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Summary

We analyzed 13 single nucleotide polymorphisms (SNPs) within the apolipoprotein E (APOE) gene, to identity
pairs of SNPs that interact in a non-additive manner to influence genotypic mean levels of the ApoE protein in
blood. An overparameterized general linear model of two-SNP genotype means was applied to data from 456 female
and 398 male unrelated European Americans from Rochester, MN, USA. We found statistically significant evidence
for non-additivity between SNPs within the male sample, but not within the female sample. We observed nine pairs
of SNPs with evidence of non-additivity at the o = 0.05 level of statistical significance within the male sample,
when approximately three were expected by chance. Five of the nine pairs involved three SNPs (560, 624 and 1163)
that did not have a statistically significant influence when considered separately in a single-site analysis. Three of
the nine pairs involving four SNPs (832, 1998, 3937 and 4951) showed significant evidence for non-additivity in
at least one of two other male samples from Jackson, MS, USA and North Karelia, Finland. Although all four of
these SNPs had a statistically significant influence in Rochester when considered separately, only SNP 3937 gave a
significant result in the other male samples. The four SNPs are located in the promoter, intronic and exonic regions,
and 3’ to the polyadenylation signal in the APOE gene. Our study suggests that analyses that only consider SNPs
located in exons and ignore contexts such as those indexed by gender and population, and disregard non-additivity
of SNP effects, may inappropriately model the contribution of a gene to the genetic architecture of a trait that has

a complex multifactorial etiology.
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Introduction nomena such as allelic and genotypic heterogeneity,

pleiotropy, gene by environment interaction and gene

A major impediment in studying the contribution of . . S .
by gene interaction (epistasis) are realities that cannot

genetic variation to interindividual variation in quan- casily be modelled, or estimated and tested, using popu-
lation based samples of human data (Clark, 2000). In this

study, we investigate the role of pairwise non-additivity

titative levels of apolipoproteins, and other risk factors
for developing coronary heart disease, is that the avail-
able statistical models are not realistic representations of . . . .

) . ) p of the effects of variable sites in the apolipoprotein E
the biological complexity of genotype-phenotype re-

APOE) gene (19q13.2) in predicting mean genotypic
lationships (Page et al. 2003; Sing et al. 2003). Phe- ( )8 (19413.2) in p s genonp

levels of the apolipoprotein E (ApoE) protein in the

blood. We have applied an overparameterized general
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linear model of two-single nucleotide polymorphism
(SNP) genotype means to data collected from unre-
lated European Americans from Rochester, MN, USA
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in order to estimate and statistically test for pairwise
non-additivity.

Various models have been employed to evaluate epis-
tasis. These models have been useful in modelling trait
variation in experimental organisms, but have limita-
tions when applied to observational data from human
populations. W. Bateson first modelled epistasis as the
pattern of segregation of discrete phenotypes that re-
sults when variation at one locus masks the phenotypic
effects of another locus (Bateson, 1909). Experimental
biologists have used this model of epistasis in studies of
Drosophila and Saccharomyces cerevisiae to determine the
position of a gene product relative to the position of
a second gene product in the same biochemical path-
way, by comparing single and double mutant organisms
(Avery & Wasserman, 1992; Potter et al. 2001; Pouliot
et al. 2001; Tong et al. 2001).

The first statistical model for estimating the contri-
bution of epistasis to quantitative trait variation was pre-
sented in 1918 by R. A. Fisher. He modelled epistasis
between pairs of loci as the deviations of average phe-
notypic values of the two-locus genotypes from those
expected, by summing the effects due to additivity and
dominance of alleles at separate loci. Cockerham (1954)
and Kempthorne (1954) expanded on Fisher’s model
by partitioning the phenotypic variance attributable to
epistatic effects determined by two loci into four orthog-
onally defined genotypic effects that are the products of
the effects due to single-locus additivity and dominance
of alleles, weighted by the relative allele frequencies at
the two separate loci (i.e., additive X additive, dom-
inance X additive, additive X dominance and domi-
nance X dominance). This formulation assumes Hardy-
Weinberg equilibrium of the relative genotype frequen-
cies at each locus, and no correlation between loci of
the single-locus genotype frequencies.

The Cockerham-Kempthorne model has been ap-
plied in experimental studies of a variety of organisms,
such as barley, Drosophila, soybeans, maize and rice, to
estimate the phenotypic variance attributable to epistatic
effects of pairs of loci on quantitative traits such as yield
(Brim & Cockerham, 1961; Russell & Eberhart, 1970;
Stuber & Moll, 1971; Hallauer, 1981; Luo et al. 2001;
Edwards & Lamkey, 2002). For example, in the progeny
of crosses between four nearly isogenic lines of barley to

create the nine two-locus genotypic classes, researchers
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observed that for seven yield component traits an aver-
age of 32% of the genotypic variance was attributable
to epistasis. For one, four and six of the traits there was
significant (¢ = 0.05) evidence for additive X dom-
inance, dominance X dominance and additive X ad-
ditive epistatic eftects, respectively (Fasoulas & Allard,
1962). In another example, Clark & Wang (1997) con-
structed eight crosses between P-element bearing lines
of Drosophila, and then estimated the phenotypic vari-
ance attributable to single-locus additive and dominance
effects and two-locus epistatic effects in the F, gener-
ation of each cross for 16 metabolic traits. They parti-
tioned the phenotypic variance attributable to epistatic
effects into the four orthogonal components defined by
Cockerham (1954). The results showed statistically sig-
nificant evidence for phenotypic variance attributable
to additive X dominance and/or dominance X dom-
inance epistatic eftects for 27% of the 128 trait-locus
tests. When the genotype frequencies at the loci in-
volved are correlated, an alternative statistical model of
epistasis suggested by Cheverud & Routman (1995) can
be used. This model includes only the phenotypic aver-
ages of the two-locus genotypes and does not assume a
panmictic population. With this model it is often possi-
ble to detect epistasis defined by comparing genotypic
values that cannot be detected using the Cockerham
method of modeling epistasis, which is a function of
comparing both genotypes values and relative allele fre-
quencies. One application, to an F, sample of mice,
resulted in 9% of the possible pairs of 76 marker loci
showing statistically significant evidence of additive X
additive, additive X dominance, dominance X additive
or dominance X dominance epistatic components of
genotypic values for the trait body weight (Cheverud &
Routman, 1995; Routman & Cheverud, 1997).

Using variance component linkage models, the com-
ponent of phenotypic variance attributable to the addi-
tive X additive epistatic effects of unmeasured loci was
shown to be statistically significant for human quan-
titative traits such as proneness to anxiety and plasma
concentrations of the angiotensin-converting enzyme
(Cloninger et al. 1998; Blangero et al. 2000; Zhu et al.
2001). In most observational studies of humans, non-
independence of single-locus genotype frequencies or
missing two-locus genotypic classes make it impossi-

ble to partition the phenotypic variance attributable to
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epistatic effects into the four orthogonal components
defined by Cockerham (1954) and Kempthorne (1954).
Furthermore, missing genotypic classes will limit the
number of epistatic components of genotypic values
that can be estimated using the method suggested by
Cheverud and Routman (1995). Given these consid-
erations, we present as an alternative application of an
overparameterized model (Searle, 1971) to test the null
hypothesis that the separate influences of variable DNA
sites within the APOE gene combine additively to influ-
ence levels of ApoE protein in Rochester. To determine
which statistically significant estimates of non-additivity
between pairs of SNPs in the Rochester sample are un-
likely to be Type I errors, we evaluated whether such
findings could be replicated in two other samples from
Jackson, MS, USA and North Karelia, Finland.

Methods

Samples

This study considers 13 SNPs within the APOE gene
(Figure 1) identified by completely resequencing 24
unrelated European Americans from Rochester for
a 5.5 kb region, including 1059 bp of 5’ flanking
sequence, the entire coding sequence with four
exons, and the intervening three introns of the APOE
gene spanning 3586 bp, as well as 846 bp 3’ to the
polyadenylation signal. Seven additional SNPs that
were identified by resequencing 48 individuals (24
from Jackson, MS, USA and 24 from North Karelia,

Finland) were monomorphic in the sample from

Intragenic Non-addictive Influence of SNP pairs

Rochester (Nickerson et al. 2000). There may be
additional SNPs within the APOE gene that were
not identified by resequencing 144 chromosomes, but
because of the rarity of allelic variations at these SNPs
it would not be possible to estimate non-additivity in
the available samples. Three of the SNPs genotyped
Rochester are located 5’ to the first exon, five are
located within the first two introns, three are located
in the third and fourth exons and two are located 3’ of
the polyadenylation signal. Genotyping in the larger
epidemiological samples used in the analyses presented
here was carried out using the OLA genotyping
method (Fullerton et al. 2000; Nickerson et al. 2000).
Additional information on these SNPs can be found at
http://droog.gs.washington.edu/mdecode/data/apoe/.

A sample of 456 unrelated female and 398 unrelated
male European Americans (ages 34-64) were selected
from 281 multigeneration pedigrees ascertained with-
out regard to health through elementary school chil-
dren in Rochester (Turner ef al. 1989). A detailed de-
scription of the African American Jackson sample (219
unrelated males ages 32-86) and the European North
Karelia sample (124 unrelated males ages 45-65), which
were used to identify which of the significant findings
in the Rochester study replicated in a second sample,
is given in Stengdrd et al. (2002). Levels of ApoE pro-
tein in the blood for the Jackson and Rochester sam-
ples were measured at the Mayo Clinic, Rochester, us-
ing published methods (National Institutes of Health,
1974; Barr et al. 1981; Kaprio et al. 1991). ApoE lev-

els for the North Karelia sample were measured at the
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Figure 1 SNP locations and relative frequencies of the least common SNP allele in female and male samples from
Rochester, and the location within the APOE gene of the three cases of statistically significant evidence for

non-additivity that replicate across the male samples.
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Department of Biochemistry, National Public Health
Institute, Helsinki, using standard enzymatic assays (Sa-
lomaa et al. 1994; Schiele et al. 2000)

Statistical Methods

The distribution of ApoE levels was significantly posi-
tively skewed in both genders. The natural log (In) trans-
formation of ApoE reduced skewness to non-significant
values (less than 0.05) in each sample. This transformed
variable (InApoE) was used in this study to accom-
modate statistical tests that assume normality. We car-
ried out separate analyses of females and males because
of the well-documented gender-specific differences in
the natural history of the risk of developing cardio-
vascular disease (Barrett-Connor, 1997; Hayward et al.
2000; Matthews et al. 1989; Thomas & Braus, 1998;
Xhignesse et al. 1991). To document such gender speci-
ficity in our study, we used Fishers F-ratio to test
whether there was a statistically significant difference
in the phenotypic variance of age, height, weight, BMI
or InApoE between females and males (Sokal & Rohlf,
1995). Student’s t-test was used to test the statistical sig-
nificance of the difference between gender means when
the F-ratio was not significant, and Satterthwaite’s mod-
ification of the f-test (Sokal & Rohlf, 1995) was used
when the F-ratio for inequality of the variances was
significant.

Neither the approaches of Cockerham (1954) and
Kempthorne (1954) nor Cheverud & Routman (1995)
can be applied in this study because there are missing
genotypic classes and the genotype frequencies of the
two loci are correlated. Instead we used an overparame-
terized statistical model as an alternative to estimate and
compare average phenotypic values of two-SNP geno-
types, to determine if there is evidence that single-SNP
genotypes interact in a non-additive manner to influ-
ence ApoE levels (Searle, 1971). This model can be

represented as:

Vik =M1+ o + B + di; + Eije
where y;, is the phenotypic value of the k" individ-
ual with the i/ two-SNP genotype (i, j = 1, 2, 3),
W is the population mean, «; is the influence associ-
ated with the i genotype of the first SNP, B is the

influence associated with the ™ genotype of the sec-

ond SNP, ¢;; is the measure of the non-additive influ-
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ence associated with the ij™®

two-SNP genotype com-
bination not attributable to the separate influences of
each of the two SNPs, and ¢ represents the residual
influence of unmeasured effects and measurement er-
ror. This model has the advantage that it does not re-
quire either o; or B; to be non-zero in order for ¢;;
to be non-zero. The expectations of linear functions
of the estimates of two-SNP genotype cell means of
the form (ft;; — ftij) — (fLir; — fLiv ) are linear func-
tions of the corresponding parameters of non-additivity,
(Pij — bij) — (Pirj — Pisjr), where i and iN (i, IN =
1, 2, 3) are two possible genotypes for the first SNP, and
jand jN (5, JN = 1, 2, 3) are two possible genotypes
for the second SNP. When all nine two-SNP genotypes
are observed there are four independent comparisons,
each involving four two-SNP genotype means. They
can be written as functions of the nine possible geno-
types (i7, iNj, /N and iNjN = 11, 12, 13, 21, 22, 23, 31,
32and 33): (ft11 — f12) — (o1 — fl22), (12 — fL13) —
(o2 — f23), (fo1 — fi22) — (fs1 — f32) and (fon —
fi23) — (ftz» — [L33). Figure 2 gives these four indepen-
dent comparisons, and examples of four possible non-
additive outcomes when three genotype levels (AA, AG
and GG), at the first SNP and three genotype levels
(CC, CT and TT), at the second SNP are consid-
ered. When fewer than nine two-SNP genotypes are
observed, which happens to be the case in our study for
most pairs of SNPs, all four independent comparisons
are not estimable.

When there are missing two-locus genotype classes it
is not possible to obtain tests of the single-locus geno-
type differences that are independent of the non-additive
interactions. However, Searle (1971) presents an ana-
lytical strategy for testing the statistical significance of
non-additivity for each pair of SNPs that is indepen-
dent of the influence of single-locus genotype differ-
ences. The test compares the sum of squares associated
with non-additive influences captured by the compar-
isons of two-SNP genotypes with the error sum of
squares using an F—test (Searle, 1971). For a particu-
lar i pair of SNPs the influence of non-additivity is
computed as the difference between the model sum of
squares over all observations obtained, fitting an over-
parameterized model that includes the non-additivity,
yie = & + B; + ¢i; + &, and the model sum of

squares over all observations, fitting a model that does
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Figure 2 The four possible comparisons for two-SNP genotypes, corresponding

equations, and example mean levels that illustrate types of non-additivity.

not include the non-additive influence of a two-SINP

genotype,  yiu = o + B + i
degrees-of-freedom associated with this difference

The number of

equals the number of independent comparisons of non-
additivity (presented in Figure 2) that are estimable from
the data. The error sum of squares for testing for signif-

icant non-additivity is:

Zi Z_,‘ Zk Yfzjk - Z,‘ ZJ' n[jﬂ"zj’

and the degrees of freedom associated with this quantity

is:
¥ 5 == h= 6
— number of independent comparisons - 1,

where a is the number of genotypes that are observed
for the first SNP, b is the number of genotypes that are
observed for the second SNP, and #;; is the total number
of individuals having i genotype.

Resampling methods were used to create a test of
the null hypothesis that the observed number of sig-
nificant F-tests to detect pairwise non-additivity within
each gender strata is equal to the expected number of
significant F-tests. Within each gender strata the phe-
notypes were permuted among individuals keeping the
two-SNP genotypic structure fixed (Good, 2000). The
number of F-tests to detect pairwise non-additivity that
were significant at the 5% level was determined for each
of the 1000 permutations to create the null distribution
(Churchill & Doerge, 1994). The observed number of
F-tests significant at the 5% level of probability in the

original data was then compared to the null distribution

© University College London 2004

of the number of F-tests significant at the 5% level, to
evaluate the statistical significance of the observed num-
ber of significant F-tests.

With the overparameterized model described above it
is possible to construct comparisons of two-SNP geno-
type means that are independent of genotypic frequen-
cies. We take advantage of this independence in our
study, to ask whether a particular statistically signifi-
cant comparison of two-SNP genotypes, observed in
the Rochester sample, replicates in independently col-
lected samples from two different populations in which
both SNPs segregate but relative genotype frequencies
may differ.

Results

Summary of samples

A description of the anthropometric characteristics and
ApoE concentrations in the female and male samples
are summarized in Table 1. The average age and level
of InApoE did not differ significantly between females
and males. On average, males are significantly taller and
heavier and have a significantly greater BMI than fe-
males. Interindividual variability of age and BMI was
significantly greater in females. The locations and the
relative frequencies of the least frequent allele for each
of the 13 SNPs in the combined female and male sample
from Rochester are shown in Figure 1. Relative allele
frequencies ranged from 0.004 to 0.412. For eight of
the 13 SNPs the relative allele frequency of the least

frequent allele was greater than 0.08. A summary of
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Females Males P-values

(N = 456) (N = 398) t-test F-test
Variable Mean Variance  Mean Variance  Mean Variance Table 1 Distributions of anthropomet-
Age 48.46 93.09 48.14 74.84 0.61 0.03 ric characteristics and measures of lipid
Height (cm) 163.78 33.02 177.44 38.33 <0.0001 0.12 metabolism in the Rochester samples.
Weight (kg) 69.2 189.12 86.84  188.65 <0.0001 0.98
BMI (kg/m2) 25.83 26.6 27.59 17.84 <0.0001 <0.0001
InApoE (mg/dl) 1.62 0.1 1.63 0.11 0.47 0.43

D'and r? for the thirteen sites that were polymorphic
in Rochester males and females is presented in Table
2. TheD'and r? values ranged from 0.02-1 and 0.00-
0.704 respectively, and 9, 1 and 42 of the 78 pairs of
SNPs showed significant evidence for linkage disequi-
librium at the 0.05, 0.01 and 0.001 levels of significance,

respectively.

Characteristics of pairwise SNP combinations

Table 3 summarizes, separately for the Rochester female
and male samples, the number of sites that are segre-
gating, the number of possible pairwise tests of non-
additivity if all two-SNP genotypes were observed, the
number of these pairwise tests that are found to have
0-4 independent comparisons of two-SNP genotypes
in the samples studied, the number of tests to detect
non-additivity significant at the 5% level of probability
and the experiment-wise probability, i.e., the probabil-
ity of observing that many significant tests at the 5%
level by chance alone. A statistically significant excess in
the number of pairwise significant tests was observed for
the male sample. From this point forward, we focus on
the significant pairwise tests observed in this sample.

A summary of the nine pairs of SNPs giving signifi-
cant evidence of non-additivity at the o« = 0.05 level 1s
presented in Table 4. Five of these nine pairs involved
one comparison of two-SNP genotypes, three involved
two independent comparisons and one involved three
independent comparisons. Five of the nine pairs in-
volved three SNPs (560, 624 and 1163) that did not
have a statistically significant influence on levels of the
ApoE protein when considered separately in a single-
site analysis (p > 0.05). Four of these five tests did not
have a replicate comparison in either the Jackson or
North Karelia male samples. The fifth pair (832-1163)

Annals of Human Genetics (2004) 68,521-535

had one of the two comparisons replicated in Jackson
and both replicated in North Karelia. Neither test was
significant at the o = 0.05 level of probability. Three
of the remaining four pairs (832-3937, 1998-4951 and
3937-4951) had comparisons that when replicated in at
least one of the two additional samples were statistically

significant.

Discussion

We report here a systematic study of the role of non-
additivity in determining the influences of variable sites
within the APOE gene in humans. We established that
there was significant non-additivity within the APOE
gene in a sample of Rochester males, and use the Jack-
son and/or North Karelia male samples to confirm our
results as discussed below. Our findings illustrate the im-
portance of heterogeneity of relative genotype frequen-
cies among samples from different populations in study-
ing non-additivity, the fact that all areas within a gene
may be involved in non-additive interactions, and that
deviations due to non-additivity can make an important
contribution to deviations of individual phenotypic val-

ues from the population mean.

Population of inference and estimation of
non-additivity

In order to determine which pairs of SNPs in Rochester
males showed significant evidence of non-additivity un-
likely to be due to Type I errors, we asked whether
such pairs also exhibited significant non-additivity in
male samples from Jackson and/or North Karelia. Dif-
ferences in genetic structure among samples determines
whether replicated tests of non-additivity are possible.
Only 63 of the 78 pairs of SNPs defined by the 13

SNPs in the Rochester male sample had one or more

© University College London 2004
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independent comparisons of two-SNP genotypes nec-
essary to estimate non-additivity. An even smaller num-
ber of two-SNP combinations were also observed in
the Jackson and/or North Karelia male samples, mak-
ing confirmation of significant findings in a sample from
a second population problematic. Of the 63 pairwise
tests of SNPs observed in the Rochester sample, only
27 (42.9%), involving 41 comparisons, had at least one
comparison that was observed in at least one of the other
two samples. These 27 pairs did not include SNPs 2907,
3106 and 5361. Twenty-two of the 41 comparisons were
observed in Jackson and North Karelia, 10 were ob-
served only in Jackson, and 9 only in North Karelia.
Five of the nine pairs that showed significant evidence
of non-additivity in the Rochester male sample had at
least one independent comparison in the Jackson and/or
North Karelia sample. For the 832-1163 pair of SNPs,
where two comparisons were observed for Rochester,
only one of the comparisons was observed in the Jack-
son sample while both were observed in the North
Karelia sample. For the 832-3937 pair, where three of
the comparisons were observed in Rochester, only two
of the comparisons were observed in Jackson while all
three were observed in North Karelia. The 832-4075
pair had two comparisons observed in Rochester, but
only one of these comparisons was observed in Jackson
and North Karelia. The one comparison observed for
the 1998-4951 pair in the Rochester sample was only
observed in the North Karelia sample. Finally, for the
3937-4951 pair, the same comparison was observed in
the Rochester, Jackson and North Karelia samples. Our
study makes clear that differences in the genetic struc-
ture of the samples considered can dramatically reduce
the utility of replication to sort out those significant pair-
wise estimates of non-additivity that are Type I errors
from those that are not. Increasing the sample size can
often improve the likelihood that comparisons across
population samples can be made, but real differences in
the relative allele frequencies and linkage disequilibrium
imply that the problem of cross-population replication is

not always solvable by having a larger sample size.

Replication and Non-additivity

Differences in relative genotype frequencies among sam-
ples allowed us only to consider replication of pair-wise

non-additivity in the Jackson and North Karelia samples
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Table 3 Characteristics of pairwise SNP combinations and corresponding experimentwise p-values for the Rochester sample.

Number of
Gender Sites that Possible Tests of Pairwise Tests of Significant Experimentwise
Segregate Tests of Additivity with 0-4 Pairwise Tests of P-value
Pairwise Comparisons Additivity with Pairwise
Additivity 01 2 3 4 > 0 Comparisons Additivity
(¢ = 0.05)
Females (N = 456) 13 78 11 49 10 6 2 67 1 (1.5%) 0.931
Males (N = 398) 13 78 15 40 14 6 3 63 9 (14.3%) 0.039
Number of Comparisons
that were Observed in

First Second Number of
SNP SNP Comparisons P-value Jackson North Karelia

560 2907% . 1 0.0150 0 0 Table 4 P-values for each of the nine
624 1998 1 0.0171 0 0 pairs of SNPs that showed significant evi-
624 3937 2 0.0002 0 0 dence (p<0.05) for non-additivity in the
624 49517 1 0.0397 0 0 sample of Rochester males.

832"+ 1163 2 0.0017 1 2

832"~ 3937 ** 3 0.0009 2f 3

832%* 4075 2 0.0366 1 1

1998*** 4951*** 1 0.0324 1t

3937 % 4951%** 1 0.0003 i i

ok

at = 0.01 and *** at @ = 0.001 indicates a statistically significant influence on

levels of the ApoE protein when considered separately in a single-site analysis.
fIndicates evidence for significant non-additivity at @ = 0.05 level of probability in a

male sample from a second population.

for five of the nine pairs (832-1163, 832-3937, 832-
4075, 1998-4951 and 3937-4951) that were significant
in the Rochester sample. Three of these five pairs (832-
3937, 1998-4951 and 3937-4951) were observed to ex-
hibit statistically significant non-additivity in either the
Jackson and/or North Karelia male samples (Table 4).
Significant evidence for a non-additive influence of
SNPs 1998 and 4951 (Figure 3A) in the Rochester male
sample (p = 0.03) was replicated in the North Karelia
male sample (p = 0.004). This comparison could not be
estimated in the Jackson male sample because of missing
genotype classes. The replicated comparison of non-
additivity between SNPs 1998 and 4951 is summarized
in Figure 3A as a greater difference between the av-
erage InApoE levels of the AG and GG genotypes for
SNP 1998, in the presence of the AC genotype at SNP
4951, compared to the difference between these geno-
types in the presence of the AA genotype at SNP 4951.
This comparison can also be summarized in terms of a

greater difference between the average InApoE levels of
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the AA and AC genotypes for SNP 4951, in the pres-
ence of the AG genotype at SNP 1998, compared to the
difference in the presence of the GG genotype at SNP
1998.

Significant evidence for a non-additive influence of
the SNPs 3937 and 4951 (Figure 3B) in the Rochester
male sample (p = 0.0003) was replicated in the Jack-
son male sample (p = 0.04) and the North Karelia male
sample (p = 0.03). In the Rochester and North Karelia
samples there was a greater difference between the av-
erage InApoE levels of the CC and CT genotypes for
SNP 3937, in the presence of the AC genotype at SNP
4951, than when in the presence of the AA genotype at
SNP 4951. However, in the Jackson sample there was a
greater difference between the average InApoE levels of
the CC and CT genotypes for SNP 3937, in the pres-
ence of the AA genotype at SNP 4951, than when in
the presence of the AC genotype at SNP 4951. These
different influences of the same comparison sug-

gest a higher order interaction with unmeasured
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Figure 3 Levels of InApoE plotted for genotypes that make up the comparisons for the
three pairs (3A: 1998-4951, 3B: 3937-4951, 3C: 3937-832) of SNPs that showed
statistically significant evidence for non-additivity in Rochester males, as well as Jackson

and/or North Karelia males.

genetic and/or environmental factors that vary among
populations.

Significant evidence for a non-additive influence of
the SNPs 832 and 3937 (Figure 3C) in the Rochester
male sample (p = 0.001) is replicated in the Jackson male
sample (p = 0.03), and there is suggestive evidence of
non-additivity in the North Karelia male sample (p =
0.13). The comparison that contributed to the statis-
tical significance of non-additivity between SNPs 832
and 3937 in the Rochester sample (p = 0.0004) was
observed only in the North Karelia (p = 0.036) sample
(Figure 4A). There was a greater difference between the
average phenotypic levels of the CT and CC genotypes
for SNP 3937, in the presence of the GT genotype at
SNP 832, compared to the difference in the presence
of the TT genotype at SNP 832. The other two repli-
cated comparisons (Figure 4B-C) did not contribute to
the statistical significance of non-additivity in any of the

three samples (p > 0.05). A fourth comparison, that

© University College London 2004

contributed to significant non-additivity between the
SNPs in the Jackson sample (p = 0.017), was not ob-
served in either the North Karelia or Rochester samples
(Figure 4D). In this case, there was a greater difterence
between the average InApoE levels of the CT and CC
genotypes for SNP 3937, in the presence of the GG
genotype at SNP 832, compared to the difference in
the presence of the GT genotype at SNP 832. Over-
all, these results serve to illustrate that the replication
of additivity and the replication of non-additivity can
only be expected for a very small fraction of intragenic
pairs of SNPs, because of the large role heterogeneity
in genetic structure among samples plays in determin-
ing the number of replicated comparisons. Context de-
pendency, and the embedding of these pairwise tests
in a higher-order interacting system of unmeasured ge-
netic and environmental effects, are possible explana-
tions for the non-replication of pairwise tests of non-

additivity. Observation of a significant interaction will
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Figure 4 Levels of InApoE plotted for genotypes that make up the comparisons for the
pair 3937-832 (Figure 3C), plotted so that each comparison can be viewed individually.

seldom imply that SNPs directly cause an interaction,
because these pairs of variables are embedded in a higher
dimension system of interacting agents (Clark, 2000).
Furthermore, given the lability of environmental ef-
fects in determining CVD risks, the expectation that
these interactions will be context dependent borders on

certainty.

Intragenic Non-additivity

Many researchers estimate interaction only between
loci that have statistically significant marginal effects
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(Fedorowicz et al. 1998; Blangero et al. 2000; Mackay,
2001). Recent theoretical work by Culverhouse ef al.
(2002) shows that it is possible to have a statistically sig-
nificant component of genetic variance attributable to
epistatic effects between variable loci that have no statis-
tically significant marginal effects. Nelson ef al. (2001)
reported an example of joint effects of variable sites in
the gene cluster APOA1/C3/A4 (11923-q24) and low
density lipoprotein receptor (LDLR) (19p13.3) gene in
determining interindividual variability in triglyceride

levels, when genotypic variation in each variable site,
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considered separately, was not statistically significant. In
our study all four SNPs involved in the three tests to
detect non-additivity, which replicated in at least one
other sample of males, had a statistically significant in-
fluence on levels of the ApoE protein when considered
separately in a single-site analysis in the Rochester sam-
ple of males. However, only SNP 3937 had a statistically
significant influence on InApoE levels when considered
separately in a single-site analysis in the Jackson and
North Karelia samples. Ignoring SNPs at positions 832,
1998 and 4951 because they are not making a separate
contribution to trait variation would exclude important
predictors of InApoE levels in the Jackson and North
Karelia samples. This result is some of the first evidence
in humans that supports the findings in yeast that it is the
interaction between genetic variations, not the genetic
variations themselves, which are causes of phenotypic
variability (Hartwell, 2004).

Other studies in humans have estimated the joint ef-
fects of variable sites located in different unlinked genes.
Templeton (2000) reviewed published examples of hu-
man studies to evaluate the role of gene-gene inter-
action effects in determining variation in traits having
a multifactorial etiology. Nelson ef al. (2001) showed
that effects of variable sites in the APOA1/C3/A4
gene cluster combine non-additively with effects of
variable sites in the LDLR gene to significantly in-
fluence interindividual variability in blood triglyceride
levels. Small et al. (2002) found that a combination of
two variants, one in the alpha-2C adrenergic receptor
gene (ADRA2CDel322-325, 4p16) and the other in
the beta-1 adrenergic receptor gene (ADRB1Arg389,
10q24-q26), interact to increase the risk of developing
heart failure. Our study clearly establishes that SNPs
within a gene can also interact non-additively to influ-

ence levels of a quantitative trait.

Context Dependency

Our study provides further documentation that the im-
pact of variations in the APOE gene on measures of lipid
metabolism are gender specific. This result is not unex-
pected because most genetic and environmental agents
only have an influence in the presence of a particular
environment or genetic background (Holdrege, 1996;
Lewontin, 2000). Many studies have established that age,
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gender, smoking and alcohol consumption modify the
influence of variation in the APOE gene on interindi-
vidual variation in measures of lipid metabolism (Zerba
et al. 1996; Jarvik et al. 1997; Davignon et al. 1999;
Lussier-Cacan et al. 2002). The age specific distribu-
tion of plasma ApoE, and the association of plasma lipid
and apolipoprotein traits with variation in the APOE
gene have all been shown to be dependent upon gender
(Reilly ef al. 1991; 1992; 1994; Cobb et al. 1992; Jarvik
et al. 1997). Likewise, our study provides further evi-
dence that gender is an important index of unmeasured
interacting factors that influence the quantitative levels
of ApoE.

Location and Function of Interacting Variable
Sites

Our analyses imply that the functional effects of gene
variation may involve more than one region of a gene.
The locations within the APOE gene of the pairs of
SNPs that gave replicated evidence of non-additive in-
fluence of SNPs in the Rochester male sample and at
least one other sample of males are shown in Figure
1. These three pairwise tests to detect non-additivity
involve four SNPs located in four separate regions of
the gene: in the promoter, intronic, exonic and 3’ to
the polyadenylation signal. The locations of SNPs 832,
1998, 3937 and 4951 serve as further evidence of the
importance of considering non-exonic sites when mea-
suring functional gene variation (Stengird ef al. 2002).
Laboratory studies have shown transcriptional regula-
tion of the APOE gene is influenced by multiple cis-
acting regulatory elements within the promoter region,
marked by SNP 832. These include three upstream reg-
ulatory elements and two GC boxes (Taylor ef al. 1987,
Paik et al. 1988; Smith et al. 1988; Chang et al. 1990;
Jo et al. 1995). Lower levels of the ApoE protein are
associated with the T allele compared to the G allele,
an effect that may be attributable to difterential bind-
ing of nuclear proteins (Artiga et al. 1998). The SNP at
site 1998 1s located in the second intronic region of the
gene, and SNP 4951 is located 3’ to the polyadenylation
signal. Our group is one of the first to study the impact
of these two SNPs on interindividual variation in ApoE,
and other measures of lipid metabolism in the popula-
tion at large (Stengdrd et al. 2002). Possible roles for these
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types of regions include regulation of translation initi-
ation or translation efficiency (Chen et al. 2002). The
SNP at site 3937 in combination with the SNP at site
4075 code for changes in residues 112 and 158 of the
299 amino acid ApoE protein. Lower circulating levels
of the ApoE protein are associated with the C allele at
SNP 3937 compared to the T allele (Davignon et al.
1999).

Our results are consistent with the expectation that
the promoter variant at site 832 and the exonic vari-
ant at site 3937 may combine to regulate APOE levels
in males. Interindividual variability in circulating levels
of the ApoE protein has been associated with each of
these variants (Artiga ef al. 1998; Davignon et al. 1999).
Within our own study, differences between those indi-
viduals who are heterozygous at SNP 832 versus those
who are homozygous for either the C or T allele at SNP
832 only occurs in the presence of those individuals who
are homozygous for the C allele at SNP 3937. Specifi-
cally, the GT 832 heterozygotes have lower mean ApoE
levels than either of the SNP 832 homozygotes, in the
presence of the CC genotype at SNP 3937. Statistical
methods applied to population based data cannot dis-
tinguish which SNPs within a gene are responsible for
the observed genotype-phenotype associations. There-
fore, we are forced to rely on laboratory and clinical
studies to determine the biological significance of these
four sites. However, experimental and clinical studies
may fall short because they cannot replicate the genetic
background and environmental histories responsible for

the observed genotype-phenotype relationships.

Contribution of Non-additivity to Phenotype

Non-additivity may be the largest contributor to an in-
dividual’s phenotype (Culverhouse et al. 2002). We esti-
mated the deviation from the grand mean due to the ad-
ditivity and non-additivity for each two-locus genotype
for the three pairs of SNPs (832-3937, 1998-4951 and
3937-4951) that exhibited statistically significant non-
additivity in the Rochester male sample, and at least
one of the other two male samples. The distribution
of genotypic deviations due to additivity for these four
SNPs (832, 1998, 3937 and 4951) in the three male
samples ranged from 2.72 to 4.31 ApoE, with a mean
contribution of 3.09 mg/dl. The combined distribu-
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tion of deviations due to additivity for these three pairs
of SNPs ranged from 2.74 to 9.97 ApoE, with a mean
combined contribution of 4.05 mg/dl. The distribution
of genotypic deviations due to non-additivity among
genotypes defined by these three pairs of SNPs ranged
from 2.72 to 17.99 ApoE, with a mean contribution
of 3.39 mg/dl. These results suggest that ignoring the
contribution of a SNP to non-additive interactions may
underestimate the value of a SNP for predicting levels
of ApoE protein.

Linkage Disequilibrium and Non-additivity

The average measures of non-additivity did not dif-
fer significantly between for those pairs of SNPs that
showed significant evidence for non-additivity (D' =
0.688, r> = 0.095) and those that did not (D' = 0.769
r? = 0.049) (D' p = 0.2575, r*p = 0.2824). Linkage
disequilibrium may also be used to investigate whether
pairs that replicated across samples are measuring the
same non-additivity. The pairs of SNPs 832-3937 and
3937-4951, and the pairs of SNPs 1998-4951 and 3937~
4951, each share one SNP in common. It is unlikely that
the pairs of SNPs 832-3937 and 3937-4951 are measur-
ing the same non-additive effects because the r?value
for the 832-4951 pair is 0.024. On the other hand, pairs
of SNPs 1998-4951 and 3937-4951 may be measuring
the same non-additive effects, because the r2value for
the 1998-3937 pair is 0.704.

Conclusion

Sing et al. (1996, 2003) and Wright et al. (2003) have
suggested that the genetic architecture of a complex trait
consists of many genes with common alleles (relative al-
lele frequencies greater than 0.01) that have a small effect
on a particular phenotype, and a few genes with rare al-
leles that will have relatively larger effects. An alternative
hypothesis assumes that genetic architecture of a com-
plex trait is defined by a few genes with common alleles
that have large phenotypic effects (Lander, 1996). Both
of these models assume that each genetic variation will
make an independent contribution to variability in the
phenotype of interest (Wright et al. 2003). Our study
suggests this may be a biologically unrealistic assump-
tion for particular combinations of variable sites within

a gene.
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Many associations between common genetic vari-
ants and measures of risk of disease have not been re-
producible (Hirschhorn et al. 2002). Meta-analyses as-
sume that inconsistencies between studies, or subgroups
within studies, are due to chance rather than biological
differences attributable to context dependency (Efron
& Morris, 1977). Our study suggests that by consider-
ing the context in which a genetic variant may have an
influence, it is possible to observe results that replicate
across samples from different populations. It follows that
studies that consider the level of an interacting genetic
or environmental context should maximize our abil-
ity to detect a gene effect and increase the likelihood of’
replicating a finding (Wright, 1968). Our study demon-
strates that heterogeneity of population structure, i.e.,
relative allele and genotype frequencies, can be a major
factor in determining the comparisons that are avail-
able for estimating and testing the statistical significance
of non-additive interactions using samples from multi-
ple populations. Furthermore, our study illustrates that
non-additivity can be an important consideration in se-
lecting SNPs relevant for defining genotype-phenotype
relationships, that all areas within a gene may be in-
volved in non-additive interactions, and that deviations
due to non-additivity can make an important contribu-
tion to deviations of individual phenotypic values from

the population mean.
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