jjustified if,*

5
8_515 [ Kx+ (k2-k2) 1/ Ez] &,

3__6_3 [Kxﬂkz_Ke)l/ez ]

/2 << 1. (3.3.19)

K=KO

Substituting Eqs. (3.3.14) and (3.3.15) in the relation (3.3.19) we have

the condition,

I%f)—%%[ « 1. (5.3.20)

Thus the stationary phase approximetion fails for angles sufficiently near
to grazing (sin © &% 0). The integral in Eq. (3.3.18) can be carried out

to yield

1/2
) / (5.3.21)

Prg(x,2) = 8ind B(l)(K‘o)eikr (223
ir
It is noted that the amplitude of the scattered field falls off like (rTl/E
with range. The restriction given above on the relative rates of variation
6f the exponential in the integrand.of Ey. (3.3.11) and of the function
B(l)(K) is sufficiént to guarantee this range dependence for the scattered
radiation.
The result given by Eq. (3.3.21) is valid--
a. If the perturbation method is applicable, i.e. ]§§h4<< 1.
b. If x and 2z are large enough so that ei[KX+<k2'K£)l/2£] is

much more rapidly varying than is B(l)(K)

*  Lamb, [16], p. 396.
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3coto .
c. If e &1 80 that only the first term in the stationary
(dr)
phase approximation need be used.

It has already been mentioned that this work is primarily concerned
with surfaces for which specularly reflected radiation forms a small part
of the total reflected radiation. From the work of this section we see
that when k{M« 1, the reflected radiation is primarily specular. For
this reason we shall not have further occasion to consider problems in
which the method of this section is applicable. The method has been pre-

gsented in order to give a more complete picture of the approximations

which have proved to be useful in the solution of reflection problems.

3.4. The Kirchhoff Approximation

We now proceed with a discussion of a method of approximation due
to Kirchhoff [17].* We shall begin with the Helmholtz formula; this equa-
tion (see below) expresses the value of the field function in terms of an
integral over the bounding surface (here £ (x)) involving the value of
the field function and of its normal derivative on the surface. The
Kirchhoff approximation in the presenf connection consists of supposing
that the bounding surface is sufficiently smooth to allow one to make
the assumption that it is "locally flat". A surface will be termed
"locally flat" if one can, to a good approximation, treat radiation re-
flected from every portion of it as if that portion were flat. This
assumption allows one to estimate the normal derivative of the field on
the boundary. Furthermore the boundary condition (Eq. (3.1.6)) allows one

to fix the value of the field itself on the boundary. The use of the

* See also Baker and Copson, [ 18],chap. II.
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Helmholtz formula then yields an approximate solution to the problem. The
Kirchhoff approximation as presently stated forms the foundation for almost
all calculations which have been made for the distribution of energy re-
flected from diffraction gratings.

The question of the region of validity of the approximation has re-
ceived much attention. Recently Brekhovskikh.has proposed the criterion
(1],

Pk‘sin 0> 1

where Q is a (representative) radius of curvature of the surface, and
©' 1is the grazing angle of incidence. It will be one of our purposes
in this section to discuss the validity of the approximation.

In the treatment to be presented here we shall attempt to develop
the Kirchhoff approximation in a systematic way. We first consider
the Helmholtz formula in connection with the determination of the normal
derivative of the field function on the boundary; an integral equation is
obtained. The solution by iteration of this integral equation will then
be congidered. It will appear that using the first term is equivalent to
adopting the Kirchhoff approximation. We then investigate the next term
of the iteration solution, in particular observing that it has the order

property,

IIl & M

1 .
+ M' — A1
kR (3 )

Here I 1is the first term neglected in the solution; Rm is the minimum

M
radius of curvature and ééL— is the maximum slope of &(x); M and M'
x

are some constants independent of surface properties. On the basis of
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this order property, we shall assume that the Kirchhoff approximation is

valid if--

1)

M

3

and ii) KR ) 1.

We proceed with the outlined program. We first need the Weber two-
dimensional analogue of the Helmholtz formula. By using Green's formula
in comnection with Eq. (3.1.4), one is able to derive the following result

(see Fig. 4) [20]:*

#() = B,(7) + 5 g p(1)Sy 15 e )
4
] Hél)(krlP)g—\z ¢(1)} 8s, , (3.4.2)

gubject to the restrictions that--

a. The function ¢(x,z) possesses singularities of the type,

¢(X:Z) g Hél)(kr]?o)) as rpg—» O,

for a finite set of source points; (xy,zn) 1s a representative

2 2] 1/2

gource point and rpy = [(x-xo) + (z-zq)
b. The function @(x,z) is continuous with continuous first and
second order partial derivatives for all points (x,z) satisfying

the condition z & (x), with the exception of the source points.
ikr
c. The function @(x,z) shall have the asymptotic form £ 1/2
(kr)

a8 T—>00 , where r = (x° + z2)1/2. This is equivalent to

requiring that at great distances from the surface the field shall

consist of outgoing waves only.

* For a discussion of the Helmholtz formula as well as of Weber's two-
dimensional analogue, see Baker and Copson, [18], chaps. I and IT.
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Fig. 4. Diagram used in the discussion of the Helmholtz formula.

The integral in Eg. (3.4.2) is to be carried over the entire surface
Z(X). The symbol %%Z indicates the derivative with respect to the
outward normal direction at the surface point (1). We have let @(1)
stand for the value of the function ¢ at the point (1), @(P) repre-
sents the value of the function ¢ at some space point P and similarly
for other functions appearing in Eq. (3.4.2) and later. ThebHél)(y) 'is

the Hankel function of the first kind.* We now use the boundary condi-

tion given by Eq. (3.1.6); Eq. (3.4.2) becomes

* Watson, [ 21], p 73.
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§(p) = §,(P) - &—igﬂgl%krm) 9, (3.4.3)
z

If we allow P to approach the surface at the point (2), we see

g (2) = %Sﬂél)(krle)%gé(l)dsl : (3.4.4)

Q
Ho W

Once the function oV, is known, the solution to the problem
5.

can be obtained from Eq. (3.4.3). In order to obtain an estimate for

this function we set up an integral equation of the second kind and
propose & solution by iteration.*

We take of Eq. (3.4.3); the point (P) is then allowed to

d
OMp
approach the surface along the normal at the point (2); at the same
OMp

surface is sufficiently regular so that so long as (P) does not lie at

time the derivative approaches —%}c;—. It is assumed that the
o

(2), we may differentiate under the integral sign, obtaining

a8(2) =b¢i(2) 1 Lim bH(()l)(kr]_P) 9(1)

3v, v, M= ) o, IV
z

ds1 . (3.4.5)

This operation is valid if the integral in Eq. (3.4.5) is uniformly con-
vergent for k»rQP }. 8 > 0; 1in this connection it is to be remarked that
under hypothesis b) the derivative of the integral in Eq. (3.4.5) is a

continuous function of rop for all (P).

1
aHo( )
o
dipoles. It is & well known result of potential theory that limiting

The quantity in the integrand represents a distribution of

processes such as the one in Eq. (3.4.5) introduce integrable singularities

* For the use of integral equations in the treatment of more general
reflection problems, see a memorandum by C.L, Dolph, [ 22].
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in the integrand [25]. In order to evaluate the limit, we first suppose
that the function z(x) is continuous with a continuous first derivative

for all x . The integral of Eq. (3.4.5) is split up as follows:

'_l

Lim bﬂél)(kr ) B(1
T (P)>(2) e aw\ 1 =
z

1 Li aH(l)(kr ) 04(1
\

‘zl1>$ aP.P
aH (krip) O@(1)
1— Lm 1P 8. 4.6
M S B'LP oV, 1 (3 )

"-lz o

It is assumed that the limit in the first term on the right side of Eq.
(3.4.6) can be moved inside the integral sign, which is valid if the in-
tegral is uniformly convergent in rp,. Then the limit in the first
term is trivial and we are left with the task of evaluating the second

term on the right side of Eq. (3.4.6). TFor convenience we write

(1)
1 Li OH kr d0(1
im g 0 ( 11:) ¢( ) d . (3.4.7)

|
TEE ) T, 99

..+t Lim g BHc()l)(krlp)3¢(2)

L1 (P)—>(2) e 3}"? 3 dsq

1 Dm g aH(() ) (kryp) <5¢ 3525(2)) ds.
L (P)=(2) 3 Pr 2V, dVa/ 1
nali,

The Hankel function is defined by,*

* Watson, [21], pp. 60 and 6k4.
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(1), , 2t

Hy "(v) = 37 1n(y) Jo(y) + G(¥) (3.%.9)
where G(y) is analytic at y = 0, and ¥ is Euler's constant,
0.5772. ... Using the assumption that ; (x) has a continuous deriva-

tive, together with the expression for the Hankel function for small

values of its argument, one obtains the following result:

(1)
Lim{ 1 Lim OHy (krip) 28(2) -
{ g dslz = . (3.4.10)

'_’o——.—
0 L -
I T

To see this, ﬁo is chosen small enough so that the region of surface

(r12< -so ) is essentially flat. Then using Eq. (3.&.9), Eq. (3.4.10)

follows directly. Also since %% is continuocus, we see that

. | (1)

Limp 1 = Lim 0Hy ' (kryp) <b¢ 26(2)

o"°zf& (P)=>(2) g e Sv " aw ) 0 (kD)
rc"-(So

Now allowing g—70 in Eq. (3.4.6) and substituting in Eq. (3.4.5) we
(-]

find,

1
of(2) _afi(2) 1938(2) 1 BHé )(krl2)a¢(l)

oV [ A + 2 bﬁz Y Vs oV ds; . (3.k.12)
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Equivalently Eq. (3.4.12) may be written,
(1)
of(2)  ap4(2) 1 | 0Hp (kryp) 0f(1)
IV T Saw T E\ T aw 3w
Z

ds, . (3.4.13)

Now we consider the solution of Egq. (3.4.13) by iteration. The
procedure is as follows:* one substitutes the right side of Eq. (3.4.13)
for the quantity %g. appearing in the integrand. This again gives the
quantity %% appearing on the right side, now under a double integral.
By repeating the substitution process indefinitely, one generates an
infinite series of terms in which each term involves, in general, a multi-

ple integral with the known function %%;: appearing in the integrand.

This process then yields for the first two terms of the series,

(1),
og(2)  9fi(2) 1 | oHy '(krip) [na%(l)]dsl oo . (3

V. T w2t 3V, Y
Z .
It will be assumed that the infinite series, the first two terms of which
are given in Eq. (3.4.14), converges (to ggé ) for every point on the
bounding surface. We now retain only the first term of Eq. (3.L.14),
assuming for the moment that the next term is negligible in comparison

to it; this gives,

3g(2)  9p;i(2)
a\?z ~ 2 3\)2. . (3)-1-.15)

As a check on the result, it is not difficult to see that for Z(x) =0
(a flat surface), Eq. (3.4.15) is exact. It is the approximation which

would be obtained from an application of the assumption of local flatness.

* See Tovitt, [ 24?, chap. II.
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To complete the solution, Eq. (3.4.15) is substituted in Eq. (3.4.3)

to obtain,

994 (1)
2V,

(1) 1 (1

g (P) = ¢, (P) - 17 g Hy )(krlP)Q
z

when ¢(l)(P) represents the first approximation to the field ¢.

dsy (3.4.16)

We shall now consider the first term neglected in the approximation

represented by Eq. (3.4.15). We make use of the relation,*

LaiMw - -1V (5.4.17)
and also
or
—S-Vl‘—g - sin®, (3.4.18)

with ?:. defined as the angle between the tangent to the surface at the
point (1) and the radius vector connecting (1) and (2) (see Fig. L).

Then we have for the second term of Eq. (3.4.1k4)

(1)

1 oHg “(kryp) [ 3¢1(1)]
21 T ST !
_ %g BN (r) )kstnz, 901 4y (3.4.19)

\d
) 3V
We shall label this quantity I; it must be small if Eq. (3.4.15) is to

be valid.

Tt will be convenient to define an order property, O(f(t)). We

shall write

F(t) = 0(£(t)) (3.4.20)

* Jahnke and Emde, [25]), p. 1L45.
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if there exist a pair of positive constants M and T such that

t2 T, (3.4.21)

where f(t) is a positive function for t2 T. In what follows, the con-
stants M and T will be chosen so as to be independent of the properties
of the surface, & (x). Furthermore we shall use the symbol M (and M!')
to indicate an unspecified constant, not always the séme.

With these definitions in mind, we proceed with the consideration of
the function I. We examine separately the regions of the integrand of
Eq. (3.4.19) where kr 15,£¢& and where krip» & . The constant & - is
chosen small enough so that a circle of radius ry, centered at (x3,Z(x7))
intersects & (x) at only two points for kri,& £ ; it is assumed that

the surface is sufficiently regular so that there exists such an & which

can be chosen independent of x . We have,
I=1I+ I, (3.4.22)
where
1 (1) 29;(1)
I, =% Hq (krlE) Sinea'W dsl P (3.4.23)
b g€
and
I =%— H](_l)(kr‘z) sin323¢i(l) kds; . (3.4.24)
dar, 7€ A
Two conditions on the function 3_?_)_\_} are now established. It is first
[}

supposed that there exists an M such that for all x i

09

v &€ M . (3.4.25)
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This condition is fulfilled for any problem with a finite number of sources
located in the region z »Z4 . Secondly, for simplicity, it is supposed

that

1
P1(1) 2 €
b\?\ = O((kx ) ) ’ (3.4.26)

£'7 0. This second condition can be relaxed in some cases. It is used

here to render the integral in Eq. (3.4.24) absolutely convergent.

We now consider the quantity Io. To begin we note that,

dzM(
T ax ’ (5-1*»27)

P ;Jf ¢

Xp - X1

since the quantity on the left is just the average slope of the segment
of surface between the points (1) and (2). By examining Fig. 4, and

using the result given by the relation (3.4.27), it is easily seen that

M
sinz,) & 2|22 (5.4.28)
We also need the asymptotic expansion of Hil)(y):*
1/2 i(y - £ )
Hﬁl)(Y) = (%;) e * [l + 0(&)] , (3.4.29)

The order property holding here for y & (y real). Then using .Egs.

(3.4.29), (3.4.28), and (3.4.26) in Eq. (3.4.24), we have
M
iz (
|I,| &€ M ’ = . (3.4.30)

In obtaining Eq. (3.4.30) we used

*  Watson, (211, p. 197.
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which follows if we restrict consideration to surfaces with bounded slope;
we have also used the obvious relation that 1o > ' xl-xel

We now proceed by considering Eq. (3.4.23). The following relation

is easily established (cf. Fig. 4):

1

(sin€2‘ < %i{; , (3.4.32)

when Rm is the minimum radius of curvature.

1
We need the expression for the function H§ ) corresponding to Eg.

(3.4.8) %

BN () = 9,) + ,%Se [+ 1wl o, - 2

(3.4.33)
m l l+2m
Z -1) ¢ -[;+;+---+;+;+;+.__+_1__] .
wso m! m+l 1 2 m 1 2 1+m
From Eq. (3.4.33) it follows that for kri, & £ ,
M
(H ) . (3.4.34)

Then using Egs. (3.4.34), (3.4.32), and (3.4.25) in Eq. (3.4.23) we have

L& & (5.4.55)

where it is supposed that the same §& may be used for all surfaces con-
sidered. Then taking the absolute value of Eq. (3.4.22) and using Egs.

(3.4.35) and (3.4.30) we have the required relation,

M
|I|] &€ M a5

+ M — (3.4.36)

* Watson, [21], p. 62 and p. 64.
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Hence the method of this section is applicable to surfaces with small
slope when the frequency is high enough so that the radiation wavelength
ig very much less than a representative radius of curvature of the surface.
We now show that the approximate result, expressed by Eq. (3.4.16),
satisfies the reciprocity theorem if there is but one source, i.e.,
g,(®) = B (kry) (5.4.37)
A general transformation of Eq. (3.4.16) is first shown. We consider a
system having sources giving a field ¢i without the bounding surface
Z (x) , so that the sources radiate in an infinite homogeneous medium.
Then applying Eq. (3.4.2),
DH('()l)(kl‘lp)

1
¢i(P) = ¢i(P) + E g; ¢i(l) 'a\)‘

(1

ds

or

(1)
1
- 37 \Hy  (krip) Sv 81 = - L% g ¢L(1) aHoa \(Pkr'lP) ds,
|
. ¢ (3.4.39)
Now Eq. (3.4.39) is used in Eq. (3.4.16) to obtain,
# M (e) - gyp) - I & %(Hé”(krmmi(l))dsl . (3.4.50)

4
It is evident that if we specialize the problem by applying Eq. (3.4.37),

Eq. (3.4.40) is unchanged by the interchange of (0) and (P), for we have,

(P) = Hf()l)(krpo> - %E g %.(Hél)(krlP) Hél)(krlo))dsl.(}hohl)
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Thus when a single source excites the field, Eq. (3.4.16) satisfies the
reciprocity theorenm.
We now examine the value of the approximate result, given by Eq.
(3.4.16), on the boundary. From the boundary condition, Eq. (3.1.6),
the function ¢<l)(2) should vanish. Subtracting Eq. (3.4.16) from Eq.

(3.4.3) we see,

o0) - 9% 0e) - - (o e [ - 22D sy e
4

When (P) - lies on the boundary at the point (2), Eq. (3.4.42) becomes,

(1) (1) 3 a¢-<1>}
-3 (2) = - IT gHO (krip [—gl\;‘l 2 alv‘ dsy . (3.4.43)
4

Hence if the error in the determination of the value of %g on the boundary

is made small by hypotheses 1) and 1ii) , one may expect the value of
the approximation given by Eq. (3.4.16) to be small there, and indeed to
be of the same order.

There is one further point of interest in connection with the approxi-
mation of this section. It is easily seen from Egs. (3.4.19) and (3.4.28)
that the first term neglected in the approximation contains a term of
firgt order in the surface slope. It seems reasonable to suppose that the
effect of this error would be greatest in regions where the reflected radia-
tion is far removed from the specular direction. Brekhovskikh [19] finds
such deviations in comparing calculations using the present approximation
with an exact formulation due to Rayleigh.

This completes our review of the major methods at present available
for the solution of the reflection problem. Before beginning our next
topic, it is in order to mention briefly two other approximations which

have been used.
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Rayleigh proposed a unique formulation for reflection problems in which
Z (x) is a periodic function of x;* such surfaces are of evident in-

terest in the treatment of diffraction gratings. He was led to an infinite
gystem of linear equations to be inverted. By applying the additional
restriction that the repeat distance of the surface should be very much
greater than the radiation wavelength, Rayleigh was able to solve this
system. He states that his result is equivalent to that obtained through
the use of the Kirchhoff approximation.

Twersky [26] has recently considered surface reflection problems of
a restricted class by making what may be called a single scattering hypo-
thegis. In other words he proposes that the radiation reflected from the
surface under certain conditions can be congidered as having undergone a
gingle reflection. In later work he has set up a formulation taking into

account multiple scattering.

3.5. A Fourier Transform Method

Before proceeding with the duct propagation problem, we should like
to take this opportunity to present a method of golution for the reflection
problem which depends upon taking the Fourier transform of an approximation
to Eq. (3.4.4). It will be seen that the method is useful for
. |dZM‘<<
i) | = 1 and
dx

11) kgM & 1

the symbol ~ indicates "is of the order of magnitude of". Of these two

restrictions; the first is the more important.

* Rayleigh, {5]: p. 89.
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Let us consider Eq. (3.4.4),

T I (5.5.1)

[4

where,

r1p = [ram)® + (Z0xy) - 0]

(3.5.2)
Y

If Eq. (3.5.1) could be solved for the function 3% 7 its value could be

substituted in Eq. (3.4.3) to obtain the solution to the problem. One is

tempted to let

rip 2 |x1-%p| (3.5.3)

since in such a case Eq. (3.5.1) could be solved. Let us examine the error

incurred by meking this assumption. First we let
| *1-%4
Tl = cos (3.5.4)
where @ 1s the acute angle between r;, and the x direction (see
Fig. 4). Then we define the difference between the exact and the approxi-

mate kernel for Eq. (3.5.1) as

- (D) Ix1-xaly Hgl)(klxl-xgl ). (3.5.5)

K(Xl’XQ) 0 cosq

In considering the error made in adopting the assumption represented
by Eq. (3.5.3), it is convenient to treat the following regions separately:
I,k|x1-x5| 4 1; 1IT, k|x1-%p| > 1; III, all other values of the argument,
klxl-x2| . We shall also suppose in this connectidn that a{¢1l indicates
a &£0.1, and similarly ad) 1 indicates a > 10.0. Because of the (inte-

grable) singularity of H(g (y) at y=0, it 1s to be expected that I is
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the most important region of the integrand in Eq. (3.5.1). We begin by
considering it.
Upon referring to Egqs. (3.4.8) and (3.5.4) we see that in I

2 1
K|~ =10, (3.5.6)

M
or from the definition of & , assuming ég%— small we have,

x| ~ 2

(3.5.7)

gzﬂ%[ .
dx

For region II we use the asymptotic form for the Hankel function,*

iy
BN - = Lrod)] (3.5.8)

) 1/2
(&)

in Eqg. (3.5.5) to find

eiklxl—xgl

(%ik]xl-xgl>

775 §(cos 02 [GXP ik [z, ""2|(Z°_ia B l)]—l .
“ (3.5.9)

onitting Oﬁ#) as a term of higher order. It is easily seen that

M
2
al ¢ 25 .5.10
lal € 25T (3.5.10)
so that Eq. (3.5.9) becomes,
ik |xq-x,]
, 1% M,2 M2
K ~ jt.e e [_ (k8 ),,_72.4.23"_ (k87)° ), (3.5.11)
(k§M22
or ignoring the term -~ , which is of higher order,

(k% -x,|)2

* Watson, [21], p. 197.



-52-

ik|xy-xp M2
K Ay , o1 (k& )~ (3.5.12)
§1k|xl-x2\

Finally region IIT is considered. We note first that for « small,

1
K™ E(Tri—l—_—x—g—r)* H(() )(klxl—x2| )klxl—xel(cols' o " l) ’

or using Eq. (3.4.17),

Ykl (zg - 1) - (6.5.13)

K& -H

From the pertinent tables in Jahnke and Emde,* we see that the largest

(

lue of Hl)k( | x| for 0.1¢k & 10 t
value o 1 (k{xp-xp| )k |xy-xg| or 0.1€ k|x1-x| & occurs a

lel-X2l = 10 and,

'H:(Ll)(lo) . 10' = 2.53 . (3.5.1k4)

Again from the definition of @ and using Eq. (3.5.14) (replacing 2.53

by 3.0), Eq. (3.5.13) becomes

M[2
Nz[g_z__{
&l ~ 2 |[= - (3.5.15)

To summarize, it i1s seen that K is negligible in region I if hy-
pothesis 1) 1is fulfilled (cf. Eq. (3.5.7)); the same hypothesis makes
K small in region IIT (cf. Eq. (3.5.15)). Finally from Eq. (3.5.12) we
see that K is negligible in region II if hypothesis 1i) is fulfilled.
It is noted however that in region II the kernel of Eq. (3.5.1) 1is small
so that an error in this region is not so important as errors in the other

two. Thus in some problems the approximation may lead to a useful result

* Jahnke and Emde, [25], pp. 157 and 191,
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even though the hypothesis 1ii) 1is not fulfilled.
We now proceed with a method of solution based upon the assumption

that K is small. Let us rewrite Eq. (3.5.1), using Eq. (3.5.5),

¢i(l) = %{ g [Hél)(klxl-xg() + K(Xl’XQ)} %g%%% ds,,. (3.5.16)
g

Before continuing we make some changes in notation. Let

1 08(2)
q)(xg) = cos?(,(xg) b?z ) (3»5-17)
F(xp) = Ui ¢;(1) , (3.5.18)
and note
dx2
d82 = m-)- : (3-5-19)

Here Gﬂ(x) is the acute angle made by the tangent to the surface at

X5 with the x-axis. Then substituting in Eq. (3.5.16) we have

0

F(x1) = S[Hél)(klxl-xel ) + K(X]_;Xg)] @ (xp)dx,. (3.5.20)
-00

As the next step let us consider K(Xl;Xg) as a perturbation. Let
K(x1,%p) = € K(x1,%p), (3-5-21)
W) - PO + e @B x) + 620 @ (x) + ... (3.5.20)
where we assume that © (x) is an analytic function of & for O£ &< 1.

The solution is obtained by allowing &-»1. By substitufing Egs. (3.5.21)

and (3.5.22) in BEq. (3.5.20), and equating equal powers of & we see:
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o
55" (ke xp ) B (xp)axp = F(xy) (5.5.23)
o:o

Sﬁ(l kb‘l-xel)@ (xp)dxy = i‘;(xl:xe)@(o)(xe)dxz’

- ) (3.4.24)

Stlél)(klxl—xel)‘P(E)(XQ)dxe - \ (a2 @ e,

% 0

There is a well known method due to Levi-Civita [27] which may be used
for the solution of integral equations of the above type in which the kernel
is a function of the difference of its two variables.* The method consists
of taking the Fourier transform of the integral equation. Accordingly let

us take the Fourier transform of Eq. (3.5.23) and Eag.(3.5.24). We have,**

() 2n() P (O (1)

£(t) , (3.5.25)

00
)P Y4y - - por, Sx(xl,fe)@(o')-(xg)axe , (3.5.26)

-%
(20)2u(1) ¥ B (x) - grc(xl,xg)@‘”(xe)dxe , (3.5.27)
-t
where
£(t) = ﬁgg el (x)ax | (3.5.28)
(2n) %
- F.T. gF(x)}

* For a modern presentation see Titchmarsh, [28], chap. XT.

**  Titchmarsh, [ 28], p.59.
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Similarly,
h@)-FLi%U&HD},
WO (4 - p.m. {@(O)(x)} ) (3.5.29)
YO 5y = .. {‘P(l)(X)Z )

In order to guarantee that the transforms of Eq. (3.5.23) and Egs. (3.5.24)

will exist and yield Eq. (3.5.25) and Egs. (3.5.26) and (3.5.27), it is

gufficient to require that LP(O) ,Lp(l),. .. and Hél)(klxl) be absolutely
, vo
integrable and that F(xl) and gK(xl,xe)@(n)(XQ)dxe “have Fourier

-0
transforms.* If these conditions are not satisfied by L]? (n)’ the solution

is subject to verification. For the function ﬁél)(k\ x| ) we will let
k =k' + 1§ s 8) O, 1in order to guarantee absolute integrability, then
allow § = 0 in the solution.

Now if we add the restriction that ¥ (n)(x) be sectionally continuous
we can, after solving Egs. (3.5.25), (3.5.26), and (3.5.27) for cP(n)(t),

-take the inverse Fourier transform.** Tt is known that ,***
1/2
2 2 ,2,-1/2
ne) = (2)7 2B (3.5.30)

We have then from Egs. (3.5.25),(3.5.26), and (3.5.27):

0o

(P(O)(x) - _1__175 g (kE_ 2)'-]‘/ee":bd_'f(t)'d‘c s (3.5.31)

2(2n) E

*  Titchmarsh, [ 28], p.59.
**  Churchill, [29], secs. 40 and 41.

*¥* Campbell and Foster, [30], No. 918.
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0

P (x) = - —1 e g (k2-42)1/2o-1xtgy
. {F [ g xl,xg)q_)(o)(xg)dxan (3.5.32)
- 30
o
® @) (g - - 1 g (12121 2 1xt g,

OO
[ K(X]_:Xg ( )dxg ’ (3.5.33)

The solution, @ (x), is obtained from

}

©x) = PO + @My + ... (3.5.34)

The symbols in Egs. (3.5.31), (3.5.32), and (3.5.33) are defined by:

Px) = T B (5.5.17)
o0

£(t) = L geitx'de_x, .5.28

(t) W_ (x) (3.5.28)

F(x) = 4i §.(x) , (3.5.18)

(1)

K(XI)XQ) = HO (l)

(krip) - Hy “(klxp-x) . (3.5.5)

One obtains the solution, @(P), from

11.(1) (1

¢(P) = B;(P) - uigfk) (krlp)jgé—l dsy . (3.4.3)
[4

We see from Egs. (3.5.32) and (3.5.33) that the corrections to the

(0)

first approximation, Q@ , are small if KX 1is small enough.
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As a check on the above result we can replace hypothesis ii) of this
gsection by the stronger, k;’M 4€1. 1In such a case the present method
and the perturbation method should give the same result. We shall show

that this is so by showing that through terms of first order in kg and

az

i the value of QQ) obtained by the two methods is the same.
2=F (x)

We begin with the perturbation method. We assume that the incident
radiation consists of a plane wave:

1Kyx - i(kE-Kiz)l/zz
¢i = € (3'5“55)

We shall not restrict X;, except to require that it be real, so the inci-
of

dent wave may be inhomogeneous. If we prove that jy 2 is the same
=
by the two methods for the single incident plane wave, then it follows for

any sum of incident plane waves. Let us now for convenience group together

the incident wave and the specularly reflected wave

—

?1

¢i(X) z) - ¢i(x, -z)

/2

iK. 2 2.1
o1 1% gin (i X )%z (3.5.36)

1]

Furthermore,

c——

g, ~ et o o 2k D22 x) . (3.5.7)
z= & (x)

Referring now to Eq. (3.5.37) and Eqs. (3.3.3) and (3.3.7) we see
¢, -0, (3.5.38)
gso that B(O)(K) = 0; also,

2(x) B, = - o1 M 2k 227y . (5.5.39)
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Then using Eq. (3.3.8),
w0
5(1)(x) - % (kg-Kie)l/E JIELE)X 7 vax | (3.5.40)
=00
When Eq. (3.5.36) is substituted in Egs. (3.3.11) and (3.1.5) we have for

the total field, through terms of first order in kZ ,

iK% 2 . 2.1/2
— s l s
@(x,z) = -2ie sin(k -K, Y Tz (3.5.41)
# 2 1/2
N ein + i(k -KE) ZB(l)(K)dK
- 00
Now we wish to calculate %g . Through terms of first order in kZ
z2=%
and & we have,
dx
%% - 2102k B)L/2Kex
i
== 3(x) (3.5.42)
0 o0
2 21/2 01/ .
k -K4 2 21/2 iKx .. i(Ki-K)x'
+ I (k -K') " e dK ee.‘( 1-K) Z(x')ax'

-0

We have assumed that we may differe%tiate under the integral sign in Eq.

> ein+i(k2—K2)l/2zB(l)

(3.5.41); this step is valid if ®y

(K)dAK is uni-
formly convergent in 2z and if B(l)(K') is continuous. It should be

noted that in obtaining Eq. (3.5.42) we have dropped terms of order & %—3

Let us calculate the same quantity, %g y using the method of this

section. We have,

2 2 1/2
%, _ eiKix-i(k -Ki ) /z (x)

z= Z (%)

(3.5.43)
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When Eq. (3.5.43) is substituted in Eq. (3.5.31) we have, through terms

of first order in %E )

0o
9 1 :
_gg} | SR : 01Xt (2 42)1/2
z=Z =00
(3.5.44)
00
Li eitx'e'iKix-i(kQ-Kie)l/%(X') axbdr
Y a2 .
(2r) ..

We can now apply the restriction h{{l ¢ 1. This reduces Eq. (3.5.4k4),

after a change of integration variable, to:

b%g;c) ) Ei(kQ_KiQ)l/EeiK'ix
“=% (3.5.45)
(K- 2)1/2 ©
, ___:;_i____ eitx(kE_tE)l/Edt J1(Ki-t)x’ Z (x')ax' ,

-0 - 00
where we have retained terms through the first order in k;‘ and in %ﬁi .
We have made use of the Fourier representation of the Dirac delta function:*
00

Stxxg) =5 \ o0 ay (5.5.16)

-00
It is seen that Egs. (3.5.42) and (3.5.45) are identical, establishing

the proposed equivalence.
We shall now work a problem using the method of the present section,

and check it by the perturbation method.

*  Schiff, [15], p. 51.
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We choose as the reflecting surface

in kx
g(x) - ol (3.5.47)

The surface consists of a damped train of sine waves with a wavelength
equal to that of the incident radiation; B 1s a free parameter. We
suppose that the incident radiation consists of a plane wave falling nor-
mally upon the x-axis; for convenience we will group the incident and

the specularly reflected plane wave, calling their sum ¢i' The amplitude

of the incident wave will be taken as unity. We have
¢; = -2isinkz . (3.5.48)

Furthermore using.Eq. (3.5.47) we find for the value of this function on

the surface

d. = -21ip == , for B 1. (3.5.49)

Now we substitute Eg. (3.5.49) in Eq. (3.5.31) to obtain,*
@O (x) - onp Jl—f‘f‘-)- , (3.5.50)

2 (5.5.51)
v

for the estimate of the normal derivative, %% , on the surface( coi%/ =1

2
to terms of order (%ﬁz) ). From Eq. (3.5.50) we see that qg(o)(x) is
bounded and also
0 -3/2
®© () = o(1x/2 ) (3.5.52)
* The needed Fourier transforms may be found in Campbell and Foster,

[30], Nos. 622 and 91k.7.
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so that the function is absolutely integrable. This property, together
with the fact that F(x) possesses a Fourier transform, shows that Eq.
(3.5.50) is the solution to Eq. (3.5.23). In order to obtain the solution
to the reflection problem, we substitute Eqs. (3.5.48) and (3.5.50) in

Eq. (3.4.3) to obtain

%
@(P) = -2i sin kz - g% g Hél)(krlP)£l£§§ll dx; . (3.5.53)
-00

The exact evaluation of the integral in Eq. (3.5.53) is difficult
because of the complex dependence of ryp on x; . For this reason we
shall restrict our attention to the field a great distance from the surface
(the far field).

We shall need an estimate of ryp. From Fig. 4 we see

X 2 “M]2
ryp =r - cosfxy - 8in6 g (x;) + O([r—l}, ) + O([;;‘} ) ., (3.5.54)

z (X2+22)1/2°

The angle © 1is defined by 8in0 = - where r = We now sup-

pose that é;— {{ 1 8o that the last term in Eq. (3.5.54) may be neglected.

Furthermore it is not difficult to see that there exists an Xl such that

for |xﬂ ) X, , the integrand of Eq. (3.5.53) may be neglected. Then

X x7] 2
;ll((l so that the term of order [_i] in Bq. (3.5.54) may

r
1
be neglected. We use the asymptotic expansion of Hé )(cf. Eq. (3.5.8)),

we choose

~

Y (er 1P (5.5.55)

( o /2 Lk

(
0 wikr]y

Jik(r-cos0x; -81n0Z (x7))

4

A’(nikrlP

1/2
) 5(3.5.56)
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where we have substituted from Eq. (3.5.54). The error term in Eg.
: -3/2
(3.5.55) is  O((kr)

negligible, Substituting Eq. (3.5.56) in Eq. (3.5.53) and using B<K1,

); we let krip)) 1 in order to make this error

7]

(12 ik .
@(P) = -2isin kz + (31 B —9"*’7* e_lkcosgxﬁgéiffl%)dxl-€545-57)
-~ 0o

The integral in Eq. (3.5.57) is a known Fourier transform;* so that we
have finally,

ikr
@(P) = - 21 sin kz + (2ﬁi)l/EBe ~8in0 . (3.5.58)

1;2
(kr)

We will now show that Eq. (3.5.58) is also the result which one obtains
from the perturbation method. Comparing Egs. (3.5.47) and (3.5.48) with

Eq. (3.3.3) we see, through terms of first order in &,

3% - o (3.5.59)
Z (plt) - asp S (3.5.60)

Now Eq. (3.5.59) substituted in Eq. (3.3.7) shows that B(O)(k)=0; this

fact together with Eg. (3.5.60) and Eq. (3.3.8) gives:

o0
B(l)(K) - T]r-_ég e-iK iixkx)dx ,
00
or, **
B<l)(K) = %é , Kl ¢ x
(3.5.61)

=0 , ‘Kl > k.

* Campbell and Foster, [30], No. 91k4.7.

**  Campbell and Foster, [30], No. 622.
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It is interesting to notice that the coefficients of the inhomogeneous
waves, for which K )k, vanish for this surface to this order. If the
surface consisted of a pure sine wave rather than a damped sine wave, there
would be a single homogeneous plane wave reflected, and this wave would
have a propagation vector parallel to the z-axis. Thus we see from Eq.
(3.5.61) that the effect of demping the surface sine wave (cf. Ey. (3.5.47))
has been to make the coefficients of all reflected homogeneous waves equal.
Substituting Eq. (3.5.61) in Eq. (3.3.21) we have for the first order

far field,

$

reg

. 1/2 e:.Lkr
(x,2) M (2ni) B z;;;i7§ sin 0. (3.5.62)
Finally substituting Egs. (3.5.62) and (3.5.48) in Eq. (3.1.5) we have

@(P) = -2i sin kz + (Qﬁi)l/2 B _EEE§7§ gin © , (3.5.63)
(kr)

which is identical with Eq. (3.5.58).

To summarize, the method of this section is applicable to surfaces of
small slope where the displacement of the surface is of the order of, or
smaller than, the radiation wavelength. The result of the approximation
may be expected to be valid through terms of first order in the slope of
the surface; in this respect the present approximation has an advantage
over the Kirchhoff approximation for problems in which they are both appli-
cable. Again, as for the perturbation method, in the remainder of this
work we shall not have occasion to consider problems for which the method
of this section is applicable. This is so since in the duct propagation
problem we are interested in surfaces which reflect little energy specularly.
Hypothesis ii) of this section will be seen to be incompatible with the

conditions necessary to establish such diffuse reflection.



CHAPTER IV

DERIVATION OF THE MODEL FOR THE PROPAGAT ION

OF RADIATION IN DUCTS

In Chapter II we presented a model for the propagation of radiation
in surface bounded ducts; the presentation was largely heuristic. In
Chapter III, some of the methods for the solution of the reflection problem
in a homogeneous medium were considered. In particular we considered a
method based upon geometrical optics, a perturbation method, a method
based upon the use of the Kirchhoff assumption, and a method of solution
depending upon an approximation of an integral equation. This work on
the reflection problem was presented largely as preparation for the present
chapter. In this chapter we propose to rigorously derive the equations
presented in Chapter II.

First we shall develop a formula for inhomogeneous media, analogous
to the Helmholtz formula for the homogeneous medium.* In this development,
we shall need a Green's function for the inhomogeneous medium; the proper-
ties of this function in the case where the inhomogeneities are such as to
allow the use of geometrical optics will then be considered. Following
this we shall develop Eqs. (2.1.18) and (2.1.23) on the basis of the Kirchhoff
assumption. Some further restrictions on the reflecting surface will be

needed. Furthermore we shall institute an averaging, either over space or

* The formula to be developed is a special case of a much more general
result of Hadamard's [31],

_6h-
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over time, whichever is pertinent to the problem at hand. The equations
presented in Section 2.1 will then be seen to govern the average intensities.
Following this presentation for the Xirchhoff reflection method, we shall
show that with minor modifications in the argument the same result is
cbtained for situations in.which the methods of geometrical optics may be
applied to the reflection problem (see Section 3.2).

The perturbation method of Section 3.3 and the approximation method
of Section 3.5 have been seen to be best suited to problems in which the
radiation wavelength is large compared with, or at least comparable to,
the surface displacement. It will be seen in Section 4.4 that in order
to guarantee that the reflected radiation is largely diffuse, one must
establish the condition that the surface displacement is large compared
with the radiation wavelength. Hence we shall not consider the reflection

methods of Sections 3.3 and 3.5 in connection with the statistical model.

4.1. The Helmholtz Formula for Inhomogeneous Media

We first state the problem to be solved. It is desired to find a

golution é of the wave equation in two dimensions,*

VoB(x,25t) = —2 ) Bfi%ﬁﬁl, (4.1.1)

c?(x,z

and satisfying the boundary condition,

$(x,z(x);t) =0 . (4.1.2)

For the present purpose, the problem has been generalized to include non-

stratified media. Further § is to have a logarithmic singularity at

the source point (0O) and is to reduce to outgoing waves as (X2+Z%)l/%#ogﬂ

* A development similar to that presented here can be made for a three
dimensional wave equation by suitably modifying the condition (4.1.3).



-66-
52

3X1+ az‘ We now suppose that

The symbol v2 is defined by vg
the source generates a disturbance of a single angular frequency W= 2xf
where f 1s the frequency in cycles per second; then we let @= ¢(x,z o 100t

The singularity at (0O) becomes,
¢ =2k ((xexg)? + (2-2)) 2] (¥.1.3)
0 "0 0 0 ? T
as x—x; and z-»zg; kg = k(xq,zp); and Eq. (4.1.1) can be written,

(V2 + k2(x,2))0(x,2) = (4.1.4)

where k = cﬁ , and is defined for all x and for all z =2 & (x). This
region will be referred to as physical space; it will be represented . by
the relation z = Z(x) in what follows.

In the remainder of the development we follow closely the corresponding
development for the homogeneous medium, where k 1is a constant. Those de-
tails which are the same as for the corresponding homogeneous case will be
omitted. For such details the reader is referred to the text by Baker and
Copson ( [ 18], sec. 6.2).

We consider two solutions of Eq. (4.1.k4), B‘ and Y ; suppose that
the function k(x,z) is sufficiently regular so that these fupctions pos-
sess continuous first and second order derivatives on a contour r' and
in a region A bounded by it. TFor our purposes the contour rT will be
formed by the function Z(x) and a large semicircle of radius R. Then

using Green's transformation, which is valid because of the assumed regu-

larity of ¢ and Y ’

ds , (k.1.5)

w

(CTLCI O
A r
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where %%7 means differentiation along the outward normal to F“ , and the
integrals are taken over the region A and ‘the contour F‘ respectively.
Since the functions 5. and VY are assumed to be solutions of Eq. (L.1.Lk),

Eq. (4.1.5) becomes
S(q)%g - FW)as - 0 . (.1.6)

Let W represenf the solution of Eq. (4.1.4) valid over all space
(z <Z (x) as well as z = Z (z)), which has the singularity represented
by the relation (4.1.3) and which represents outgoing waves at infinity.
Further we assume that possesses continuous first and second order
derivatives everywhere except at the point (xo,zo). Now in order to define
such a solution we must extend the definition of k , since values of k
outside physical space (in regions where =z ¢ Z ) become important. We
do this by allowing k to increase smoothly for z < Z‘ to some asymp-
totic positive value .as z—»-00. It is evident that this épecification
is not in general sufficient to detérmine the function uniquely. We shall
discuss this apparent ambiguity after the present derivation is completed.
If the singularity of the function q) lies outside A , we have Just
seen that Bq. (4.1.6) holds. However if the singularity lies within A we
must alter the result somewhat, since in such a case the continuity condi-
tions on the function LP no longer hold within the region A . To make
this alteration, we enclose the'singularity within a small circle. Within
the annular region enclosed by the contour and this circle, both .6' and
q) by hypothesis possess continuous first and second order partial deriva-

tives and thus we have,

gw%%-ag%)aw w3 . 5
o ™

, (L.1.7)

sFé
O



-68-
where & represents the small circle about the singularity of (4J . By
allowing the radius of the circle & +to shrink to zero, and using the

relation (4.1.3) we have finally,

= 1 (7., a¥(e,1 4(1)
¢ = L1 g:ﬁ(l) a" - LP(P)]') oV )ds, (4.1.8)
if (P) 1lies within [ . Here W(P,1) indicates the value of the

Green's function at the point (P) when its singularity lies at the point
(1).

Let us suppose that we identify 5. with ¢. In such a case, we must
also consider the singularity of ¢ given by relation (4.1.3). If the
point (0) 1lies outside F“, Eq. (4.1.8) holds without alteration. If
the point (0) lies within [ ' , we enclose the point with a small circle
and allow the radius of the circle to shrink to zero, as above; By this

process we obtain
§(7) = W(2,0) + i3 g (#(1) i‘%gﬁ - Y(z,1) Blyes, (h1.9)
P \

for the desired equation, if both~ (P) and (0) lie within . We
now consider the integral over the part of rﬂ formed by the semicircle
of radius R. We wish to establish conditions under which this part of
the integral vanishes for R sufficiently large. In order to avoid dif-
ficulty on this point, we shall assume that at distances very much greater
than all distances of physical interest, the function k?(x,z) approaches
some constant value. Then the restriction that @ should represent
outgoing waves at large distances reduces_to the restriction that in this
olkr

asymptotic region it should go like (E )l 5> where k , independent of
r

x and 2z , is the asymptotic value of k . Since W at large distance
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represents outgoing waves only, it has the same form in the far region.
Then by examining the part of the integral in Eq. (4.1.9) over the large
semicircle, and allowing R to go to infinity, it is seen that this part
of the integral vanishes. Thus Eq. (4.1.9) becomes, after using the

boundary condition given by Eq. (4.1.2),

#(P) = Y(P,0) - %I gW(P,l) %?\l)lil ds, , (4.1.10)
4

where the ifitegral 1s to be taken over the contour (surface) 4

If one considers the problem where k is constant, it is seen from
Egs. (4.1.3) and (L.1.4) that W(P,1) goes over into Hél)(krlp). Then
Eq. (4.1.10) becomes Eq. (3.%.3) with ¢i(P) replaced by the source used
here, W (P,0) (which becomes Hél)(krPo)).

We see that Eq. (4.1.10) is the desired formula, analogous to the
Helmholtz formuia, which governs propagation in an inhomogeneous medium.

Let us consider the effect produced by different specifications of
k(x,z) 1in non-physical space, that is in the region z ¢ Z'n Different
specifications will in general produce Green's functions which differ
even in physical space. However, if the conditions outlined at the be-
ginning of this section are sufficient to determine the solution ¢(P)
uniquely, the function @(P) must be independent of the different choices
gince we see that Eq. (4.1.10) fulfills all of the conditions on the solu-
tion. We will not discuss the question of uniqueness here except to say
that it is ordinarily assumed in similar problems that the conditions given
at the beginning of this section are sufficient to determine the solution

(see for instance Haskell [32]). There is a similar arbitrariness in the

choice of W even in a homogeneous medium. For such problems one can use
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any function which is a solution of Eq. (4.1.4), which reduces to outgoing
waves at infinity, which has the singularity (4.1.3), and which is regular

in and on rﬁ except at the point (O).

L.2. A Review of the Development of Geometrical Optics and a Discussion of

the Green's Function

In the last section we obtained a representation for the solution of
the wave equation in an inhomogeneous medium, where the solution is subJject
to a boundary condition on some non-plane bounding surface.

It will be our purpose in this section to give a representation for
the two-dimensional Green's function in the special case where geometrical
optics may be applied. It will turn out that the amplitude of Y (2,1) is,
except for a constant, equal to the square root of the intensity obtained

by the methods of ray tracing. The phase of the function q)(E,l) will
()

be seen to be given under suitable restrictions by g k(x,z)ds - %
()
where the integral is to be taken along the ray path comnecting (1) and

(2).
It will prove advantageocus to first present a brief review of the
development of the method of geometrical optics.

Let us consider a function ‘X which satisfies the equation,

[VE + ke(x,y,Z)] X =0, (h.2.1)

2 2 ¥ . 3
where the symbol VY ° is defined by V° = aK"+ a?,.‘f' 332 4 we have
generalized the problem to three dimensions since this entails no extra
difficulty. We also suppose that the function % has a singularity of
the type given by the relation (4.1.3) if we consider the problem special-

ized to two dimensions. Similarly we suppose that for a three dimensional
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problem the function ?: has a singularity of the type
exp(ikyryg)

6((xb,yb,sz‘*‘“"";ga‘—““ as 1, > 0, (4.2.2)
where rpy 1is the distance between (xy,¥y,2y,) and (xg,¥g,2g). Properly
speaking the function A satisfies Eq. (L.2.1) at all pointsvexcept (0).
It is further required that CK should repfesent outgoing waves at in-
finity. We also restrict k2 to be sufficiently regular to allow a solu-
tion CK which possesses continuous first and second order derivatives at
all points of space except (O).

Two real functions, G and V, are now defined through the relation,*

)
X, = Gexp(i oy V), (4.2.3)
Also let,
w
g=oV . (4.2.4)
a
Here c¢g 1is the velocity of propagation at some reference point, (a), in

the medium. Now if we substitute Eq. (4.2.3) in Eg. (4.2.1) we have, upon

equating real and imaginary parts to zero,

2
(VV)2 =m® +2a | Y2 (4.2.5)
P G
and
Vo + ¥v-V(n 6°) = 0, (4.2.6)

where the symbol Y represents the gradient, c¢ is the velocity of pro-

pagation at an arbitrary point, xa is the wavelength at (a), and n = Ca/c'

* This method of attack follows that used in "Physics of Sound in the Sea"
[33], sec. 3.6.1.
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So far we have imposed no restricting assumptions upon the function k. In-
deed Egqs. (4.2.5) and (4.2.6) could be used instead of Eq. (4.2.1).

We now add the restriction,

2 2
e %—G(« 2 (4.2.7)

Using this restriction, Eq. (4.2.5) becomes,
(VV)2 = m? (4.2.8)

which is often termed the eikonal equation; it is the basic equation of
geometrical optics. Through the use of Eqs. (4.2.6) and (4.2.8) one can
show that the restriction (4.2.7) leads to the following necessary conditions
for the applicability of geometrical optics:* a) the radius of curvature of
all rays (a ray to be defined below)should be very much greater than A\;
b) the per unit change of the velocity of propagation should be slight
over a distance A ; c¢) the per unit change of the function G should be
negligible over a distance A . It is noted that Egs. (4.2.6) and (4.2.8)
are independent of LJ .

The lines which are orthogonal to the surfaces of constant phase, that
is to the surfaces V = constant, are called rays. Using thisg definition
of a ray, it i1s now a simple matter to obtain the function V . First we

note from Eq. (4.2.8) that,

VV(x,7,2) = N(x,7,2) am (4.2.9)

where E;\ is a unit vector parallel to the ray passing through the point

(x,¥,2), positive in the direction of increasing V. Now we take the line

*  See "Physics of Sound in the Sea", [33), sec. 3.6.2.
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integral
()

§Vv.&§ s (4.2.10)
(%)

—
where the points (b) and (c) 1lie on the same ray, and ds is the dif-
ferential of path length with its direction parallel to Ejn. Then using

Eq. (4.2.9) in the expression (4.2.10) we have the result:
(@)
V(c) - V(b) = MNdis |, (k.2.11)
)
the integral being taken along the ray connecting (b) and (c¢) with ds

taken as positive in the direction from the source to the receiver. We

see the phase, cf. Eq. (4.2.4), is given by:

g(c) - g(b) =

o |C

- Ale)
(V(c) - V(b)) = \g kds . (L4.2.12)
(%)

One can show that Eq. (4.2.6) expresses the conservation of energy
within a tube of rays.* This may be done by integrating Eq. (4.2.6) through-
out a volume formed by a tube of rays bounded on the ends by surfaces of
constant phase. Upon using Green's theorem and Eq. (4.2.8) it is found

that the -"flow"

- 2
1 =kGa, , (4.2.13)

is conserved in any tube of rays. We now show that under certain condi-
anamad
tions 31 is identical with the quantity J , the average intensity. It

is remembered that 3? was defined by

Tf:ReH— g* ¥ ;zs] : (4.2.14)

*. For the proof of this statement for electromagnetic radiation, see
‘Friedlander, [ 34] .
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Substituting Bq. (4.2.3) for ¢ in Eq. (4.2.14) and using By. (4.2.9) we

see:
Re[—l],:x*vx] - k6% &) + GVG . (4.2.15)

Now 1if
RVG—G] &K1, (4.2.16)

it is seen that 31 = 39, that is, the quantity conserved in ray theory
is the energy. The condition (4.2.16) is identical with the restriction
c) already established above for the validity of geometrical optics.

To sum up, the amplitude, G , of the field function X is obtained
through the use of the conservation property of the quantity 31 (ef. Hq.
(4.2.13)). The phase, g , of the function A is obtained from Eq.
(k.2,12).

Before taking up our next topic it is worth commenting that geometrical
optics cannot be applied in a shadow zone, that is in a region which can-
not be reached by a ray from the source. Under the approximations leading
to geometrical optics, the field vanishes within a shadow zone by virtue
of the energy conservation within the radiated region.

We now proceed with the gpecification of the Green's function, using
the results of this section. Once again the problem is specialized to two
dimensions, which will as usual be designated by (x,z). The problem is

the following: we desire a solution q) of the equation,

28 »° 2
= +-73|¥ +k (x,2)¥Y =0 (k.2.17)
0x dz

2
where we suppose that the function k (x,z) has been extended in some (at

the moment) arbitrary way into the non-physical region z{ & (x). It is
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assumed that (Y has the further property that,

P (v,0) —» Hél)(korbo) as T > 0 (4.2.18)
where r . 1s the distance from the point (Xo,zo) to the point (xb,zb)
and kg = k(xg,zg). Also B consists solely of outgoing waves at infinity.
It is supposed that k2 is sufficiently regular so that a function exists
satisfying these conditions, possessing continuous first and second order
derivatives at all points of space except the source point, (xo,zo).

It is now assumed that the variation of k  is sufficiently small so
that the limiting relation (4.2.18) may be extended to the following re-

lation:

P(b,0) 2 H(()l)(korbo), roo £0 (4.2.19)

where Q}) 1/kg . Then for 1/ky (K rboé-_e we have from Eq. (4.2.3)

and from the asymptotic form for the Hankel function, (see Eq. (3.5.8)),
T

exp [ 1kgTryo- iE]

(% korbo)l/z (4.2.20)

Y(s,0) - G(b,0>exp(§i:V(b,0))%

The phase g of the Green's function, W , can then be written

4
g = kds -
o)

For a more general point (c) not necessarily fulfilling the restriction

(h.2.21)

ISE

0 ée we see from Eq. (4.2.12) that we may write
(o)

0) = kds - I
g(c,0) gw) 5 - , (4.2.22)
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which is valid for r,g »» 1/k (cf. Eq. (4.2.20)). The constant =/
is the contribution to the phase from that region near (0) in which geo-
metrical optics does not hold. The function G may be found through the
use of the conservation relation satisfied by 37 (cf. Bq. (4.2.13)), where
the value of G at the end of a given tube of rays near the source is

given (see Eq. (4.2.20) as,

(0,0 = (% korbo)'l/2 (4.2.23)

for 1/kg <K Ty & P

Thus the approximate Green's function is determined through the use
of Egs. (4.2.22) and (4.2.23). The approximation is valid if --
i) It is possible to define 9 fulfilling condition (4.2.19).
ii) If the problem is such that geometrical optics may be applied; see
restrictions a), b), and c) of this section.

In most applications, i) is fulfilled if ii) is.

L .3. Geometrical Optics in a Stratified Medium

In this section we shall consider the consequences of a further re-
striction upon the inhomogeneity of the propagating medium. We suppose
that the function k2 depends upon the coordinate =z alone; the medium
is said to be stratified in such a case. The problem is restricted to two
dimensions. We wish to apply the results of Section 4.2 to this problem,
supposing that the restrictions of that section are satisfied so that we
mey apply geometrical optics. We shall develop certain expressions which
will be useful later. Finally we shall consider the effect of the above

restriction of k2 on the Green's function.
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The assumption of stratification simplifies considerably problems of
propagation where geometrical optics may be applied; this is true since
such an assumption leads to a "constant of the motion". This constant
corresponds to the conservation of the horizontal component of linear mo-
mentum in the analogous problems of mechanics. To derive the constant

consider again Eq. (4.2.8) with the restriction on k° ,

(VV)2 = n?(z) . (4.2.8)

Now we assume a solution of the form

V= X(x) +2(z) , (k.3.1)

and substituting in Eq. (4.2.8) obtain

(%5)2 -2 (2) . (k.3.2)

By the familiar argument of the separation of variables we have,

(%X;) —ncos 0, =d (4.3.3)
and
dz .
(a;) =n sin QZ (4.5.u)

where we have utilized Eq. (4.2.9); OZ is the angle which the ray makes
with the x-direction at the point (x,z) and d is the above mentioned

constant of motion.
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Let us consider now those rays which originate at z = 0. Consider
the particular ray making an angle © with the x-axis as it leaves. Then

we can evaluate the constant in Eq. (4.3.3) obtaining,
n(z)cos 6, = d = cos 6 . (.3.5)

We have chosen the reference point of Eq. (4.2.3) on the x-axds so that
n=1 at the point whére the ray originates.

Since in this work we are primarily interested in those functions
n(z) which give rise to a surface-bounded duct, we shall restrict the
functions considered accordingly. We suppose that n decreases contin-
uously and monotonically as 2z goes from z = O to z = D; and increases
continuously and monotonically for z> D, approaching some finite (positive)
value asymptotically. This is equivalent to saying that the velocity of
propagafion increases monotonically to 2z =D and decreases monotonically
thereafter. It is to be noted that the assumption that the. velocity de-
creases monotonically for z > D rules out the possibility of reflections
from surfaces other than & (x); in particular, in the case of the propaga-
tion of acoustic waves under water, possible reflections from the ocean
floor are not taken into account. Although by considering a more compli-
cated model with two bounding surfaces, one could treat problems where
such reflections are of importance, this will not be done here.

It is true that surface-bounded ducts are found physically with velocity
profiles (functions c(z)) more complicated than the one suggested here.
Nevertheless the above outlined profile covers many of the cases of duct
propagation which are of physical interest. For simplicity then we restrict

attention to this profile.
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- Ly -
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Fig. 5. Diagram showing the distances travelled by trapped and un-
trapped rays.

We are now prepared to derive expressions for certain functions which
will prove useful;* reference is made to Fig. 5. To begin we define }L
as the largest angle made by a ray trapped within the duct. It is deter-

mined implicitly by the relation

cos (I&) = %%%% s (4.3.6)

it being remembered that c(z){c(D) . In Fig. 5 it is seen that IL(0,z)
is defined as the horizontal distance travelled by an untrapped ray in
going from the surface to the depth 2z . Then if O'>rb we have from the

definition of O and L,

_ Z
L(0,z) = g cot @) dz' . (4.3.7)
o

* The treatment follows that to be found in "Physics of Sound in the Sea',
[33], sec. 3.k.1.
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We can use Eg. (4.3.5) and the definition of n(z) to transform Eq.

(4.%.7) into

1(0,z) = cos O c(z')dz’ . 4.3.8
(8,2) = cos 0(02(0)-02(2')c0529)1/2 ( )

If o< ,L s T Dbecomes a double-valued function of z ; we designate

—

the smaller of its two values by .f_ and the larger by L, . Then it is

evident that,

{3

T 0,z) = 0 c(z')dz'
-(8,2) = cos SL(CQ(O)-CE(Z )COS o) 1/2 ’ (+.3.9)

and

%
c(z')dz‘

T+(0,2z) = cos ©
+(0:2) > SL(CQ(O)—C ( )cos 0) 1/

De

+ c(z )dzr
* (CQ(O)'CE(Z )cos o) 1/2 ,  (4.3.10)

when Dg 1is the maximum depth reached by a trapped ray. The function L(9),
defined as the distance travelled by a trapped ray between surface reflec-

tions, is given by

De

L(0) = 2cos O ofz’ )dz' p (k.3.11)
o8 (02(0)-c2(z )cos O 1/2

(o)

which is seen from Eq. (4.3.10) to be the same as E;(Q,O) , as it should

be. TFinally, we have Dg given by

c(DO) - <(0) . (4.3.12)
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We now concentrate attention upon the form of the Green's function
for the special type of velocity profile assumed in this section. First,
expressions for the amplitude and the phase of the Green's function will
‘be derived; then the results of this section will be applied to the spe-
cial case of the linear velocity profile. Finally the effect of small
variations of the argument of the Green's function will be examined.

Before proceediné with this program, we again consider the extension
of the function k2, now a function of 2z alone, into the region =z ¢ Z (x).
It has already been proposed that we extend k2 by allowing it to increase
smoothly to some finite positive value. It is assumed that the extension
varies slowly enough so that the conditions of Sec. 4.2 for the application
of geometrical optics are met. It can be seen from Eq. (4.3.5) that such
a gpecification of k2 has as a consequence the following fact: 1if a ray
originates in physical space and is so directed that it penetrates non-
physical space, it will be refracted away from §' and move toward
z = - 00 . Thus in the case where one may apply geometrical optics it is
possible to extend k2 in such a way that its value in non-physical space
has little effect upon the value of the Green's function in physical space.

We now consider the Green's function. From Eq. (4.2.22) we have:

®

W(1,0) = G(b,p) exp \1(§( kds - %) . (4.3.13)

0)

It is seen that,

dx = cot 9,dz s (L.3.14)
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from which it follows that,

() (%
k(z')ds = 2*“;')9'9&2'2 75 | - (4.3.15)
©) (co-c (z')cos Oo)

, (O)

Thus the phase of the Green's function is given by,

(&)

kcodz '

g(b,0) = (4.3.16)

ISE

“écg—cgcosego)l/2

The angle ©n 1is the angle between the ray and the horizontal at the point
(0); also cqy 1is the velocity of propagation at (O). TIf the denominator
of the integrand in Eq. (4.3.16) venishes within the interval of integration,
one must exercise some care. In such a case the integral is broken into two-
parts exactly as was done for the function ff; (see Eq. (4.3.10)).

Now we consider the amplitude function, G . We shall refer to

Fig. 6; it is assumed in that figure that the source is located at z = O.

T e 7
48

Z

| N 4

| % i

Fig. 6. Diagram for the determination of the amplitude of the
Green's function.
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In order to find the function G , we make use of the conservation
—
relation for J . We first see from Egs. (4.2.13) and (4.2.23) that the

energy per second per angle radiated by the source is given by:

2
x (4.3.17)

eg=

—
Then using the definition of J given in Eq. (4.2.13) (dropping the sub-

script) and referring to Fig. 6 it is seen that,

2 2
k(b)a(b,0) = =

|

(4.3.18)

B2

If the source is located at the surface, as shown in Fig. 6, this can be

further simplified by the use of the relation,

a yL(0, 2 "
3d = |sine, a—a(_a’—l] ’ ’ (k.3.19)
z
oL | -
where the symbol 20 indicates the partial derivative of T with re-

-z
spect to © with 2z held constant. If (b) 1lies on a trapped ray, one

of the functions L, 1s used in place of T ; the choice as before is
determined by where the point (b) is located on the ray. Substituting
Eq. (4.3.19) in Eq. (4.3.18), we see,
5 -1/2
it L(O,z
G(b,0) =|5 k(b) sino, —a%’—l] : (4.3.20)

If the source does not lie at z = O , one must suitably modify the func-
tion L used.
A case of great practical interest is that for which the velocity is

linear function of =z within the duct. We now apply the results of this
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section to this special problem.* Let the source lie on the surface at
the point (0) with coordinates (xp,0); let the field point be (R) with
coordinates (XR,Z). The angles © and 6, are shown in Fig. 6. The
results are applicable for z £ D. It is further supposed that (R) does
not lie within a shadow.

We now let
c(z) = c(0)(1 + az), a0, z&£ D . (k.3.21)

Using the constant of the motion (cf. Eq. (4.3.5)) we have

c0s0 _ c(0) : (4.3.22)

From Eq. (4.3.11) it follows that,

L(Q)=.§ tan © . (4.3.2%)
It is easily seen that,
— - 1
L(0,2) = T,(0,2) = 3 [L(e)-L(e,)] . (k.5.24)
- n

Further let R2 represent the radius of curvature of a ray, Then by ob-

serving that

R =48 (4,3.25)

where ds 1s defined as a differential element of length along the ray,

and by using the relation,

dz
ds = sin OZ ’ (4.5.26)
* The special case of the linear velocity profile is considered in detail

in "Physics of Sound in the Sea", [33], secs. 3.3.1 and 3.4 2.
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together with Eg (4.3.22), one finds

1

Re = G oos 6 (h.3:27)
By using Eq. (4.3.20) it can be shown that,*
1/2
2 1 cos®
G = [; k(R) x:a’-xo] : (k.3.28)

J(R,0) = 2 208 8 . (4.3.29)
n

Because of the extreme smallness of & in most physical applications,
it frequently happens that the angles © and Og are small for trapped
rays. Tor instance in the numerical example to be considered in Chapter V
we shall find @ = 3.73 x 10-6 per foot, and consequenﬁly P-= 3.12° for
D = 40O feet. As a result the approximations for small angles to the equa-

tdonsjustedbtathed will be of interest. These approximations are:

o, = (oe-eaz)'/l, (4.3.30)
| 2
o) -20 (k.3.51)
3: 1 2
(02 =T.(02) =2 (0 - TPz ) , (332

T = g((o + JGQ-Qaz ), (4.3.33)

1
Ry=2 (4.3.34)

3
+
—

O

]

!

* This problem is considered. in "Physics of Sound in the Sea"; [33],
secs. 3.4.1 and 3.4.2.
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2 1 1 1/2 N
G(R,0) = [?:‘ 5 lXR‘Xol] ) (%.3.35)
J(R,0) = ETXEI?J (4.5.36)

Let Ry be defined as the radius of curvature of the wave front.
Then by utilizing Eq. (4.3.34) and considering the angular change of the
normal to a ray upon allowing an increment dO© in the initial angle of

the ray, one finds,
Ry = |xp-%,| - (4.5.57)

We consider now expansions of the functions g(1,0) and G(1,0)
about the point (1). Let ir represent a small variation in the position
of the field point (1). Then since, by hypothesis, both g and G
possess continuous first and second order derivatives, we know that for

Ar small enough,

g(rer,rO)gg(F‘i,ro) + Ar-Vlg(rl,?'é) + 5(areVy) 8(1‘1;?(‘)) , (4.3.38)
and
G(FY+ET,T) &8 G(FY,Fp) + rViG(FL, ) (4.5.39)

ro and ?1 are the position vectors of the source and of the field point,
respectively, of the Green's function; Y7l represents the gredient with

respect to the coordinates of the field point, and the symbol A means

"equals approximately". We have let

g(1,0) = g(F,,%,

~—r
\»

(k.3.40)

and similarly for G .
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It will be convenient to write Eq. (4.3.38) in a different form.

Referring to Egs. (4.2.4) and (4.2.9) we see that
Vlg(l,o) = ka‘;l ’ (4.3.41)

where E; is a unit vector with the direction of the ray from the point

(0) to the point (1) at (1) , (cf. Fig. 7). Now we must calculate
second derivatives of g . To do this we observe that the operator

Y 2
(AT -Vl) is invariant with respect to rotation.

(Q-:( )-Qr,)

© Ray Fath

Fig. 7. Diagram used in estimating the effect of E? on the func-
tions G and g .
For convenience we choose a special coordinate system, (see Fig. 7).
—

Let bn be a unit vector perpendicular to E; (therefore tangent to the

surface of constant phase) and positive in the direction of +z . Using
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—

Eq. (4.3.41), the fact that Ar is constant, and the known vector identity,
- Py - N - -3
V(E-E\) = (8.7)b + (B'V)a + ax(Vxb) + dX(VXE) , (4.3.42)
we obtain the following relation:

(37 V))%a(F),F) = bre(TzeV i), . (4.3.43)

We define, as before, R; and R, as the radius of curvature of the sur-
face of constant phase and the radius of curvature of the ray at the point

(1) . It is supposed that if (a;,b;) are the coordinates of the center

of curvature of the surface of constant phase, and if (az,be) are the
coordinates of the center of curvature of the ray in the (E;,i;) coordinate
system, that a1{ 0 and bg( 0. If a;) 0 , then the sign of Ry in

Eg. (4.3.4L) below must be reversed, and similarly for by and Ry .

Using these definitions, Eq. (4.3.43) becomes,

= 2

k k k
(V)% = (0r,)2 3E + arar, [BE - EE] ()P R (b3

where Ar, and Ar, represent the components of I* on the 8, and

by &axes respectively. It will be convenient to transform the expressions
back to the (x,z) coordinate system. We first define O) as the angle
which the ray makes with the positive x-axis upon arrival (see Fig. 7).
Algo let Ar, and Ar, be the components of the displacement in the (x,z)
coordinate system. Then using Eq. (4.3.44k) and remembering that k is a

function.of z alone, we have for Eg. (4.3.43),
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+

—_ 2 ) 2 9k .
(Ar"7l) g = - (ArxcosGio ArZ gin Qio) EE'SIHQiO

2 k

+ (Arysinq, Ar, cos o) R

1

1 ! snd o 1
+ (Arxcosglo + Arz gin Qlo)(ArxsunOlD ArzcosOlo)

-

ﬁ,a_]:.{_ “_15._..
|25 cos o + Rg] . (4.3.45)

Using Eqs. (4.3.41) and (4.3.45) we have for Eq. (4.3.38)

g(T1+5T,Th) N g(F,T)
(4.3.46)

1 2
- (Arycose]y + Ar,sine{,)k(0) + 3 (Ar"]l) g .

e ——
We now consider the effect on g(rl,ro) of varying the argument rj.

Probably the easiest approach here is to make use of the known reciprocity

theorem (see Section 3.1) which in this connection leads to the relation,

q)(?i:;a) = q)(?B)FE) . (“'3‘47)

(It should be remarked that the reciprocity theorem can be applied to in-

homogeneous media.) From Eq. (4.3.47) it follows that,
— — — — )
g(ry,rg + Ar) = g(rgy + Ar,ry) , (4.3.48)
so that we can apply the result given in Eq. (4.3.46). We can use the reci-

procity theorem in the same way in treating the quantity G(?;fb + Z?)

(cf. By. (4.3.39)).
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—
In the next section an expansion of ap about the point (1) will
—
also be useful. In order to bring out the dependence of ap upon its argu-

—
ments we write it as an(Fi,fB). Then proceeding as before we have

— ) - T O G Y -3 el o Q-
a,(T] + Ar,Ty) = a,(Ty,Ty) + (Ar-V,)a,(T7,7)) (4%.3.49)
or referring to Fig. 7,
Ar Ar
an(rl + Ar,ro)nvah(rl,ro) + b E_RJ_ RE?' (k.3.50)

Finally transforming to (x,z) coordinates as in the treatment of

-_—
r

—
g(rl + Ar, O) we see

—_— ) ) Y J N N {
a, (T1+Arqrg) =~ a,(T1,7g)
(k.3.51)
N (Arycos@iy + Ar,sin0{n)  (Argsine{y - Ar,cosé{g)
- bn + R R -
1 2

In the remainder of this chapter the following approximations will be
used for the amplitude and phase of the Green's function and for the unit

vector in the direction of a ray:

6(Fy + Ir,Tp) & G(Ty,7p) (4.3.52)

—-—

— — . - .
g(ry + Ar,rg) a2 g(ry,Tg) - (Argcos@ig + Ar,sino{y)k(0), (4.3.53)

_— ) )

2, (T + br,To) % ay(T1,Tg) - (4.3.54)
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If these approximations are to be valid we must have (cf. Egqs. (4.3.39),

(L.3.46), and (L4.3.51)),

areV.G(F,T0)
e Al PO (4.3.55)
G(I’l,ro)
@ V)@, D)« 1, (4.5.56)

10° z 10 5
+ << 1.
Ry Rp

(4.3.57)

—
It is seen that so long as Ar is small enough so that the restric-

1 1 1 1 1 1
N g (Arxcosglo + Ar231nolo) (ArX31nG Ar cose! )
n

tions (4.3.55), (4.3.56), and (4.3.57)are satisfied the approximations
given by Fgs. (4.3.52), (4.3.53), and (4.3.54) amount to supposing that
changes in the Green's function may be represented as though it were a
plane wave for small changes in distance. It is desirable to put the re-
strictions (4.3.55), (4.3.56), and (4.3.57) in a more manageable form. To
do this it is supposed that the phase velocity near the surface may be re-
presented by a linear function (cf. Eg. (4.3.21))_and that the angle‘ °1p
is small. Then letting Ary =:I‘ and Ar, = h , and using the results
for the small angle, linear velocity approximations given in Egs. (4.3.30)
to (4.%.37), it is found that the restrictions (4.3.55) through (4.3.57)
may be written respectively,

L+ n
R «K 1, (4.3.58)
(2 9]'_0+h)2k

(I +n0y) ko], +
| %1 -%0]

" (E.+hgio)(igio+h)2ak<< 1,(4.3.59)
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I + hoqg -
x|+ @oprhlak L . (4.3.60)

For present purposes the relations ZQ]'_O% h and Zk > 1 will hold.
For instance :Q: in the next section will be defined as the distance of
separation beyond which two points on the reflecting surface are statis-
tically independent and h will be taken as the rms displacement of the
surface. Then using values for the parameters appropriate to the numerical
example to be presented in Chapter V: I% 25 yards, k a9k yards~l s
©{p ™ 5(1“), and h~21 yard it is seen that the relations ZO]'_O% h and

Lk» 1 follow. Using these relations, the restrictions (4.3.58),

(4.3.59), and (4.3.60) can be replaced by the equivalent restrictions,

L
Ty K1 (4.3.61)
2 1
Iakolo« 1, (4.3.62)
2
(do: )k
—l—fl;i—'@« 1, (4.5.63)

If the point (0) 1lies on the surface, one can alter the restriction

(L.3.63) through the use of Eq. (4.3.31) to obtain,

Igagl k
Xi'xo' « 1 . (h.5.64)

To review, in this section we first restricted the function k , al-
lowing it to be a function of 2z alone. Then Egs. (4.3.3) and (4.3.4)

were derived which could be used to trace the trajectories of rays in a
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stratified medium. Following this, the function k was further restricted
80 as to produce a surface-bounded duct. For this structure (and further,
assuming a linear velocity variation) various functions to be used later
were derived (see Egqs. (4.3.30) to (4.3.37)). Finally after obtaining
expressions for the amplitude and phase of the Green's function, the effect

of small variations of an argument of the function was considered.

L.4. Justification for the Duct Propagation Model; Treatment of Terms with

Incoherent Phase

We are now prepared to derive the basgic equations for the statistical
model presented in Chapter IT. The statistics of the surface & (x) will
-be discussed first; it will be seen that the equations presented heuris-
tically in Chapter II govern the average intensities. Then the central
restriction upon. the bounding surfaqe will be introduced; it consists of
supposing that the amount of energy reflected specularly from the surface
is negligible compared with that which is reflected diffusely. It can be
geen from the work on the reflection problem presented in Section 3.3 that
for sufficiently small incident angles, the reflected radiation is specular;
then the restriction on the surface amounts to supposing that it is rough
enough so that for most trapped angles, the reflection is not specular.

The development is begun by considering the Helmholtz formula (Eq.

(4.1.10)). Using this equation the intensity of the field at the point

(R) is comstructed and its average taken. It will be seen that two kinds
of terms are obtained in this way. The first of these are those terms
which upon averaging will be seen to vanish because of incoherent phase
(these will be called the cross-terms). There will also be two terms which

have coherent phase and thus will not vanish when the average is taken.
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These terms will give rise to the equations obtained heuristically in
Chapter II. The cross-terms will be treated in this section, the treatment
of the coherent terms being reserved for Section 4.5.

In the development it will be supposed that the index of refraction
of the medium varies sufficiently slowly so that geometrical optics may be
used to approximate the required Green's function. The function k =w/c(z)
ig assumed to depend ubon z in the manner postulated in Section 4.3 so
that a surface-bounded duct is set up.

In what follows in this section we shall state the needed restrictions
in terms of the small-angle, linear-velocity structure (cf. Eq. (4.3.21)).
The restrictions will be illustrated by using the numerical example to be
presented in Chapter V. In this example the propagation of high frequency
(25kec) sound in an isothermal layer of the ocean will be considered with
the ocean surface forming the boundary. In the ocean c«21670 yards per
second, then k 294 yards‘l; in an isothermal layer, the gradient para-
meter o 1is given by 1/& A2 89,000 yards. The depth of the isothermal
layer is assumed to be 40O feet; then from Eq. (4.3.3%0) one finds fb = 3.12°,
Tt follows from Eq. (4.3.31) that L(rb) = 9760 yards. TFurther it will
be supposed that ][ = 25 yards (where j[ has already been defined as that
separation beyond which the statistical properties of two surface regions
become independent. )

We restate the problem. It is desired to find a function @(x,z)

which satisfies Eq. (4.1.4), which vanishes on the boundary z = Z (x),

which has a singularity of the following type at the point (O):

3(R)—> Hél)(krRO) , as Tp> 0, (L.h.1)
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and which reduces to out-going waves at infinity. We begin the development

with Eq. (4.1.10):

IE®) - WER0) - i %?él—llwm,l)ds

4

where P (R,0) is the Green's function for the infinite inhomogeneous

1 (4.1.10)

medium. As suggested above we suppose that the medium satisfies the condi-
tions of Section 4.2 (for geometrical optics) so that we can use the ap-
proximation developed in Section 4.3 to represent the function.

We pause now to discuss the statistics of the surface and to define
the averages to be employed. In some problems occuring physicglly the
bounding surface, & (x), remains fixed over times long compared with
those in which the experiments are made; an example would be the propaga-
tion of radiation over the surface of the earth. In other problems, such
as the propagation of radiation over (or under) the sea surface, the surface
is continually changing during the time in which the experiments are car-
ried out.

One of the quantities easily obtalnable from the measurements in the
latter case would be the (time) average intensity observed at some fixed
point. (We shall be concerned only with such averages in this work. Fluc-
tuations about the average will not be considered.) It will further be
supposed that the time varying surface is statistically homogeneous; that
is, we suppose that the statistical properties of the surface are neither
dependent upon the spatial position nor upon the time at which they are
taken.

In the case where the bounding surface is fixed in time, one could ex-
pect the observed intensities to suffer spatial variations which would. be
connected with individual proJjections on the surface Z{xﬁ. Although such

effects are of interest, it is clear that in order to take them into account,
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a detailed knowledge of the reflecting surface is required. In order to
avoid such a specialized treatment, we shall institute a space average of
the intensity. Again we do not consider fluctuations about such an average.
The average is to be found as follows: we suppose that the source and re-
ceiver are located at fixed positions and the intensity measured. It is
then supposed that the entire eXperim.ent is transported parallel to the
x-axis and the intensity again measured. This process is repeated again and
again over the whole surface and the average intensity recorded. Of course
in most physical applications, such an ambitious program need not be car-
ried out. If the surface considered has the not uncommon property that its
statistical properties in the region of physical interest can be inferred
from a section of the surface of moderate size, one can obtain substantially
the correct result by» averaging over a region the size of the representative
element.

Now congider the distribution function, Yn( Z s z_;“l; Z 02 g'g; cee
2,02 'Xl-Xgl 5 le'XBl R E e ). The function Y is de-
fined by: Yn(Zl’ 15809805380 B' 5 (xl-xe{,. PR )
dgld ;'l.. .d;‘nd; 'n is the probability that the fdllowing conditions

occur: the displacement and the slope of the surface at x, 1lie respective-

1
ly in the ranges (;l’zl + dgl) and (Z ' Tt d;“l); similarly the

displacement and the slope at x, lie in the ranges (;‘2, ;’2 + dgg) and

2
(§ '2, ;'2 + dg'e); and so on through T n and cin . It is noted that
the distribution function depends at most upon the distances between the

various points involved in its definition; this is a direct consequence of

the assumption of statistical homogeneity. We can now define the average

of a function F of Z1,Z'15 5,58 "5 -++38 pC 'y WY

F(L 15T 5+ 3Z T ') = geg Y F4Z,d& " ...dZ 4Z" , (k.b.2)
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where the integrals are carried over all values of & n and &) . The
brackets, < > , will be used to indicate averages. It will be assumed
that this averaging process can be legitimately interchanged with any inte-
gration. We also remark that when convenient the function Y, will be
represented by Y,(1,2,...,n).

In this work we confine our attention to surfaces with a special,
though not unusual, statistical property. It is supposed that the surface
is such that the statistical properties at two points are independent if
the two points are separated by a sufficient distance. To state the pro-
perty mathematically we consider again the distribution function, Yy . It

is supposed that for,

‘Xl—Xi‘>,Z- , 1=2,3,...,n, (4.4.3)

we have

Y (l,2,...,n)%Yl(l)Yn_l(E,B,...,n) s (4.4 k)

and similarly for (1) replaced by any other point. It is interesting
to note that a periodic surface, or set of surfaces, does not have this
property, hence the restriction represented by the relations (L4.L.3) and
(4.4 .4) rules periodic surfaces out of consideration in what follows.

It is in order to discuss briefly the value of jz appropriate to
the sea surface, since this is the bounding surface in the numerical example
to be considered in Chapter V. Unfortunately there has been relatively
little work done on the determination of the spatial statistics of the
gea surface. In any discussion of the properties of the ocean surface it
is necessary to distinguish between what is known as "sea" and. "swell".
In the former case the surface is quite irregular [ 35), so that it seems

—-—

reasonable to choose for 1» the width of a representative protuberance;
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we choose 25 yards for this case. In the case of swell the surface may
take on an almost periodic structure, in which case one must know at what
distance the order breaks down. TFor simplicity we restrict ourselves here
to the former case.
We return to a consideration of Eq. (4.1.10), proceeding in exactly
the same way as in the development of the Kirchhoff approximation in Sec-

tion 3.4. We first take (4.1.10); then allow (R)=>(2)

o)

= of Hg.

o > .2

. } 3 ___.-*_ .
(where (2) lies on the surface) and at the same time ZMAR v,

then, since W(R,2) and Hél)( RQ) have the same singularity for
TPE__)O (cf. Eq. (4.2.18)), we find,
Qgﬁél —%\—2;-91 -(2) (b.4.5)
V)E 2 a\?Q
where

0P, (2) 1| dY¥(2,1) ag(1) |
bvg = - )_Ti a\)e avl dsl . ()-l-.,)-l-o6)
A

When Eq. (4.4.5) is substituted in Eq. (4.1.10) the following result is

obtained:
1 | E,0)  24.(1)
¢(R) = kP(RyO) - Li gq)(R)l) 2(: avl + oV 1 . (4.b,7)
4
08.(2)
The quantity >V 2 is seen from Eqs. (4.4.5) and (4.4.6) to represent the

contribution to the normal derivative of the field at the point (2), from
radiation previously reflected from the surface.

We now substitute Eq. (4.4.7) in the expression for the intensity of
the field (cf. Eg. (4.2.14)) and take the average of the result to obtain

for the average intengity:

) =Re 3oy + Oy Oyt Ol s (kD)
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where,

oo = WrR,0) VWR0) (4.4.9)

e x Y*((1),0) , 2¢#((1))
<>lO ‘<IE { g;u (R, (1) [ -av(l) bV( )]ds(l)} VRW(R)O)>

(4.4.10)

ot =<'%§VR{ S;LP(R,(l))e [B‘P(%.z)o) 3¢l‘é§)))] 501 )}LP*(R,o)> ,

(1)
(4.L.11)
0W*((1),0) , 3gE((1)) |
WY*(R [ ] ds
Oun - < g; b\?(l) Bv(l (1)
(4.L.12)
‘ Y ((2),0) | 28:(( 2)]
ngLP(R:(E)) [ -3\2(2) 3\?(2) ds< )> )
4

A slight change in notation has been made. The arguments of those quanti-
ties which depend upon the surface displacement (or slope) have been enclosed
in an extra set of brackets; those quantities whose arguments are-not so
enclosed depend upon points not on the surface. This has been done in
order to indicate clearly which functions will be involved in the averaging
process. As an example of the notation, W ((1),0) indicates that the
function Y depends upon & at the point (1) on the surface.

The first term in Eq. (4.4.8) is easily evaluated since from Egq.

(4.4.9) we see that the surface function & is not involved. The
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following result is obtained upon using Egs. (4.2.3) and (4.2.9),

2

1 -
Re <>oo = G°(R,0)k(R)a

RO (4.4.13)

In obtaining Eq. (4.4.13) it has been supposed that krR°§> 1; this re-
striction is equivalent to restriction c) made in Section 4.2 in connec-
tion with the applicability of geometrical optics. The quantity E\“Ro
was previously defined as E‘-n; it represents the unit vector at (R) in
the direction of the ray from (0) to (R). The Eq. (4.4.13) of course
represents just that radiation which arrives at (R) directly from the
gource at (0). Tt may be compared with Eq. (2.1.22) when the usual
"black" receiving cylinder is considered.

Before proceeding we establish some further definitions in connection

with Eg. (4.4.12). Let

{nt - i+ Ori+ ir + Orr (b.4.14)

where,

N, /1 o W*((1),0) dW((2),0)
it _<E g%{) '(R,(l))VRLP(R,(E)) a\)( N aV( - dsq)d (2)> ,

/1 . RBE((1)) OW((2),0)
e "<H ggq) R, (1)) P, (2)) V(1) V(e ds(JL)dS(z)>’
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) o 2P*((1),0) 36 ((2))
gcp @OV N 0= 0w
z (1) (@) |

(4.&.17)

AV, 2V ds(l)ds(2)>

er =<%g gq)*(R,<1>>VRLP<'R,<2>>°¢*(“” 2fz((2))
23 W Y

(4.4.18)

For Eq. (4.4.8), the term involving <->OO has already been evaluated.
This leaves the six terms defined in Eqs. (4.4.10) and (4.4.11) and Egs.
(4.4.15) through (4.4.18). Of these six, four will vanish due to phase
incoherence; the two terms <>ii and <>rr will remain. The former will
be seen to represent the contribution of the singly-reflected radiation
while the latter represents the contribution of multiply-reflected radia-
tion. It will be shown in this section that the cross-terms vanish; this
will be done for a representative term of the group (the one given in Eq.
(4.4.10)) the proof for the other cross-terms being analogous. The two
non-vanishing terms, <>ii and <>rr , will be treated in Section 4.5.
W

It is first convenient to write down expressions for Y and S‘F

utilizing the results of Section 4.3. Wé begin with the function

W ((2),(1)),

W((2),(1)) = a((2),(1))e BB 1) (b .4.19)

We then wish to utilize the plane wave approximations for G and g for

small changes in their arguments given respectively in Egs. (4.3.52) and
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(4.3.53). The conditions for the applicability of these approximations
have been given in the relations (4.3.61), (4.3.62), and (4.3.63). Using
the values of the parameters (given at the beginning of this section)
which are appropriate to the numerical example of Chapter V and assuming
Ot e T it is found that (4.3.61) becomes lxl-x2|)> 25 yards; the
left side of (4.3.62) becomes 0.036 which satisfies that relation; and
(4.3.63) is |x1-%5)» 175 yards. If, as indicated in Eq. (4.4.19),
both (1) and (2) are surface points, then the last relation can be
replaced by (4.3%.64) which leads to the restriction ‘xl-x2\46<'540,000
yards. This Jast condition is seen to be fulfilled for all surface points
since L(}L) = 9760 yards, and no ray connecting two points lying on the
surface travels farther than this distance.

Accepting these restrictions on the horizontal separation of the two
points (1) and (2) and using Egs. (4.3.52) and (4.3.53), Eq. (4.4.19)

can be written

Y ((2),(2)) = (2, 1)exp 1[ g(2,1)-k(0)stndly (T (2)+Z(1)] .(b.k.20)

In obtaining Eq. (4.4.20) it has been assumed that Ar, = O and Ar, =T .

Furthermore, since both of the points (1) and (2) are assumed to lie
on the surface, one needs a correction to the function g Dboth at the
gsource and the field point. This correction is found through the use of
the reciprocity theorem as indicated in Section L4.3.

Dropping the extra brackets around the symbols (1) and (2) in
Eq. (4.4.20) indicates that the functions in which they appear are to be

evaluated for € (1) = § (2) = 0. The angle 9'21 is defined in Fig. 8.
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Fig. 8. Diagram used in the development of approximate expres-
sions for ¢ and ¥ at the surface.
-\

We now consider %% ; it is useful to treat the quantity % ds.
Since %V represents the derivative along the outward-directed normal,

we have,

o¥((2),(1)) Cde T . 18((2), (1))
IV @) T @) [(7es((@), 1)) e

v 1(6((2), (1) V ps( (2), (1)) o'ECB1 )]

]

(k.4.21)

—
where &y 18 a unit vector normal to &(x) (cf. Fig. 8). Now if

—-—V—G— ¢ 1 we can neglect the first term in the brackets [ ] on
(Vg)G ’ ’

the right side of Eq. (4.4.21). Since |Vg|~ k (cf. Eqs. (L.2.4) and
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(4.2.9)), it is seen that this condition is identical with the requirement
that the per unit change of the function G be negligible over a distance
of one radiation wavelength (already required for the applicability of

geometrical optics). Then using this restriction and Eq. (4.2.9), we have,

9Y((2),(1))
0Vy

ENUR-y i {GGERL)
450) = By(z)* Bn(o) (1) E((2))6((2),(1))e 0 p)

(b.4.22)

—
where an(e)(l) is again a unit vector in the direction of the ray from
(1) to (2) (cf. Fig. 8). Now using the approximations already made in
connection with the development for ¥ , Eg. (4.3.54) for the quantity
—

an(p)(1), and the definitions of the quantities shown in Fig. 8, Eq.

(4.4.22) can be written,

aq)(ée\))gzil)) 48y = ik(O)G(Q,l)expii[g(Q,l)—k(O)sinG'El (;(2)+;(1))]}
of(g'(e);2,1)dx2 R (4.4 .23)
where,
£(z'(2);2,1) = - gf(e)cosgél + 8in0l, . (k.4 24)

Once again, dropping the extra set of parentheses around the argument of a
function indicates that the function is to be evaluated at the projection

on the x-axis of the point involved.

In the treatment of both W and %%; it has been assumed that both

arguments of each were surface points. If either one of the arguments of

either one of the functions does not lie on the surface, the quantity &
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connected with that argument is to be set equal to zero in Egs. (4.4.20)
and (4.4.23).

We proceed now with the evaluation of Eq. (4.4.10) by defining,

o = Ot + ror (4.4.25)

where

L ~¥*((1),0
{101 =<Eg W*(R,(1))2 a(\;m) ) as (1)) V¥ (®,0) (4.4.26)
4

and
/1 * D 1))
<>lO:I:‘ _<E—1—gq) (R,(l))e_@fé\_&%ﬁ ds(l)> VR“P(R’O) s (4.4.27)
4

the quantity ‘73‘#&3,0) having been moved outside the brackets,( ) s
since it does not depend on § . Using Egs. (4.4.20) and (4.4.23), E

(b.4.26) can be written

<>101 ='%[VR (-P(R,o)] g G(R,1)G(1,0)k(0)e -1[g(R,1)+g(1,0)] {R10) ax,,

: (b.4.28)

where

{R10) =<eik(o)s(mo):(l)f(-gf(l);l,o)> , (4.4.29)

and

S(R10)

sin0g; + sind{y . (4.4.30)

We shall also let

C(R10) = cose,, + cos. 0,

- 15 - (4.4.31)

We now establish conditions under which the quantity <IH£O may be ne-

glected.
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First if & is continuous and bounded and if, as has been assumed,

{Z) = 0, then it is not difficult to show that,*

{z'6(z))=0 . (4.4.32)

Then it follows that Eg. (4.4.29) can be written (cf. Eq. (L.L.24)),

(R10) = sin0. <lk(o S(R10)Z > : (k.k.33)

The quantity < -1k(0)S(R10) Z> is termed the characteristic function as-

sociated with the (displacement) distribution function,
wz) = (nz.z0ag (1.0030)

The symbol @Q 1is frequently used to denote the characteristic function;

thus,

{R10) = 51n0J ; Q(-k(0)S(R10)) . (4.4.35)

The quantity @ 1s closely connected with the coherently reflected radia-
tion [56] . This can be seen by observing that if we adopt the Kirchhoff
approximation, the integral in Eq. (4.4.28) represents, except for a con-
stant, the average reflected amplitude observed at (R) as & result of a
source placed at (0) (cf. Eq. (4.4.26)).

In order to estimate the size of <Rlo> we must make some assump-

tion concerning the distribution function W. TFollowing Eckart we choose

* To see this we consider the time-fixed surface (the proof for the time-
varying surface is analogous). It is supposed that a pair of lines separated
by a distance A% 1is drawn parallel to the x-axis. Since it is assumed
that <Z(x)> = 0 and that & (x) is continuous and bounded, it is clear
that the average slope of the segments of surface contained between the

pair of lines vanishes. This is true regardless of the position or the
gseparation of the lines so that Eq. (4.4.%2) is seen to follow .
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a Gaussian distribution,

2
w(Z) = [(21()1/21'1] -1 exp( - ;—2 ) (b.4.26)

where h 1is the rms value of E:. Then

Q(-k(0)S(R10)) = exp [ - %kg(O)SQ(RlO)hE:) . (4.4.37)
For,
k(0)S(R10)h 2 3 (4.4.38)
we have,

Q<& 0.012.

The corresponding quantity in the expressions for the non-vanishing terms
(<>ii and <>}r) is of order unity, as will be seen in the next section.
Hence we éhall assume that if the condition (4.4.38) is fulfilled, <BlO>
may be neglected, and therefore also <~>lOi

If the values of the parameters given at the beginning of this section
are used, one finds that the left side of the relation (4.4.38) is equal
to 10.2 (where it is assumed that 8in@{y and sindp; are of the same
order as rL ). Thus it is seen that the reflected radiation in the numeri-
cal example is primarily of incoherent phase (and hence diffuse).

Tt is worth remarking in connection with (4.4.38) that even if this
relation is not fulfilled in a given problem, the reflected radiation can-
not always be considered specular. ZFrom the work of Section 3.3 on the

perturbation method, it can be seen that the condition

k(0) sinel  hdK1 (4.4.39)
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must be fulfilled before the reflected radiation becomes specular.
We now turn to the quantity defined in Eq. (L4.4.27). Using Eq.
(4.4.6) we can write,

/1 %/ 1 L 3WY*((1),(2)) ao*((2
Chor -<HS‘V ®,(1))2 {HS ¥ ((a)v((il ¢'a(\(2(;; ds(e)? ds(1))
S

Z
.V'R LP(R:O) . ()-I-)-l-ll-O)
The quantity,
1| gWx((1),(2)) oF*((2))
ezlkig 3V(1) ’DV(Q) C1S(2)§ ’ (b bd)

represents the complex conjugate of the normal derivative of that part of
the field function at the point (1) which arises from radiation reflected
from all surface points (2). Now it is evident upon examining the quantity
(4.4.41), that there is a region ((1) near to (2)) of the integrand for

which x is too small to fulfill the condition (4.3.61) required for

17%2
the validity of the plane wave approximation to the Green's function.
(Since both (1) and (2) are assumed to lie on the surface, the other
restriction involving the separation of the two points, (L4.3.63), can be
replaced by the weaker (L.3.64).) However under certain conditions the
contribution to the total integral from this region of the integrand may
be neglected.

We now put this statement in mathematical terms, afterward deriving

the conditions under which it is valid. Under certain conditions, to be

given below,

(b.L.k42)

S W((1),(2)) 2(2)) 4, | ¢ gawu (2)) 38((2))
. 2 d
f1-xJ¢ 2V W ) le-Xelﬂgzvm o) @
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where J@ is defined by

Ing (L.4.43)

(this definition of course embraces the weaker, 25 j[ ). Whenever condi-
tions are such that the relation (4.4.4L2) is valid, one may use the plane
wave approximation for the Green's function in the important region of
the integral given in (4.4.41); moreover in such a case for the same region
of the integral the two points (1) and (2) are far enough separated
so that the surface properties are statistically independent (cf. the
relations (4.4.3) and (k.k.4)).

Conditions will now be derived under which the relation (4.4.L2)
holds. The relation is seen to be equivalent to supposing that the amount

of reflected radiation received by a region of the surface from nearby re-

gions is negligible compared with the radiation received from more distant

L 4[]

regions.

Fig. 9. Diagrem showing the reflection of energy from one point to
a neighboring point on the surface.
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We refer to Fig. 9. It is supposed that radiation is reflected from
the surface point (1) to the surface point (2) and then re-reflected
to the point (3). It is desired to compare this radiation with the radia-
tion arriving at (3) directly from (1). So long as (2) and (3) lie
close enough to one another so that the refracting properties of the medium
may be neglected, the results of Section 3.4 (the Kirchhoff approximation)
are directly applicable provided that the conditions 1) and ii) of
that section are fulfilled. It is remembered that in the Kirchhoff ap-
proximation the first term neglected was made small (in part) because the
assumption of small surface slope implied that angles corresponding to the
angle © of Fig. 9 were small. Then it seems appropriate to use the angle
© as the criterion for determining when the refracting properties of the
medium are unimportant in the present connection. Assuming a linear-velo-

city structure and that all angles are small, one finds from Eq. (4.3.32),

0=3% +%2 . (4.4 .00 )
{
Hence for
1/2
5<(§£) / (.h.15)

it is seen that the refracting pfoperties of the medium play a minor role
in determining the angle ©; the specific displacement =z, has been re-
placed by the rms displacement h . Tt is assumed then that when (4.4.45)
is fulfilled, the discussion of the error term (the integral in Eg.
(3.4.14)) given in Section 3.4 may be applied here.

We now refer to Eq. (3.4.14); in this equation it is supposed that
the point (1) 1is replaced by (2) and the point (2) 1is replaced Dby
(3) . Then the left side of the equation represents the normal derivative

of the total field at (3). The first term on the right side represents
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the normal derivative of the field coming directly from (1) to (3).
The second term can be interpreted then as the normal derivative of that
part of the radiation field which haé been reflected from the surface in

travelling from (1) to (3). It was shown in Section 3.4 that it is
agM
dx
when these two are small. Hence we shall suppose here that relation
: M
ax | 1 where Ry

reasonable to assume that this second term is of order —l— or

1
(b.h.k2) 1s fulfilled for £<§  if K1 and
ig the minimum radius of curvature of the surface.
To sum up the argument, it is found that the restriction (L4.4.42)

applies if
( )1/2»][ (4.1 46)

M

dx

and if —i— and

KRy

of refraction in the medium upon the argument presented in Section 3.4 for

are small, By examining more closely the effect

the neglect of the multiply-reflected radiation terms, one can considerably
increase the value of J@ which can be used in the relation (4.4.42).
However the present discussion will serve here. It is of interest to sub-
stitute the values of the parameters given at the beginning of this section
in the expression (4.4.46). The left side becomes 422 yards and the right
side 18 25 yards and hence the relation is fulfilled.

We return now to the treatment of Eq. (4.4.40); we had set out to
show the restrictions under which the quantity defined there is negligible.
Utilizing the relation (L4.4.42) with the definition of 4 given in

(4.4 .43) and the definition of y) given in Egs. (4.4.3) and (4.4.L4), we

find that Eq. (4.4.40) can be written:

2 N QW ((1), (2
<>lOr = {)-I-l Q< BV@ 8(2)>[< ey SLP (R, (1)) (B(\P)W( )) dS<l)>}z
4
'VrW®,0) , (%.1.47)
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where we have assumed that we may interchange the integrations over (1)
and (2). In connection with Eq. (4.4.26) it has already been shown that
under the conditions imposed in this section,

2_ * Y *((1),0) ~
<1+i WP*(R,(1)) avm ds(l)>l~ o . (4.4 .48)

By allowing (0)=— (2)7 here it is seen that the quantity in the brackets,
(] , in the integrand of Eq. (4.4.47) is the same as the left side of
Bq. (4.4.48), and hence the quantity < >lOr may be assumed to be negligible.

This completes our consideration of the quantity < ) 10 ? defined in
Eq. (4.4.25) as the sum of two terms which have now been shown to be negli-
gible. As stated at the outset, the other cross-terms, <>Ol s <>ri’
and <>ir of Egs. (4.4.8) and (4.4.14) can be shown to vanish in a similar

way.

4.5, Completion of the Justification of the Statistical Model

In the consideration of Eq. (4.4.8) we are left now with the two
non-vanishing terms defined in Egs. (L4.4.15) and (4.4.18). These two terms
will lead to the equations presented in Chapter II.

We begin the consideration of the term < >ii by noting first that
for |xp-xp| Y Z in the integrand of Eq. (4.4.15) we may write for the

right side of that equation,

1 %[ 2¥*((1),0)
<—2- W *(R, (1)) > Vi ds<l)>

1 o) 2),0
.<EEZVR‘-P(R,(2)) Vi ds(2)>, (+.5.1)
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upon using the statistical property represented by Eq. (4.4.4). The first
factor on the right side of Eq. (4.5.1) has already been shown to be negli--
gible in connection with Eq. (4.4.26). It is also seen that the second
factor is Jjust the gradient of the conjugate of the first, and may also
be assumed to be negligible. Thus in Eq. (4.4.15) we need only consider
those parts of the integrand for which ]xl-—x2| <l .

The first step in the treatment of Eq. (4.4.15) is to make use of the
approximate expressions for Y and %g. given respectively in Egs.

(4.4.20) and (4.4.23). We have,

1Kk Z - T
Oy = ﬂ%?ﬁ};)_ 2R ngG(R,l)G(R,E)G(l,O)G(E,O)(aRoanRg)
4

soxp{ i[g(R,e>-g<R,l)+g<e,o>-g(l,oﬂ} {V11adxd%;p (4.5.2)
where

Oya = <exp{ik(O)[c(1)s<mo)-;<e>s<aeo>]§ £(Z'(1);1,0)(Z " (2);2,0))

(+.5.3)

—— N
and agp 1is a unit vector in the direction of VR .

In view of the fact that we need only consider those values of the
integrand of Eq. (4.5.2) for which |xl-x2| QI, we can make use of the
plane wave approximation for the Green's function, where it is assumed
that Ary = x3-x, and Ar, = O . Then from Egs. (4.3.52), (4.3.53), and
(4.3.54) (the conditions of applicability have already been discussed) it
is seen that Egs. (4.5.2) and (4.5.3) can be written

1k%(0)k(zR) — 2 2 -
Oy = — "% \d%C (R,2)G (2,0) (& FyRp)
X\—Xz=E g

. g <]xl-x2\> iia expE‘Lk(‘O)(Xl—xg)C,(REO)—J Xm} ;. (4.5.4)
=¥y= —f
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and

<|X1’X2| >iia = LE(T1(1)52,0)2(Z '(2)52,0)

exp 1 k(0)(Z (1)- T(2))S(Re0) ) . (4.5.5)

It is recognized in Eq. (4.5.5) that the average can depend on xi only
through [x1-%5| (this follows from the property of statistical homogeneity).
The limits of the integration over x; 1in Eq. (4.5.4) have been fixed by
the result that the integrand vanishes for le-x2|> Z:. We note that
{ i1 1is real from Ey. (4.5.5); this is seen by observing that the distri-
bution function is symmetric in the interchange of (1) and (2) as a
result of the assumption of statistical homogeneity. Then if we introduce
the quantity being averaged in Eq. (4.5.5) in the definition of the average
(cf. Eq. (4.4.2)) and interchange ;(l) and & (2) (and likewise Z'(1)
and T'(2)) it is seen that the imaginary part of Eq. (4.5.5) vanishes.
Likewise the quantity in the brackets {-2 in the integrand of Eq. (4.5.k4)
is real. To see this we let xj-x5 = z and then allow the change of inte-
gration variable, E—>" E

Now designating the contribution of < >ii to the average intensity

observed at (R) by <3);; (cf. Eg. (4.1.8)) we find from Eg. (k.5.k),

Gy = X(0)k(zg)ag -725gGQ(R,e)GQ(e,o)(aﬁ.a‘ﬁé)ﬁ(%g,oéo)dxg (4.5.6)
[4

where
3
'K(@Re,oeo) = gﬁﬂg (lEl}iiaexp [ik(o)g C(REO)] dg . (4.5.7)
T

Using Eq. (4.5.6), the differential contribution to <Z?>ii from (2)

-

anR2 and find for the intensity of the

-—
is considered; we choose ap =



radiation coming from (2) to (R):

adTY ,, = K(0)6%(2,0)k(zp)a, o, T G°(R,2)A(0p,,04,)dx (4.5.8)
“R’®1R2 2 R2? 20’ 2 o

Using Eq. (4.2.13) it is seen that k(O)GQ(Q,O) represents the magni-

tude of the intensity of the radiation at (2) coming from the source at
— T 2

(0). Similarly upon using Eq. (4.3.17) it is seen that k(zg)aps 3 G (R,2)
represents the intensity at (R) as a result of a source at (2) radiating
unit energy per second per angle. It follows then from Eq. (4.5.8) that
~N
A(QRQ,QéO)dXE represents the energy per second per angle reflected in the
direction O, as a result of radiation of unit intensity incident from

NS
the direction ©55 . Hence, the function A 1is the same as that defined

in Section 2.1. Furthermore we can see that

§ (0 p0x,)ax, = 7(30)K (0,04 )ax, (1.5.9)

where 28(Q,x)dx is the energy per second per angle reflected (once) from
the surface, coming from the element dx, ; this is the source function
defined in Section 2.1. Finally upon introducing the "black" cylinder of
radius a as the receiving element and using Eq. (4.2.13) we have for the

once reflected energy received per second (per length of cylinder):

F (k.5.10)

R1(

R,0) = 2a Z S J(]R,.Q)J(e,o)?\f(@,@')dx2

2
4
This result can be compared with Eq. (2.1.19). The integral is to be car-
ried over all portions of the surface which contribute singly-reflected
radiation to the point (R). The subscripts on the angles © and ©' have
been dropped, it being understood that they represent the angles made with

the horizontal by the reflected and the incident rays respectively.
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The function A is seen from Eq. (4.5.7) to be independent of the
velocity structure, depending only upon k(O). PFurthermore, it depends
upon the two points (0O) and (R) only through the incident and reflected
angles ©' and ©; 1in particular the function does not depend upon the
distances rgp, and rpg . It can be directly verified that T the
scattering fuﬁction obtained for the surface & 1in a homogeneous medium,
upon using the Kirchhoff approximation. Actually this verification is not
necessary since the homogeneous medium is contained as a special case of
the present treatment. The result can be compared with the corresponding
result obtained by Eckart for the three dimensional reflection problem [56].

We consider now the symmetry properties of Eq. (4.5.10). TUsing the
reciprocity theorem on the function G 1in the definition of the intensity

function J (cf. Eq. (4.2.13)) we see from Eq. (4.5.10) that if,

~

A(6,0') = A(0',0) , (4.5.11)

]

then it follows that

k(zR)' -

(4.5.12)

The conclusion is then that if Eq. (4.5.11) is fulfilled, the total once-
reflected energy received by the postulated black cylinder satisfies a
reciprocity relation of the type given by Eq. (4.5.12). By virtue of the
reciprocity theorem it seems reasonable to suppose that Eq. (4.5.11) is
satisfied, however it has now been possible to prove this.

We now consider the term <>IT‘ defined in Eq. (4.4.18). As in the
treatment of <>ii it can be seen that if le—X2|>Z , the average of
the integrand in Eq. (4.4.18) will vanish as a result of the diffuse re-

oy

flecting property of the surface. We use the definition of ER; given in
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Eq. (4.4.6) and the approximations for W and -%%— given by Eqs. (4.4.20)

and (4.4.23) to obtain from Eq. (4.4.18),

2, =
Q. - ik(ZRé)lj (0)ag gdxlgdngdxf, gdxu (3¢ ErRo)

x1-xp| € L oz A;
lx1-x5| 34 (4.5.13)

. <)rraG(R,l)G(R,E)G(l,B)G(E,h)eXpii [g(R,E)-g(R,l)-"—»g(Q,h)-g_(l,jj]} ,

where
Opra = CE0T1(1))51,3)2(Z '(2)52,4) (1+§' (3)) l/2(1+ ;*E(A))l/z

AB*((3)) 28((4))

V) PV

exp {ik(o)[ T (1)8(R13)
- Z(2)s(Rek)+ T (3)sin0,, - ;(h)sinOgﬂz> . (k.5.14)

The factors (1l+ ;'2(5))1/2 and (1+ ;'z(h))l/z in Eq. (4.5.14) appear
when ds 1is replaced by dx; the restrictions [xe—xhr‘ Y and jxl-x3| >4
on the range of integration in Eq. (4.5.13) appear as a result of the assump-
tion tiaat the surface reflects little energy from a point to nearby surface
points (cf. the relation (4.k.L42)).
From the restrictions on the integration given in Eq. (4.5.13) we

deduce that le-X)_J)Z and (xg-xj\ >Z . Then from the diffuse reflecting
property of the surface it follows that we need only consider regions where

le-x2|‘1. and ’XB-X)_,_\é,Q in the integrals of Eq. (4.5.13). Because of
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these properties and the statistical property given in Egs. (4.4.3) and

(4.4.4), we can then write for Eq. (4.5.14),
{Yppg = E(T(1)52,1)E(Z(2)52,4)exp [ 1x(0)s(Rek)

z-z@) > - & (g3 Y2z By 2

, 2 ((5)) 20((H))

exp [1k(0)s1n0,,(Z (3)- T]) 5 (4.5.15)
2 vy L a )

where we have made use of the approximation given in Eq. (4.3.54). Now
using the definition of the scattering function given in Eq. (4.5.7) we

find for Egq. (4.5.13),

(2., = k(2 )x(0) & s ggdxequK(ORa’Oéh)(;R‘;nRe)GE(R’E)GQ(E’M)

I ZC
.g dQe-ik(O)Tl cosd), <(l+;'2(3))1/2(l+;'2()+))l/2
-T

* ((L4
.b—fﬂaéﬂl -E-’Qﬁalv—u exp [ 1K(0)a1n0,, (Z (3)- Z(1)]]),
(3) (L) |

x3=xh+q (4.5.16)

where we set E = x3-Xp (in the definition of X) and 1) = x3-xy . We
now define the quantity,

7
:O(Ogu,xu) _ %; g an ,-1k(0)N cos@' ) <(1+ ;‘2(5))142(1"‘;'2(4))1/2

, L ag*((3)) 2f(h))  1k(0)sinopl(Z (3)- ;(u))>
AV I- N g
(3) (L)
X3=X)+Y) (4.5.17)
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which when substituted in Eq. (4.5.16) yields,

b8 2._; N
ey = i(§) aR gdng(R,Q) A(ORp,08),)3(2,4) <00, ,x))dx), , (4.5.18)
s 4
-
anRQ'
substituting the definition of %% (cf. Eq. (4.4.5)) in Eq. (4.5.17) and

where we have let 3% = It can be shown that tﬁ(@,x) is real by
repeating the procedure carried through in this section. This process would

give a real term and another term similar to Eq. (4.5.17). The whole pro-

cedure would then be repeated again; finally a series of real terms would
be obtained for‘QQ . These terms would represent the contribution of
various multiple reflections to the quantity !JQ.
From Eq. (4.5.18), using the definition of the intensity given in
Eq. (4.4.8) and remembering that the energy per angle per second radiated
by a unit source is 2/n, it is seen that the quantity ‘ﬁ(QEA’Xh) defined
above is the same as that defined in Section 2.1. It is Jjust the (average)
energy per angle per second per length reflected from the position x)
in the direction ©,,. Furthermore, we see that ‘:QR(Q,X), the corresponding

quantity for energy which has been multiply-reflected, is given by

EQR(OR2’X2) ='% g'lt\f(O}.@,Oéu)J(E,h):Q(G2L+,Jc)+)dx)+ . (4.5.19)
4
Now adding the singly-reflected radiation given by Eq. (4.5.9) and

the multiply-reflected radiation given in Eq. (4.5.19) we find:

&(@Rg,xg) = ,qg(oRg,xg) + ’E‘g 'K(QRZ,Qéu)J(E,h)&(Geh,xu)dxh . (4.5.20)
g

It is convenient to make a change of the variable of integration

through the relation,
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L(th) = X5 - X (k.5.21)
or
axy, = - %0ob) 40, (4.5.22)
O2u

Then using the definition of J(2,4) given in Eq. (4.2.13) and the ray
approximation to G given in Eq. (4.3.20), it is seen that Eq. (4.5.20)

may be written,

J(o,x) = 28_(9,;() + SA(Q,ﬂ-g*)tQCG',X-M@'))dO’ ,  (k.5.23)
©-
and this is identical with the result given in Eq. (2.1.18). The function

A 1s the normalized scattering function, Qefinedrby
Y]
A(0,0') = gin ©' A(6,0'") , (k.5.24)

and the symbol @B 7 in Eq. (4.5.23) represents, as before, the set of all
trapped angles.

Furthermore from Egs. (4.5.9), (4.5.10), (4.5.18), and (4.5.19) we
gsee that the total reflected energy per second received by the cylinder

of radius a 1is given by,

T
4
in agreement with Eq. (2.1.21).

Finally it can be shown that the total reflected radiation (cf. Eg.
(k.5.25)) satisfies the reciprocity relation given for singly-reflected
radiation in Eq. (4.5.12), if the symmetry condition given in Eq. (L4.5.11)
ig fulfilled. This is probably most easily seen by considering the itera-

tion solution of Eq. (4.5.20) (or of Eq. (4.5.23)). This iteration solution
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ig discussed in Section 5.1. From the solution in this form it can be
seen that the above statement concerning the reciprocity relation is true.
We conclude then that if the restriction given in Eq. (4.5.11) is fulfilled

for a given surface, the total reflected energy obeys the relation:

Fp(R,0) _ Fg(O,R)
k(zg) — k(zy)

(4.5.26)

Before proceeding with the solution of Eq. (4.5.23) it is in order
to discuss the effect of raising the frequency on the approximations In-
volved in the derivation of this section. It is easily shown that upon
raising the frequency all approximations which are affected are improved,
with the exception of those which were established in order to guarantee
that the phase of the radiation from some source point is essentially that
of a plane wave over some finite region of the surface (the relations
(4.3.62) and (4.3.63)). However, if the frequency is high enough to per-
mit the use of geometrical optics in describing the reflection process,
these approximations give no difficulty. This is so since for such fre-
quencies, as is well known [57], the regions active in the reflection pro-
cess are narrowed to include only the "highlights" of the surface. (A
"highlight" is defined as a region of the surface for which the slope is
such that the angle of incidence is approximately equal to the angle of
reflection for a given source and receiver point.)

It is first important to establish a criterion for the applicability
of geometrical optics to the reflection. In order to do this one can begin
with the Kirchhoff approximation, simultaneously restricting the problem
to be such that the conditions i) and 1ii) of Section 3.4 are satisfied.

Beginning then with Eq. (3.4.16), using the asymptotic approximation to the
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Hankel function (cf. Eq. (3.5.8)), and evaluating the resultant integral
through the use of the method of stationary phase (cf. Section 3.3), it
is not difficult to verify that a sufficient condition for the applicability

of geometrical optics is,

KR sin 0')) 1 (4.5.27)

where Rm is the minimum radius of curvature of the surface and ©' 1is
the angle made by the incident radiation with the horizontal. One at the

same time finds that the horizontal dimension of the highlight is given by,

R ) 1/2

Axy ™ Ksino® (4.5.28)
and the vertical dimension is

h 2k sin ©'

All other regions of the surface offer no contribution to the reflected
radiation by virtue of the rapidly changing phase of the integrand of

Eq. (3.4.16). Hence, one can replace the quantity L in the restric-

tions (4.3.62) and (4.3.63) using the result, (4.5.28), obtaining,

&’ L1, (4.5.30)
and
Tflo gey (k.5.51)
[ %%

These restrictions can be used, respectively, in place of the restrictions
(4.3.62) and (4.3.63), whenever the restriction (4.5.27) is fulfilled for

most angles ©' involved in the reflection process.
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We summarize what has been accomplished in the last two sections. The
purpoge of these sections was to derive the equationsg which had been ob-
tained heuristically in Chapter II, and to simultaneously present the
necessary restrictions for the applicability of the model. It is found
that there are three central conditions necessary. First, the frequency
must be high enough so that geometrical optics canlbe used to treat the
propagation of radiation in the volume of the duct. Second, the surface
must be rough enough or the frequency high enough so that there is a negli-
gible specular component in that portion of the radiation which is reflected
from the surface and trapped within the duct. Finally the conditions 1)
and 1ii) of Section 3.4 must be fulfilled so that one can use the Kirchhoff

approximation in treating the reflection process.



CHAPTER V

THE GENERAL SOLUTION OF THE MODEL EQUATION

AND A NUMERICAL EXAMPLE

In the last chapter the results of Section 2.1 were derived from the
Helmholtz equation under certain conditions which were discussed in Sec-
tions 4.4 and 4.5. TIn this chapter the solution of Eq. (2.1.18) will be
presented in Sections 5.1 and 5.2. In Section 5.3 a numerical example
will be considered.

We begin by noting that once the solution of Eq. (2.1.18) is obtained,
the problem of finding the energy received by a "black" cylinder is re-
duced to quadrature (see Eqs. (2.1.21) and (2.1.23)). As a result we will
concentrate our attention here on the solution of Eq. (2.1.18); the equa-

tion is repeated for convenience,
Do,x) = d(0,x) + g&(ov,x-L(o'))A(o,n-@v)a@' . (2.1.18)
G-

This is a linear integro-difference equation in two variables; an integral
equation in © and a difference eqﬁation in x . Schurer [58] has con-
sidered certain types of integro-difference equations, in particular homo-
geneous equations with a single independent variable. Because of these

restrictions it will prove convenient here to treat the problem ab initio.

-124-
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Two representations for the solution of Eq. (2.1.18) will be considered.
The first of these is obtained by iteration. While producing this solution
it will bé possible to show sufficient conditions for the uniqueness of
the solution and to show some continuity properties of the solution. The

second form is obtained by taking the Laplace transform of Eq. (2.1.18).

5.1. The Solution by Successive Substitutions

.The procedure to be used follows closely that employed in the solu-
tion of a linear integral equation of the second kind by successive sub-
stitutions.* (This is freqﬁently called "the solution by iteration".)

Tt is convenient to consider the multiply-reflected radiation, which

has been defined as
Hge,x) = Lo,x) - S(o,x) . (5.1.1)

Now by replacing vJZ by :JZ+ g? - 48 in the integrand of Eq. (2.1.18)

we obtain

v.QR(Q,x) =T (o,x) + gt,QR(G',x-L(O‘))A(G,n—@')d@‘ , (5.1.2)
(=)

where

T (0,x) = gpg(o',x-L(e'))A(o,n-o')do' . (5.1.3)
®,

Adopting the velocity profile of Section 4.3, where it was assumed that
c(z) 1is a monotonic increasing function to 2z = D and thereafter a mono-

tonic decreasing function, one can write,

@T = (O,}_L) + (“'r‘oﬂ‘) (5.1.4)

*  See Lovitt, [24], pp. 9 - 13.
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with the symbol (a,b), as before, defined as the set of all angles from
a to b ; }L is again the largest angle made by a ray trapped within the
duct.

It is convenient to recall certain properties of the functions A and
g . From the definitions of these functions it is seen that both are real
and positive. It follows then from Eq. (5.1.3) that the function ax: is
real and pogitive. Thé conservation property of A is also needed (cf.

Eq. (2.2.12))

T
gA(Q,OV)dO =1 . (5.1.5)

o
It is now assumed that for all incident angles some of the radiation re-

flected from the surface 1s scattered out of the duct. Then,

SA(O,G')dO =p(o') & gM ¢ 1, for all ' . (5.1.6)
(0%

Continuity conditions on the functions A and 'Zf are now estab-

lished. It 1is assumed that--
a) A(9,0') is positive, continuous (and therefore bounded) for ©
and ©' in (O,x). Let the bound on A be AM°
b) a)f(@,x) is a positive, continuous, and bounded function of ©
and of x for © in (O,n) and for all x. Let its bound be
g id
Under these conditions it will be shown that there exists a solution of
Eq. (5.1.2) (the solution by iteration) and that this solution is continuous
and. bounded. Furthermore it will be shown that this is the only continuous,
bounded solution.

We begin by iterating Eq. (5.1.2) n times. Thie process is carried

out, as in Section 3.4, by substituting the right side of Eq. (5.1l.2) for
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the quantity \'QR appearing under the integral sign of that equation.
The quantity V.QR now appears under a double integral on the right side
of the new equation. The process of substitution is then repeated; after

n such substitutions, one obtains the following equation:

Y.QR(Q,X) = ’X(Q,X) + gg(@,ﬁ-gl)’r(Ql,X—L(Ql))dOl

+ g A(,m-0,) gA(Ql,n-QQ)’I’(OE,X-L(OJ_)-L(OQ))dQEdOl
ON O

+

+ gA(Q,n-Gl) A(Oq,m-05). ..

®r O

e gA(@n_l,ﬂ-On) T (6,,x-L(01)-...-L(6,))d0,...d6;

+

(5.1.7)

RS B

where

R .= g A(@,n-@l) g A(Ol,n-Qg).,.
(= e,

’ gA(gn’“"OrH-l)&R(On+l’X'L(Ol)" . G-L(On‘l_l) )d@n+l. N .d@l
This leads one to consider the infinite series

K(0,x) = “L'(0,x) + gA(O,n-@l)T(Ol,x-L(Ol))dOl
©r

+ g A(0,m-0,) SA(Ql,rr-OQ)'}:(QQ,X-L(Ql)-L(OE))dQEdOl

e T

(5.1.9)
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Using Eq. (5.1.6) and the hypotheses a) and b) it is seen that

ge, 0] & TH+ M@ 1T + M 17"

M M
¥ ... +AM[@T]T (B )m Foeee (5.1.10)
or
M M M 1
(K(O,X)l €T +a [@T]'Z" l—(BM)) (5.1.11)
since by hypofhesis BM < 1. The symbol [EDT] represents g 4ae ;
(-

for the velocity profile proposed in Section 4.3 we find from Eq. (5.1.k4):
[@T] =2 (5.1.12)

Thus the series given in Eq. (5.1.9) converges absolutely and uniformly

(in both © and x). From hypotheses a) and b) it follows that every
term in the series on the right side of Eq. (5.1.9) is continuous in © and
x.* Then since the series converges uniformly, it follows that the func-
tion K(©,x) is continuous in © and x.*¥* The function is also seen

to be bounded from Eq. (5.1.11) and seen to be positive from hypotheses

a) and b). It can be verified by direct substitution that the function
K(6,x) is a solution of Eq. (5.1.2). Since every term in the series is
continuous and since the series converges uniformly, the series may be

integrated term by term.**¥* Then by substituting Eq. (5.1.9) for the

* Carslaw, (39], p. 188.
**  Sokolnikoff, [40], pp. 256 - 258.

*%*%  Sokolnikoff, [40), pp. 258 - 261.
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function :Q{R in Eq. (5.1.2) one obtains an identity. Hence,

A (0,x) = K(6,x) (5.1.13)

is a solution. Thus the existence of a continuous, bounded solution has
been shown, and in fact is the solution constructed. We shall henceforward
treat only this solution.

We now show that this is the only continuous, bounded solution. Let it
be assumed first that there exist two such solutions designated by Q'O‘Rl
and "QRE . They must both satisfy Eq. (5.1.7) for any finite value of n.
Then it is supposed that we subtract Eq. (5.1.7) with ‘Q"RE substituted
tor g from . (5.1.7) with <llp; substituted for <l . There is

left the difference of the remainder terms,

Rl(@x t,QRg(@X = géﬁg’ﬁ-gl) gef(ol,n-gg)..

'&;x( ;-0 1) (g, g a0, .. .40, . (5.1.14)

r
Taking the absolute value of Eq. (5.1.14) and proceeding as in the treat-

ment of Eq. (5.1.9) we find
| <Ly, - “Q‘Re' ¢ [0, i 7y * Dro) (5.1.15)

M M .
where tﬂRl and QQRQ are the bounds on "QRl and ‘QRE . This rela-

tion must hold for all n. Thus using Eg. (5.1.6), we deduce that
Lin [p; - <lpo| = 0, (5.1.16)
n->0

so that :'QRl and Q'QRE must be the gsame solution. Thus the solution

is unique, which is what we set out to prove.
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Tt can be noted from Egs. (5.1.9) and (5.1.1) that since “L° and A
are real positive functions by hypothesis, so also is the function.tJlR

(and hence tJZ) as is required by its definitiom.

5.2. The Solution Obtained by the Use of the Laplace Transform

In this section we shall find the solution of Eq. (2.1.18),

Deo,x) = B(o,x) + gtQ(O',x-L(O'))A(O,n-G',)d@’, (2.1.18)
DN

by taking its Laplace transform with respect to x. In order to do this

it is necessary that the quantities to be transformed shall vanish for x<O.
If the surface scatters trapped radiation primarily in the forward direction,
it is possible to separate the problem so that the terms of Eq. (2.1.18)
vanish when x < 0. Because of the small angles made by rays trapped in
ducts occurring physically, this will be a reasonable assumption.*

The assumption can be stated as follows: it is supposed that--
s

a) A(6,x-0') =0 , 5 € 0 £«

b) J(Q:X) =0,

SIEY

£ 0% ¢ or x<£ 0.

The restriction a) is only needed for ©' in C)T . If in the physical
problem the source radiates energy in both the -x and the +x directions,
the region x ( 0 1is treated in a way analogous to that to be used here

for x ) O . The assumption that there is no back scattering guarantees,

* It should be remarked that if one took the Fourier rather than the
Laplace transform of Eq. (2.1.18), this assumption would not be necessary.
However in such a case the analytical difficulties increase considerably
and inasmuch as the assumption of only forward scattering is ordinarily a
weak restriction physically, the Laplace transform will be used.
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as we shall see, that these two parts of the problem do not interact.

We now consider

T(e,x) = g-g (6',x-L(0"))A(6,n-0")de" . (5.1.3)
O

From the hypotheses a) and b) it follows that

in

Le,x) = 0, -’5— 0 & n or x{0, (5.2.1)

since L(6)2 0 when 0% 04 g. . By repeating the argument it is seen
that every term of the series given in Eq. (5.1.9) vanishes for %é 0% =«
or x{ 0, If, as is supposed, the hypotheses é) and b) and Eq. (5.1.6)
of Section 5.1 are fulfilled, the series in Eq. (5.1.9) represents the

function E-QR(O,X) . Hence

‘-O.R(O,x) =0 , > Y or

‘From hypothesis b) above and Eq. (5.1.1) it follows that

€ 0& 1

[he] =

€ 0. (5.2.2)

oA

\.Q(O,X) =0, x40 or

Thus every term in Eq. (2.1.18) vanishes for x¢ O or %é O&xn

We now adopt the velocity profile proposed in Section 4.3; that is, it
is supposed that the velocity of propagation is a continuous function of 2z
and increases monotonically for 04 z<£ D, decreases monotonically for
z »D , and approaches some positive value asymptotically as z-» +g. In
this case, referring to Egs. (5.1.4) and (5.2.2), it is seen that Eq.

(2.1.18) can be written

M
<(e,x) = (o ,x) + gtQ.(O',x-L(O'))A(O,n-@')d@' . (5.2.3)
0
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We now impose a further restriction on the source function. It is
supposed that --
c) ,;8 (6,x) 1is a positive, continuous function of © for 0% O/l
and is a piece-wise continuous function of x 1in every finite im«c
terval of x.
It should be remarked that in the hypotheses a) and b) of Section 5.1
we are now only concerﬁed with angles in (O,fL).
We now impose restrictions on the function L(Q) which together
with hypothesis c¢) of this section and hypothesis a) of Section 5.1 will
be seen to be equivalent to hypothesis b) of Section 5.1. It is assumed
that --
d) L(e) 1is a continuous, monotonic increasing function of © for
0 é:O'é»y-.
From a) of Section 5.1 and c¢) and d) of this section it can be seen
that UK(O,X) defined in Eq. (5.1.3) is a continuous function of 0.%
In considering ’Zf(O,x) as a function of x , it is convenient to con-
sider each continuous section of the function QS(Q,X) separately. Then
from Eq. (5.1.3), using a simple extension of an argument of Carslaw's,**
it can be seen that Ct(G,X) is a continuous function of x . Hence c)
and d) of this section together with a) of Section 5.1 are seen to be
equivalent to b) of Section 5.1.
In Section 5.1 it was seen that EQR(O,X) is a continuous, bounded
function of x ; under hypothesis c) 13 (6,x) 1is a piece-wise continuous
and bounded function of x . Hence from Eq. (5.1.1) it is seen that QQ&O,X)

is a piece-wise continuous and bounded function of x . It follows then

*  Carslaw, [39], p. 189.

**%  Carslaw, [39), p. 188.
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that one can take the Laplace transform of each term in Eq. (5.2.3).*¥ The

following notation is adopted for the Laplace transform:

I(0,y)

[
g;ﬁ(@,x) e X ax , (5.2.4)

’S(ny)

]

00
S‘JX(O,X) e Vax . (5.2.5)

From the bounded property of 'l and 8 , it follows that I and S
exist and are analytic for Re(y) ) 0.%*
Upon taking the Laplace transform of Eq. (5.2.3) we find,

00 H
I(0,y) = S(6,¥) + g e X <l(0',x-L(0"))A(0,7-0)d0"} dx. (5.2.6)

° o
Since the integral over ©' 1is uniformly convergent in x and since
kJZ is a bounded function of x , it follows that we can interchange the
order of integration in the double integral appearing in Eq. (5.2.6).
Then we use the property of the Laplace transform,***

0
g‘ﬁ(g"x'L(g'))e-Xde = I(O,:Y)G-L(g')y ’ (5.2.7)
o}

to find for Eq. (5.2.6),

P .
1(8,y) = 8(0,y) + g 1(0',y)a(0,7-61)e M Vagr . (5.2.8)
(4}

This is a linear integral equation of the second kind to be solved for T
with y as a parameter. That it has a solution follows from the fact
that it was derived from Eq. (5.2.3).

Now we could proceed with the solution of Eq. (5.2.8) through the use

of one of the standard methods of solution for such equations. For example

*  Churchill, [41], p. 5.
**  Churchill, [41], p. 151.

*¥**%  Churchill, [41], p. 21.
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Eq. (5.2.8) could be solved by iteration (in which case we would obtain
the Taplace transform of the solution by iteration of Eq. (5.2.3)). How-
ever we desire another, and in some cases more useful, representation for
the solution. To obtain this we shall suppose that the function A(6,n-0')
is representable by a (finite) sum of products of functions of © and
©' . In such a case the integral equation is said to be degenerate, and

admits a particularly simple solution.* To this end we suppose that --

N
e) A(0,m-0") = S & (0)ay(e’) (5.2.9)
Nal '
where an and aﬁ are continuous functions of © and €'

for all n and for © and ©' in (O,4). The
a,(0) = O,n-}xé_ ©£ n , in accord with a) of this section.

Further, the functions a, and a;) are such that A 1is positive.
By choosing a sufficient number of terms in the series of Eq. (5.2.9) we
can expect to be able to approximate as closely as we wish most of the

scattering functions of the type met in physical applications.

Substituting Eq. (5.2.9) in Eq. (5.2.3) we obtain,

| p N
EQ(O,X) = QX(Q,X) + g<;ﬁ(ov,x-L(9')) é:: an(QOaECG')dO'E (5.2.10)

(o) Nzy

Since the functions under the integral sign in Eq. (5.2.10) are bounded,

we can interchange the summation and the integration to obtain,

o) = o (6,x) - S 2 (0)U,(x) (5.2.11)
where =
m
U_(x) - g:ﬁ(o',x-L(or))a;l(ov)do' : (5.2.12)
0

Since there is a unique (and bounded) function \JZ(Q,X) which satisfies

Eg. (5.2.3), it follows from Eg. (5.2.12) that the functions U, are unique.

* Lovitt, [2k], p. 22.
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The function \ﬂQ has been shown to be bounded and to be a continuous
function of © and a piece-wise continuous function of x which vanishes
when x < O ; then by repeating the argument just carried out in connection
with d)f(@,x) we can show that Up(x) is a bounded, continuous function
of x (which vanishes for x < 0). Thus U, possesses a Laplace transform,

0o

u (y) = g e (x)ax (5.2.13)
o

which exists, and is in fact analytic, for Re(y)» O . Then we take the
Laplace transform of Egq. (5.2.11) to obtain
N

1(0,5) = 8(0,y) - Mi a,(0)u,(v) (5.2.14)
=

where the symbols have already been defined. From Egs. (5.2.12) and
(5.2.14) we find the following system of equations for the determination

of the function wu,(y):

N
%umwmm(y) - up(y) = sy(y) (5.2.15)
where P‘_L(g,)y |
s, (y) = g~e aj(0')s(e',y)ae’ , (5.2.16)
(o}
and }b
M (y) - g MO e (or)ar(en)a0r (5.2.17)
(s}

It is of interest to investigate the properties of the functions Sn
and M . Before doing this it is supposed that --

f) 28(O,x) vanishes outside some finite region of the x-axis.
Thié condition is imposed in addition to the hypotheses b) and c¢) already

fulfilled by the function 28 (6,x). From hypotheses D), c), and f) it

follows that S(0,y) (cf. Eq. (5.2.5)) 1s an analytic function of y for
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every finite y.* From hypotheses c¢) and f) it is easy to show that
S(0,y) 1is a continuous function of © for O € 6% M . From hypo-
thesis d), using an argument essentially the same as the one needed to
show that S(O,Y) is an analytic function for all y , one can show that
sn(y) and Mﬁn(y) are analytic functions of y for every finite 7y.

We now return to Eq. (5.2.15). Tt has been seen that there exists
one and only one set of functions U, (x), and hence u,(y) , which leads
to a bounded, continuous function YQR(O,X) . On the basis of this it may
be supposed that I\an-gnnJl does not vanish identically; "Nmn" indi-

cates the determinant of the matrix N, , and
8wm=l, m=n,
=0 m#n . (5.2.18)

Then the system of equations represented by Eq. (5.2.15) can be solved to

obtain,
N
2 @) - 8ol @) |
un(y) = "MQ{S(Y) - SCZB" ) (5-2°l9)
where |Npn| indicates the minor of the element (m,n) in the deter-
minant "Nhn"

Tt is possible that the representation given in Eq. (5.2.19) will
be recognizable as the transform of some known function in a particular
problem. It is more probably though that the function will not appear in

such a simple form. In such a case the inversion integral for the inverse

*  Churchill, [41], pp. 148-151. The function g (0,x) is of order e<0%,
in Churchill's notation, where xp 1s any finite real number. It follows
that S(9,y) is analytic for every finite y .
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Laplace transform will be useful, It has been shown that the functions
Un(x) are continuous, bounded functions.of x which vanish for x< O .

Under such conditions [42] the following relation holds,

L0 ﬁ
. " 5 (0) | M) - Sl

o1 Xy 2l | |
Un(X) = 5ri € ”MaB(Y) _ SaB" dy, (5.2.20)

F-c0

where the integral is to be taken along the line Re(y) =¥ with ¥ O.
In some special cases one might attempt to carry out the integrals
of Eq. (5.2.20). However, frequently it is advantageous to apply the Cauchy
regidue theorem.¥
Before doing this we consider some properties of the singularities
of the integrand of Eq. (5.2.20). It has been shown that s,(y) and

an(y) are analytic functions of y for all finite y . Then the deter-

minant, “M@S(y) - 8043" , and the minors, |Mpy (v) - 81'12" ,

are analytic functions of y for all finite ¥y, since they are cdmposed
of finite sums of products of analytic functions. It is seen then that
the integrand in Eq. (5.2.20) is an analytic function of 'y for all finite

y except at those pointg,if any, where
[Mes () - SO@U =0 . (5.2.21)

Since we know that u,(y) are analytic functions of y for Re(y)) O,
it follows that all values of y which satisfy Eq. (5.2.21) must also
satisfy Re(y) &£ 0 .

Tt is seen then that the singularities of the integrand in Eq. (5.2.20)

can only be poles (not necessarily simple). As a further property of the

*  Churchill, [L41], p. k2.
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singularities (poles) of the integrand of Eq. (5.2.20) we note that for a

and a.!

o s the positions of the singularities

given set of functions a,

are the same for all u,(y) by Eq. (5.2.19). Hence the positions of the

poles need be calculated but once for all of the functions Un . It is
evident however that in general the residues at a given pole position de-
pend upon the particular function U, being considered. Finally from
Egs. (5.2.5), (5.2.16), and (5.2.17) we see that sX(y) = s,(y*) and

Mx (y) = My (y%) . Using this, it is seen upon examining Eq. (5.2.21)

that the poles must be located symmetrically about the real axis. Further,
from Eq. (5.2.20) one finds that the residues of a pair of poles which are
symmetrically placed (about the x-axis) are complex conjugates of one
another. This relationship for the positions and residues of the poles is
a consequence of the fact that the U,(x) are real.

The Cauchy residue theorem is now applied. It is supposed that the
poles of the integrand in Eq. (5.2.20) are infinite in number and are lo-
cated at yo, yy» 7%, Vo ye*, ... where (yo|< |¥q|<| Ty - (see
Fig. 10) and |yy|—>©® &as m—> 00 . It is a simple matter to alter the
argument to cover other cases. Let the residues of the integrand of Eg.
(5.2.20) be pén)(x), pin)(x), pin)*(x), pén)(x), pén)*(x),c.° respectively;
the subscript indicates the pole to which the residue belongs while the
superscript indicates to which function, U, the residue belongs. The
contour C, 1s chosen so that together with the line y = i it encloses
the poles at yg, ¥y15, ¥1%5 - o) Ym> ym*. The contour begins at the point

¥+ icﬁ end ends at the point ¥ - ic, . It is further supposed that

Cp=—>0 as m=->» o0 .
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Fig. 10. Diagram in the complex y plane showing the contours chosen
for the evaluation of the inversion integral of the Laplace transform.

Employing these definitions it is found, upon using the Cauchy residue

theorem, that Eq. (5.2.20) can be written

0, (x) = v 2 (600 + o) (5.2.22)

M=y

1
if the limit of Ié ) exists, where,

i)y - A g xy i 5 (7) [Mnp(v) - Sl
C
m

2ni ® M) - Sogll %

(5.2.23)
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and where the integral 1s to be taken along the contour C, from X’+-icm
to ¥~ ic_. The first three contours are shown in Fig. 10. It sometimes

m

happens that

Lim _(n)

wmoo Iy () =0 (5.2.2k4)
in which case
@©
o) =P+ 2= ™ s @] (5.2.25)
M=l

Finally, if all of the poles y, are simple, one can write,*

Xym i ; _
péln)(x) _ e = SL(Ym) ” Mm(ym) Sm“ (5.2.26)

d
ay M () - Sogll

Y=Y

To sum up, through the use of the laplace transform we have obtained
a solution of Eq. (2.1.18) for surfaces which possess no back scattering.
To put the solution in a manageable form, it was assumed that the normalized
gcattering function could bé expressed in a special, although not particu-
larly restrictive, way (cf. Eq. (5.2.9)). Finally the solution wag obtained,
under certain restrictions, in the form of the sum of the residues of a
get of poles.

The solution expressed by Egs. (5.2.11) and (5.2.25) is valid if hypo-
theses b) through f) of this section are fulfilled and if Egs. (5.1.6)

and (5.2.24) are valid.

*  Churchill, [41], p. 1L1.
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5.3. A Numerical Example

A numerical problem will be worked in this section to illustrate the
foregoing theory. The problem of the propagation of high frequency (25 kc)
acoustic radiation in an isothermal, surface¢-bounded duct in the ocean is
congsidered. In isothermal water there is an increase:in the phase velo-
city of sound with depth as a result of increasing pressure; this change

in velocity can be expressed by,*

c = cy(l + az) (5.3.1)

where cqy = 4878 feet per second (for a temperature of 50° F) and

-6
@ =3.73 x 10 per foot. It will be supposed that the phase velocity is
determined by Eq. (5.3.1) for =z & LOO feet. For =z » 40O feet it is

supposed that the temperature decreases in such a way that
c =cp(l + 20D - az), (5.3.2)

D = LOO feet, so that the velocity gradient below the duct is equal in
magnitude and opposite in sign to that within the duct. (Of course it
must be assumed that for very great z Eq. (5.3.2) changes form so that
the phase velocity remains positive.) From Eq. (4.3.30) it is found that
}L = 3.12° where }L is the maximum angle made by a ray trapped within
the duct.

It has already been assumed that the rms deviation of the surface
from its average plane is one yard. Furthermore it has been supposed that
the surface is quite irregular (a "sea") and that the statistical pro-
perties of two regions of surface become independent when they are separated

by a distance exceeding 25 yards. For the surface scattering function, the

* "Physics of Sound in the Sea", [ 33], p. 60.
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following (single parameter) form is chosen,
~
A(0,0') = ¥ gin 0 8in 0' , (5.3.3)

which for ¥ = % is seen to be the two-dimensional equivalent of Lambert's
cosine law of reflection. There is very little evidence on the reflecting
properties of the sea surface; Eg. (5.3.3) seems a reasonable choice for

the type of diffuse reflection being considered in this work. TFrom Eq.

(5.3.3) it is seen that,
A(6,0') =¥ sin 6 . (5.3.4)

In view of the smallness of }J, , small angle approximations will be used

throughout these calculations. Then Eq. (5.3.4) becomes,
A(e,0") =¥0 . (5.3.5)

The fraction of incident energy which is reflected into the duct is given

by, > :
B = S ¥ 040 (5.3.6)
o
or
B =g tp° (5.3.7)

Tt is proposed to alter Eq. (5.3.4) in two ways. First it is assumed

in the numerical example that B = 0.1, so that rather than letting ¥ = % ’
0.2

/‘&1

physical reasons to be given below as well as to fulfill the conservation

¥ will be determined by Eq. (5.3.7) (¥ = ). Furthermore, for

relation (cf. Eq. (2.2.12)), it is supposed that,

A(6,0') = 0, o> o (5.3.8)



where
L ECHREE (5.5.9)
or

@M Va
= - (10)"%. (5.3.10)
fb

It is frequently convenient to assume that the free:parameters are fL and
B (and hence the duct depth and velocity gradient within the duct on the
one hand and the fraction of incident energy reflected into the duct on
the other). This of course implies that if one uses the reflection law
given in Eg. (5.3.3), the quantities Y~ and M are determined through

Egs. (5.3.7) and (5.3.10) once the choice of }x. and B has been made.
It is now shown that B %6 is a reasonable estimate. Let it be
supposed that the reflection may be estimated by geometrical optics. Then
from the results of Section 3.2 it is known that the distribution of sur-
face slopes determines the scattering function. The maxiﬁum value of the
slope of the water surface is of order 1/7; hence the maximum reflection
angle is approximately 2/7, or about 15°. The maximum trapped angle has
been given as about 5°;‘it gseems reasonable to suppose from this that the
fraction of energy trapped within the dﬁct after reflection is of order l/lO.
To continue, using the given value of «a in Eg. (L4.3.31l) it is seen

that L(}L) = 9760 yards. Further, it is supposed for the present calcu-
lation that both the source and the receiver have an angular dependence.

For simplicity it is assumed that the energy radiated per second per angle

by the source is constant for angles (measured from the horizontal) which
AQq
2

that no energy is radiated. A similar requirement is fixed on the receiver.

are less in absolute value than For greater angles it is supposed

For the present problem it is assumed that

AD
——Qz 3 (5511)
2p
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or using the value of }L. already given, égg = 9.3%6°.

Let us first consider the Laplace transform method of solution. One

must obtain the function M(y) (see Eq. (5.2.17)),

Eo
M(y) = S O 40y ar (01)a0r (5.3.12)
[

it being noted that the scattering function, A , 1is represented by a

single term. It is convenient to reduce the transform variable by

X t = 2 ., Primes will be
L( ) and 2z D

used in the remainder of this section to indicate such reduced variables;

y' o= L(}L)y; furthermore let x' =

the unit for vertical distance is D and for horizontal distance is L(fp).

Upon using Eg. (5.3.5) in Eg. (5.3.12), it is found that,

M(y') = 2B [‘% - e_y'( “lE+ i‘)] . (5.3.13)
y' y!

Now the roots of the equation,
Miy') -1=0", (5.3.14)

constitute the positions of the poles of the transform of the function
U(x). By putting
y'=u+ iv (5.3.15)
one can put Eq. (5.3.14) in the form,
1,2 2 2]2 2[1 2 ]2
l+ut==(v -p u-u + v | l+==(p +2u).
e [re(ePund) L(o%2u)

e = kl+u)2 . v2] o ' b/ (5-5-16)

and

1 2
v [l+§§(p +2uﬂ
tan v = T 55 5 ) (5-5-17)
l+u+§§(v -p"u-u")
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where
2
p =u + v . (5'5'18)

The roots of Ey. (5.3.14) can now be found through the use of an iteration
procedure. One first makes an estimate of a pair of values of u and v
which will satisfy Egqs. (5.3.16) and (5.3.17), substitutes these values

in the right sides of those equations and calculates a new pair of values
from the left sides. These now values are now taken as a new estimate and
the process repeated. By this procedure the roots of Eq. (5.3.14) can be

found; the first fifteen for g = 0.1 are given in Table I.

TABLE I

y4 = -3.111
yi ,¥* = -3.764 £ 7.26h i
Ty sy5¥* = -h.298 £ 13.768 1
vy oyg* = -b.6b9 £ 20,146 1

vy, oyy* = -4.909 £ 26 .48k 1

yg ;Yé* = -5.116 + 32.802 i
YL yE* = -5.288 £ 39.110 1
y% ,y%* = -5.435 + k5,412 1

The first fifteen roots of M(y')-1 =0 for B = 0.1 .

By using the small angle approximations (Eqs. (4.3.30) through (L4.3.37)),

the definition,

J(0,x,) = 3(1,0/8(0,01,) , (4.5.9)
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)
and the agsumed form of A (Eq. (5.3.3)), and still supposing small angles,

one finds when zé = 1,

J(OBX) =

|
AR
N|°?
-] O
1%
N
Lol
+
5
b
.
L}
(o]
=
4
(S
[
4
IN
4
-
P
Ul
N
|.—l
\O

=0 other x!

In Eg. (5.3.19) x; and Xxp are defined as the two limiting surface points
for the surface region which is directly radiated by the source (see Fig. 11)

and Xiyg = Xl,Q/L(fL)3 zg 1s the depth of the source with =z} = zO/D.

Fig. 11. Diagram showing the region of the surface radiated by energy
coming directly from the source.

Now Eq. (5.3.19) can be substituted in Eq. (5.2.5),

00
S(0,y) = %‘8 (O:X)e-xyd-x ) (5.2.5)

to obtain the Laplace trandform of the function 28; the transform is in

turn substituted in,

F‘ 1
s(y) = gh O aiars(or, a0, (5.3.20)

()
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(see Eq. (5.2.16)) to obtain for the function s(y'):

X2
¥'z4 e—f’Y'
- 3 S 7 dg . (5.3.21)

When the source lies below the layer the corresponding expression is
in general more complicated, although it may be fuund in a straightforward
manner from the results of Section 4.3. TFor the special case zd = 2,
it is found that s(y') is given by setting zé =4 in Eg. (5.3.21) and
multiplying the expression on the right side by 1/2 .

| It will now be shown that it is possible to choose a set of contours
Cm such that the integral in Eq. (5.2.25) vanishes for m—*@0, when
x') Xé . The contours (cf. Fig. 10) are formed by the lines y = + 2mni
and y = -up, where up —» +o00 for each C, .

From Eq. (5.2.23) it is seen that,
| 11\ £V sy .
Im(X) = = opi L(}L) M(yl)_l dy! . (5.5.22)

Then if Re(y')% O (as is the case on Cp for, in Fig. 10, ¥*» 0) and
if |yq )b 1 (as will be the case since we consider Cn only when m 1is

large) it is found from Eg. (5.3.13) that

_y'
e
M(y') &2 -2 3 ) (5.3.23)

and from Eg. (5.3.21)

s(y') »2 f,& (—28 e;,?)

] [ 1 iﬁ+l]e ‘ (5.3.24)
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Now using Egs. (5.3.23) and (5.3.24) in Eq. (5.3.22), it is seen that the
part of the integral along y = -up converges and goes to zero.as up=» +®
for all m (if x' > x}). Furthermore the integral taken over the part
of the contour, Cm , for which y = +2mri converges and goes to zero as
m —>o0 , when X' > x5 . (It is easily seen for large m , see Eq.
(5.3.23), that when y = u + 2mni the denominator of the integrand of
Eq. (5.3.22) does not vanigh.) A similar discussion applies when the part
of the contour, y = - 2mni , is considered. Thus 7£££Im = 0 as required,
and hence Eq. (5.2.25) may be used to represent the function U(x).

It is now shown that the poles lie so that
(2n-1)n ¢ Im(y,) < (2ntl)n, n=0,+1,+2,... (5.3.25)

Further it is shown that all of the poles are simple. To derive these two

properties, one utilizes the following theorem for analytic functionsg:*

1 '(z
N =57 gg gzéjl dz (5.%.26)

where N is the number of zeros of @(z) = O (contained within the closed
contour C ) less the number of poles so contained, each being counted ac-

cording to its multiplicity. Then let

B(y') =My') -1 ) (5.3.27)

and since M(y') 1is analytic in the finite plane, N of Eq. (5.3.26)
represents the number of zeros of Eq. (5.3.27) counted according to their
multiplicity. ¥For the contour C one chooses the four straight-line

segments joining the four points (-0 ,-(2nt+l)ni), (-¢0,+(2n+l)xi),

* Whitteker and Watson, [ 14], sec. 6.31.
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(+0,+(2n+l)ri), and (+00,-(2n+l)xi); n =0, 1, 2,... . One finds that
there are 2n+l poles within each contour so specified; utilizing the
fact that the poles must come in complex conjugate pairs it follows that
the poles are simple and that the relation (5.3.25) holds (together with
the added fact that one pole lies on the real axis).
Since the poles are simple, EBq. (5.2.26) can be used in calculating

the residues of the poles y,. One finds for the residues,

L Eaw
pp(x')

_L(}L);%,TM(y')’ o

(5.3.28)

where the values of the pole positions, yﬁ , are to be found in Table I.

The residues are now substituted in Eq. (5.2.25),

U(x') = pylx') + “{[pnuc') corten)] (5.5.29)

n=|

and finally the function U(x)  is substituted in Eq. (5.2.11) to obtain

the solution, tﬂ(@,x') ,
Heo,xt) = o,z - wevx) (5.3.30)

utilizing Eq. (5.3.5).

Now in order to obtain the total reflected energy per second received

by the "black" cylindrical receiving element, one substitutes Eq. (5.3.30)

in Eq. (2.1.21) to obtain,

7

FR=2a 5 g J('R,B)QQ(ORB,XB)G.X5 . (2.1.21)
(4
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The functions J(R,3) and QR5 are obtained in exactly the same way as
in the derivation of the function s(y); indeed it is just here that it

becomes evident that the function Fg satisfies the reciprocity relation

given in Eq. (4.5.26). It turns out that the distinction between the de-
nominators in that equation disappears as a result of the small angle ap-
proximations made in the present calculations. It is worth emphasizing
here that the distance between the source and the receiver must be great
enough so that the entire integral in Eq. (2.1.21) can be carried out sub-
Ject to the restriction x3 )- X, For shorter ranges, the iteration solu-
tion (see below) is used. To the reflected energy given in Eq. (2.1.21)
one must add the contribution of that radiation which proceeds directly

from the source to the receiver,

F, = 2aJ(R,0) , | (2.1.22)

obtaining then the total energy per second received by the black cylinder,

F=F_ +F

D R (2.1.23)

For shorter ranges the iteration solution presented in Section 5.1 is

utilized. It is seen from Egs. (5.1.1) and (5.1.7) that
Le,x) = d(o,x) +T(ex) + ... (5.5.51)

where QB(Q,X) has already been defined in Eg. (5.3.19) and (see Eq.

(5.1.3)),

0')¥edo’ . (5.3.32)

(R 1M

a
U (0,x) - glw',x-

In the present calculation the iteration solution was carried through the

firgt two terms (shown in Egq. (5.3.31)) since this reduced the error (in the
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region near the source) to a few per cent which was considered sufficient.
In order to obtain the reflected energy per second received by the "black"

cylinder, Eq. (5.3.31) is substituted in Eq. (2.1.21),

J(R,B);X(ORB,XB)dXB + 2a g‘ S\J(R,B)QT(QRB,XB)dxj + ovee

x
FR = Pa )
4

4

(5.3.33)
Again, the angle 935 and the function J are obtained just as for Eq.
(5.3.19). 7Upon using the values already found for these functions, one

finds for the first term of Eq. (5.3.33),

1) & ZR 20
F}g ) =_E% g (H}?_;_))(W +1> dx  (5.3.34)

where the integral is to be carried over all portions of the surface for

which there are rays connecting both the source and the receiver; (xR,zR)

are the coordinates of the receiver. The Eq. (5.3.34) is valid for zi,zg€& 1;
for regions below the duct, one must alter the form of the functions J

and © as already indicated in connection with Eq. (5.3.21).

Similarly (for z2ds IR & 1) Eq. (5.3.32) becomes,

1 X‘ L
T 2030 %] /24 . L o P16
(6,x') = == o (ﬁz + l) (x'—{)dg 5 [] - []
[X?‘l:Xi] ’
-0, [1" ¢ [1¢, (5.3.35)

G L
where the symbols {a,b] and [a,b] mean respectively the greater

and the lesser of a and b. Algo the second term of Eq. (5.3.33) becomes,



1L
X'=xé—xiR X',X2]
2 N S 29
'Flgg) = -8%%' [h(xﬁ-x" 2 + l] [ I["g"? + l] (x'-Z)dgp ax'.
L. =G
X'=Xp-Xop x'-1,x] | (5.3.36)

The inner integral is defined as zero when its upper limit is less than its
lower limit. The integrals in Eq. (5.3.36) can be carried out in terms of
elementary functions. However, in view of the complicated behavior of the
limits of the inner integral and the rather complicated way in which the
elementary functions appear, it seemed simpler to carry out the inner inte-
gral analytically and to do the second integral numerically. This was what
was done.

The results of the calculations for selected positions of the source
and receiver are shown in Figs. 12 through 17. There is a strong check on
the calculations in those regions (usually for 1 < xﬁ < 2) where the two
methods of calculation overlap. The received energies are plotted in deci-
bels with the energy per second received at one yérd as a reference. It
should be remarked that the results are reciprocal in that they are unaf-
fected by interchanging the source and receiver positions.

When the receiver is moved out of that region of space in which there»
is radiation coming directly from the source (without reflection from the
bounding surface) there is a sudden loss in the amount of energy received
per second. This loss results in the discontinuities shown in}the graphs.
The slight oscillations shown result from the maxime appearing successively
in the once-reflected, twice-reflected, etc., received energies.

For comparison the levels for the corresponding problem with a homo-

geneous medium are plotted on every figure. Tt is seen that as a result of
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the large amoﬁnt of energy scattered from the duct by the surface, the field
is stronger in the homogeneous medium (with the exception in some cases of
a short range interval near the source).

In Fig. 18 is shown the effect of varying the value of B (cf. Eq.
(5.3.7)). The position of the pole on the real axis, which position con-
trols the attenuation of the field at large ranges, is shown plotted against
values of B from 0.05 to 1.0. Also plotted in the same figure is the
real value of the first pole off the real axis (Re(y])). The relative
sizes of these two quantities for a given value of B may be used to esti-
mate the range at which the effect of the series in Eq. (5.2.25) may be.
neglected in comparison with the term pg(x) of that equation (in which
cage the field decays exponentially with XR). If it is assumed that the
residue given in Eg. (5.2.26) is”of order exym,% then one can estimate
that range at which the first term in thé series of Eq. (5.2.25) is small
compared with the term pn(x) . Those ranges at which the first series
term is 20 per cent of the term pp(x) are shown plotted in Fig. 19

againgt different values of B ; the ranges are measured in units of maxi-

mum skip distances (L(rb)).

* This has been the case in the numerical examples considered.



CHAPTER VI

DISCUSSION AND CONCLUSIONS

It has been seen that under certain restrictions it is possible to
treat the problem of the propagation of radiation in a duct which is bounded
on one side by a rough surface by using a relatively simple statistical
model (see Eq. (2.1.18)). There are three major restrictions: first it is
supposed that the properties of the medium vary but little within a dis-
tance of one radiation wavelength so that geometrical optics may be used
to trace the progress of radiation within the volume. Secondly it is as-
sumed that the surface is rough enough so that most of the reflected radia-

tion is diffuse (see the restriction (4.4.38)). Finally it is supposed that

d_.S_M{ 1 and L {{ 1 where i;—bf is the maximum value of the slope
dx kRy dx

of the surface and Rm is the minimum radius of curvature of the surface;
thesge restrictions are imposed so that the Kirchhoff approximation may be
used in treating the reflection process. In such a case it is guaranteed
that most of the radiation reflected from the surface is singly-scattered;
this fact ensured the validity of the restriction (L.k.42) which was im-
portant in the development.

Once the statistical model was Justified, the model was used to treat

a numerical example (Section 5.3) through the use of the methods of solution

outlined in Sections 5.1 and 5.2.

_154_
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It is now in order to briefly discuss the solution. Probably the
outstanding characteristic to be noted from Figs. 12 through 17 is the fact
that the decibel loss is nearly a linear function of range for ranges ex-
ceeding one gkip distance. This of course indicates that for such ranges
the field has already assumed its asymptotic form. Upon examining Fig. 19
it is seen that by the criterion used in constructing that graph the asymp-
totic field could not be expected to be predominant for ranges of less than
about 2.5 skip distances (for B = 0.1). Hence it would appear that that
criterion overestimates the range to the asymptotic field.

The effect on the solution of varying the parameters «, D, and ¥~ is
now considered; « measures the velocity gradient within the duct,
c = co(l+az); D is the depth of the duct; ¥ measures the reflection
properties of the surface (see Eq. (5.3.3)). It is first supposed that
conditions are such that the‘twé—dimensional solution may be converted to
the three-dimensional solution in the way indicated in Appendix A. Varying
the parameters affects the solution in three separate ways. TFirst, it is
emphasized that the distances appearing in the solution are measured iﬁ
units of D for vertical distances and of L(fL) (the maximum skip distance)

g\ 2
for horizontal distances. Noting that L(}L) = \a it is seen that

upon changing D or & , corresponding points appear at different spatial
positions. Secondly it is remarked that since B8 = -%K‘}J-E or B =7YadD ,
changing any of the parameters o , D , or § will in general alter the
value of B involved in the problem and thus alter the entire form of the
solutién since, for instance, the positions of the poles in the Laplace
transform of the solution depend upon the parameter B (see Eq. (5.3.13)).
It is remembered that B represents the fraction of energy trapped within

the duct after a reflection. Finally it is not difficult to see from
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Appendix A and the form of the two-dimensional solution that as a fesult
of using ,L(}L) as the unit of horizontal distance, the decibel loss ap-
pears in the form IOLong(}L)H(zé;;é,zﬁ;B) where H is a function of re-
duced distances and B only. Hence, since L(fL) -depends upon D and
@ , 1t is seen that changing these parameters has, among other effects,
the effect of adding the constant lOLoggg to the loss.

If the parameters «, D, and ¥ are changed in such a way that
B = ¥"0D remains constant, one can obtain a family of solutions from a
given calculated solution (for instance the one of this work). If the sub-
script 1 indicates the parameters used in a given calculation, and if the

subscript 2 indicates a new set of parameters (subject to the restriction

just mentioned) then the decibel loss for the new solution is obtained from

Do a1

the old by adding the constant lOLogvﬁ_ % In this process it is to
102
be noted that the distances zé, xé, and ;ﬁ are reduced and that the units

used in the reduction in general change when the parameters are changed.

A brief comparison with experiment will now be given. In the propa-
gation of acoustic energy underwater, large attenuations have regularly
been observed which could not be explained by the known attenuation mechan-
isms (for instance the attenuation due to viscosity). As an example, the
average of a large number of measurements at 25kc shows an attenuation of
about 4 db per kiloyard.* Tt seems probabl® on the basis of the work in
this thesis that a considerable part of this attenuation is due to the
surface's scattering energy from the duct; for the given attenuation,
assumiﬁg for simplicity that all of the attenuation is due to surface scat-
tering, the value of B obtained from Fig. 18 is in the range of 0.0l to

0.1 which has been seen to be reasonable for the type of sea surface met in

* "Physice of Sound in the Sea", [33], p. 105.
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practice. A gecond interesting confirmation occurs when a plot of the
attenuation against the depth of the duct is made.* Such a plot reveals
that the attenuation increases as the depth‘of the duct decreases as pre-
dicted by the present theory. A good quantitative fit can be made for a
value of B in the above range, by utilizing the results shown in Fig. 18.

Before closing this work, it seems appropriate to discuss the ways in
which it might be profitably extended. In the first place, :as more know-
ledge is gained concerning the reflection properties of the surfaces met in
experiment, it may prove desirable to carry out calculations based on the
present theory using surface scattering functions more complicated than the
one employed in making the calculations of this work. This is a straight-
forward procedure and may ultimately yield an interesting connection be-
tween surface properties of interest, for instance to the oceanographer,
and the observed characteristics of radiation fields in surface-bounded ducts.

Secondly, it i1s not difficult to set up a statistical model, analogous
to that employed in this work, which is applicable to three-dimensional
problems. For certain problems this may prove desirable, although of
course there is a not inconsiderable increase in complication as a result
of this generalization. Another way in which the model might be extended
would be to introduce a second bounding surface (for instance the bottom
of the ocean); the formalism then becomes quite similar to that of Bateman
and Pekeris [ 5] .

Finally it might be of interest to alter the model so as to take into

account some specular reflection at the bounding surface.

* "Physics of Sound in the Sea" , [33], p. 129.
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APPENDIX A

In this appendix a sufficient condition will be shown under which one
may convert quite simply the results Qf the foregoing theory so that they
are applicalbe to certain propagation problems in three dimensions.

The problem to be considered is one in which the bounding surface of
a half space is a function of two cartesian coordinates, & (x,y). It is
supposed that the phase velocity depends only on the distance, z , from the
average surface, and that it depends on this distance in the way postulated
in Section 4.3; that is, the velocity increases to some depth D , and de-
creages thereafter. Thus a surface-bounded duct is set up.

To solve the problem one must find a function Y , for instance

the velocity potential, which satisfies the equation

+ + k =0, Al
32 a2 T2 T EEY A

which has a singularity of the type,
ikr g
ce

Lim - — [ 2 2 2} 1/2
W (x,5,2) = = - - -
ro=> 0 (%,7,2) ro , where r, (x XO) +(y yo) +(z zo)

(A2)
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and where (XO’yC’ZO) represents the source point, and c¢ 1is a constant
determining the strength of the source. The function QJ is to vanish at

the free surface,

LP(X;Y)E(X,Y)) =0 (A3)

and to represent outgoing waves at infinity. It has been supposed that the
source radiates a single angular frequency, GJ .

It is assumed that the restrictions of the body of this work apply in
the present problem. In addition to these, two further restrictions on the
reflection characteristics of the surface are needed. TFirst it is supposed
that the reflection characteristics are independent of the azimuthal angle
of the incident radiation. This might be rephrased as an assumption of
statistical isotropy in addition to (the already assumed) statistical homo-
geneity of the surface. The second restriction on the surface consists of
supposing that all radiation reflected from the surface lies in the plane
of incidence (where the plane of incidence is defined by the direction of
the incident radiation and the =z axis). The significance of this assump-
tion will be discussed after the present derivation is completed.

From these two restrictions, it follows that if the 2z axis is
assumed to pass through the source, then all radiation reflected from a
given region of the surface lies in the plane formed by the radius vector
to the reflecting region and the =z axis. The derivation of the equations
governing the propagation of radiation in the present three-dimensional prob-
lem is directly analogous to that presented in Chapter II for the two-
dimensional problem. Consequently the argument will only be sketched here
and the results given, it being understood that the details of the dis-

cussion may be filled in in a way analogous to that used in Section 2.1.
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Reference will be made to Fig. 20 (which can be compared with Fig. 1).

Fig. 20. Three-dimensional diagram showingﬁthe progress of radia-
tion in a surface-bounded duct. -

Let the following definitions be established: \;Q5D(G,r)dOdA is
defined as the average amount of energe per second reflected from the ele-
ment of surface dA (located a distance r from the origin), which energy
is contained within the angular element dO at an angle © measured from
the horizontal. The quantity JXBD(O,r)deA is defined similarly with the
exception that the radiation considered is assumed to undergo its first
reflection at the element dA. The functidn A(0,0')d0 is defined as the
average énergy per second reflected from some region of surface in the
angular element d6, making an angle © with the horizontal, when unit
energy per second falls on the region from the direction ©'. It is sup-
posed that the incident radiation has a single azimuthal angle (and by hypo-

thesis then the reflected radiation all lies in the plane of incidence).
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From the definition of !;OBD( O,r) Jjust given and from Fig. 20" it is
gseen that the (average) amount of reflected energy per second incident upon

the surface element dserA¢ is,

aE,, = E-QBD(Q',I'-L(Q')) [r-L(Q')] afas ae) . (AL)
It is assumed that AP <4K1; also L(O) is defined, as before, as the dis-
tance travelled by a trapped ray making an angle O, between surface re-
flections. Then using the definitions of 'QSBD and A one finds, as in

Section 2.1, the following equation governing the function t'Q?)D:

Jd

3D(Q,r)r = JBD(O,r)r + gg_OED(Q',r-’L(Q')) [r—L(Q‘)] A(9,r-01)do",

& (A5)

where, as. before, @ T represents the set of all trapped angles.

It is now of interest to show the connection between the function 283])
and the corresponding function for the two-dimensional problem, 2&

To do this, Fig. 21 is considered. It is supposed that the constant

¢ of Eq. (A2) is adjusted so that the source radiates 2/n units of energy
2.
nk

the quantity ,3 (0,x) it is seen from Eq. (L4.5.9) that,

per second, per solid angle (then c¢ = ( ) 1/2 }. Considering first

28(9,1{1) - 3(1,0)4(0,01 Jstn 61 (A6)

where O-io is the angle made with the x axis at the surface by the ray
connecting the source and the surface point (1). Then one finds upon using

Eq. (4.3.18), the definition of é 3D and Fig. 21 that,

_28(9,1') cos gzO = rJBD(G,r) (AT)
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where ©,n 1s defined in Fig. 21 as the angle made with the horizontal

at the source by the ray connecting the source and the surface point (1).

Fig. 21. Diagram showing singly-reflected radiation received by

the cylindrical element of radius a and length b .
If it is assumed that the source radiates little energy into directions
such that 0,5 1s not emall (as was done in Section 5.3 for the numerical
example and as is often the case in experiments to which the present theory

is applicable), one sees from Eq. (A7) that

rag5D(O,r) %43 (e,r) . (A8)

In such a case one finds from Egs. (A5) and (2.1.18) that QQBDr and <
satisfy the same equation and hence that the solution,‘tQBD s, to the present
three-dimensional problem can be obtained from that of the corresponding

two-dimensional problem by dividing the latter by the range.
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If the source radiates an appreciable amount of energy per second in

directions for which the angle OZ is not small, one can treat the three-

0
dimensional problem by modifying the source function as indicated in Egq. (AT7).
The experimentally measured quantity, the amount of energy per second
received by the monitoring element, is now considered. A section of circular

cylinder of length b and radius a 1is chosen for the recéiving element.
It is supposed that & and b are small compared with other distances in
the problem, and that the cylindrical section is "black". The receiver is
assumed (as shown in Fig. 21) to be oriented with its axis perpendicular

to the plane formed by the =z-axis and the radius vector to the field point,
(rg,zg) . Furthermore A§ is chosen so that Af = EE . Then upon con-
sidering Fig. 21 and using the definition of the quantity J 3p? the fol-

lowing result for the singly-reflected energy per second, received by the

section of cylinder, is found:

Fra(sa) (Tro%R) = ‘;—R 2a g- SJ 5D(ORl,rl(QRl))rlJ(R,l)drl , (A9)
S
where the integral is to be carried over all portiqﬁs of the surface for
which rays connecting both the source and the receiver exist. The function
J(R,1) 1is the magnitude of the intensity defined in Section 2.1. In a
gimilar way the following result is found for the total reflected energy
per second received:
Pe(sp)(Tro2g) = 2 %llf; .,_Q5D(Q,Rl,rl(ORl))rlJ(R,l)drl . (A10)
[4

Finally one finds for the energy per second travelling directly from the

gource to the receiving element,
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b
Fp(3p)(rRs2R) = 22 5; cos 6,,J(R,0) . (A11)

Again if all of the energy is radiated at small angles OzO’ this can be

simplified to,

FD(BD)(nR’ZR) = 2a %; J(R,0) . (A12)

By using the equivalence already shown between \:QBDr and \;Q it is seen

upon comparing Eqs. (AlO) and (2.1.21) and also Egs. (Al2) and (2.1.22)

that the average total energy per second received in the three-dimensional
problem is obtained from the corresponding quantity of the corresponding
two-dimensional problem by multiplying the latter by %‘

It is desirable to again consider the assumption tiat the surface
is such that it reflects all energy in the plane of incidence. Of course
it is not expected that such a surface is common in physical problems (if
indeed it ever occurs). Howéver, in certain physical problems this situa-
tion is approximated. It has been shown by Eckart* that in problems for
which one can use geometrical optics to treat the reflection process, the
reflected radiation lies predominently near the plane of incidence when
the grazing angle (measured from the horizontal) is small. Since small
angles are of major interest in duct propagation problems, this result is
useful in the present connection.

On the basis of thé results of this appendix, it may be supposed that
one can obtain an approximation to the three-dimensional problem in the
menner indicated above if the azimuthal spread of the reflected radiation

is small (when a uni-directional beam is incident on the surface).

*  Eckart, [8] , p. 11.
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