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ABSTRACT

A variational method is presented which is used to calculate the
energy appearing in the various diffracted orders set up when a plane wave
is incident upon a periodic feflecting surfacé. Either the first or the .
gecond boundary condition can be 80 treated. A sample problem is worked
showing that if the average absolute slope of the reflecting surface 1is
small (segments of surface with large slope mey be included) and if the
displacement of the surface is nét large comparédeith the wave length'of
the incident radiation, the formulation gives results correct to within a
few per cent. The calculation shows clearly the existence of Wood ano-

malies; these are discussed in some detail.



A VARTATTIONAL METHOD FOR THE CALCUIATION OF THE
DISTRIBUTION OF ENERGY REFLECTED FROM A PERIODIC

SURFACE *T

W.C. Meecham

I. INTRODUCTION

The problem of the reflection of radiation from non-plane surfaces
has in the past received the attention of many people employing various ap-
proximations in its treatment.(l'5) It is the purpose of this paper to pre-
sent a variational method for the treatment of such problems, in particular
those in which the surface involved has a displacement which is of the order
of magnitude of the radiation wave length and in which the surface has portions
of moderately large slope , though the average absolute slope should be small.
This class of problems is one which is not amenable to treatment by the other

methods at present available.

* This work was supported in part by the Office of Naval Research.

f The method described here was presented in a paper before the thirty-eighth
Annual Meeting of the Optical Society of America.

1. B.B. Baker and E.T. Copson, The Mathematical Theory of Huygens' Principle
(2nd ed.; London: Oxford University Press, 1950), chap. II.

2. Lord Rayleigh, Roy. Soc. Proc. 794, 399 (1907).
3. V. Twersky, J. Acoust. Soc. Am. 22, 539 (1950).
L. C. Eckart, J. Acoust. Soc. Am. 25, 566 (1953).

5. L.M. Brekhovskikh, Zh. exsper. teor. Fiz. (USSR) 23, 275 (1952). Translated by
G.N. Goss, U.S. Navy Electronics Laboratory, San Diego, California.
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The method may be described as follows. TFollowing Trefftz,(6)
a linear combination of known solutions to the wave equation is chosen to
represent the reflected field. The coefficients will be chosen here so that
they minimize the square of the error in the boundary condition. (Trefftz
chose them so as to minimize the Rayleigh quotient.) This process of mini-
mization is equivalent td orthogonalizing the set of functions formed by
evaluating the trial functions on the boundary. Once this set is orthogon-
alized one can easily construct the estimates of the reflection coefficients
for the surface involved.

The class of problems to be considered will nowvbe described. It
1s desired to find a solution ¢ of the two-dimensional, time-independent

wave equation,

[E?SE + égzg + ké] ¢(X’Z) =0 (1)

in a half-space bounded by a periodic cylindrical surface ¢ (x) (see
Fig. 1). In Eg. (1) k = w/c when w 1is the angular frequency of the
radiation source and c¢ 1s the phase velocity in the homogeneous medium

bounded by ; (x). The solution of the time-dependent wave equation is
~-iw

then given by ¢e 1we

|

A /o)

EVAY EVAC L Tsw

O;

Fig. 1. Sketch showing the definition of the symbols used in the
solution of the reflection problem.

6. E. Trefftz, Math. Ann. 100, 503 (1928),
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Using the method described herein, one may treat either the first

(7)

or the second boundary value problem. Thus one may require either

#(x,Z(x)) =0 (2)
or, '
é?gix,z) . -0 . (3)
2= (x) -
Here %%ﬁ represents the derivative normal to the surface. If is supposed

that the incident radiation consists of a plane wave making an angle ©; with
the +z direction; +then one can write the total field as the sum of two com-

ponents,

=
1]

¢i + ¢r ()4')

where,
ik [x sin ©; + z cos Qi]

¢i = e _ (5)

The boundary conditions given by Egs. (2) and (3) are frequently
encounted in the treatment of problems involving acoustic and electromagnetic
radiation. For acoustic problems, the function ¢ may be taken to represent
the (time-independent) velocity potential, with ¢ defined by,

v =-V¢ (6)
where v is the particle velocity at an arbitrary field point (x,z). Then
the first boundary value pfoblem, represented by Eq. (2), corresponds to a
physical problem in which & (x) 1is a pressure release surface. Furthermore
from Eq. (6) it is evident that the second boundary value problem corresponds

to the physical problem in which ;Kx) is a rigid surface. TFor problems

7. One could use the same method to treat problems where the boundary condition

is of the form [A¢ + B EZQ]

onz= ;(X)
of x or in fact the more general problem where one is given two different
media separated by a periodic surface and is asked to find the reflected
and the transmitted fields.

= 0 where A and B may be functions



Lo
involving electromagnetic radiation on the other hand, ;;(X) is assumed to
be a perfectly conducting surface. Then for an incident plane wave which has
its propagation vector lying in the x-z plane and which is polarized so that
the electric vector is perpendicular to the x-z plane, one chooses the bound-
ary condition given by Eq. (2) where it is supposed that the electric field,
which has but a single cartesian component, is given by the function ¢.
Finally for incident radiation polarized so that the electric field lies in
the =x-z plane one lets ¢ represent the (single cartesian component) mag-

netic field and chooses the boundary condition given by Eq. (3).



II. REPRESENTATION OF THE REFLECTED FIEID

In order to make progress toward a solution of the above class of

(8) (9,10)

problems, Rayleigh and others have chosen to represent the reflected
field by an infinite set of plane wave solutions of the wave equation. In
addition to homogeneous, one must choose inhomogeneous waves. The waves must
be chosen in such a way that they are respectively either outgoing or ex-
ponentially damped as z-> -¢0. Furthermore the fact that the boundary is

periodic implies that one needs only a discrete set of such waves. Thus cne

is lead to expect that the reflected field ¢r can be represented by the

following type of sum,

o0
-ik sin @y x - ik cos O, z
4; Aye (7)
¥z=-00
where
K
sin Oy = ‘\?E - sin 6y
2 41/2 (8)
cos Oy = [l - sin QV] / s

where K = 2n/A (see Fig. 1),
and where the coefficients, A, , are to be determined through the use of
the boundary condition. The angles ©. of the various reflected orders are

Just those obtained from the ordinary grating equation.

8. Lord Rayleigh, Theory of Sound (2nd ed.; New York: Dover Publications, 1945),
vol. IT, p. 89.

9. U. Fano, Phys. Rev. 51, 288 (1937).

10. K. Artmann, Z. Physik 119, 529 (1942).

_5_
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Lippmann(ll) has questioned the validity of the representation
given by the expression (7) in the region §M< z & C(X), at the same
time confirming its validity in the region 1z ( EM (see Fig. 1). The
details of Lippman's argument are presentéd in an unpublished report. It
will prove convenient to reproduce here the substance of his argument, though
in a somewhat altered form.

One may begin by representing the reflected field through the use of

(12)

the two-dimensional Helmholtz formula,

S (kl‘lp 2 f#(1)ds; . (9)
g

The integral is to be carrled over the entire surface ;(X); the symbolsav
1

represents the derivative with respect to the outward-drawn normal, (see Fig.

Z
ds,

= —> \—Pj
./\. /Q—CX) ([Vr

|ZM | w N "

(P

Fig. 2. The figure shows the symbols used in the Helmholtz
formula.

11. B.A. Lippmann, J. Opt. Soc. Am. 43, 408 (1955).

12. Baker and Copson, loc. cit., chaps. I and IT.
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For the present purpose attention has been restricted to the first boundary
value problem.

It is not difficult to verify that,

3 (x & (x 1) = ik Asingi D d(x1,7 (x1))
Using Eq. (10) one can rewrite Eq. (9).
0o x= 4\ | ‘
@ -Ié E g H(()l)(krn)igg\%]‘_'l eik‘n JACELC dsy (11)

where

2 2] 1/2

r, = [(XP -nd\ - x)) +(zp - z7) (12)

By using Sommerfeld's contour integral representation for the Hankel function

one may construct the plane wave representation for that function,

. 2 2
(1) elk(XP—X]_ F i ‘< 1/ (zp-21)
H

o (krip) =

: 1/ k, (13)
l<2) 2 :

-0
where the minus sign applies if zp-z] < 0 and the plus sign if zp—zl') 0.
Then by substituting Eq. (13) in Eq. (11), by assuming the validity

of interchanging the summation and the integration, and by utilizing the re-

sult 0
) .
é R AN i § (K -nK) (14)
Nz 0o Yz -go

where 8 (K -nK) is the Dirac delta function, one arrives at the following

representation for the reflected field:

(0]
¢r(P) _ Z A, e—ik sin O, xp-ik cos 6, zp } (15)
Y=-
when zp- QM < 0,
and where
A i sin O, kxq+ik cos © ;(x)
A\?:ﬂkl:::os Y [—Ié %%%%l]e v Y Hax

(16)
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Further 0o
- -1k 8in Oy Xp - 1k cos @y, 2z
er(P) = E {AV(ZP) e ¥ “P Yy “P
Y= -p0
4 A-I;;(ZP) e—lk gin @‘P Xp + ik cos Q? Zp } , (17)

when CM<ZP < C(X) 5

where,

i (o) < & [——# dsy agsl) i sin Oy kxy F ik cos 0,Z (xlc)1X
P nk cos O hi axy3 V1 1,
ct

(18)

+
and with C=(zp) defined in Fig. 3.

Z\

+
Fig. 3. Diagram defining the contours C'(ZP)°

The plausibility of the assertions made above concerning the re-
flected field now becomes evident. From Eg. (15) it is seen that when the
point (P) is removed from the surface, the reflected field is composed of

plane wave solutions which are either proceeding in the negative 2z direction
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or die out exponentially in that direction. Furthermore when §M< ZP< C(XP)
one sees from Eq. (17) that the field may be represented in a form which ap-
pears to be a combination of waves moving in both the plus and the minus =z

directions with coefficients dependent upon zp. Of course in the latter

case, individual terms of the series are not solutions of the wave equation.
For certain problems 1t may turn out that the representation given

in BEq. (17) is merely an alternate (and more complicated) form for the re-

presentation of the type given by Eq. (15). Indeed this is the case for one

special problem which can be solved exactly. The problem is one in which

the field satisfies the boundary condition given by Eq. (3): it is supposed

that the incident wave falls normally upon one of the faces of the representa-

tive groove form (see Fig. 4%

z (x)
90-

Twedent
Wave

Fig. 4. Figure showing a simple reflection problem which can be
solved exactly.

Gn.the figure, n 1is an integer). The reflected field for this problem ob-
viously consists of a gingle plane wave moving in a direction opposed to that
of the incident wave and with amplitude unity; this solution is valid in the

entire region z £ &.
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To summarize the work in this section, it is evident that for some
problems one can represent the reflected field by a sum of plane waves pro-
ceeding in the negative =z direction even in the region €M< z { C(X) .
However, although to the author's knowledge an exact solution indicating the
necessity of using a more complicated representation of the type given by
Eq. (17) is lacking, it seems reasonable to suppose that in general the plane
wave representation is not sufficient in the region near the reflecting sur-

face.



ITI. THE VARTATTONAL METHOD

It will be convenient to define,
¢I‘ = ¢I‘P + ¢I‘NP (19)

where

00
z -ik sin 6y, x - ik cos Gy 2
¢rP = - AVe v v ) (20)

valid in the region z € &(x) , and @.np Trepresents that part of the re-
flected field which cannot be written in that form. For the purposes of the

present paper, attention is restricted to those problems for which
MrNPl << I QSrP‘ ’ (21)

Lippman and Oppenheim(la) have proposed a sufficient condition for the valid-

ity of the relation (21); it is:

y |
l—%——l« 1, (22)

when A and A are of the same order of magnitude. The results given in
Section IV make it evident that this condition is too restrictive for the pre-
sent work, probably because of the minimal formulation éf the problem.

It is possib]},e, through a detailed consideration of the images con-

tained in the region C(x)¢{ 24 0, to estimate the function f.yp using

a method essentially the same as that outlined below. Problems for which

13. B.A. Lippmann and A. Oppenheim, Technical Research Group, 56 West 45 Street,
New York 36, N.Y., Final Report on Contract No. AF18(600)-95k.

-11-
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such a treatment is necessary will not be considered in this paper. In order
to simplify notation it will be assumed hereafter that ¢rNP = 0 . TFurther-
more only the first boundary value problem (the boundary condition is given
in Eq. (2)) will be considered in detail. When that work is completed, it
will be shown how to alter the formulation for the second boundary value prob-
lem.

To proceed, upon using Egs. (2), (4), (5), (19), and (20) one finds

the following relation for the determination of the constants A, :

d
ik lsineix+cos@ :EET _1k San +cose J
e 1 l; A \?XC ‘(‘z 0 (23)

and upon applying Eq. (8), an l iding by the common factor ol sin Oix ,

this becomes

1k cos ng(x Z‘A -1VPKx-ik cos Oy C(x) o . (24)

vz -po
To render the treatment of Eq. (24) more systematic let

7\ (x) = exp (0)
Fg(x) = exp (1)
Fs(x) = exp (-l) |
FM<X) = exp (2) (25)
and
A = Ag
Ke =4
K5 = A,



further let

Then Eq. (24) becomes,

— ©
Bi(x) - > EFx (x)=0. (27)
K=

|
If the series in Eq. (27) is broken off after the Nth term, as

must be done in many problems, the left side of that equation is not in general
equal to zero. It is proposed that in such a case, the constants ‘Kk be
chosen in such a way that the integral over the surface é: of the absolute
square of the left sidé of Eg. (27) is minimized. Since all quantities in

that equation are periodic with period JfL , it is sufficient to carry the
integral from x=0 to x= j\ . It is easily seen from Eq. (23) that this
minimization is equivalent to carrying out the corresponding minimization of
the error in the boundary condition. It is not difficult tc show that if one
chooses the coefficients Kk so0 that they satisfy the set of equations

(with £ = 1,2,...,N)
N

Kz KR(F,Q oFr) = (Fy, Ei) (28)

when the inner product of two functions, (g,h), is defined by
l A
(85h) = KS gnax (29)
[ '

then the above indicated minimization is accomplished.

Rather than approach the inversion of the set of equations (28)
directly, it has proved convenient for the purposes of computaﬁion to use
an equivalent, though somewhat indirect, method. To see this method, let
Eq. (27) be considered again. One observes that the problem is‘equivalent
to finding that linear combination of functions ¥F, which is equal to the

A ‘ .
given function ¢i . This task is complicated by the fact that the

14. Setting @ryp (of Eq. (19)) equal to zero is equivalent to assuming that
this is possible.
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functions Fy are not in general mutually orthogonal. This suggests that
one proceed by constructing an orthonormal set of functions from linear com-
(15)

binations of the given set Fk . There is a well-known method for doing this.

Let the desired orthonormal set be Gy; then one can write

e
G - ; N (30)
<|

with .

(GpsGy) = & mn
when Smn is equal to one or zero depending on whether m=n or not and where
thé coefficients rﬂ%?) are determined as follows. Let G; be equal to
Fl devided by its norm; the norm of Fl is defined as (Fl,Fl)l/? One then
takes that linear combination of F, and ¥, which is orthogonal to Gy ,

divides it by its norm and sets it equal to GE’ Upon proceeding in this way

the following recursion relations for the coefficients in Eg. (30) are easily

; . ' (k)

obtained: I-——,(k) zf— Q
L= 1 (51)
k
where
K) = (B)* (8)

Q<k7 ZS‘LQ= — P Q (FG’FK)\-—-‘z ’ (32)

Q: k ZS"U;) =1 Halianl
and where

=)

¥y - iié‘(k)*(rﬂ R IST e (33)
‘ M= Ve By Y

when the star indicates the complex conjugate.

Now let
Y (x) - i BG, (x) , (34)

15. For a reference concerning representations in terms of systems of functions
see R. Courant and D. Hilbert, Methods of Mathematical Physics (Engl. ed.;
New York: Interscience Publishers Inc., 1953), vol I, chap. II, secs. 2
and 3.
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where ¢i(N) represents the Nth approximation to 5; and where Bk are
defined by
By = (Gy,P1) (35)

or upon using Eg. (30),
B, = f M w3, - (36)
o=

Then by using Eq. (30) in connection with Eg. (34) one can write,

N
¢L~<N)(x) = E AT, (37)
=1
hen N
! o= s M@ (38)
pr o k.
That .
K =5 (39)

where Ak are defined implicitly in Eq. (28) can be seen by observing that
the Bx as defined in Eq. (35) are the Fourier coefficients of the function

"51 with the set Gx. It follows then that the quantity
1 - =) 2
N g\lféi - @3 I dx (40)
fol

is minimized and therefore that the coefficients 'Ei ; as obtained from the
coefficients B) in Eqg. (38), must also minimize the expression (40). But
Eq. (28) governing the quantities Kk was obtained by minimizing the quantity
(40). Hence Eg. (39) must follow. Indeed one can verify Eq. (39) directly
by substituting Eq. (38) in Eq. (28).

One of the advantages of proceeding as above toward the solution
of Eq. (28) is that one obtains an estimate of the error incurred by breaking
off the infinite system of equations at N , this error being combined with
the error involved in the assumption that ¢rNP = 0 . The estimate is ob-
tained in a way similar to that by which one ordinarily obtains Bessel's in-

e@mlﬁy}lm One finds that
A

‘l — —-— —
KS‘% - ¢§_N)l ° dx = (?fiyféi) - i \Bk\ § 5 (k1)

K=1
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or by observing the definition of @; given by Eq. (26),

l
M.S.E. = 1 - g\ | By | 2 , (L2)
K|

where M.S.E. stands for the mean square error in the boundary condition
(the expression (40)). The error arises both as a result of considering
only a finite number of diffracted waves and -as a result of assuming that

f.xqp 1is negligible.

There is a relation which follows from the conservation of energy
which can also be used as a check on the accuracy of the calculation. By
considering the energy balance within the region of the x-z plane bounded
by ::(X), x=0, x= /\ , and z=-C, where C is large and positive, one

obtains the following relation for the exact solution,

cos 0 = g cos O, [AV‘ e (43)

V
where the summation is carried over those values of ¥V for which cos Oy

is real and where the notation of Eq. (20) is used again, remembering the
changes made by Egs. (25).

A third relation which can be used to check the accuracy of the cal-
culation arises from the reciprocity theorem,(l6) To obtain this expression
one treats first the problem of the reflection of radiation from a periodic
surface which is finite in extent in the x direction, using the Helmholtz
formula. This problem is then compared with the corresponding problem in-
volving an infinite periodic surface. By allowing the finite surface to ex-
tend to greater and greater distances in the x direction, one finds the

following relation governing the plane wave reflection coefficients,

cos 6y A~ (01) = cos 1Ay (Oy ) (L)

where A~¢(Qi) represents, as before, the reflection coefficient of the 1>th

16. Lord Rayleigh, Theory of Sound, loc. cit., vol. 2, sec. 29k.
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order wave but with the incident direction explicitly indicated. Frdm Fq.
(k) it is seen that the zeroth order (specular component) should be symme-
trical about ©;=0, regardless of whether or not the surface is symmetrical.
It will now be shown how to modify the work of this section in order
to méke it applicable to the second boundary value problem. It will again be

assumed that ¢rNP is negligible. In order to obtain the required result,

consider the boundary condition given by Eq. (3) in connection with Eqs. (4),

(5), and (20). One easily finds (essentially by taking %%; of Eq. (23))

the following relation governing the reflection coefficients:

ik(n_sin®,+n cose,) eikcosgiz;<x)
X 1 7z i
00
- D Ay (1K) (ngeingy +ngeosey) o Y TR0V S () o s
¥Y=-00
where
27 /2 24 -1/2
nX:‘C/Ll‘F(C')] / , l’lZ:_[l_,_(C,)] / (46)
and
el
s (¥7)

The Eq. (45) is to be compared with the corresponding Eq. (24) obtained for
the first boundary value problem. The quantities n, and n, are of course
the components of a unit vector normal to the surface Z:(x) and pointing
out of the physical region. Now it is not difficult to see that the approxi-
mate solution of Eq. (45) is given by Egs. (38), (36), and (31), (32), and (33)
upon replacing (F,,F, ) by (Ern,akm)gg and (Fn;aé) by (Zﬁn,gsi)g where

1 A
(g,h)2 =_7G{5 g g*hdx , (48)

[+

Il

% 1 ik(l’lXSin@i‘f'IlZCOSQi) _¢'l (l{'9)



-18-

and

<
'._i

-ik (ny sin Oy + n, cos Oy) exp (0) (50)
50

N

= -ik (ny sin 07 + n, cos ©1) exp (1)

-ik (ny, sin©_1+ n, cos @_y) exp (-1)

=
o W
H

It is noted from Eq. (48) that the definition of the inner product has been
changed in order to keep i1t dimensionless for the present functions. Further-
more for the second boundary value problem the Eq. (42) must be modified. By

analogy with Eq. (41) one can write
A

o)

2

().
#i 28 . @
%\7-—5’\7 dx:(@p@i)z‘i[Bklg

K=l

(51)

where the B, are those appropriate to the present problem, and where the

ELA 24, )

functions == and —— appearing in the integral are to be evaluated
Ag oY
at the surface. Finally then Eq. (51) can be written,
, B _ N ) |
1
p MS.E. - (345, &)s - E | By (52)
K=

where M.S.E. 1is again the mean square error in the boundary condition
(now with dimensions of reciprocal length squared).

To sum up the results of this section, one uses Eq. (38) to obtain
estimates of the reflection coefficients of the various diffracted waves.

s : : s (k) .
The quantities By, are defined in Eq. (36); the quantities g~ which
are also needed are defined in Egs. (31), (32), and (33). Finally if the se-
cond boundary value problem is being considered, Egs. (36), (31), (32), and

(33) are altered as indicated in Egs. (48), (49), and (50).



IV. RESULTS OF CALCUILATIONS AND CONCLUSIONS
Calculations based upon the method presented above have, to the
present date, been carried out only for surfaces of the class shown in Fig. 5,
and for the first boundary value problem. Hence, since the field function
vanishes at the surface in such a case, the solutions are appropriate for
acoustic problems involving free surfaces or for electromagnetic problems
involving incident energy polarized with the electric vector parallel to the

generating element of the (conducting) surface (perpendicular to the page

A2y .-‘— A—»t N
90° '

in Fig. 5).

Tweident
Wa.ve

Fig. 5. Figure showing the type of surface for which computations
have been made.

In the figure three representative reflected wave directions are

shown, although they have not been chosen to fit any particular case.

-19-
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The surface was chosen for calculation for two reasons. First, it
is of some physical interest;.the sea surface assumes a shape reminiscent of
that shown in the figure under conditions of high wind, so that the treatment
of the problem may be helpful in attaining an understanding of the distribu-
tion of acoustic or electromagnetic energy reflected from such a surface.
Furthermore, the surface is of the type known as an echelette grating which is
sometimes used in optical gnd infra-red spectral work. The second reason for
choosing the indicated type of surface for the calculations is that the cal-
culations are somewhat simplified; the integrals shown in Eq. (29) can be
evaluated in terms of exponentials when the surface is composed of straight
line elements,

For the sake of completeness the formulas for the inner products in-
volved in the calculation of the distribution of energy reflected from a sur-

face of the type shown in Fig. 5 will be given here. One finds that

(F,F,) =(F ,F ), + (F,F ), (53)
where
l -1
(FpsFnla = [Vm Ya) ‘KC5 cos*@vm-cos @Vn)]
. k '
. {exp i YL°[(Vm' Vn) X & (COS*QVm_COSQVn)] -l} (54)
and
(Fm’Fn)b - 23{1[. d‘ V V %d (cos*@vm-cosgvn) :] -
4 2 (V- V) & oy ymeo0ys)] -1}
exp 1 - m-Yn)-K & (cos* -Cco8 -
Yl Vn Vn " (55)
Also — - —
(Fm’¢i) = (Fm’¢i)a * (Fm9¢i)b b (56)
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where
(F -¢- . k *Q a} ]_l
o i)a = 55 "\)m - (cos 1?m+cos 1)
. {exp inp I:\)m - % (cos*OVm+cos@i)] -l} (57)
and
-— cfe 5 k -1
(Fm’¢i)b =57 [ - Vm -RkC (COS*@Vm+COSQi)]
o 2 k
s Q exp 1‘YL0[ -0V, - % d(cos*gvmmosgi)} —l} s (58)
when Ot
Y)_o = T+ ? 5 (59)
= tan.Q) P | (60)

and V1 = 0,5 = 1, V5 = -1, 'V}, =2,....

The entire problem, starting with the calculation of the inner

products (Fy,F,) and .(Fk,¢i), through the calculation of the quantities

l—‘(f) , and including the calculation of the estimates of the reflection
coefficients _A-k (or A,,) has been programmed for MIDAC, the University of
Michigan digital computer. The recursive and cyclical form of the central
part of the calculation, the central part being the computation of the quan-
tities r—‘ka) given by Eqs. (31), (32), and (33), renders the formulation
easily adaptable to a digital machine. The capacity of the machine limited
the calculation to ten diffracted waves (N=10).

For the calculation presented_ in Fig. 6 a surface of the type shown
in Fig. 5 was chosen with LP = 10° and with A= 1.155N. This ratio of
A to A implies that for a given incident angle, at most three diffracted
orders appear. The plus second diffracted order never exceeds 0.38% and is
too small to show on the graph. It i1s noted from the figure that the energy

deficit of the calculation (as computed from the right side of Eq. (45))
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averages about 2.5% and never exceeds 5%; furthermore the M.S.E. is less than
0.025. From these two checks, it seems reasonable to expect that the error
for a given order is less than 5% (of its value).

As suggested in Section IIT, the reciprocity relation can also be
used to check the accuracy of the calculation. It was deduced from Eq. (L4L)
that the reflection coefficient for the zerothvorder should be symmetrical
about the normal; it follows then from the energy relation given by Eq. (43)
that the percentage of the total incident energy in the zeroth order should
also be symmetrical. It is seen from Fig. 6 that this order is symmetrical
within a few per cent, the assigned error. All other reciprocity checks

carried out also agree within a few per cent. For instance one should have,

cos 60° A;(0°) = cos 0° Ay(60°) , (61)
and

cos 9°8" A(45°) = cos 45° A1(9°8") . (62)

Actually the numbers from the calculation are -0.1485 +0.1449i and
-0.1562 +0.1525i for the left and right sides of Eq. (61) respectively;
-0.1787 +0.23121 and -0.1735 +0.2242i for the left and right sides of
Eq. (62) respectively.

From Fig. 6 it is seen that the main part of the reflected energy
is carried by the zeroth, or specular order; this component never drops be-
low 80%. Discontinuities of the type shown in the zeroth order at ©x +8°
are known as Wood anomalies(l7) (after their discoverer) and have been ob-

(18)

served meny times experimentally. Rayleigh showed that the positions of

17. R.W. Wood, Phil. Mag. 4, 396 (1902).

18. Lord Rayleigh, Phil. Mag. 14, 60 (1907).
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the ancmalies were comnected with those angles at which diffracted orders
appear (or disappear). Both Wood and Rayleigh concluded that the anomalies
appeared only for (electromagnetic) radiation incident with electric vector
perpendicular to the generating element of the reflecting surface (the se-
cond boundary value problem) and that for parallel-polarized radiation no

(19)

such anomalies occurred. Recent work by Palmer has shown that the anomalies
can occur for parallel-polarized radiation as well; Palmer concluded however
that in this case the anomalies would not appear for shallow surfaces (where
the angle q) is small). The present calculation shows that they are to
be expected even for such surfaces, although the effect here is not large,
about 5%.

It is to be remarked that the problem of calculating the shape of
the anomalies has proved intractible by previous methods. It is seen in Fig.
6 that the anomaly shows a sharp edge on the side where a new order first

(19)

appears, as is often observed experimentally. Existence of this edge is
connected with the fact that the energy contained within an order falls off

rapidly as the angle of the order approaches 90° (as the order disappears).

In fact ié can be shown through the use of a perturbation treatment such

@)

as Rayleigh's the treatment being useful for near grazing incidence) in
conjunction with an application of the reciprocity theorem<l6) that it is to
be expected that the slope of the curve is infinite at this point. Indeed
it is Just this discontinuity, and its attendant effect upon the other
orders through the conservation of energy requirement, that gives rise to
the Wood anomalies.

It is of interest to compare the results of the present calculation

with those obtained for the same problem using other methods. One might

19. C.H. Palmer, Jr., J.Opt. Soc. Am. 42, 268 (1952).
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first consider Rayleigh's perturbation treatment. However it turns out that
the method, at least in first order, is not applicable, since one requirement
for its validity is that k ;M << 1 whereas here k Z=M ~~ 1. BSecondly
one might consider using Kirchhoff's approximation;(l) the results obtained
using this approximation are essentially the same as those obtained from
Eckart's(u) and Brekhovskikh's(5) formulations. Xirchhoff's method gives re-
sults which are considerably in error; for example the complex reflection co-
efficient using Kirchhoff's approximation is compared with the corresponding

results using the present formulation in Table I. The surface chosen is

the seame as that used in Fig. 6.

TABLE I. A comparison of the results of the Kirchhoff formulation
with those obtained using the variational method for normal inci-

dence.
Theory  Zeroth Plus first Minus first Total
energy
Kirchhoff -0.248+0.7201 0.1900-0.3131 -0.1397+0.15461 67%
Variational -0.1875+0.8791i  0.297 -0.290i -0.0916+0.3291 95%

Finally the question of the rate of convergence of the calculation
is taken up. "In Fig. 7 are shown the successive approximations to the values
of the reflection coefficients, as each new diffracted wave is introduced in
the calculation. It seems to be reasonable to deduce from the results shown
in Fig. 7 that including more terms (more diffracted inhomogeneous plane
waves) in the calculation is not likely to significantly improve the result.
One then concludes that the residuval error arises from the incomplete form of
the representation of the reflected field (as explained in Section II). Hence
further improvement can be expected only through the introduction of images

in the region g { z £0. However it seems that for surfaces whose average
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absolute slope is small (sections of surface of large slope may be included)
and whose maximum displacement is not too many wave lengths, the formulation

as presented is accurate to a few per cent.
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Fig. 7. The graph shows the successive approximations to the energy contained
in the various orders appearing when a plane wave is normally incident upon a

surface with kP =10° and with /L =1.23 A . The total calculated energy
is also shown.
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