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ABSTRACT
ANALYSIS AND SIMPLIFICATIONS OF DISCRETE EVENT SYSTEMS
AND JACKSON QUEUING NETWORKS
by
Benjamin Melamed

Co-chairmen: Frederick J. Beutler, Bernard P. Zeigler

This dissertation contains studies in two related areas:
Discrete Event System Theory and Queuing Network Theory.

In the first line of study, deterministic discrete event systems
are modeled by formal automata-like structures, and a hierarchy of
morphic relations among them is developed. A canonical representation
of stochastic discrete event systems in coordinate probability space
is proposed, and a hierarchy of morphic relations among them is
constructed by means of measure preserving transformations.

A general conceptual framework for simplifications is proposed,
and the morphisms above are shown to fall within its scope. Under
this framework, these morphisms are viewed as a mathematical vehicle
for simplification.

In the second line of study, several operating characteristics
of the class of Jackson queuing networks are investigated. Included
are: line sizes (network state), total service awarded to éustomers,
and traffic processes on the arcs.

Special emphasis is placed on rigorous derivations of results

from solid mathematical and statistical foundations. In the process,



<

a number of theoretical gaps in the extant theory of state equilibrium
are closed, and Burke's Theorem is extended from M/M/1 queues to
Jackson networks with single server nodes. Applications to equilibrium
decompositions of Jackson networks are also pointed out.

These results are applied to exemplify a number of structural
simplifications that take Jackson networks into Jackson networks,
while preserving a variety of operating characteristics. A new
methodology, combining statistical tools with system-theoretic ones, is
used in some of the aforesaid simplifications.

Finally, simulation complexities of Jackson networks are discussed,

and their behavior under various simplifications is investigated.
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CHAPTER O

INTRODUCTION

0.0 General

This dissertation has two main themes: a system-theoretic theme
and a statistical-theoretic one.

The system-theoretic theme concerns a class of systems - the
so-called discrete event systems. Such systems can be loosely described
as evolving in continuous time in discrete transitions, driven by
inpufs occurring discretely in time.

The statistical-theoretic theme involves an important class of
stochastic discrete event systems - the class of queuing systems and
especially Jackson queuing networks. Loosely speaking, a queuing
system models a servicing facility consisting of two types of entities:
immobile entities called servers, and mobile ones called customers.

In a queuing network the servers are arranged in a graph configuration;
the customers move about - among servers, into the network, and out
of it - according to certain prescribed rules.

The subjects of study in this dissertation are mathematical
abstractions that formalize loose heuristic notions relating to discrete
event systems and queuing networks. Based on these formalisms, we
then proceed to study morphic relations among discrete event systems,
and to derive computational results for some operating characteristics
of Jackson queuing networks. Finally, we investigate simplification
relations among Jackson networks; in the process we make a combined

use of system-theoretic and statistical-theoretic methods.
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0.1 Brief Historical Review

In a series of papers ([Z2], [Z3], [Z4], [Z5], [Z6]) culminating
in a book ([Z1]), B. P. Zeigler develops a conceptual framework for
modeling and simulation of real-life systems.

His paradigm consists of four basic components:

1. a real system which serves as a source of observable data.

2. a base model which is a system description based on the

totality of currently acquired data.

3. a lumped model which is a simplified version of the base
model.

4. a computer on which the lumped model may be simulated.

The interrelations among the four components may be summarized

as follows.

I. The real system and the base model are behaviorally related.
Going from the former to the latter is the enterprise of
modeling (also called realization or identification).

II. The base model and the lumped model are structurally and
behaviorally related. Going from the former to the latter is
the enterprise of simplification.

II1. Finally, the lumped model and a certain computer (program)
are structurally related. Running a computer program of the
lumped model is the enterprise of computer simulation.

The essence of the paradigm, proposed by Zeigler, is that in order
to obtain valid results from a modeling and simulation of some real
life system, certain preservation relations pertaining to structure and

behavior must hold among the four components. These relations are

collectively called morphisms.



Recently, considerable work has been done within the scope of
Zeigler's paradigm. Foo [Fol] investigates homomorphic simplifications
and topological realizations of dynamical systems. He introduces
topological structure on this class of systems, in which light the
goodness of certain simplifications is examined.

Corynen [Col] develops a comprehensive framework for modeling
and simulation of deterministic and stochastic systems. His treatment
is general enough to provide an abstract common foundation, applicable
to a large variety of disciplines.

Barto [Bal) considers discrete modeling of natural systems by
means of cellular automata and homomorphic simplifications thereof.

Aggarwal [Al] introduces deterministic models for probabilistic
systems. He applies them to simulations of neural networks, in order
to construct lumped models that approximately preserve the base model's
behavior.

Considerable attention is devoted in this body of work to discrete
systems. It is motivated by the fact that a large variety of real-life
systems admit of a discrete system realization. To mention a few:
biological systems (living cells, photosynthetic units, neural net-
works), ecosystems, information processing systems (computer hardware
and software, pattern recognition), physical phenomena (particle move-
ment), and service systems (queues and queuing networks, production
lines, traffic systems). (See e.g. [WZL1], [z3], [Z7], [z8], [ZBl],
[GZ1]).

At the theoretical level, discrete systems may be used to describe

cellular automata, and mathematical queues and queuing networks.



Discrete systems come in two flavors. ‘Those operating over a discrete
time base comprise the class of automata and their variants. (See e.g.
[AU1]). Those operating over a continuous time base are called
discrete event systems. A formal tool for describing such systems has
been proposed in [Z1]. The formalism is called a DEVS (discrete event
system specification); it has been used elsewhere to describe such
systems (see e.g. [Z8], [ZBl], [GZ1]).

The class of queuing systems provides an important instance of
discrete event systems. The widespread interest in queuing systems
becomes‘evident as one leafs through the various technical journals
in such areas as Computer Science, Applied Probability and Operations
Research. This interest stems from the fact that queuing systems
provide a mathematical model for a host of real-life systems which have

. emerged from the technological advancements of this century.

The initiation of mathematical studies of queuing systems is
credited to the telephone engineer A. K. Erlang, early in the century.
In his pioneering work, Erlang was interested in trunking problems
arising in telephone service, where customers model incoming calls and
servers model telephone lines. (See any standard book on Queuing Theory
such as [Sall).

The advent of fast computers and time sharing systems, complex
communication systems and intricate manufacturing processes, during
the recent thirty years or so, considerably enlarged the applicational
scope of queuing systems and especially queuing networks.

The study of queuing networks seems to have originated with

R. R. P. Jackson during the 50's. In two papers ([JR1] and [JR2])



[a]

Jackson studies a tandem sequence of queues with exponential services
and Poisson arrival processes. This work was later subsumed in [JJ1]
and [JJ2] by J. R. Jackson who studied open networks of arbitrarily
connected queues with Poisson arrivals, exponential servers and
Bernoulli switches. The class of networks of such queues with
arbitrary topology will be called here Jackson queuing networks, after
these two workers. These include the closed networks studied by
Gordon and Newell in [GN1], in the ‘early 60's. These early studies and
others on Jackson queuing networks were motivated by machine repair
shops, where a customer (a machine) has to visit more than one server
(a repair stage).

Recently, performance studies of computer systems and communication
networks have sparked renewed interest in queuing networks resulting in
a surge of research effort. (See e.g. [Bul], [BCMP1], [GM1], [GP1],
[K1], and [Rul]). However, parts of this work have beeﬁ heuristic in
nature, the emphasis being on computational results. Little effort has
been devoted to theoretical foundations, and but scant references have
been made to the underlying mathematical theory that justifies usage of
the computational tools.

The study reported in this dissertation addresses itself to
theoretical issues as well as computational ones. It is based on an

earlier preliminary study in [BMZ1], [BM1] and [MZB1].



0.2 Organization and Research Scope

This dissertation is organized in three parts. The first part
consists of Chapters 1-3 and is concerned with the theory of determin-
istic and stochastic discrete event systems and morphic relations
among them. As such it falls largely within the scope of the base
model and lumped model components in Zeigler's paradigm, and the
simplification relations connecting them.

Chapter 1 develops a hierarchy of morphic relations among DEVSs
and related system-theoretic objects. The morphisms are related to a
general simplification notion outlined in Appendix B. Interpreta-
tions for their intuitive meaning are also furnished.

Chapter 2 proposes a canonical representation of stochastic
discrete event systems in coordinate probability spaces. A connection
between Probability Theory and System Theory is shown to reside in the
coordinate sample space, where sample histories are described by means
of deterministic DEVS-related objects.

Chapter 3 creates a hierarchy of stochastic morphisms among
probability spaces, formalized by measure preserving transformations.
These morphisms are shown to fit into the simplification framework of
Appendix B, by pointing out the lumping effect exerted by them on the
base model's sample space and o-algebra.

The second part consists of Chapters 4-5 and is devoted to the
theory of Jackson queuing networks and their simplifications. Special
attention is paid to the relevant statistical theory that underlies the
computations, and care is taken to base the results on solid theoretical

foundations and mathematical rigor.



Chapter 4 contains a detailed study of Jackson queuing networks
with single server nodes. The operating characteristics studied
include equilibrium line sizes, service obtained by customers and
equilibrium traffic processes on the arcs.

Chapter 5 uses results in Chapter 4 to exemplify various simpli-
fications that take Jackson networks into Jackson networks. Considered
are simplifications that eliminate feedback arcs or remove arcs within
a subnetwork, and some simplifications that lump a subnetwork into a
single node. The first type of simplifications makes a combined use of
DEVS-theoretic results derived in Chapter 1 as well as the statistical-
theoretic treatment of Chapters 2 and 3. Finally, simulation complex-
ities of Jackson networks are discussed, and their behavior under
various simplifications is investigated.

Chapters 1-5 are followed by a Conclusion that summarizes the
results attained in them and suggests a number of research topics to
be pursued.

The third part consists of Appendices A, B and C, which provide
mainly background material.

Appendix A contains a digest of elementary System Theory compiled
from [Z1], and which serves as an introduction to Chapter 1.

Appendix B proposes a conceptual framework for Simplifications
which is in line with Zeigler's paradigm, and into which large tracts
of this dissertation are fitted. It provides a common foundation for
a variety of simplification problems arising in applied areas such as
Modeling and Simulation as well as in theoretical contexts. The central

view, expounded by it, is that morphic relations among systems constitute



a major mathematical vehicle for formalizing the intuitive simplifi-
cation notion.

Appendix C is a collection of definitions and facts from the
domain of Stochastic Processes. It provides some mathematical founda-

tions for the methods employed in Chapter 4.

0.3 Some Notational Conventions

Each chapter or appendix in this dissertation is divided into
sections. Section m of chapter or appendix n is numbered according
to the scheme n.m. Theorems, lemmas, corollaries etc. within each
section n.m are numbered according to the scheme n.m.£ and delimited
by the symbol [J. Lines are usually tagged by numbers although upper
case and lower case letters as well as Latin numerals are occasionally
used. References to a line tag made within the scope of a theorem,
lemma, corollary etc. are always local, unless otherwise specified.
References to a line tag, made outside the above, are always local
to the section of occurrence, unless otherwise specified.

The symbol & means equality by definition. The symbol Pr is an
abbreviatiaon for probability, and E - for expectation.

In referencing bibliographic material we occasionally abbreviate

the word Chapter as Ch. and the word Section as Sec.



CHAPTER 1

DETERMINISTIC DISCRETE EVENT SYSTEMS

1.0 Introduction

Discrete event systems are characterized by the fact that they
evolve in continuous time but change state due to events occurring
discretely in time. Such systems respond to discrete stimuli by under-
going state "jumps'; they remain quiescent during the time intervals
separating them. Loosely speaking, their state trajectories trace
out step functions.

The importance of discrete event systems stems from the fact
that they model a variety of real life systems such as software
systems, information processing systems, production processes, traffic
systems, service facilities - in particular queuing systems - and
certain aspects of biological and physical phenomena (see e.g. [Z8]
and [GZ1]).

Our interest in discrete event systems is motivated by the fact
that queuing systems can be modeled as stochastic discrete event
systems, while particular queuing histories are modellable as deter-
ministic discrete event systems. The term stochastic systems (versus
deterministic systems) alludes to the fact that the operation of the

later is governed by ordinary functions, and that of the former by

random variables.

This chapter studies the logic of deterministic discrete event
systems and certain preservation relations among them, which are
collectively called morphisms.

The applications to queuing systems are twofold. First, to
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describe accurately their operation (see Chapter 2), and second, to
perform simplifications on them (see Chapters 3 and 5).

The formalization of discrete event systems by the DEVS (discrete
event system specification) concept is due to B. P. Zeigler (see [Z1]
Ch..IX Sec. 9.11). This definition is used here with minor changes
as the starting point, and the treatment of morphic relations follows
in spirit that of [Z1] and especially Chapters IX and X.

The organization of this chapter is as follows. Sections 1.1 -
1.2 present a hierarchy of deterministic discrete event systems and
related structures, which is based on [Z1] Ch. IX, mainly Sec. 9.11.
Sections 1.3 - 1.5 present a hierarchy of morphisms and investigate
some of their properties. Finally, Sections 1.6 - 1.7 describe opera-
tions on discrete event systems and investigate morphic relations
among triples of discrete event systems.

The reader is referred to Appendix A and to [Z1] for additional

background.

1.1 The DEVS and DEVN Concepts

A DEVS (discrete event system) specification is a special case of
an iterative specification of a system, which is itself a special case
of the class of time invariant mathematical systems (see Appendix A).
By '"'special case'" we mean here that the specialized case induces an
instance of the generalized case in a one-one manner.

The salient feature of DEVSs is that they operate in continuous
time, but significant state changes occur discretely in time. These

changes (or jumps) are caused by discrete occurrence of "events'.
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Consequently, the evolution ot a DEVS can be described by a step

function.

The definition of a DEVS follows that of [Z1], (see Ch. IX

Sec. 9.11) with rather minor deviations.

Definition 1.1.1

A DEVS (discrete event system) specification is a structure

M= (X,S,Y,t,8,\) where

X is the extermal event set

S

Y

t

S

is

is

is

is

the sequential state set
the output value set
the time advance function

the sequential state transition function

A is the output function

subject to the following restrictions:

a)

b)

t is a function €:S—-[0,].

t(s) is the maximal time the system is allowed to stay in
sequential state s. This maximum is attained whenever no
external events occur while the system is in sequential
state s.

§ is a function §:Qx(X U{¢})—=S where

¢ £X is the external nonevent symbol and

Q é {(s,e): s€S and 0 < e < £(s)} 1is the full state set of M.
A full state q is a pair (s,e) interpreted as a sequential
state s, and the time elapsed e in that state. The e compo-
nent will be referred to as the clock.

The definition of § has two parts.
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b.1) VvVqe€Q,vxe€X, §(q,x) 4 6M((s,e),x)
where GM((s,e),x) gives the sequential state to which
the system transits from the full state q, under the
external event x.

5.2) vaeQ, §(a,9) £ 6,0
where 6¢ is the autonomous transition function of the
system. Such transitions occur whenever the clock
exceeds €(s).

A is a function A:Q—=Y.

A(q) is the instantaneous output of the system from full

state q = (s,e).

Definition 1.1.2

~

A DEVS M = (X,8,Y,%,8,%) is a sub-DEVS of a DEVS M = {X,S,Y,t,5,))

if

<>

cX

wn>
n

S

A

£|S

o) >

GIQX(QKJ{¢}) where Q = {(s,e)€Q: s €S}

>>
]

A

where a vertical bar designates restriction of a function domain.

O

Some heuristic remarks concerning the intuitive operating conven-

tions of DEVSs are warranted at this point.

The transition function & describes a discrete transition struc-

ture which is essentially that of a sequential machine, while the time

advance function ¢ describes the continuous time component superimposed



on it. Consequently the state of a DEVS has a discrete as well as
a continuous flavor; its sequential state component changes discretely
in time, while the clock component changes continuously in time. A
change of the sequential state will be referred to as a jump of the
system. A DEVS remains in a fixed sequential state s between jumps,
whereas the clock e increases from 0 to ¢(s), thus timing the elapsed
time since the last jﬁmp to s. Sequential state transitions (jumps)
take place from a full state q = (s,e) as a result of either of the
following events.
I) An "internal" event occurred due to the fact that the
clock value e has reached the value €(s).
If no external event has occurred at that very instant, the
system will undergo an instantaneous transition to full state
(6¢(s),0). That is, a jump will take place according to 6¢
and the clock is reset to zero.
II) An external event x ¢ X has occurred but no internal event is
scheduled to take place at the same instant.
The system will undergo an instantaneous transition to full
state (SM((s,e),x),O). That is, a jump will take place

according to 6, and the clock is reset to zero.

M
IIT) An internal event and an external event are scheduled to occur
. +
at the same instant.

In this case the user should devise a tie-breaking rule that

specifies the jump to be taken by the system, due to the two

+Unlike [Z1] Ch. IX Sec. 9.13, we do not assume that internal
events have priority over external ones.
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imminent events above. For example, one can have a §

¢

jump preempt a §,, jump or vice versa. One can also have any

M

combination of §, and GM jumps ranging from simple composi-

¢

tion of 6¢ and 6M to any arbitrary function of § and GM.

¢
For our purposes, it is convenient to choose a composition rule
for a tie-breaking rule. This is the most natural rule for a wide
variety of applications, and queuing theoretic ones in particular. It
also enjoys the advantage of being robust with respect to the morphism
concept to be defined later. This fact will allow us to disregard

the special case of double scheduling in the impending study of morphic

relations among deterministic DEVSs.

Simultaneous events and tie-breaking rules are vital in simulation
of stochastic systems, especially when the time base has a minimal reso-
lution. In theoretical applications simultaneous events typically occur
with zero probability.

The mode of operation of DEVSs requires that all jumps are instan-
taneous and always reset the clock to zero, whereby the timing process
starts all over again till the next jump. The mathematical operating
conventions are embedded in the discrete event structures induced by a
DEVS, to be discussed in the next section. Typically, the duration &(s)
that the system is allowed to stay in sequential state s€S, will appear

as a component of s.

Definition 1.1.3

A DEVS M = (X,S,Y,%,8,A) is said to be in explicit form if S is a

structured set and every s €S has the form s = (£,r) such that £(s) = r.
a
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Explicit form DEVSs are handy to work with, as the residual time to

the next autonomous transition from full state q = ((g,r),e) is r - e.

We now introduce the concept of state-DEVS and its behavioral

frames in the spirit of Appendix A.

Definition 1.1.4

A state-DEVS M = {X,S,+,t,8,*) is a DEVS with unspecified output

value set Y and output function . 0

Definition 1.1.5

A behavioral frame of a state-DEVS M = (X,S,+,¢,8,*) is a struc-
ture y = {Y,)) where the symbols in the angular brackets have the same

meaning and constraints as in Definition 1.1.1. 0

We will regard a state-DEVS as a representative of the class of
all DEVSs with the same underlying state structure. As a matter of
fact we refer to it interchangeably as DEVS or state-DEVS whenever the
context is clear.

Sequential states are classified as follows.

Definition 1.1.6

Let M = (X,S,Y,t,8,A) be a DEVS. Let s€S be any sequential state.
Then

a) s is called transitory if €(s) = 0

b) s is called passive if &(s) = =

c) s is called regular if 0 < t(s) g =
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A transitory state is an intermediate state which the system
enters, and from which it departs instantly. Such states are extremely
important in describing DEVS transitions under composition type tie-
breaking rules that are incurred by simultaneous events. A passive

state, on the other hand, can change only due to an external event.

Example 1.1.1

To illustrate how the DEVS concept may be used to describe real
life descrete event systems, we now model a particular queuing history
of a FIFO (first in first out) queue, with one server, where the
behavioral frame is the stream of departing customers.

Let C = {ci}oio=1 be a set of customer tags where c, tags the i-th
customer served. Let {sn}:_1 be the sequence of service times obtained

by the customers, from the server. The modeling DEVS M = (X,S,Y,¢,5,A)
is defined in explicit form as follows.

a) X = {1C : cie C} where IC codes the arrival of customer c;-
i i

b) S

{Muuw):neN}U{hunﬂﬂ:yeC+,n6N,()sr <sn}

where A is the empty string, c" is the set of all finite

nonempty strings over C, and N is the set of natural numbers.

c) Y= {0,1c : cie:C} where 1C codes the departure of customer
i i

cs and 0 codes a nondeparture.

d) %:S-—+(0,~] is defined by %(y,n,r) = r

e) 6:Qx(XU{¢})—=S is defined by
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(ci,n,sn), if vy = A
e.l) GM(((Y,TI,I'),G),].C.) =
! (ciy,n,r—e), if y(?C+

(Ayn+l,o), if len(y) =1
e.2) §,(r,n,7) = |
(p,n+1,sn+1), if y = pcj and len(y) > 1

where len(y) is the length of the string vy.

f) A:Q—=Y is defined by

1c , ife=0,n>1, r=o or r =S5

A((y,n,r),e) = n-1 n

0, otherwise

To describe a queuing history, one chooses an "initial state"

Sy = (y,n,r) where

((a,1,2), ify =4

(Clcz-l"'cl’l’sl)’ ify £ A

Note that external events model arrivals and internal events model
service completions.

In any sequential state s = (y,n,r), y is the line configuration,
n is the index of the customer in service or to be served, and r is the
residual service time. In particular s = (A,n,») is a passive state
since an empty queue can have a jump only due to an arrival of a
customer.

For double scheduling (simultaneous arrival and service completion)
the tie-breaking rule is §,,08

M ¢ O]

Other examples may be found in [Z1] Ch. IX Sec. 9.12.



Next, we introduce a formalism for describing discrete event

networks composed of DEVS components.

Definition 1.1.7

A DEVN (discrete event network) specification is a structure

{1} where
(o

{Za,B}a € D’{Joz}oce D>

Bel
a

N = {D,{M}

o o €D’ o €D’

D is a set of component indices called the index set.

{Ma} is a set of state-DEVSs called the component set.

a €D

{Ia}a<§D is a family of subsets of D that specify the components

influenced by each component of the network. Ia is called the

influence set of a.

{z ,} is a family of maps that determine the effect of a
a,Ba€D

€
BEI,

component on those components it influences in the network.

Za 8 is called the effect function of o on B.

{Ja}aeaD is a family of functions that specify the jump taken by

a component due to scheduling of an event or simultaneous events.

Iy is called the jump function of a.

The above are subject to the following restrictions:

- / . o - . . o
a) each state-DEVS Ma = \Xa,Sa, ,ta,aa, >, a €D, is in explicit

form.

is a p::lrtialJr map Zu :S —=X

b) for any o€ D and Belu’ Z 85 g*

a,B

+a partial map is allowed to be undefined on a subset of its
domain,
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~

¢) for any a€D, J is a function JQ:QGXZXG—DSG where
f(a = Xau {¢0‘} and qsaz Xa ;odes an internal event in Mu.
FurthermoreT Ja is constrained by
fsa,(b(ga,ra), if E_ = {4}
Sa’M(((Ea,rG),e),xa), if E = {xa},
I ({57 o) 0] LB ) = ¢ x, €X

(ga,ra-e), if Ea =

L (g&,r;) , otherwise

To describe the operation of a DEVN N, we associate with it a

state-DEVS M = <XN,SN,-,tN,<SN,-> defined by

<
1]

N~ aéD Xa_{¢a}aeD

N~ 0dD S

t :SN—D(O,oo] is defined by tN({(Ea,ra)}aED) = 0Lleng{rm}

GN:QNXXN—*‘SN is determined by the following procedure.

Take any ((s,e),X) = (({(’éu,rq)}aeD,e), {xd}aeD)GQNXXN

Define a family of event sets {Eoc}oc as follows:

€D

If an external event iexN is scheduled,then for any a €D
{xa} , if X # ¢a

® , otherwise

TWe point out that unlike [Z1] Ch. IX Sec. 9.17 the tie-breaking
rule does not select a component to be activated but is embedded in

Tl ep -
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If an internal event qba is scheduled in at least one component
before the occurrence of an external event, from sequential state

s €S,., then let IMM(s) £ {a€D: r, = tN(s)} be the set of imminent

N?
components (i.e. those scheduled to undergo an autonomous jump
simultaneously).
Next, for any o €D

2. whenever o€ IMM(s), put ¢a in Ea

and

3. whenever uEIB for some B € IMM(s), put ZB,OL(SB)GXO(. in Ea.

4, Finally, compute Ja(((ga,ra),e),Ea) for each a €D.
The transition function GN is then defined in terms of the

jump functions {Ja}aED by

s (LT )Y phe)s R} ) = W (((E,,m),e),E )0 o p

Notice that the symbol ¢oz is interpreted in N as a nonevent, while

in Eon it stands for an internal event in component a.

Definition 1.1.8

Let N be a DEVN and let MN be the state-DEVS associated with it.
A pair y = (Y,)) is called a behavioral frame of N if it is a

behavioral frame of MN. 0O

Intuitively, a DEVN is composed of a set of DEVSs operating
concurrently and interactively. The influence functions describe the
topology of the network in terms of influence relations. The residual
time to next jump is the infimum of the residual times of all compo-

nents. A jump occurs whenever one or more components are activated



by events in Ea' These may be external to components or internal to
them. The external ones are due either to environment stimuli or to
events generated by influencers of components. The internal events,
symbolized in Ea by ¢u’ trigger autonomous transitions prompted by a
clock reading of e = ta(ga,ra) in Ma. The jump function Ja takes all
these events into account when determining the jump from state
((ga,ra),e), by means of some tie-breaking rule. In most cases,
including queuing situations, Ja reduces to a composition rule

that applies Sa,M and du,¢ sequentially in some order, according to
the events in Ea' In this case Eu must be finite, in order that Ju
be well-defined. This always happens in a DEVN with a finite index
set D. In statistical-theoretic contexts multiple scheduling

(i.e. |Ea| > 1)+ occurs in most cases with probability zero anyway.

Example 1.1.2

To illustrate the use of a DEVN model consider a network of
finitely many queues in tandem where each single queue is as in Example
1.1.1 (refer to Figure 1.1.1). The DEVN model is

{1} {z .} {J

a' o €D’ o,B a€D’
B€I
o

N = <D’{Ma}a€-D’ oc}a ED>

where
a) D= {1,2,...m}

b) Ma = <Xa’sa"’ta’6a">’ is the DEVS modeling the o-th queue.

Tl.

is the cardinality symbol.



1

-
-
.

m

Y

Figure 1.1.1: A Sequence of Queues in Tandem.
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It is defined as in Example 1.1.1 except that

(o] .

= :c .€C where = . ). i

Xa {1c _ o,i a}’ T Ca (ca,l}1=1 is the set
a,i

of customers whose first service occurred in Ma’ and {s n}: 1

a,n n=

is the sequence of services awarded at~Ma.

{o +1}, ifl <o <m
¢, if o =m

1 , if ga = (y,n,r) where y = pc

cB,i B,i

a9 Z, 4(6,.7,) =
undefined, otherwise

e) For each a €D, the event sets Ea have the form:

E, = {¢a} or E = {1c ‘} or E = {6 ,1 .}, B <a .
B,1 B,i

For any 1 <o < m
('

Ga,¢(£a,ra), if Ea = {¢a}

6, w(((E,s1 )00, ), if B = {1_
} B,1i B,1
J (((E_,r ),e),E ) =
o oo o < (5,,7,-¢), if E =9

Sy (8, 4 (6rr)200, 10 ), HEE =

B,1
{¢ ,1 }
@ %,

Notice that in our DEVN, internal events (denoted ¢a) represent
service completions and subsequent departures. External events

(denoted 1C ) represent customer arrivals. For o = 1 these are
a,i

arrivals from an external source only, while for 1 < o < m the arrivals
originate from an external source or from component o - 1. The tie-
breaking rule for multiply scheduled events in a component, is a compo-

sition whereby departures precede arrivals.

O
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1.2 Discrete Event Structures Induced by a DEVS

In order to gain a precise understanding of the operating conven-
tions of DEVSs and their behavidr under complex input segments, we need
to translate the DEVS structure into the iterative specification and
the mathematical system induced by it. We follow the procedure in
[Z1}] Ch., IX Sec. 9.13, with minor changes.

In the following definitions N denotes the set of natural numbers.

Definition 1.2.1

The extended autonomous transition function of a DEVS

M = (X,S,Y,t,8,)) is a function EQ:SX(N‘J{O})-4~S defined recursively

by

5@(5,0) 4 s

— A —
6¢(s,n + 1) = 6¢(6¢(s,n)) I

i

gé(s,n) gives the sequential state reached autonomously from s

after n jumps under a sufficiently long nonevent segment.

Definition 1.2.2

The total time advance function of a DEVS M = (X,S,Y,t,8,)) is the

function o0:Sx(NuU {0})---[0,~] defined by

-
0, ifn=20

o(s,n) 3 < n-1
Zt(%(s,i)) , ifn>0
i=0

-
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o(s,n) gives the total time it takes the system to evolve

autonomously from state (s,0) to state (6¢(s,n),0) i.e. the total

time spanning n jumps from state (s,0).

Definition 1.2.3

The jump counter function of a DEVS M = (X,S,Y,t,6,\) is a func-
tion m:Qx[0,®»]—~NU{0}uU{=} defined by

m((s,e),T) A sup{n: o(s,n) < e + 1} 0

m((s,e),t) gives the number of jumps taken by the system when
evolving autonomously from state (s,e) for T time units.

We are now ready to define the iterative specification induced
by a DEVS. The input segment generators will be functions w of the
form w:(0,7]—-XU{¢} such that either

¢ , if 0 <t <1

A
a) w X where xT(t) =

x, if t=r1

or

>

b) w

"

¢T where ¢T(t) ¢ , t€(0,1].

Definition 1.2.4

The iterative specification induced by a DEVS M = (X,S,Y,&,8,\)

is GM) = (T,XG,QG,Q,Y,GG,A> where

a) T2 [0,

ne>

b) X XU{¢}

0>

Q. uQ where Q é {x : >0} and @Q

R G X T o= topr T >0}

d) Q e {(s,e): s€S, 0 <e < t(s)}
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e) GC:QXQC—+~Q is defined recursively by

V(s,e)€Q, vx€X and VTt > 0
((s,e + 1), if e + T < &(s)
/

(Eg(s,m((s,e),T)>, if e+ 1= %(s)

e.1) 8.((s,e),¢.) ¢

,

e.2) 8,((s,e),x) 2 (8,(8,((s,6),8),%),0)

86((84(5,0),0¢, ¢ (gy)» 1E © + T > €(5)

An iterative specification G(M) thus derived is called a discrete

event iterative specification (abbreviated DEIS).

0

Comment 1.2.1

The symbol ¢O denotes the empty function and is not a generator.
However, for notational convenience we shall occasionally use in this

chapter the notation GG((s,e),¢O) é'(s,e). [

Since 6G in Definition 1.2.4 has a recursive definition, we

need to determine the conditions that render it a well-defined func-
tion. Clearly, this happens iff the DEIS G(M) has a finite number of
jumps when started from any state (s,ej under any input segment.

Now, recall that a jump occurs either under an external event

x € X according to §,,, or autonomously according to § Since input

M b

segments are composed of generators, they give rise to at most one

jump according to § It remains to ensure that jumps according to §

M

are also finitely many.

¢

Formally we have
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Definition 1.2.5

A DEVS M = (X,S,Y,t,8,)) is called legitimate if

Vq€Q, vr > 0, m(q,t) < = . .

Theorem 1.2.1

A DEIS G(M) is well defined iff the inducing DEVS M is legitimate.

Proof

See [z1] Ch. IX Sec. 9.11. t

For a legitimate DEVS M, the autonomous part of the transition

function of G(M) may be specified explicitly as follows.

Lemma 1.2.1

If G(M) = <T,XG,QG,Q,Y,6G,A> is a DEIS induced by a legitimate
DEVS M = (X,S,Y,t,8,1), then

V(s,e) €Q, vT > 0 ,

55((s,0),0.) = (B, (s,m((s,€),1)), e + T = o(s,m((s,e),7)) .

Proof

See [Z1] Ch. IX Sec. 9.13. (]

Legitimacy of DEVSs is equivalently formulated as follows.

Lemma 1.2.2

A DEVS M = (X,S,Y,t,8,)) is legitimate iff Vs€S, o(s,n) —¢ow |

n- o
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Proof

See [Z1] Ch. IX Sec. 9.13. 0

A special case of illegitimacy may be caused by the class of
transitory sequential states (recall that s €S is transitory if
t(s) = 0). A DEVS can never remain in a transitory state for a time
interval of positive length, as the 6¢ function is invoked immediately
on entering such states. We see that a legitimate DEVS M cannot have
a sequential state s such that E;(s,n) is a transitory sequential state
for every n > 0.

Notice also, that transitory full states never appear in G(M) as
the outcome of an application of its transition function, so that they
can practically be eliminated from the state set of G(M).

In order to complete our hierarchy of-discrete event systems, it

only remains to introduce the mathematical system induced by a legiti-

mate DEVS.

Definition 1.2.6

The mathematical system induced by a legitimate DEVS
. . . . _ =+ -
M= (X,S,Y,t,5,\) is the time invariant system SG(M)— <T,XG,QG,Q,Y,6G,A>

induced by the DEIS G(M) = <T,X QG,Q,Y,GG,X> according to Theorem

G’

A.2.1 in Appendix A. A mathematical system thus derived is called a

discrete event mathematical system (abbreviated DEMS). 0]

Our main interest in a DEMS SG(M) lies in the state and output

trajectories that it engenders (see Definition A.1.5 in Appendix A).

These concepts reflect on the mathematical operating conventions of
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discrete event systems.
Figure 1.2.1 depicts these conventions pictorially. It super-
imposes on the same time scale an input segment and the resulting state

and output trajectories, in a DEMS S The full state trajectory

} GM)®
is broken down into two component trajectories - the sequential state
trajectory and the clock trajectory. The input segment is a pulse-like
function whose spikes represent external events while the sets of
constancy separating them correspond to nonevent periods. By definition
there are only finitely many spikes in each finite time interval.

The definition of GG in SG(M)

tory is right-continuous due to Definition 1.2.1. In terms of metric

implies that the full state trajec-

spaces, the full state space metric is derived from those of its
components, say the zero-one metric+ on the sequential state space and
the natural metric on the elapsed time space.

This means that at jump instants the full state of the system
consists of the new sequential state and a zero clock reading. The
sequential state trajectory is a right-continuous step function, while
the elapsed time trajectory is a right-continuous jig-saw function
ascending linearly at 45°. The output trajectory records some observ-
able aspect of system behavior.

Notice that transitory states never appear in state trajectories

at the DEMS level, because they have already been removed at the DEIS

level.

1.The zero-one metric d on a set X is defined by

0, 1fx=y
vx,yeX , d(x,y) =
1, if x #y
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input x A
]
I > time t
0 . . .
- 1 . ¢
sequentia * .
state s A * b-l
. . ’ - P
. ® ‘
F—. 3 . *
. ' L J
. - - *%) time t
0 . . . . -
*
clock e . . . ¢
A\ .
0

- time t

Figure 1.2.1: A Typical Input Segment and the Resulting
State and Output Trajectories in a DEMS.
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Although transitory states provide a means of describing
composition type tie-breaking rules, it is often desirable to deal with

DEVSs without such states.

Definition 1.2.7

A DEVS M = (X,S,Y,¢,8,)) is called regular if M is legitimate and

every s €S is a regular sequential state. ]

It is easy to see that each legitimate DEVS gives rise to a
regular one with the same induced DEIS and DEMS.
Henceforth, we shall deal only with regular discrete event systems

i.e. with those paradigms M—=GM)++S in which M is a regular DEVS.

G(M)

In the forthcoming treatment, we shall usually refer to DEVSs as
specifying a discrete event system. However, all related concepts in
terms of the induced DEISs and DEMSs, and especially the functions 6G
and Eﬁ, will be used freely in the discussion, as if belonging to a DEVS

rather than to its induced DEIS or DEMS. The tie-breaking rule adopted

from now on for doubly scheduled events is GMOG¢ .
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1.3 Input Matching DEIS Morphisms

In this section we define and investigate a class of DEIS
morphisms - the so-called input matching DEIS morphisms. Working our
way up from the DEIS level to the DEVS level, our eventual goal will
be to derive a DEVS morphism (in the next section), by adding a level
of detail to the DEIS morphism concept via input matching DEIS mor-
phisms.

Throughout this chapter, the following notation will be adopted.
Unless otherwise specified, a reference to M means a DEVS
M= (X,S,Y,t,5,)) and a reference to G(M) means the DEIS
G(M) = <T,XG,QG,Q,Y,6G,)\> induced by M. A reference to M~ and G(M")
refers to a DEVS M” = (X*,S$°,Y",&£",8”,1”) and the DEIS
G(M™) = <T,Xé,Qé,Q’,Y’,Sé,A‘>induced by it respectively, and
similarly for M" and G(M"), M* and G(M*), M and G(ﬁ).

Whenever f is a morphism from structure S to structure S”, then
S and S° are referred to as the morphic preimage and the morphic image

respectively, under f.

Definition 1.3.1

Let (g,h,k) be a specification morphism (see Definition A.2.3
in Appendix A) from G(M) to G(M™).
Then (g,h,k) is called an imput matching DEIS morphism (abbreviated

IM-DEIS morphism), if there is a function ge:Xé—ﬂ>XG such that

a) vx;enl, gx)) = g (x)

1]

¢

b) vé eq,, glo) = ¢,
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In this case we say that g matches imputs via go and that o” and g(w”)

0O

are matching inputs.

Thus in a IM-DEIS morphism (g,h,k) from G(M) to G(M”), the function

g preserves generators and length of generators.

Lemma 1.3.1

In a IM-DEIS morphism (g,h,k) from G(M) to G(M”), the function h

satisfies
a) VqeQ, Vx"€X’, Vt > 0

a.1) h(85(a,00) = 85(h(@),6.)

a.2) h(8,(q,g,(x7) )) = 8;(h(q),x7)

Proof

Follows immediately from Definitions A.2.3 and 1.3.1. 0

Next expand G(M) and G(M”) into their respective DEMSs SC(M) and

SG(M’)'

Definition 1.3.2

If (g,h,k) is a IM-DEIS morphism form G(M) to G(M*), then (g,h,k)

is a IM-DEMS morphism from SG(M) to SG(M’) provided g satisfies
glujouie...0u") = g(u])eg(w))e...0g(w") =
B (XD 08 (), O---0B ), 1, Af wp = (),
n n

ge(xl)r @ge(XZ)T ®"'®¢T ,» 1f “n = ¢T
1 2 n n
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Lt

for any w’GS%;

with m.1l.s decomposition w” = wi ® wé IR m; .

Thus, in IM-DEIS morphisms (g,h,k), the input segment is a

pulse train and g merely relables the pulses via 8+

Definition 1.3.3

An input matching DEIS state-morphism (abbreviated IM-DEIS state-
moyphism) from a DEIS G(M) to a DEIS G(M”) is a pair (g,h) subject to

the same restrictions as in Definition 1.,3.1. (]

The impending discussion of various morphisms will always extend
to state-morphisms, as the definition of the latter is properly
contained in that of the former. Consequently, we state now once and
for all, that all definitions and theorems concerning various morphisms
will henceforth extend to their respective state-morphisms.

We now proceed to put an algebra-like structure on the class of
IM-DEIS morphisms. The operations considered are composition and

inversion.

Theorem 1.3.1

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M”) and let
(g”,h7,k”) be a IM-DEIS morphism from G(M”) to G(M™).

Then there is a IM-DEIS morphism (g”,h"”,k") from G(M) to G(M").

Proof

Define (g",h",k') A (gog”,h”"oh,k“0k) where the circle operation

denotes function composition. Then



b)

c)

d)
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g":Qg~«»QC matches inputs via
J 3

-

e

n

e °8

g":X"—+X, where gg =g

e
h":h" 1 (Q")—=Q" is onto Q", since h]h—l(a’) is onto Q~ and
h”:Q"— Q" is onto Q. Clearly h 1(Q")CQCQ.

k":Y—Y" is onto, since k:Y—=Y” is onto Y~ and k“:Y " —=Y"
is onto Y".

V(s,e)ch 1(Q"), Vx"eX", VT > 0 (see Lemma 1.3.1)

d.1) h"(8,((s,€),8.)) = h”(h(85(s,e),9.)))

h” (85 (h(s,€),6.)) = 8/(h"(h(s,e)),6 ) = §4(h"(s,e),0 )
d.2) N7(8,((s,e),gl(x) )) = h*(h(3,((s,e) g, (g](x") ))) =
h” (85(h(s,€),g.(x") ) = 8/1(h" (h(s,e)),x" ) =
81 (" (s,e),x" ) .
V(s,e)€h 1 (@Q")
K"(A(s,€)) = k" (K(A(s,€))) =

k(A7 (h(s,e))) = A"(h”(h(s,e))) = A" (h"(s,e)) . 0

Theorem 1.3.1 asserts that the IM-DEIS morphism relation is

transitive in the sense that the IM-DEIS relation is preserved under

composition.

Theorem 1.3.2

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M”) such that

the maps g, h and k are all bijective and Q = Q.

Then there is a IM-DEIS morphism (g”,h”,k”) from G(M") to G(M).
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Proof

Define (g”,h”,k”) 8 (g 1,h"1,kx"1) where all inverse maps exist
by assumption. Then

-1
e

a) g”:X—=X" matches inputs via gé =g
b) h”:Q™—+Q is surjective
c) k7:Y'—=Y is surjective
d) V(s",e’)eQ”, VYxeX, Vt > 0 (see Lemma 1.3.1)
d.1) h7(65((s",e7),¢ )) = h7(§;(h(h"(s",e")),¢ J) =
h”(h(8,(h"(s",e7),8))) = 6. (h"(s7,e7),6) -
d.2) h7(65((s”,e7),g2(x) ) = h"(65(h(h"(s”,e7)),gl(x) )) =
h™(h(8,(h"(s”,e7),g,(85(x)) ))) = §,(h"(s”,e”),x.) .
e) V(s7,e”)eQ”
k(A" (s7,e7)) = k" (A" (h(h"(s",e7)))) =

k“(k(A(h"(s",e7)))) = A(h"(s",e7)) . O

Notice that an invertible IM-DEIS morphism from G(M) to G(M”)
merely provides a relabeling of G(M) in terms of G(M”) and vice versa.
This relabeling is consistent vis-a-vis full states transitions and
output values.

We can now formally define

Definition 1.3.4

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M”) and let
(g7,h”,k”) be a IM-DEIS morphism from G(M*) to G(M").
The composition of (g,h,k) and (g”,h”,k”) is a IM-DEIS morphism

from G(M) to G(M") denoted by (g,h,k)o(g”,h”,k”) and defined by
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(g,h,K)0(g”,h" k") & (gog”,h oh,k"ok) . (]

Definition 1.3.5

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M”).
The Znverse of (g,h,k) is a IM-DEIS morphism from G(M*) to G(M)
denoted by (g,h,k) ! and defined, whenever g"!, h™! and k™! exist, by

(50,0 18 @ L,h Lkl . [

It is not difficult to see that this algebra-like structure can
be defined analogously on system morphisms at any structural level.

In general, the transitivity of a morphism relation on a class of
systems, imposes an obvious hierarchy which is almost a partial order.
The invertibility relation among systems (i.e. the existence
of an invertible morphism that connects them) is easily seen to be
an equivalence relation. Thus it partitions the underlying class of
systems into equivalence classes. This remark holds true for DEISs
and IM-DEIS morphisms in particular.

We now give a standard specialization of IM-DEIS morphisms

(cf. Appendix A).

Definition 1.3.6

- / - - - - -
G(M) = <T,XG,QG,Q,Y,6G,>\> and  G(M7) = (T,X7,25,Q",Y ,GG,A> are

called compatible if
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In the following definitions, i denotes the identity map.

Definition 1.3.7

Let G(M) and G(M”) be compatible DEISs, and let (i,h,i) be a
IM-DEIS morphism from G(M) to G(M~).
a) IfQ=0Q in G(M), then (i,h,i) is called a IM-DEIS
homomorphism from G(M) to G(M”).
b) If (i,h,i) is a IM-DEIS homomorphism from G(M) to G(M”) and
in addition h is bijective, then (i,h,i) is called a

IM-DEIS isomorphism from G(M) to G(M~7). O
Lemma 1.3.2
The IM-DEIS homomorphism relation is preserved under composition.

The IM-DEIS isomorphism relation is preserved under inversion.

Proof

Follows immediately from Definition 1.3.7 and Theorems 1.3.1 and

1.3.2. O

IM-morphisms at the DEMS level are analogously defined. In

particular

Definition 1.3.8

Let SG(M) and SG(M’) be DEMSs.

A trajectory morphism (MATCH,h,k) from TRAJ(q,w) to TRAJ(q”,w”)
(see Definition A.1.8 in Appendix A) is called a IM-trajectory

morphism if
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a) w and w” are matching input segments,

b) MATCH = i. 0

1.4 Transitional Covering

This section develops a DEVS morphism concept, the so-called
transition covering DEVS morphism, based on the so-called transitional
covering relation. The essence of this relation is the ability to
perform a partial matching of sequential state jumps in two DEVSs.

Our preoccupation with jumps is motivated by their fundamental
importance in discrete event systems. In discrete event modeling
situations, sequential state jumps constitute system responses to
significant events during system evolution. 1In contiast, during the
time intervals separating jumps, the system is considered quiescent,
since its state rémains fixed throughout such intervals.

We start by formalizing the transitional covering relation concept.

Definition 1.4.1

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M*).

We say that G(M) is a tramsitional covering of G(M") (or simply,
that G(M) covers G(M”)) if

a) h(s,e) = (s*,0) = e=0
In this case (g,h,k) is called a transition covering DEIS morphism
(abbreviated T'C-DEIS morphism). The transitional covering relation is

denoted G(M) I G(M~). OJ

Thus G(M) 3G(M”), if whenever started from h-matching states,
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under g-matching inputs, a jump occurs in G(M”) only if a jump occurs
in G(M) at the same instant.

Consequently, every jump in G(M”) can be matched in time by a
jump in G(M), but not necessarily vice versa. In particu1ar this means
that all sequential states of M” can be matched by sequential states in

M. This observation motivates the following definition.

Definition 1.4.2

A transition covering DEVS morphism (abbreviated TC-DEVS morphism)
from M to M” is a quadruple (g,L,h,k), subject to the following restric-
tions:

a) g is a function g:X"—eX called the external event encoding

function.

b) L is a function L:S—=NU{0} called the transition counting

function where ScS and N is the set of natural numbers.

c) h is a surjective function h:S—=S” called the sequential

state decoding function.

d) % is a surjective function %:Y—Y~ called the output decoding

funetion.

e) Let Q8 {(s,e)eq: s= 8,G.m((3,0,1), e = -0(3,m((5,0),1))

for some s€S and 0 < T < £°(N(8))}. If .(5‘,e)6(§ is associated

with (sl,'rl) and (sz,rz), then"h(sl) = 1’1(52) and Ty = T,
f) TFor any s€§
RIC
£.1) () = ) ‘é(5¢(§,i))

1=0

£.2) §,(3,L(8)+1) €s

£.3) n(E¢(§,L(§)+1)) = 5(;(11@))
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g) For any §€§5, 0 <t < #°(h(8)), let s é1§¢(§,m((§,0),r)) and

>

e=1-0(s,m((5,0),7)) . Then for any x” € X~

g-1) 8y((s,e),g(x")) 8
g-2) h(8y((s,e),8(x"))) = 85 ((N(5),1),x")

g-3) *(A(s,e)) = A" (h(s),t)
In this case, we say that M is a transitional covering of M” (or simply

that M covers M”), and denote MIM~, O

We need of course to show that this terminology is consistent. To

do this, we will need

Lemma 1.4.1
For elements of Q in Definition 1.4.2, the representation
a) (s,e) = (3¢(§,m((§,0),f)), T - o(8,m((8,0),1)))
is equivalent to the representation

b) (s,e) = 8,((5,0),9.)

Proof

Follows immediately from Lemma 1.2.1. O

We now show that TC-DEVS morphisms induce TC-DEIS morphisms in a

natural way,

Theorem 1.4.1

If M3M” via a TC-DEVS morphism (g,L,1,%), then G(M) 3G(M”) via

some TC-DEIS morphism (g,h,k).
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Define g to be input matching by setting g, A g&. Next define Q to
be the set Q of Definition 1.4.2. 1In view of Lemma 1.4.1, every q<36
has the form
(1) q = (s,e) = GG((§,O),¢T) for some S€$ and 0 <

Now, define h:Q—=Q~” by

(2) h(s,e) = h(8:(5,0),4) = (M(5),1) eQ”,

h is well-defined due to e) in Definition 1.4.2. It is surjective
since T is surjective and since 0 < T < &°(i(s)) .

Finally define k é'k-f:rom Y onto Y~.

It follows from (2) that

(3) h(s,e) = (s7,0) = (s,e) = (§,0) = e=20.

Thus h is transition covering.

Now, for any §e€§ and 0 < 1 < £°(h($))

(4) h(8;((8,0),¢)) = (N(8),1) =

8G((M(5),0),6 ) = 8;(h(5,0),4 )

due to (1) and (2).

For any S €8 and t = £°(h(8))

(5) h(8;((5,0),4.)) = h(§, (3,L(3)+1),0) =

cﬁ(€¢(§,L(§)+1)),03 = (aq;ch(g)),m =
8G(((5),0),0.) = 85(h(8,0),4.)
by f£.1), f.2) and £.3) in Definition 1.4.2, (1) and (2).

In view of (1), (4) and (5), we conclude by induction on m((s,0),t) that

(6) h(85((s,e),0)) = 8i(h(s,e),0.), V(s,e)eq, V¢ €a

and §7.

due to the composition property of GG G
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A

Next, for any s€§, 0 <t < €£°(h(s)) and x"¢ X~

(7)) R(8,((5,00,8(x))) = h(§,((§,0),8(x7) ) =
h(8,,(8,((3,0),6),8(x)),0) = ((8,(8,((5,0),6),(x))),0) =
(85(0N(8),7),x7),0) = (§/(84(E(8),0),6.),x7),0) =
85((1(8),0),x7) = 85(h(3,0),x)

by the definitions of g and h above, the definitions of GG and

Gé (see Definition 1.2.4), Lemma 1.4.1, g.1) and g.2) in
Definition 1.4.2, (1) and (2).
In view of (1) and (7) we conclude by induction on m((S,0),t) that

(8) h(6,((s,8),8(x))) = 85(h(s,e),x)), V(s,e)eq, Vx e®y

again due to the composition property of GG and 6(’;.

Finally, for any (s,e)€Q
(9) k(r(s,e)) = *(A(5,((5,0),4))) =
A7 (N(s),1) = A7 (h(s,e))
by (1) and (2), Lemma 1.4.1 and g.3) in Definition 1.4.2.

We conclude from Definition 1.4.1 that (g,h,k) is a TC-DEIS

morphism as required. O

Next, we prove that TC-DEIS morphisms induce TC-DEVS morphisms in

a natural way.

Theorem 1.4.2

Let G(M) 3G(M”") via a TC-DEIS morphism (g,h,k). Then MIM~” via

some TC-DEVS morphism (g,L,h,k).
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Proof
Consider the set § 2 {s€S: (s,00eQ and h(s,0) = (s°,0)}.

Decompose h into h = (hl,hz) and define 1i:§-+S~ by

e

(1) 1(s) h1(§,0).

“Next, let g 8 g, and % 4 k.
Let (s,e) be in Q of e) in Definition 1.4.2.

Suppose (s,e) is associated with (§1,11) and (§2,T2). Then

@) 851000, ) = (5,0) = 8G((,0008, ) S M(EG(G1,008,0) =

h(g(Gy00.6, ) = 85BEL0,0, ) = 8 (E,,0,0, ) =

= 65((h(§1),0),¢11) = 66(Ch(§2),0),¢12) =

= MG, = MB,),Ty)

due to the definitions of S, h and Q. Hence

(3) 'h(§1) =‘h(§2) and T, =T,

Let S$€S. Then there is (s”,0) € Q” such that h(s,0) = (s”,0).

Now,

(4) 85((57,0),0, . 5-y) = SG(h (5,000, . ) =
h(85((5,0),0, -5y

On the other hand

(5) 8G((s7,0),0 . 5y) = (8:(57),0)

Hence, (4) and (5) imply

(6) h(5G((3,0),0,-(5-)) = (85(s7),0)

By the transitional covering property, we deduce from (6) that

GG((S’O)’¢t'(S')) has the form
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(7) GG((§,O),¢t,(S,)) = (E¢(§,L+1),0) for some L = L(s) 2 0

Thus, (6) and (7) imply that during the interval (0,¢"(s”)] we had
one autonomous transition in G(M”) from state (s”,0) to

state (6&(5’),0), while in G(M) we had L+1 transitions from

state (S5,0) to state (§¥(§,L+l),0) during the same time interval.

In view of (7) we can define a surjective map L:S—>NU {0}

such that
. L(s) _ X
(8) £7th(s)) = ), €(6¢(s,i)), Vs &S
i=0

Now, for any §€§
(9) h(F,(3,L(3)+1),0) = h(8:((3,0),8, - p(g)y) =

(%(“}T('S\)),O)

due to (8), and the definitions of § and .

Thus, (g) shows that

(10) '5’¢(§,L(§)+1)e§

by definition of S. Moreover, from (9) we deduce

(11)-h(€¢c§,L(§)+1)) = 6;Ch(§))

by definition of Hh.

ne>

Next, for any §¢S and 0 < t < €7 (h(3)), let s §¥(§,m((§,0),1)) and

ne>

e=1-0(8,m((s,0),t)) . Then for any x”€ X~

(12) h(8((s,e),g(x")),0) = h(8y(8,((5,0),¢.),8(x"))) =

h(84((3,0),8(x7))) = h(§,((3,0),g(x7)))

86(h(5,0),x7) = (85(85(h(5,0),0.),x7),0)

(8 (85(En(),0),9 ),x7),0) = (85 (Er(8),7),x7),0)
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due to Lemma 1.4.1, by definitions of §. and 66 (see Definition 1.2.4),

G
and by definition of g, h and S.

Thus, (12) shows that

(13) 6,((s,e),8(x")) €S

by definition of S. Moreover, from (12) we deduce that
(14) h(8,((s,e),&(x7))) = GIQ,((TT@),T),X')

by definition of .

Finally, by Lemma 1.4.1 and the definition of h we have
(15) k(1 (s,e)) = k(A(s,e)) =
A7(h(s,e)) = X’(h(GG(§,0),¢T)) =
X’(éé(h(g,o),qb,r)) = 2"(h(5,0),1) =
A (h(s),T)
We conclude from Definition 1.4.2 that (g,L,hr,kX) is a TC-DEVS morphism

as required. L

Corollary 1.4.1

(g,h,k) is a TC-DEIS morphism from G(M) to G(M”) iff (g,L/h,k) is
a TC-DEVS morphism from M to M~.
Moreover, in this case g = g_, i = h1|§X{O} and ¥ = k.

Furthermore, hl(s,e) = #1(s) Whenever (s,e) = 6C((§,0),¢T)G;Q. ]

Theorem 1.4.2 shows that the essence of a TC-DEVS morphism from
M to M] is the ability to define a IM-DEIS morphism (g,h,k) from G(M)
to G(M?) such that h = (hl,hz) satisfies

hl(s,e) = h(s), VO < e < £(s)

>

for some map fron S 2 {s: (s,e)€Q for some e}.
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In other words h is definable whenever hl(s,e) does not depend on
e. This is, of course, possible iff all the jumps of G(M*) can be
matched in time with jumps of G(M), i.e. iff (g,h,k) is a TC-DEIS

morphism.

We now show that morphisms of the transitional covering type are

transitive.

Theorem 1.4.3

If (g,h,k) is a TC-DEIS morphism from G(M) to G(M”) and (g”,h7,k7)
A
is a TC-DEIS morphism from G(M”) to G(M"), then (g",n" k") =

(g,h,k)o(g”,h”,k”) is a TC-DEIS morphism from G(M) to G(M").

Proof

We already know that (g",h”,k”) is a IM-DEIS morphism from G (M)
to G(M") by Theorem 1.3.1. It remains to show that
(1) h'"(s,e) = (s",0) = e =0
Now, by definition
(2) h"(s,e) = h"(h(s,e)) = (s",0)
Since (g”,h",k”) is a TC-DEIS morphism, (2) implies
(3) h(s,e) = (s7,0) for some s“€S”,
But (g,h,k) is also a TC-DEIS morphism. Hence (3) implies
4) e=0

which was to be proved.

One can similarly show that TC-DEVS morphisms are transitive,
provided composition of TC-DEVSs is appropriately defined, viz.

(8",L",h" %" & (g,1,h,3)0(g",L " %") where
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1. g':x"—=X is defined by

n

A -
£ = 80&

2. L"4 1(§)-+NU{0} is defined by
R (O R

L"(s) = 1};0 L(6¢(S,1))
3. 1" 1(S7)—=S" is defined by

1 & froon
4. ¥W':Y-—=Y" is defined by

* & wox
The proof is omitted, since it is quite tedious and does not

provide additional insight into transition covering morphisms.

We shall, however, proceed to define the standard hierarchy of

TC-DEVS morphisms. In the following definitions i denotes the

identity function.

Definition 1.4.3

Two DEVSs M = (X,S,Y,¢,6,)\) and M* = (X*,S$*,Y",¢",867,\”) are
called compatible if
a) X =X~

b) Y = Y

Definition 1.4.4

Let (i,L,¥,i) be a TC-DEVS morphism between compatible DEVSs
M and M~,

Then (i,L,h,i) is called a TC-DEVS homomorphism, if Q = Q.

A TC-DEVS homomorphism is called a TC-DEVS isomorphism, if in

addition h is injective.
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The concepts of TC-DEIS homomorphism and TC-DEIS isomorphism are
defined in the obvious way, similarly to the hierarchy of IM-DEIS
morphisms.

We conclude this section by carrying over the TC morphisms to the

DEMS level.

Definition 1.4.5

Let (g,h,k) be a TC-DEIS morphism from G(M) to G(M”). Let (g,h,k)

be the induced IM-DEMS morphism from S (See Definition

G (M) to SG(M’)'
1.3.2).
Then (g,h,k) is called a TC-DEMS morphism from SG(M) to SG(M’)‘

In this case we say that S covers SG(M’)’ and denote S

M) Sey
O

GM)

Conclusion 1.4.1

Definition 1.4.5 requires that (g,h,k) be a TC-DEIS morphism from

G(M) to G(M”) iff (g,h,k) is a TC-DEMS morphism from S to S ... ...
(M) M%) (g ) rp G (M) G(M") I

Conclusion 1.4.1 and Corollary 1.4.1 give rise to the TC morphism
paradigm of Figure 1.4.1,
At the DEMS level, it is useful to restrict transitional covering

to particular trajectories as follows.

Definition 1.4.6

Let SG(M) and SG(M’) be DEMSs, and let (i,h,k) be a IM-trajectory

morphism from TRAJ(q,u) to TRAJ(q”,w”). (See Definition 1.3.8).

We say that (i,h,k) is a TC-trajectory morphism if
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(‘g: L ;h ,k)

(g,h,K)
GM) B G(M™)

(g,h,k)
Se(M) > Se

Figure 1.4.1: Relations among Discrete Event Structures and
the Associated Transitional Covering Morphisms.
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a) h(STRAJq w(t)) = (s7,0) = STRAJq’w(t) = (s,0).

In this case we say that TRAJ(q,w) is a transitional covering of
TRAJ (q”,w”) (or simply that TRAJ(q,w) covers TRAJ(q”,w”)), and denote

TRAJ (q,w) 2TRAJ (q~,0") . U

From Definition 1.4.6 we have the immediate

Conclusion 1.4.2

Let (g,L,h,k) be a TC-DEVS morphism from M to M” and let (g,h,k)
be the TC-DEIS morphism induced by it according to Theorem 1.4.1.
Then

a) Vo eQ:, VqeQ, STRAJ 3 STRAJ

q,g(w") h(q),w”

where g is defined in Definition 1.4.5. 0]

1.5 Transitional Matching

| Transitional covering allows us to match in time all jumps of a
morphic image, with some of the jumps of its morphic preimage. In
addition this matching is consistent by virtue of the underlying
discrete event morphism.

Thus, transitional covering is a situation whereby the morphic
preimage undergoes jumps at a ''rate'" which is higher than in its morphic
image. The natural way to specialize covering morphisms is to require
those '"rates'" to equal, so that all the jumps in both the morphic
preimage and its morphic image can completely be matched in time.

In accordance with the foregoing discussion, this situation will be

called transitional matching.
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We start by formally defining it at the DEIS level.

Definition 1.5.1

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M"). We say
that G(M) and G(M~”) are transitionally matching if

a) h(s,e)

(s7,0) = e=0

b) h(s,0) = (s",e”) = e~ =0

In this case (g,h,k) is called a transition matching DEIS morphism

(abbreviated IM-DEIS morphism). O

Definition 1.5.1 shows that a TM-DEIS morphism is a TC-DEIS
morphism satisfying condition b) in the above. This means that if
G(M) and G(M”) are started from h-matching states under g-matching
inputs, then G(M) undergoes a jump iff G(M”) undergoes a jump at that

very instant.

The following theorems give necessary conditions for transitional

matching.

Theorem 1.5.1

Let (g,h,k) be a TM-DEIS morphism from G(M) to G(M”). Then

a) h(s,e) = (s”,e”) = £(s) - e=%t"(s7) - ¢

Proof

Suppose
(1) h(s,e) = (s",e")
Since (s,e) = SG((S,O),¢e), we have by the composition property of

GG that
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(2) 8,((s,0),¢ ) = 8,(8,((s,0),6),0 ) =

t(s)-e t(s)-e

5((5,0),0 ) = 85((5,0),0, () =

e+t (s)-e

(6¢(S),0) = (5¢(S,1),0)
Therefore, using (2)

(3) 85((s7,e7) 10, ().0) = 8G(h(.0),0, () o) =

h(8.((s,e),¢ )) = h(8,(s),0)

t(s)-e
By transitional matching, we conclude from (3) that

(4) 8:((s7,e7),¢ ) = h(6¢(5),0) = (6&(5’,1),0)

t(s)-e
for some i > 1.
But using the same line of reasoning as in (2)

(5) 8.((s7,e7),¢ ,)_e,) = (6$(S'),0) =

t (s
§7(s7,1),0) .
(8,(s7,1),0)

Comparing (4) and (5), we conclude that

(6) %£(s) -ex>2t"(s") - e~

Now, applying transition function preservation to (5) yields

(7) (6¢(S ),0) = 6.((s7,e ),¢t,(s,)_e,) =

8;(h(s,e),¢ ) = h(8g((s,e)ub, - ooy o-)) -

t"(s7)-e
By transitional matching, we conclude from (7) that

(8) 85((5,0) 50, gy ) = (8,(5,3),0)

for some j > 1.
Comparing (2) and (8), we conclude that
(9) €(s) - e <t’(s7) - ¢~

Finally, a) follows from (6) and (9).
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Lemma 1.5.1
Under the conditions of Theorem 1.5.1 we have, in particular, that
if h(s,e) = (s”,e”), then

a) (s,00€0 = (s) = £°(s7).

Proof
By transitional matching

(1) (5:0)66 = h(s,0) = (s7,0)

-

Hence we may set e = e” = 0 in condition a) of Theorem 1.5.1, and

condition a) of this lemma follows immediately. t

Theorem 1.5.1 states that for TM-DEIS morphisms (g,h,k), the
residual times to the next jump of h-matching states, are always equal.
However, this is not true for the respective time advance functions,
unless as asserted in Lemma 1.5.1, the state in the morphic preimage
is such that the jump to its sequential component is in the morphism
domain. 1In this case we have the following characterization of TM-DEIS

morphisms.

Theorem 1.5.2

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M”) and define

nes

S = {s€S: (s,e)eQ for some 0 < e < &(s)}. Suppose Q satisfies
(@) (s,e)eQ = (5,00€Q
Then (g,h,k) is a TM-DEIS morphism iff

there is a surjective map h:S—S, such that

(b) V(s,e)eQ, h(s,e) = (h(s),e)
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(&) Suppose there is h satisfying (b).
Now, whenever h(s,e) = (s”,e”), then by (b)
(1) (s7,e”) = (h(s),e)
and hence
(2) h(s,e) = (s",e”) = (e=0 iff e” = 0)
which is equivalent to the transitional matching property.
(=>») Suppose (g,h,k) is a TM-DEIS morphism.
Define h:S—=S by

(3) h(s) éhl(s,()) where h = (h ,h)).

If s“€S”7, take any s €S such that h(s,0) = (s%,0). Such s€S
exists by transitional matching and surjectiveness of h. Clearly,
h(s)-= s” so that h is surjective. Moreover, by definition of h
(4) VseS, h(s,0) = (h(s),0)

But by Lemma 1.5.1 and in view of (a)

(5) VseS, £(s) = t’(h(s))

Finally, taking note of (4) and (5) and using transition function

preservation, we have for any (s,e) €Q

(6) h(s,e) = h(8,((5,0),6.)) =
85(n(s,0),0.) = 6:((h(s),0),8_) =

(h(s),e)

where (6) is identical to (b).

When condition (a) in Theorem 1.5.2 does not hold, we have a

modified version of this theorem.
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Corollary 1.5.1

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M”). Define
g4 {seS: (s,e)eQ = (s,0)€Q} where S is defined in Theorem 1.5.2,
and let Q £ {(s,e)eQ: s€§ and 0 <e < t(s)}.
Then
a)  (g,h|Q,k) is a TM-DEIS morphism
iff
b) there is a surjective map*h:é—ﬂ>8‘ such that

V(s,e) €Q, h(s,e) = (fi(s),e) a

We remark in passing that Theorem 1.5.2 and Corollary 1.5.1
constitute a sharpening of Theorem 6 in [Z1] Ch. X Sec. 10.5.
The concept of TM-DEIS morphisms motivates the following defini-

tion of TM-DEVS morphisms.

Definition 1.5.2

Let (g,L,ir,%) be a TC-DEVS morphism (see Definition 1.4.2) from

M to M~.

We say that M and M~ are transitionally matching if
a) L(3) =0, Vie§
In this case, (g,L,h,k) is called a transition matching DEVS morphism

(abbreviated TM-DEVS morphism). 0

We again need to show that this definition is consistent. First
we show that TM-DEVS morphisms induce TM-DEIS morphisms according

to Theorem 1.4.1.
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Theorem 1.5.3

Let (g,L,h,}) be a TM-DEVS morphism from M to M”“. Then there is

a TM-DEIS morphism from G(M) to G(M”).

Proof

Since (g,L;h;kj is a TC-DEVS morphism, we have that (g,h,k) of
Theorem 1.4.1 is a TC-DEIS morphism from G(M) to G(M”). We show that
(g,h,k) is a TM-DEIS morphism.

By definition of TM-DEVS morphisms, it follows that for any §eS§
L(S) :

1) &G = 3, €(6,(5,1)) =
i=0

s(°§¢(§,0)) = £(S)
due to f.1) in Definition 1.4.2. Furthermore,

-~ A

(2) §¢(§,L(§)+l) = §,(5,1) = 6¢(§)e§

by f£.2) in Definition 1.4.2.

From (1) and (2) we conclude that

(3) Q= {(s,e): s€S, 0 <e < ¢(5)}

so that in particular
(4) (s,e)e€Q = (s,0)¢€Q

Clearly, every (s,e)éianhas the representation

~

(5) (s,e) = GG((§,O),¢T), for T = e and S = s €8S
Hence by (2) of Theorem 1.4.1, for any (s,e) €Q
(6) h(s,e) = h(5,((s,0),0.)) = (H(s),e)

whefe h is surjective by definition.

We conclude from Theorem 1.5.2 that (g,h,k) is a TM-DEIS morphism.

d



58

Next, we show that TM-DEIS morphisms induce TM-DEVS morphisms

according to Theorem 1.4.2.

Theorem 1.5.4

Let (g,h,k) be a TM-DEIS morphism from G(M) to G(M”). Then there

is a TM=DEVS morphism from M to M~.

Proof

Since (g,h,k) is a TM-DEIS morphism, we have that (g,L,h,¥%) of
Theorem 1.4.2 is a TC-DEVS morphism from M to M”. We show that
(g,L,h,%k) is a TM-DEVS morphism.

It remains to show that
(1) L(8) =0, Vs§eS§
Consider any § €S. By definition of S in Theorem 1.4.2 we have that
(§,0)€E§} whence by Lemma 1.5.1
(2) €(5) = ¢ (h(3,0))
where h = (h ,h)). Bﬁt h1(§,0) = h(s) by (1) of Theorem 1.4.2.
Hence (2) implies
(3) €(3) = €7 (h(s))
By f.1) in Definition 1.4.2
X L(S) _
(4) €°(h(s)) = iz=:0 E(%(S,i))
Comparing (3) and (4) gives us
L(8)

(5) 2, €(8,(5,1)) = €(5)
i=0

Since M is regular we conclude that L(S) = 0 which was to be proved. []
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The hierarchies of TM morphisms and their variants is analogous to
the hierarchies of TC morphisms in the previous section.

We now show that the transitional matching relation is transitive.

Theorem 1.5.5

If (g,h,k) is a TM-DEIS morphism from G(M) to G(M") and (g”,h",k")

is a TM-DEIS morphism from G(M”) to G(M"), then

(g",h", k" é (g,h,k)o(g”,h”,k”) is a TM-DEIS morphism from G(M) to G(M").

We already know by Theorem 1.4.3 that (g”,h”,k") is a TC-DEIS
morphism from G(M”) to G(M").
It remains to show
(1) h'"(s,0) = (s",e") = e" =0
By definition of h"” we may rewrite the antecedent of (1) as
(2) h'"(s,0) = h”(h(s,0)) = (s",e")
Denote h(s,0) = (s”,e”). By transitional matching of G(M) and G(M~)
via (g,h,k) |
(3) h(s,0) = (s",e”) => e =0
Setting (3) in (2) yields
(4) h"(s,0) = h"(s",0) = (s",e")
But by transitional matching of G(M”) and G(M") via (g”,h",k”), (4)
implies
(5) e =0

which was to be proved.
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The proof at the level of TM-DEVS morphisms is analogous and will

be omitted.

A sufficient condition ensuring an invertible TC-DEIS morphism to

be a TM-DEIS morphism is given in

Theorem 1.5.6

Let G(M) 3G(M”) via an invertible TC-DEIS state-morphism (g,h).
Suppose that in addition G(M”) 3G(M”) via the inverse TC-DEIS
state-morphism (g,h) 1.

Then G(M) and G(M”) are transitionally matching.

By definition h:Q—Q” is bijective and h™1:Q"—=Q is bijective.
Since G(M) covers G(M”) it follows that
(1) h(s,e) = (s7,0) = e=0
Now, assume
(2) h(s,0) = (s7,e")
Applying h™1 on both sides of (2) gives
(3) (s,0) = h"l(s”,e")
But since G(M”) covers G(M) via (g,h) ! we have
(4) h'l(s",e”) = (5,0) => e” =0
From (2), (3) and (4) we conclude
(5) h(s,0) = (s”,e") = e =0

Finally (1) and (5) show that G(M) and G(M*) are transitionally matching.
O
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While a chain of TC morphisms produces a sequence of discrete event
systems with a '"decreasing rate".of jumps, a chain of TM morphisms keeps
the jump '"'rate'" in the seduence "fixed".

T™M isomorphisms are easily seen to partition a class of discrete
event systems into equivalence classes of mutually TM isomorphic systems.
In each such class, whenever the members are started in h-matching states
and evolve under g-matching input segments, they will always undergo
simultaneous jumps throughout the evolution.

A TM morphism paradigm can be derived analogously to the TC

morphism paradigm depicted in Figure 1.4.1.
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1.6 The Completion and Parallel Composition Operations

This section discusses two operations on discrete event systems:
the so-called completion operation defined on IM morphic pairs of
DEVSs, and the parallel composition operation defined for every pair
of DEVSs.

The completion operation is motivated by the heuristic observation
that every input matching morphism can be strengthened to a transition
covering one, in a canonical manner. This is achieved by a ''completion"
procedure of the morphic preimage, relative to the morphic image. The
operation is carried out by the transitional completion algorithm,
which is embedded in the following procedure.

Our starting point is any pair of DEVSs M = (X,S,Y,¢,§,A) and
M® = (X’,S’,Y’,t‘,d’,l’k provided there is a IM-DEIS morphism (g,h,k)
from G(M) to G(M"). The procedure produces a '"complete'" DEVS
M= (X,é,Y,E,s,i) in which S, &, § and X are constructively defined
by the Transitional Completion Algorithm, to be described later.

This description relies heavily on the definitions of two auxiliary

functions which we now proceed to introduce.

First define a function e_ :S—=[0,=] by

J
(min{O <e<t(s): d9s°€S” 3 h(s,e) = (s”,0)}, if the minimum
A .
eJ(s) = ‘ exists
1%(5), otherwise
Intuitively, eJ(s) gives the time to the first jump in either M or M’
when started autonomously from states (s,0) and h(s,0) respectively.

Next, denote h(s,0) = (s”,e”) whenever (s,O]e.Q; and define a

function J:S—=NuU{0}U{=} by



63

('0, if eJ(s) = t(s)
J(s) & m”((s”,e”),e(s)), if e;(s) < ¢(s) and hz(%(S),O) # 0
m“((s”,e”),t(s)) - 1, if eJ(s) < £(s) and h2(6¢(s),0) =0

where m” is the jump counter function (see Definition 1.2.3) in M” and
h2 is the clock coordinate in h = (hl’hz)' Intuitively, J(s) gives
the number of jumps that M” undergoes autonomously from state h(s,0)

during the time interval (0,%(s)).

We are now ready to describe the Transitional Completion Algorithm.

Algorithm 1.6.1 (Transitional Completion Algorithm)

For any (s,0) € Q denote h(s,0) = (s”,e”). Then perform for any

s €S the following:
~ J(s) .. = ~ A . .
1) Put the sequence {Si}i=0 in S, where 5. = (i,s), 0 < i < J(s).

We assume, without loss of generality, that SNS” = ¢,
so that S, S” and S are mutually disjoint.
2) Define E:é-mv(o,w] by

- N
eJ(s), if 1 = 0 and eJ(s) >0

t°(s”), if i.= 0 and eJ(s) =0

~ A
€(s;) = / € (8, (s7,1)), if 0 < i < J(s)
J(s)-1_
! t(s) - 2: t(gi), if i = J(s)
L 1=0

3) Define S:QX(XlJ{¢})—1>§ by

Siel = i+ 1,s), if 0 < i < J(s)

e

61 (0,6,(s)), if i = J(s)
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i-1
8, (5,,8),%) & (o,aM((s,Jgoé(éjwé),x))

4) Define X:Q-ﬂ»Y by
i-1

35, ,8) 2 acs, T E(E,)+8)
i =0 ]

[

This completes the Transitional Completion Algorithm. (-

Notice that whenever s €S - §; where S = {s€S: (s,e) € 6 for
some 0 < e < £(s)}, then the minimum is undefined and we always have
eJ(s) = t(s). Consequently, in this case J(s) = 0, always. This fact
renders steps 1) - 4) meaningful for all s €S,

We are now ready to define the transitional completion operation

on morphic DEVSs.

Definition 1.6.1

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M”). The

transitional completion of M relative to M” (denoted M(M”)) is a

R . VAP VR

a) X=X
b) Y=Y
c) S, &, § and X are defined by applying Algorithm 1.6.1 (the

Transitional Completion Algorithm) to each s €S.
In this case we also say that G(M) is the transitional completion of

G(M”) relative to G(M~). J

The construction of a transitional completion is illustrated in
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Example 1.6.1

Let M = (X,S,Y,t,8,)) be defined by
X=29
S =‘{SO’51}
Y = [0,1/271)

%(so) = t(sl) =T
090510 =514
A(si,e) = e (mod 1/27)

Let M” = (X”,S7,Y",£”,67,1") be defined by
X“ =9
S” = {so,sl}

Y* = [0,1/27)

t’(sa) 3/2t, t’(si) = 1/21

8p(si) = 514
A(si,e) = e (mod 1/271)

Define a IM-DEIS morphism (g,h,k) from G(M) to G(M") where
g is the empty function
h:Q—-Q” is defined by

('
(sgse), if i =0

h(si,e) = < (56,1 +e), ifi=1 and 0 < e < 1/2t

(si, e - 1/2t), otherwise
.

k:Y-<Y” is the identity function
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Now,
ft(so), ifi=0
eJ(si) =
(1/2t, if i =1

whence J(s.) = i, 1 = 0,1.

N N

Define M = (X,S,Y,%,5,1) by

X =20
§= {(O,SO)’ (O’Sl)’ (1’31)}
Y = [0,1/21)

E(O,SO) = t(so) =T, t(O,sl) = %(l,sl) = 1/21
8,(0,50) = (0,5, 8,(0,5)) = (1,5), 8, (1,5)) = (0,5))
i((j,si),e) = e (mod 1/27)

Then M is the transitional completion of M relative to M~”. [

From the completion algorithm we derive the following conclusions.

Conclusion 1.6.1

The autonomous operation of M(M”) is periodic in the following
sense. If M is started in state ((O,S),O)GEQ, then it evolves autono-
mously through the sequential state sequence

jf(o,s),(1,3),”.,(J(s),s), UL&&(s))“..}, if J(s) < o
L00,9),(1,9),...), Q£ J(s) = =
The general scheme is

(0,s) - - - (0,65(5,1)) - - - (0,84(5,2)) - - -

- - - (0,§¢(s,n)) - - - ..
where the dashes together with their leftmost sequential states stand

for some periodic sequence. 7
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Conclusion 1.6.2

It follows from 2) and 3) in Algorithm 1.6.1 that for every

(s,e) €Q, the clock e has the representation

a) e =5((0,s),i) + & for some 0 < i < J(s) and 0 < & < &(i,s)

where o is the total time advance function (see Definition 1.2.2) of M.

Moreover, this representation is unique.

Conclusion 1.6.3

It follows from 2) and 3) in Algorithm 1.6.1 that

(a) h(s,e) = (s7,0)

iff

(b) eJ(s) < £(s)
and f 5 _
e;(s) + ;g%e’(éé(sé,j)), if eJ(s) >0

i

(c) e= 5

)
i
t
!

&

for some 0 < i < J(s), where 56 4 hl(s,O).

i
¢ (5, (5,00, 4 e5(s) = 0

The semantics of the transitional completion operation are

O

suggested by the terminology. Intuitively, it amounts to adding jumps

to the morphic preimage, which correspond to all jumps in the morphic
image. This is done by adding sequential states to the former and
redefining its time advance function, transition function and the

output function, in a consistent manner. In other words, the transi-

tional completion operation takes any morphic preimage and completes

it into a transitional cover of its morphic image.
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Formally, we have

Theorem 1.6.1

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M"). Let
i 2 M(M”) be the transitional completion of M” relative to M”. Then
a) G(M)3G(M) via a TC-DEIS isomorphism (i,h,i)

b) G(M) IG(M") via a TC-DEIS morphism (g,h,k).

Proof

Define a IM-DEIS morphism (i,h,1i) from G(M) to G(M), where h
is given by
(1) V((i,5),8)eq, h((i,5),8) & (5,5((0,5),1) + &)
and ¢ is the total time advance function of M. Observe that
0 < o((0,s),i) + & < &(s), by 2) in Algorithm 1.6.1.
For any (s,e) €Q, represent e as e = o((0,s),i) + e for some
0<i=<J(s)and 0 <e < £(i,s), according to Conclusion 1.6.2. Now,
take ((i,s),é)e(i. Then ﬁ((i,s),é) = (s,e) by (1), and h is shown to

be from Q onto Q. Next, suppose
(2) R((i],s),8)) = h((i,s,),8)

Then necessarily $; = S, 2 s by (1). Hence we can rewrite (2) as

(3) (5,5((0,5),i) + &) = (5,5((0,5),i)) + &)
where the representations of the clocks in (3) are unique by

Conclusion 1.6.2.

Conclude that i1 = iz and él = éz from which follows

(4)  ((i,s)),8)) = ((i,,55),8,)

We have that (2) implies (4), i.e. h is injective.
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Now, in view of Conclusion 1.6.1 it suffices to show that transition
function preservation holds only within the indicated periods. This
is true due to the composition property of transition functions.

More accurately, it suffices to show
(5) h(8,(((0,s),0),¢3) = 8,(h((0,5),0),¢)
only for all ((O,s),O)tEQ, and 0 < t < €(s), and

(6) h(8,(((,5),8),x),0) = (8,(R((i,s),6),x),0)

for any ((i,s),&)eQ and xeX.

Now,

(1) 8,(((0,5),0),4,) = ((1,5),8)

for some 0 < i < J(s) such that
(8) t=0((0,5),i) +e

Using (7), (1) and (8) we have

(9) h(8.(((0,5),0),6)) = h((i,s),e)

(s,0((0,s),1) + ) = (s,1)
while using (1) we obtain

(s,7)

(10) 8(h((0,5),0),¢.) = 85((s,0),¢)

Thus, (9) and (10) show that (5) holds. In view of 3) in Algorithm
1.6.1, (9) and (1), we find that

(11) h(8,(((i,5),8),x),0) = h((0,8,((5,5((0,5),1) + &),x)),0) =
(8,4((5,6((0,5),1) + €),x),0) = (&, (h((i,5),8),x),0)

and (11) shows that (6) holds.

Next, we show preservation of output function. From 4) in Algorithm

1.6.1 we immediately deduce that for any ((i,s),&)eQ
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(12) A((i,s),8) = A(s,5((0,s),i) + &) = A(h((i,s),e))
We have shown that (i,ﬁ,i) is a IM-DEIS isomorphism from G(ﬂ) to G(M)
and it remains to show that G(M) 3G(M) via (i,h,i).
Suppose
(13) h((i,s),8) = (s,0)
By the representation of Conclusion 1.6.2, (13) implies
(14) 5((0,s),i) +e =0
which shows in particular that
(15) e =0
Thus, from (13) and (15) we conclude that G(M):JG(M) as required,
and the proof of a) is concluded.
Next define (g,5,%) & (i,h,i)o(g,h,k) = (g,hoh,k).
Then (E,ﬁ,ﬁ) is a IM-DEIS morphism from G(M) to G(M”) by Theorem
1.3.1. It remains to show that G(M) 2G(M”) via (E,ﬁ,ﬁ).
Suppose
(16) h((i,s),e) = (s*,0)

Then

A7) h(h((,s),&)) = (s~,0).

e

Denoting h((i,s),&) = (s,e), (17) becomes
(18) h(s,e) = (s7,0)

By Conclusion 1.6.3 and due to (18) we may represent e as follows:

i
e (s) + }gae'(ﬁg(s',j)), if e (s) >0
(19) e =

!
;g%t’(a;(s',j)), if e;(s) = 0

where s~ 4 hl(s,O).
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But by 2) in Algorithm 1.6.1, (19) implies that
(20) e = 0((0,s),1)
On the other hand, from Conclusion 1.6.2 we have that e has a

unique representation

(21) e = o((0,s),1i) + €

‘Equating (20) to (21) finally gives
(22) e=0

We conclude that (16) implies (22), and the proof of b) is completed.
(]

Theorem 1.6.1 shows that every transition in M and M” can be
matched by a transition in M(M*). The following theorem shows that

conversely, every transition in ﬁ(M’) can be matched by a transition in

either M or M~,

Theorem 1.6.2

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M*) and let
M & (M”). Let further h and R be as in Theorem 1.6.1.
Suppose qe Q. Then
a) h(q) has the form (s,0)
or

b) ﬁ(ﬁ) has the form (s~,0).

Proof

Let q = ((i,s),O) where s€S, 0 < i < J(s), and denote
h(s,0) & (s*,e”).

Suppose i = 0. Then by definition of h
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(1) h(§ = h((0,s),0) = (s,0)
Suppose 0 < i < J(s). Then by definition of h
(2) R(@ = h(h((@,s),0)) = h(s,5((0,s),1))

But by the definition of € in 2) of Algorithm 1.6.1

r i
e (s) + th'@;(s',j)), if e;(s) > 0
J:

(3) 6((0,8),1) = /

i
j{jot (8;(s7,3)), if ej(s) = 0’

Notice that we also may assume
(4) e;(s) < &(s)

or else J(s) = 0 by definition of J.
Now, in view of (2), (3) and (4), Conclusion 1.6.3 implies that

(5) h(q) = h(s,5((0,s),i)) = (s7,0).

and the proof is complete. U
Corollary 1.6.1

Let (s,e)e Q. Then by Theorems 1.6.1 and 1.6.2
& = 0 iff R(5,8) = (s,0) or h(3,8) = (s7,0). 0

Corollary 1.6.1 says in fact that the states of M, M” and M(M’) can
be matched in such a way that a jump occurs in M(M*) iff a jump occurs

concurrently in M or in M. Another way to state it is as follows.

Theorem 1.6.3

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M”) and let

A

M £ M(M”). Let further h and h be as in Theorem 1.6.1.
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‘For any (s,e) € Q, denote h(s,é€) & (s,e) € Q and h(3,8) & (s’,e”) eQ”

whenever h(3$,8) is defined. Then

a) €(s) - e = t(s) - e
or
b) £(s) -e=¢t"(s") - e~
Proof

Suppose both a) and b) are false for some (5,e)¢ Q. Let
(1) GG((S’e),¢£(§)Té) = (5¢(S),0)
Suppose that

(2) E(s) - e > t(s) -

]

By transition function preservation

(3) RGE((,8),0, 5y o)) = 85(RGE,8) .0, ) ) =

Now, G(M) 1G(M) by Theorem 1.6.1, so that (3) implies
. e _ (s P

(4) GG((S’e)’¢t(s)—e) (s*,0) for some s*€ S

But (4) contradicts (1), in view of (2). Hence we must assume

(5) £(s) - & < t(s) - e

Consequently, by transition function preservation

(6) h(GG((S’e)’¢%(§)_é)) = GG(h(S)e):¢€(§)_é) =
GG((S’e)’¢£(§)-é) = (S,e + t(S) - 6)

where e + &€(s) - e > 0.

Next, suppose

(7) £(s) - € > £7°(s”) - e

and obtain whenever h is defined
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(8) h(aG((S’:e),q)g»(sf)_e/)) = SG(h(S,e),d)t’(S’)—e)) =
GG((S )e )’d)t'(s))_ef) = (6¢(S )’O)
Now G(M) 3 G(M") by Theorem 1.6.1, so that (8) implies
. e o .~
(9) 6G((S’e)’¢t’(s’)—e’) = (5*,0) for some s*€S.
But (9) contradicts (1) in view of (7). Hence we must assume
(10) £€(s) - e < t°(s”) - e~
Consequently, by transition function preservation
(1) REB;(G5,8),05 5y.3)) = 856,805 5y 5) =
GG((S »€ ),¢€(§)_é) = (S €  + E(S) - e)
where e~ + £€(s) - & > 0.
Combining (6) and (11) and using (1) we see that

(s,e + €(3) - e)

(12) ﬁ(6¢(§),0)

and

(s”,e” + £(s) - &)

fl

(13) ﬁ(aq)(é),m

whenever h is defined.

Observe that (12) and (13) contradict Corollary 1.6.1. Hence, a) and

b) cannot be both false; i.e. a) or b) must be true. [

We now turn our attention back to the transitional completion
algorithm, in the light of the above corollaries and theorems.

Essentially, the algorithm ''takes" M and 'superimposes' M~ on it,
so as to obtain M(M”). The process of "taking" M is formalized by map-
ping each sequential state s€ S into the sequential state (O,S)E:é. The

process of "superimposing" M~ on M is formalized by generating the se-

J(s)

121 ° to be added to the state (0,s).

quence of sequential states {(i,s)}
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This sequence corresponds to jumps in M~ that are not matched by
corresponding ones in M.

All in all, each state s€ S induces a sequence of states
{(i,s)}gig)e S where the map sF*»{(i,s)}gié) is obviously injective.
If M3M~ to begin with, then all jumps in M- are already matched by
jumps in M, and the transitional completion algorithm reduces to

relabeling M to M via the map st (0,s). This fact is formalized as

follows.

Theorem 1.6.4

~ 'A ~ ~
Suppose G(M) 1G(M-) and let M = M(M~-). Then G(M) is TM-DEIS

isomorphic to G(M).

Consider the TC-DEIS isomorphism (i,ﬂ,i) of Theorem 1.6.1.
Since G(M)3 G(M™), it follows from Algorithm 1.6.1 that eJ(s) = 0 for
all s€S. Hence, J(s) = 0 for all seS. Consequently, S = {(0,s): s€S}.
Furthermore, %(0,5) = t(s) for any (0,s)e€ S. The map h reduces then to
(1) h((0,s),8) = (s,8), V(0,5)€S, VO <& < £(0,s)
Thus we can define f1:S—+§S by
(2) h(0,s) 25
and h is clearly surjective. Moreover,
(3) h((0,s),6) = (1(0,s),8), V(0,s)€8, VO <& < £(0,s)
Hence by Theorem 1.5.2, (3) implies that (i,ﬂ,i) is a TM-DEIS isomor-

phism as was to be proved.

O
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The transitional completion operation can be viewed as a 'binary
operation' acting on pairs of IM morphic DEVSs. As such, it is inher-
ently asymmetric, because it depends on the direction of the underlying
IM-DEVS morphism. Actually, if we commute the operands, the operation
could be undefined, since the existence of a IM-DEVS morphism in one
direction does not guarantee its existence in the other direction.
Consequently, we speak about the completion operation as being performed
on the morphic preimage with respect to its morphic image.

It is possible, however, to generalize the completion operation
to a full-fledged binary operation on the class of DEVSs, by disposing
altogether of the dependence on an underlying IM-DEVS morphism. We
use the term ''parallel composition' to suggest the heuristic content
of the operation. Intuitively, the two.operand DEVSs give rise to
their "parallel composition DEVS" by letting them run concurrently from
any two initial states under any two input segments of equal length.
The resulting DEVS undergoes a jump whenever either of its operands
does, so that the state trajectory, as far as jumps are concerned, is a
superposition of the operands' trajectories.

Formally, we define

Definition 1.6.2

Let M = {X,S,Y,t,8,A) and M" = (X7,8°,Y",£°,8",1") be any two DEVSs.
The parallel composition of M and M~ (denoted M®M”) is a DEVS

M* = (X*,S*,Y* t* &% A*) where

) X 5 (UGHxCUBD) - ((6,0))
b) S* £ Qxq”

A
¢) Y* = yxy~
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d) V((s,e),(s”,e")) eS*,
£*((s,e),(s”,e”)) & min{t(s)-e,t"(s")-€"}
e) 6* is defined as follows,

e.1) Vs* = ((s,e),(s”,e”)) €S*,

53((s,0),(s%,e7)) 4
((6¢(s>,0),(s',é' + £(s))), if £(s)-e < £7(s7)-e"

< ((s,e + t’(S')),(%(S’),O)), if €(s)-e > €7 (s7)-e”

L((%(S),O),(G(;(S’),O)), if €(s)-e = €7 (s7)-e”
e.2) Vs* = ((s,e),(s”,e”)) eS*, V0O < e* < t*(s*),

Vx* (x,x”) e X*,

. oty xey b
‘SM((S »© ),X ) -
(((8,((s,6 + €9),%),0),(s7,e” + €9)), if x* € Xx{4)}

[(sye + ), (80((s7,e” + €%),%7),0)), if x* € {obex”

((8((s,e + €9),%),0),(8;((s7,e” + e),X7),0)), if

\

~

xX*eXxX”
f) V(s*,e*) = (((s,e),(s",e7)),e*)eqQ*,

A¥(s*,e*) = (A(s,e + e¥),A"(s7,e” + e*)) U

It is not difficult to see that if G(M) and G(M”) are IM-DEIS
morphic, then G(M®M”) subsumes G(M(M’)) in the sense that there is a
TM-DEIS morphism from the former to the latter. The difference between
M(M*) and M@M’ in this case, is simply a matter of viewing the same
phenomenon from different angles. In the process of creating M(M’),

M is viewed as operating on M” via the completion operation. This

asymmetry is not required to obtain M&M~ and both DEVSs are considered
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as operands.

Although, we shall not engage here in a detailed discussion of the
properties of the parallel composition operation, we point out a
number of observations.

First, the & operation is associative, provided equality of M and
M” is defined as the existence of an invertible TM-DEIS morphism
between G(M) and G(M™).

Second, the & operation is commutative in the same sense of
equality.

Third, if M* = M&M" then M*3M and M*JI M~

Finally, we point out that a finite parallel composition OL&(_:’J Moc

D

is a special case of a DEVN whose components {Mu}a p do not interact.

€
In other words, the 'topology'" (influence graph) of a parallel composi-
tion reduces to a collection of isolated nodes.

The ability to describe a DEVS M as a DEVN, and in particular the
ability to represent M as a parallel composition, entails a conceptual

simplification of the system under investigation.
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1.7 Standard Covers

In this section we specialize the concept of transitional covers
and discuss some of the resulting properties. The specialized transi-
tional covers considered are the so-called standard covers, exhaustive
covers, minimal standard covers and exhaustive standard covers. These
involve covering relations between a DEIS G(M*) and two other
IM-DEIS morphic DEISs G(M) and G(M”). It will be shown that the
exhaustive standard cover and the minimal standard cover are equivalent
concepts which are embodied in a canonical manner by G(M), where
Ma ﬁ(M’). In the sequel, We think of the specialized covers as
running not only between DEISs but also between the underlying DEVSs.

OQur starting point is

Definition 1.7.1

Let (g,h) be a IM-DEIS state-morphism from G(M) to G(M”) and
let M* = (X*,S*, +,t* &*,+) be a state-DEVS.

G(M*) is called a standard cover (abbreviated SC) of G(M) and
G(M") if G(M*) satisfies the following:

a) GM*)IJIG(M) via a TC—DEIS state—isomorphism (i,h*).

b) GM*)2G(M”) via the TC-DEIS state-morphism

(g**,h**) 2 (i,h®)o(g,h) = (g,hoh*) . W

The relations among the maps of Definition 1.7.1 are depicted in

Figure 1.7.1.

Conclusion 1.7.1

If (g,h) is a IM-DEIS state-morphism from G(M) to G(M~)
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G (M*)

(g, h**) =
= (i,h*)°(g,h)

Figure 1.7.1: Relations among the Maps of the Standard
Cover Concept.
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and M* = ﬁ(M‘), then by Theorem 1.6.1 G(M*) is a SC of M and M” via
(i,h%) & (i,R) and (g=*,h**) & (i,R)0(g,h)
where h is defined in the proof of Theorem 1.6.1. U

Definition 1.7.2

Let M* = {(X*,S*,+ &* 6%, +) be a state-DEVS. Let (g,h) be a IM-DEIS
state-morphism from G(M*) to G(M) with domain ﬁi, and let (g”,h”) be a
IM-DEIS state-morphism from G(M*) to G(M”) with domain ﬁé.

G(M*) is called an exhaustive cover (abbreviated EC) of G(M) and
GM™) if

a) QUi = @*

b) h(s*,e) = (s,0) €Q or h7(s*,e) = (s7,0)€Q” <= e =0

for any (s*,e) €Q* |

If h(s*,0) or h"(s*,0) are undefined, then the logical value of the
esponding disjunct in b) is 'false'. Notice, however, that a)
guarantees that there is no q*e¢ Q* for which both h(s*,0) and h”(s*,0)
are undefined. Consequently, every jump in M* can be matched by a
jump in M or M7, so that the jump matching is exhaustive. Conversely,

M* covers both M and M” due to condition b).

Definition 1.7.3

A DEIS G(M*) is an exhaustive standard cover (abbreviated ESC) of

two DEISs G(M) and G(M"), if G(M*) is both a SC and a EC of G(M) and

G(M”) via the same maps. (See Figure 1.7.1).
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Conclusion 1.7.2

If (g,h) is a IM-DEIS state-morphism from G(M) to G(M") and
M* 4 M(M’),then G(M*) is a ESC of G(M) and G(M”) by Theorem 1.6.2

and Corollary 1.6.1. Il

Theorem 1.7.1

Let (g,h) be a IM-DEIS state-morphism from G(M) to G(M”). Suppose
that G(M*) is a ESC of G(M) and G(M”) via a TC-DEIS state-isomorphism
(i,h*), and the TC-DEIS state-morphism (g**,h**) £ (i,h*)o(g,h)
respectively. Let M = (i,§,-,€,8,?) be a state-DEVS and suppose that
(i,ﬁ*) is a TM-DEIS state-isomorphism from G(M*) to G(M).

Then G(M) is a ESC of G(M) and G(M~).

Refer to Figure 1.7.2. Define a IM-DEIS state-isomorphism from
G(M) to G(M) by
1) (i,h) & (1,8%)0(1,h*) = (i,h*oh®)
Next, define a IM-DEIS state-morphism from G(ﬁ) to G(M™) by
@) @, 2 (i,A)o(g,h) = (i,h*)o(i,h*)o(g,h) = (i,h*)o(g**,h**)
Clearly, (i,ﬁ) is a TC-DEIS state-isomorphism as a composition of two
TC-DEIS state-isomorphisms, and (i,ﬁ) is a TC-DEIS state-morphism as a
composition of two TC-DEIS state-morphisms (see Theorem 1.4.3).
We conclude that G(ﬁ) is a SC of G(M) and G(M”), and it remains to show
that G(M) is exhaustive.
Obviously h"1(Quh™1(Q”) = §, since A71(Q = Q.
From the TM-DEIS state-isomorphism (i,h*) we have (see Theorem 1.5.2)

(3) (S,e)e Q <> h*(5,e) = (s*,e) e Q* for some s* & S*.
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G (M)

(i,h) =
= (,he,h)

(i,h) =

(i,h*) = (1,h*)o(g**,h**)

G (M*)
(i,h*)
(g ) =
= (1’h*)o(g,h)

Figure 1.7.2: Relations among the Maps of Theorem 1.7.1.
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Since G(M*) is a ESC of G(M) and G(M”), for any (s*,e) eQ*
(4) h*(s*,e) = (s,0) €Q or h**(s*,e) = (s7,0)€Q” &> e =0

Setting (3) in (4) yields for any ($,e)€Q

(5) h*(h*(8,e)) = (s,0)€Q or h**(h*(§,e)) = (s°,0)&Q” < e = 0
Finally, (5) is equivalent by (1) and (2) to

6) h(5,0) = (s,00eQ or h(3,0) = (s°,0)€Q” <> e = 0 0

Definition 1.7.4

Let (g,h) be a IM-DEIS morphism from G(M) to G(M”). Let G(M*) be
a SC of G(M) and G(M”™) via a TC-DEIS state-isomorphism (i,h*) and a
TC-DEIS state-morphism (g** h*¥) 2 (i,h*)o(g,h) respectively.

We say that G(M*) is a minimal standard cover (abbreviated MSC) of
G(M) and G(M”), if for any state-DEVS M =¢(X,S,+,%,3,*) such that G(M) is
a SC of G(M) and G(M”) via any TC-DEIS state-isomorphism (i,ﬁ) and
the TC-DEIS state-morphism (g,h) £ (i,h)o(g,h), we have that G(M)

covers G(M*) via the TC-DEIS state-morphism (g*,h*) = (i,H)O(i,h*)—l.[]

The relations among the morphisms of Definition 1.7.4 are depicted

in Figure 1.7.3.

Theorem 1.7.2

Let (g,h) be a IM-DEIS state-morphism from G(M) to G(M”). Let
G(M*) be a ESC of G(M) and G(M”) via a TC-DEIS state-isomorphism (i,h*)
and the TC-DEIS state-morphism (g**,h**) = (i,h*)o(g,h) respectively.

Then G(M*) is a MSC of G(M) and G(M”).
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G (M)
(gaﬁ) =
= (i,h)o(g,h)
| (g*,h*) = (g*,h)71 =
= (i,h)o(i,h*)71 = (i,h*)o(i,h)"!
(i,h)
(g**,h**) =
= (i,h*)o(g,h)

G(M)

Figure 1.7.3: Relations among the Maps of the Minimal
‘Standard Cover Concept.
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Proof
" Obviously G(M*) is a SC of G(M) and G(M”) via (i,h*) and (g,h0h¥*)
respectively, by definition of ESC.

It remains to show that G(M*) is minimal. Following Figure 1.7.3,

A A

let M = (X,S,-,@,S,-) be any state-DEVS such that G(ﬁ) is also a SC of
G(M) and G(M”) as follows,
a) G(M):JG(M) via a TC-DEIS state-isomorphism (i,ﬁ)
b)  G(M) 3G(M*) via the TC-DEIS state-morphism
(8,8) 2 (i,R)0(g,h) = (i,hoh).
We show that G(M) 3G(M*) via the TC-DEIS state-morphism
G+, 60 & (@, Ryo,h®) ! = (1,h* loh).
Now, (é*,ﬁ*) is a TC-DEIS state-isomorphism as a composition of TC-DEIS
state-isomorphisms.
Suppose that
(1) h*(5,8) = (s*,0) €Q*.
Equivalently
(2) h* 1(fi(s,8)) = (s*,0) €Q*.
Since G(M*) is a ESC of G(M) and G(M”) we have by definition that
(3) h*(s*,0) = (s,0) for some s €8
or
(4) h**(s*,0) = (s”,0) for some s~ ¢S~.
must hold.
Suppose that (3) holds. Then premultiply (2) by h*. For the left side
of (2) this gives
(5) h*(h* 1(R(5,8))) = A(8,8)
while the right side of (2) becomes

(6) h*(s*,0).
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Equating (5) and (6) and applying (3) yields

(7) ﬁ(g,é) = h*(s*,0) = (s,0)€Q for some s € S.

But G(M) 3G(M) via (i,h) so that

(8) h(s,e) = (s,0) => e=20

Suppose that (4) holds. Then premultiply (2) by h**. For the left

side of (2) this gives

(9) h**(h*"1(h(s,e))) = h(h*(h*"1(A(5,6)))) =
h(h(5,8)) = h(3,8)

while the right side of (2) becomes

(10) h**(s*,0).

Equating (9) and (10) and applying (4) yields

(11) f(5,8) = h**(s*,0) = (s,0) €Q” for some s” €S~

But G(M) 1G(M”") via (g,h) so that

(12) h(5,8) = (s7,0) = & =0

We conclude from (8) and (12) that G(ﬂ)iJG(M*) as required. 1]

Corollary 1.7.1

If (g,h) is a IM-DEIS state-morphism from G(M) to G(M”) and
M* & M(M’),then G(M*) is a MSC of G(M) and G(M”), since by Conclusion

1.7.2 G(M*) is a SC of G(M) and G(M"). I

Furthermore, the following theorem shows that M(M’) is canonical

in the following sense.

Theorem 1.7.3

Let (g,h) be a IM-DEIS state-morphism from G(M) to G(M”), and let

Me 2 fme).
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Then G(M*) is a unique MSC of G(M) and G(M”) up to a TM-DEIS state-

isomorphism.

Refer to Figure 1.7.3 assuming that M* & M(M’L and that G(M) is
an arbitrary MSC of G(M) and G(M”).
Since G(M*) is a MSC of G(M) and G(M”) by Corollary 1.7.1, it

follows from Definition 1.7.4 that G(f) 2 G(M*) via the TC-DEIS

7

state-isomorphism (g*,h*) & (i,h)o(i,h*) 1.

Since G(ﬁ) is a MSC of G(M) and G(M”), it follows from Definition
1.7.4 that G(M*) 3 G(M) via the TC-DEIS state-isomorphism
(g*,h071 2 (1,0, R

ansequently, M* and M satisfy the conditions of Theorem 1.5.6,
from which it follows that G(M*) and G(M) are TM-DEIS state- |
03

isomorphic.
Finally, we prove the following equivalence.

Theorem 1.7.4

Let (g,h) be a IM-DEIS state-morphism from G(M) to G(M"). Let
G(M*) be a SC of G(M) and G(M”) via a TC-DEIS state-isomorphism (i,h*)
and the TC-DEIS state-morphism (g**,h**) 4 (i,h*)o(g,h) respectively.
Then

a) G(M*) is a MSC of G(M) and G(M")

iff

b) G(M*) is a ESC of G(M) and G(M”).
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Proof
( =>) Assume that G(M*) is a MSC of G(M) and G(M™").

Define M = M(M’) to be the completion of M relative to M~.
By Theorem 1.7.3, G(M*) is TM-DEIS state-isomorphic to G(M). But
the latter is known to be a ESC of G(M) and G(M”) by Conclusion 1.7.2.
Furthermore, by Theorem 1.7.1 the ESC property is invariant under
TM-DEIS state-isomorphisms. Consequently G(M*) is an ESC of G(M) and
GM").

(< ) Assume that G(M*) is a ESC of G(M) and GM7).

It immediately follows from Theorem 1.7.2 that G(M*) is a MSC of

G(M) and G(M"). O

Conclusion 1.7.3

Theorem 1.7.4 shows that the concepts of ESC and MSC are equiva-
lent.
Moreover, each of these concepts is equivalent to Q(M’) up to

TM-DEIS state-isomorphism. O

Conclusion 1.7.3 asserts that ESC and MSC are two equivalent
properties that characterize M A Q(M’). Thus G(M) is a canonical ESC
and MSC of any IM-DEIS state-morphic G(M) and G(M”), since all their
ESCs and MSCs are mutually TM-DEIS state-isomorphic, and in particular
ﬁ(M‘) is one of them.

We can also think of G(M) as the representative of the set of all
ESCs or MSCs of G(M) and G(M”), whenever G(M) and G(M”) are IM-DEIS

morphic. This is so, because the IM-DEIS state-isomorphism relation is

clearly an equivalence relation.
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Finally, the concepts of ESC or MSC induce on the class of DEISs
a lattice-1like structure in the sense that for each pair of IM-DEIS

morphic DEISs G(M) and G(M~”), the DEIS G(M) provides a l.u.bf—like

concept.

+1.u.b is an abbreviation for least upper bound.



CHAPTER 2

STOCHASTIC DISCRETE EVENT SYSTEMS

2.0 Introduction

The stochastic counterparts of deterministic discrete event
systems are stochastic jump processes. In a jump process, the system
evolves continuously in time and changes states discretely in time.

But while in the deterministic case the time spent in a state and the
transition to a next state are deterministic functions, in the
stochastic case these are random variables obeying stochastic laws.

Our approach would lead us from the deterministic case to the
stochastic one by adding a statistical-theoretic level on top of the
existing system-theoretic foundations. .In the process we extend our
conceptual framework from deterministic systems to stochastic ones by
identifying the stochastic counterparts of the deterministic case
concepts, and by interpreting the statistical-theoretic objects from a
system-theoretic viewpoint. A general procedure that takes us from
the deterministic case to the stochastic one may be outlined for dis-
crete event systems as follows:

In Section 2.1 we start with a deterministic discrete event
system specified say at the state-DEVS level. More detailed specifica-
tions are also admissible provided they can be translated into the
state-DEVS level. Next, we render it stochastic by informally describ-
ing its stochastic rules of operation.

In Section 2.2 we construct a formal probability space - the so-
called coordinate space - which we take to be the statistical represen-

tation of our Sstochastic discrete event system. A connection between

91
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the original state-DEVS which was our starting point, and the resulting
probability space is pointed out in Section 2.3. It involves system-
theoretic representation of the sample space of the coordinate spacé.
Each sample point is associated with a deterministic state-DEVS, from
which we derive at the DEMS level, a deterministic state trajectory that
models a particular sample realization of the stochastic DEVS.

The merit of this representation stems from the fact that it yields
sample points which are considerably structured. Consequently, the
definition of random variables becomes natural and intuitive, since it
reduces to choosing behavioral frames for each state-DEVS representing
a sample point. This is discussed in Section 2.4.

Moreover, relations among a variety of stochastic DEVSs become
more transparent at the sample space level. Such sample point relations
could induce statistical relations among the corresponding o-algebras
and probability measures. When this happens, one may correctly deduce
properties of one stochastic DEVS from those of a related one, via
statistical morphisms. Later on we shall take advantage of such situa-
tions in a queuing network context, through the formal tool of stochas-
tic simplifications (of probability spaces), to be described in the
next chapter, and by using the examples of Section 2.5.

The discussion in this chapter assumes familiarity with the basic
concepts of Probability Theory. The reader is referred to standard
texts such as [D1}, [Fl1], [F2], [H1], [L1] and [W1] for the relevant

background.
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2.1 Informal Description of Stochastic DEVSs

A stochastic DEVS is a nondeterministic DEVS whoée operation obeys
statistical laws. The stochastic aspects of operation will be later on
cast in terms of stochastic processes, while the deterministic ones
will be described from a system-theoretic standpoint.

We start with a deterministic state-DEVS M = (X,S,+,t,8,*) and

the discrete event paradigm M—=G(M)—S generated by it. (See

GM)
Ch. 1 Sec. 1.2). This paradigm gives rise to stochastic discrete event
systems formulated as stochastic DEVSs, which we now proceed to describe
informally.

We think of a stochastic DEVS as starting its operation at time 0
from some stochastic full state (s,0) under some stochastic input

segment which is a stochastic composition of generators in Q It is

X
convenient to give an informal description of the operation of a
stochastic DEVS from a simulation oriented standpoint.

a) When the system is in an initial state and whenever an external
event occurs, the next external event is scheduled by a
stochastic choice of a generator in QX'

b) When the system is in an initial state (s,0) and whenever it
jumps to a new sequential state s, a time advance value £(s)
is sampled stochastically to determine the duration that the
system will remain in sequential state s.

c¢) Finally, whenever the system is about to jump to a new sequen-
tial state, a stochastic decision is made to determine this
new sequential state.

For the moment we can think of the stochastic decision makers as

appropriately related random number generators. Mathematically, these
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would be random variables over the same underlying probability space
with prescribed joint distributions. These random variables play
analogous roles to the next generator in the m.l.s decomposition (see
Appendix A Sec. A.2) of an input segment, the time advance function %,
and the transition function ¢ respectivély. They also generate the
underlying probability space, so that all observations of a stochastic
DEVS become random functions over that space. We assume, however,
that the generating random variables are all real valued. This requires
all sequential states and all external events to be coded by real
numbers.

In the next section we shall map the underlying probability space
above into a probabilistically equivalent one, in a cénonical manner.
The term "probabilistic equivalence'" of probability spaces has here

the following meaning.

Definition 2.1.1

Let S = (9,A,P) and S~ = (Q",A”,P”) be probability spaces. We
say that S and S~ are (probabilistically) equivalent if there is a
bijective map h:A—=A" such that

VAeA, P"(h(A)) = P(A). 0

The aforesaid mapping procedure will yield a constructively speci-
fied probability space called the coordinate piobability space. This
new probability space will constitute the formal statistical represen-
tation of our informal DEVS, or for that matter, of any stochastic
discrete event system, at any level of informal description. The

procédure is sufficiently general to be extended to general stochastic
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systems, so that the forthcoming discussion need not be restricted to
stochastic discrete event ones.

In going from deterministic systems to stochastic ones, we shall
retain our original system-theoretic orientation. However, the
deterministic case definitions will have to be modified for the stochas-
tic case, and recast in probabilistic terminology. We now outline how
our underlying conceptual framework may be extended from deterministic
systems to encompass stochastic ones.

Stochastic systems model those systems whose governing laws are
"uncertain' to the modeler. This uncertainty results from fragmentary
knowledge which is insufficient to determine those rules. The missing
factors needed to account for the system's operation are aggregated as
"uncertainty", "randomness'" or 'mondeterminism'" and quantified as
probabilities.

In other situations, the laws governing the system's operation are
too complex to describe or compute, and a stochastic model is chosen to
describe a simplified version of the system at the cost of a certain
loss of information.

In any event, a stochastic system is formally represented by a
probability space S = (Q,A,P) which captures its stochastic state
structure. The objects in S have the following interpretation:

1. The sample space @ is a set of outcomes. Each outcome w €Q
represents a particular deterministic sample history obtained
from some simulation run of the system. Q stands for all
conceivable outcomes of such runs. Any specification of wegQ
is admissible provided all specifications are mutually related

in a one-one manner. In many cases, w can be represented by a
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deterministic system or an appropriate state trajectory which
model the system history w, and Q thus becomes a set of
systems or state trajectories respectively.

2. The o-algebra A is a set of events (ensembles of outcomes) for
which probabilistic information is available. Since informa-
tion regarding stochastic systems is cast in probabilistic
terms, A describes the scope of such available information.

3. The probability measure P is a set function from A into [0,1]
which quantifies the uncertainty of events in A. P(E) is
interpretted as the chance that the ensemble of histories E,
will indeed occur.

Statements about behavioral aspects of stochastic systems are cast
in terms of events describable by random variables over S. The
probabilistic information embedded in A allows us to quantify the
uncertainty of such statements. In particular, observations of a
stochastic system in a certain behavioral frame emerge as stochastic
processes over S.

Finally, morphisms among stochastic systems become measure preser-
ving transformations between pairs of probability spaces. In the next
chapter, this approach would allow us to extend the concept of system

simplification from the deterministic case to the stochastic one.
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2.2 The Coordinate Probability Space

The construction of the coordinate probability space is a standard
procedure in Probability Theory (cf. [CL1], [D1] and [W1]).

The starting point is a family of finite dimensional distributions

F={F e(yl,...,y): ;) V.ueneeandneN}

91,..,, n n 1

where 0 is some index set and N is the set of natural numbers.
We require F to satisfy two regularity conditions:

1) Consistency viz.

lim F (YyseeesY, q5Y.) =F Yysee oY 1)
y—o= 61,...,en_1,6n 1 n-1°/n 91,...,en_1 1 n-1
and

2) Symmetry viz.
F (Yysee.5Y.) = F (Vs secesy: )

61,...,6n 1 n Gi ,...,ei 1, i,

where (ei ,...,ei ) is an arbitrary permutation of (el,...,en).
1 n

In this case Kolmogorov showed (see [CL1] Sec. 3.3) that there is

a probability space S = (2,A,P) and a stochastic process ¥ = {Y.}

over S such that for any 6.,... ,ene O and any neN

1’°

FY ,Y (yl”",yn) = Fe n

s e yeos
el en 1 n

6 (yl,...,y ) ..

Following [D1] we term a probability space S thus constructed - the
coordinate probability space induced by F.

In our case, the family of finite dimensional distributions F will
be given a priori semantics in terms of the informal stochastic DEVS of
the previous section. This would make the construction procedure of

the coordinate probability space a rather intuitive one.
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For our case we require that © = {1,2,3,4}xN. We distinguish in
F the following types of distributions:

a) A sequence {F1 j};-l’ later on the distributions of the j-th
,j 3=

external event.

b) A sequence {F2 Yo later on the distributions of the length

»373=1°
of the j-th time interval between the j-th and j+lst external
events.

c) A sequence {F3 j}w later on the distributions of the j-th
]

j=1’
sequential state into which the system evolves.

d) A sequence {F4 j};-l’ later on the distributions of the j-th
,j 3=

value of the time advance function.

We remark that the above interpretation reflects mostly modeling
situations where a distinction between the ''stochastic system'" and its
"stochastic environment'" is essential. In many cases the '"stochastic
environment" can be lumped into the state structure to yield an
"autonomous stochastic system' thus eliminating distribution types
a) and b).

When a higher level description of a stochastic DEVS is given,
the semantics of the distribution functions in F should be assigned in
terms of the description employed. Indeed, when we particularize to
queues and queuing networks, the two comments above will be invoked.
However, the mathematical construction of the coordinate probability
space is free of any interpretations of F, and moreover, the procedure
we are about to describe is sufficiently general and representative to
serve as a prototype or guide lines for the class of stochastic discrete

event systems.
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We now proceed to describe in some detail the construction of the

coordinate probability space S = (Q,A,P) of an informal stochastic DEVS.

I) Construction of the coordinate sample space Q:

Intuitively, a sample point represents the outcome of a statistical
"experiment". In our case, the experiment is "simulating" an informal
stochastic DEVS, and the outcome is the resulting sample history ob-
tained by such a '"simulation run". In order to capture the intuitive
content of the sample point concept, we define a sample point w €@
as a countabl te { oYY wh

S u = 1w, .. .
a ntable aggregate w wl’J i=1 =1 where

-

{ . }. = .
“1,j75=1 jli=1

00

1. )
2,j7j=1 ji=1

ne>

{w

[0}

Hne>

{w, .}. ). ®
3,j7i=1 jTi=1

[+ o]

1>

{ } {d.}

“4,575=1 7 N5

Each of the sequences {aj}, {bj}, {cj} and {dj} is a real sequence
representing a certain realization compatible with the interpretations
given in a), b), c) and d) respectively. Thus, {aj} represents a
particular sequence of external events to occur in a particular sample
history of our informal stochastic DEVS, and {bj} represents a particu-
lar sequence of inter-event intervals. Consequently, ({aj},{bj})
stands for a particular realization of the stochastic input segment;
graphically, ({aj},{bj}) defines some infinite pulse train starting at
the origin. In a similar manner ({cj},{dj}) represents a particular

trajectory of the sequential state; graphically, ({cj},{dj}) defines

some infinite step function starting at the origin.
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Note that {aj}, {bj}, {cj} and {dj} jointly (i.e. the sample
point w represented by the above) do indeed specify a sample history
that could conceivably be obtained from a trial run of a stochastic
DEVS. At this juncture we repeat our previous remark that in many
cases, the '"stochastic input" is lumped into the "stochastic state"
and the sample point w reduces to the aggregate ({cj},{dj}),i.e. to
specifications of autonomous sequential state trajectories.

We point out again that sample histories of a stochastic DEVS can
be specified at other levels, provided the input and state trajectories
are derivable from them. This point will be later illustrated in a
queuing context.

Generally, in order to qualify for a sample space of a stochastic
DEVS, Q has to consist of sample points w, each being a countable
aggregate of real numbers that is adequate to specify a particular

sample history.

II1) Construction of the o-algebra A:

Let B be the Borel field on the real line IR, i.e. the minimal
o-algebra generated by the intervals of R. Likewise, let B" be the
Borel field on the n-dimensional Euclidean space R".

A set CCQ is called a cylinder set if C has the form

.. LW, . see.,w. . )€B}
11,31 12:32 1nan

C={we: (w

fmrmyneNamlmyBeBw
Consider the collection C of all cylinder sets in Q, and let o((C) be

the minimal o-algebra generated by C.
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I1II) Construction of the probability measure P:

Recall that © = {1,2,3,4}xN. For any 6 .6 €0 let P

1’ 0 »0

10008y
be the probability measure induced on B" by the joint distribution

F in F. Since the map F P
8y senes0 P By sneesB  B1,een,0

is injective

(see [W1] p. 7), it follows that F induces an equivalent family of

probability measures P = {P : 06,5,...,6_€0, neN}.
61,...,9n 1 n

Now, the cylinder sets in C constitute an algebra. Moreover, this
is the minimal algebra generated by the cylinder sets (see [W1] p. 7).
Define a probability measure u on the o-algebra o(C) as follows. Let

C=1{we®: (W, . ,...,w, . )€B} be a cylinder set and take
11)31 1n33n

Define u(C) 2 fap

P.. . . . .€P.
(53 p)smes (53 ) .

(iysdp)seees(ui )
Now, by Carathiodory's extension theorem, u can be extended from C to
o(C) in a unique way (see [W1] p. 3).

Finally, let A 4 o(C) be the completion of o(C) with respect to u,

and let P be the completed version of u.

Definition 2.2.1

The statistical representation of an informal stochastic DEVS is
the coordinate probability space S = (Q,A,P) induced by the informal
stochastic DEVS and whose construction is outlined in I), II) and III)
above.

a

The term stochastic discrete event system will refer to any infor-

mal description of a system that is modellable as an informal stochastic
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DEVS, along with the coordinate probability space induced by it. A

further justification for this terminology is provided in the next

section.

2.3 System-Theoretic Representations of Coordinate Sample Points

Our next step is to make the system-theoretic aspects of the
coordinate sample space more direct and more explicit. To do this we
first associate with each weQ a state-DEVS M(w). Finally, we derive
from it an infinite state trajectory STRAJ o that serves as a system-

theoretic representation of the sample queuing history w. The deriva-

tion follows the paradigm wk«>M(m)F4>G(M(m))P4>SG(M(w))P4’STRAJq o

w’w
(See Ch. 1 for relevant background).

Let w = ({aj},{bj},{cj},{dj}) be any sample point in Q. Define

the associated state-DEVS M(w) = (X ,S L.t L6 ,-) as follows:
w’ W W w
x a5 =1,2,...1
W J
S 2 {(G,c: i =1,2,...}
o - LG e j=1,2,...

tw:Sw->(0,w] is defined by

A
t (j,c.) = d.
w(:¢5) = d;

S :QwX(leJ{¢})—4>Sw is defined by

. A .
(J)cj) - (J+1,Cj+1)

%06
and

8, m((G5€5),00,2) 2 Gvloey, )

ne>

jgl(aj)bj and let

q, A ((1,c1),0). Following the aforesaid paradigm all the way to the

Let Ny be the infinite input segment Ny
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DEMS level, it is then possible to define the infinite state trajectory

STRAJq in an obvious way. It is easy to see that the map

W’ w .

whkeSTRAJ n is injective,and this fact enables us to replace the
W’ w

aggregate representation of w by the appropriate (infinite) state

trajectory STRAJ
U2 Ny
Sometimes, it is more convenient to represent w €Q as a state-
DEVS by choosing M(w) to be an autonomous state-DEVS whose external
input is built into its state structure. To do this we define

M(w) = <Xw,Sw,-,t ,Gw,-> as follows:

w
x %o
w
s, = {ma)} _,x(0,=]x{(n,c )} _;x(0,~]
twtsw—4>(0,w] is defined by

]

¢ (m,a),r ,(m,c),r) = min{r ,r_}
Gw:QwX{¢}—*>Sw is defined by

5 ((ma),r ,m,c),r) >

W, >m’?"a’t ?’™n" ¢

((m+ L,a,,0),b u (e ), - 1), if 1, < T

Clma),r, -, e ,d 1), if r,<r,

\ﬁ(m + 1,a +1),bm+1,(n + 1’cn+1)’dn+1)’ if r, =T

m C

The state trajectory representing w is STRAJ where

w’ 'w

A A

q, = (1,c1) and Ny = ¢
In the sequel we shall interchange the aggregate representation,

the autonomous state-DEVS representation and the state trajectory repre-

sentation of w as the need arises. We are justified in doing so, because

all three representations are mutually related in a one-one manner.
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It should be born in mind that although these representations
describe time invariant systems in the syétem—theoretic sense, the
state process of the stochastic system as represented by the coordinate
probability space is not necessarily time invariant in the statistical
sense.

A system-theoretic representation of Q2 has additional advantages,
aside from making the system-theoretic aspects of stochastic systems
more transparent. In a statistical-theoretic analysis of such systems,
the major interest lies in some statistical state process of the system.
A standard approach would be to define the state space so as to render
the statistical state process a Markov process. The statistical state
wouldlusually coincide with the system-theoretic state or with parts
thereof. Moreover, the Markov property would require in general that
the "state of the input" (i.e. recent input symbol and elapséd or
residual time) be part of the ''state process' under consideration.

This fact further makes the autonomous state-DEVS:and state trajectory
representations of w € @ rather intuitive conceptualizations. It also
allows us to classify stochastic DEVSs from a system-theoretic view-

point as follows.

Definition 2.3.1

Let S = {(Q,A,P) be the statistical representation of a stochastic
DEVS, and let M(w) be the autonomous state—DEVS representation of we Q.
Then

a) the stochastic DEVS is legitimate if the set

{weq: M(w) is not a legitimate state-DEVS} is a null set,

i.e. almost all M(w) are legitimate state-DEVSs.
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b) the stochastic DEVS is regular if the set
{weQ: M(w) is not a regular state-DEVS} is a null set,

i.e. almost all M(w) are regular state-DEVSs. 0

Naturally, we require a stochastic DEVS to be at least legitimate,
in order that sample histories be well defined.

Another line of classification is suggested by the intuitive
concept of multiple scheduling. Suppose the user parfitions DEVS
jumps into "'types' which are attributable to various ''types' of system-
theoretic events. A multiple scheduling relative to the underlying
partition takes place when a jump is attributéd to the simultaneous
occurrence of more than one system-theoretic event. Let us define the
event multiplicity of a deterministic DEVS as the largest number of
system-theoretic event ''types" involved in any jump. Then the event
multiplicity of a stochastic DEVS is defined as the smallest integer n
such that the set {w €Q: M(w) has event multiplicity larger than n}
is a null set.

We remark in passing that most queuing systems are modellable by
stochastic DEVSs which are regular and whose event multiplicity is 1
relative to the natural partitioning of transitions into arrival and

service completion '"'types'.
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2.4 Random Variables over a Coordinate Probability Space

We discern two main classes of random variables over a coordinate
probability space S = (Q,A,P) representing a stochastic DEVS. The
first class consists of random variables, that generate A. The second
class consists of all stochastic processes over S and is identified
with the set of all behavioral frames of the underlying stochastic
discrete event system.

The generating random variables are formally defined as projection

functions on Q as follows.

Definition 2.4.1

b co

Let G i=1 j=1

}

{g be an aggregate of functions over a

i,j
coordinate probability space S = (Q,A,P).

Let each g; j:Q—-»IR be defined by

L ©
Vo = {w., .}. . €0, g. . (W) = w. ..
! i,j i=1 j=1 8i,;(0) = w4
Then G is called the (statistical) generator set of S. 0

This terminology is justified by the fact that the o-algebra o(G)
generated by G is precisely the one generated by the cylinder sets C.
In other words A = G{0J. (See [Wl] p. 39.)

Consequently, the generator set G has a family of finite dimension-
al distributions which is precisely the one prescribed by F in Sec.
2.2, viz.

F = F,. . . . .
g PRI . (1 ) ):"",(1 »] )
1,534 L 1’71 n’’n



107

Indeed, the interpretation of the generator set G is compatible with
the interpretation of the joint distributions in F as given in a),

b), ¢) and d) of Sec. 2.2. That is,

a) g; i’ j =1,2,... is the random variable of the j-th external
1]
event.
b) g, i’ j =1,2,... is the random variable of the j-th inter-

event time interval.
c) g2 i j = 1,2,... is the random variable of the j-th sequen-
b
tial state into which the system evolves.

d) , j =1,2,... is the random variable of the time advance

84,j
assigned to the j-th sequential state.
To sum up, the coordinate probability space was constructed according
to Kolmogorov's theorem so as to ensure that G generates it and has F
as its family of finite dimensional distributions.

The second class of random variables over S consists of statis-

tical observations pertaining to a certain behavioral aspect of our

stochastic discrete event system.

Definition 2.4.2

Let S = (Q,A,P) be a coordinate probability space representing
some stochastic DEVS. Let Y = {Ye}eee be a stochastic process over S.
Finally, let Sy = <Q,Ay,Py> be the probability space induced by Y in S

where

A oA = vyl A
Ay S o({AeA: A=Y 1(B), 6 €0, BeB}) and P, = PIAV .

Then Y is called a behavioral frame of S, and SV is called the

probabilistic frame induced by Y on S.
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Definition 2.4.3

Let Y = {Ye}eee and Y~ = {Ye}eee be two behavioral frames over

S =(Q,A,P) and S = (Q",A”,P”) respectively, with the same index set

0. Then (Y,Y”) is called a behavioral pair of S and S”. We say that

<

and Y~ are distribution equivalent if they have the same family

F

y = Fy, of finite dimensional distributions. 0

Clearly, if (Y,Y”) is a distribution equivalent behavioral pair,
then the probabilistic frames Sy and Sy, induced by them are probabilis-
tically equivalent up to null sets in the sense of Definition 2.1.1.

Notice how the above definitions fit into our conceptual frame-
work. As stated before, the totality of information carried by a
stochastic system is embedded in the probability space representing it.
By the same token, a behavioral frame should focus on a certain behav-
ioral aspect by reducing that totality of information to the relevant
part. Indeed, the o-algebra AV coarsens the underlying o-algebra A,
as AVCZA. The desired effect is achieved because in Sy we are left
with a less extensive o-algebra which can give us probabilistic
information concerning only the stochastic observations of interest.

The most important behavioral frames are the ''full state'" process
and the '"sequential state' process. Whenever they are measurable,
they define continuous parameter stochastic processes whose parameter
is interpreted as time. Most behavioral frames of interest would be
functions of the stochastic state, much as in the deterministic case.

The behavioral frame '"initial state of the system" is especially
important when a stochastic DEVS is specified through a stochastic

transition structure. In this case, the "initial state'" random
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variable is essential in specifying a sample history, while subsequent
states are not, and can be removed from the generator set. This
situation is typical of queuing systems as will be seen later.

The definition of functions over 9 becomes especially intuitive
when the state trajectory representation or the autonomoﬁs state-DEVS
representation of Q@ are used. Such definitions involve a conceptual
"simulation run'" of M(w) and observation of a particular aspect of
the trajectories generated by it.

The problems‘of measurability of such functions (i.e. showing
them to be random variableé over S) are basically unchanged. When the
problem arises, a typical technique amounts to showing that the pros-
pective samﬁle space functions can be obtained from the generating ran-
dom variables via ''measurable'" operations. Loosely speaking, one must
show that the "simulation' and "observation' operations, alluded to
above, preserve the measurability of the geﬁerator set elements which
are used in the process.

We point out that the scope of behavioral frames, definable on Q,
depends crucially on the representation chosen for Q. While the
aggregate representation contains maximum information, an alternative
repre;entation may incur a loss of information. For example, in
queuing context, if M(w) is a state-DEVS representation of w whose
sequential states keep track of queue length rather than of queue
configurat&On, then behavioral frames coﬁcerning individual customers
(e.g. waiting times) cannot be described, as the necessary informatioﬁ
is lost in the course of the mapping wk+=M(w). In order to recover
such behavioral frames, we need a more elaborate state-DEVS model that

keeps track of queue configuration and consequently of individual
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customers. Indeed, customer oriented behavioral frames are statis-
tically harder to compute, a fact which has an obvious system-
theoretic explanation in view of the increased complexity of the
generic M(w) required for the task. These points will be revisited
and demonstrated in the examples of the next section and in Chapter 5.
We conclude this section by providing a standard reference frame

for the class of behavioral frames.

Definition 2.4.4

Let S = (Q,A,P) be a coordinate probability space representing
a stochastic DEVS. Let S, = (Q,AV,PV> be the probabilistic frame

induced on S by a behavioral frame Y = {Ye}eee

For any finite subset L = {i I}e 0 defineT

ety
L

B(L) = {m ,BILl,Pl> where P, (B) 2 pltwen: (Y.K(m),...,Y.(w?)eB})
9 ) 1, 1 L

1

|L]. Then the collection RB(Y) = {B(L): LCO is a

for any BeB

finite subset} is called the Borel frame induced by Y. 0O

The concept of a Borel frame merely maps the probabiliétic frames
induced by each finite subset of'random variables in Y, into equivalent
frames whose sample space is always Euclidean and its c-algebra is
always the Borel one. Instead of dealing with a variety of sample
spaces and o-algebras of probabilistic frames, we can now deal with
their standard counterparts. Thus, the problem of showing a behavioral
pair (Y,Y”) with index set © to be distribution equivalent, reduces to

one of showing that the P, and Pi measures in the correspending RB(L)

L

-and B“(L) are identical measures, for any finite LCO.

+|L| is the cardinality of L.
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2.5 Queuing-Theoretic Examples

In this section we illustrate the construction of the coordinate

probability space associated with various queuing systems.

Example 2.5.1 (Single queue)

A)  Informal description:

Consider a queuing system composed of one service station with
one server in it. Customers arrive randomly and join a waiting line
if necessary. The service time given to each customer is of random
duration. The line discipline is FIFO (first in first out) and the
line itself has infinite capacity.

The j-th inter-arrival time interval is a random variable Aj with

distribution function FA and the service time given to the j-th

J

customer is a random variable Sj with distribution function FS . The

J

initial line length is a random variable L0 with distribution function

FL . In addition, assume that there is given a family F of finite
0

dimensional distributions of the random variables {Aj};=1’ {Sj}j=1

and L0 which is consistent and symmetric.
B) The coordinate probability space:

To determine a sample queuing history we need to know an initial
line length of the system, a particular sequence of inter-arrival time

intervals, and a particular sequence of service times given to the

customers. Consequently, a sample point we€Q is an aggregate

A © o0
w={w .}= (£, ,{a.}. ,,{s.}. where
i,j % jti=1""73 J=1)
0 _ . e .
{wo,j}j=0 KO is an initial line length.
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o 3 - -
{a.}. is a sample sequence of inter-arrival

1. { } .
’ jTi=1

1,j7j=1
time intervals,

2. H{w. .Y, . = {s.}.
2,j7j=1 i i=1

is a sample sequence of service times
given to the customeérs.

Next we take o(C) i.e. the minimal o-algebra generated by all cylinder
sets of Q. The family F of finite dimensional distributions is used
to define a measure P on o(C) as in III) of Sec. 2.2. Finally, o(C)
is completed with respect to P to yield o(C) and P is extended
appropriately from o(C) to o(C). This completes the construction of
the coordinate probability space S associated with the informal
‘description in part A).
C) The generator set:

The generator set G of S is G = {LO,{Aj},{Sj}: j=1,2,...} where

the elements of G are redefined on S as the appropriate coordinate

(projection) functions as follows.

Let w = {wi,j} = ({20,{aj}?=1,{sj}?=l) be any sample point in Q.
Then

0. Ly 2 2,

1. Aj(m) 4 a,

2. Sj(w) = Sj

The random variables in G retain their interpretations as given in
the informal description of part A).
D)  System-theoretic representations of Q:

Two representations of Q via state-DEVSs will be exemplified.

Let w = (KO,{aj}j=1,{sj}j=1)
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D.1) Define a state-DEVS M(w) = (Xw,Sw,-,tw,Gw,-) by
x &)
w
Sw = {(0,n,>): neN}U{(£,n,r): £ > 0,neN,0 < T < sn}

tw(ﬂ,n,r) é T

(O,n + 1,®), if £ =1

Gw,¢(£,n,r) ”

1,n + 1,sn+1), if £ >1

(l,n,sn), if 2 =0

8, M(((Z,n,r),e),x)
L+ 1,n,r-e), if £>0

For double scheduling any composition-type rule is applicable.
This happens when an exogenous arrival and a service completion
occur simultaneously. The state trajectory representation for

w is STRAJ such that
w W

q, = (sO,O) where

(0,1,%), if £, =0

ne>

8.1
i=1"a.
) J

A
and nw =
(20,1,51), if KO > 0

D.2) Define an autonomous state-DEVS M(w) = <xw’sw’.’€w’6w"> by
x 2o
w
= ‘ °°:‘ Y
Sw {(O,(m,ra),(n, }): myneN,0 < ro < am}

{(Z,(m,ra),(n,r )): £,myneN,0 < T < am,O <rT »< sn}

ne> w

Gw(z’ (msra)’(n,rs)) min{ra,rs}
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FINACESHCERY
r
(1,(m + 1,am+1),(n,sn)), if r,o<r, and £ =0

(L + 1,(m + 1,am+1),(n,rS - ra)), 1f‘ra < T, and £ > 0

(0,(m,ra - rs),(n + 1,»)), if ro<T, and £ =1

-

£ - 1,(m,ra - rs),(n + l’sn+l))’ if ro <, and £ > 1

\fﬂ,(m +la 1), + 1,s 1)), if r =1
Notice, that in the autonomous state-DEVS representation, the case
r, =T, corresponds to double scheduling of events in the state-DEVS

representation D.1).

The state trajectory representation of w is STRAJq such that
w’ W
q, = (SO,O) where
(0,(1,a,),(,*)), if ZO =0
S A d Ay
0 and n = ¢,

(5> (1,3)),(1,5))), if £, > 0
O

Following thé discussion in the previous section, we see that the
state-DEVS representations D.1) and D.2) for Q precludes customer-
oriented behavioral frames, since M(w) does not keep track of line
configuration and consequently of individual customer identity. In
order to attain such behavioral frames, M(w) should be redefined so as
to preserve that information.

This comment is also pertinent to the following two examples.

Example 2.5.2 (Single queue with feedback)

A) Informal Description:

Consider a queuing system composed of one service station with
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one server in it, and waiting line conventions as in Example 2.5.1.
Customers arrive at the system randomly, and after service is completed,
they instantaneously invoke a random desision maker which we call a
decomposition switch. The switch has two reédings coded by 0 and 1.
If the switch indicates 0, the customer leaves the system altogether.
I1f, however, it indicates 1, the customer is instantaneously fed back
to the tail of the line to obtain another serﬁice in due time.v The
inter-arrival times of exogenous customers, the service times and fhe
initial line length are random variables with distribution functions
as in the previous example. In addition, the j-th switch reading

(at the time of the j-th service completion) is a random variable Vj

with distribution function Fv . Again, assume that an appropriate

J
family F of finite dimensional distributions is given.
B) The coordinate probability space:

To determine a sample queuing history, we need to know an initial
line length, a particular sequence of inter-arrival times of exogenous:
customers, a particular sequence of service times given to customers
and a particular sequence of switch readings encouﬁtered by the
customers.

Consequently, a.sample point we is an aggregate
®

w = {wi,j} 4 (KO,{aj} {s.}?=1,{v.}? ) where

j=1""7j j =1
0 _ . . .. ]
0. {wO,j}j=O = EO is an initial line length,
1. {w .}? = {a.}? is a sample sequence of inter-arrival
1,j j=1 j =1 P 4

times of exogenous customers.

o]

= {s.}.

2. ]
t j=1 j =1

}

w, j is a sample sequence of service times
)

given to customers.
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{w, .15

3,551 = 1V; ;_1 is a sample sequence of switch readings
,ig= =

encountered by customers.
The coordinate probability space S is constructed analogously to
part B) in Example 2.5.1.

C) The generator set:

0]

{(s.}, V.Y, .}

The generator set is G = {L {A Y, , _
jr3=1"""37j=1

j=1’
and its elements are redefined on Q as the obvious projection functions
with the obvious interpretations.

D) System-theoretic representations of Q:

Let w =-(£0,{a ¥, o s. )

iti=1° {v 1)e$2 and define a sequence

oo,
i i=1"""3 J

of random variables {Zj}?=1

almost everywhere on Q by
Zj(w) A 4 min{k: k > Zj_l(w) and Vk(w) = 0}, if j » 0 and the

minimum exists

\_ undefined, otherwise

Z;(w) is the index of the j-th 0 in {vj(w)};=l, i.e. in an infinite

sequence of Bernoulli trials.

Let M(w) = <Xm’sm’.’tw’6w’.> be a state-DEVS given by

X
w

{1}

S
w

{(O,n,vn,w): n = Zj_l(w)+1,JEN}LJ{(K,n,vn,r): £,neN,0 < T < sn}

A
tw(ﬂ,n,vn,r) =T

e .
(0,n + 1,vn+1,w), if £ = 1 and v, = 0

6w,¢(ﬂ,n,vn,r) { £ -1,n+ 1,v ), if £ > 1 and v, = 0

s
n+l’"n+l

L,n + 1,v

g n+1’sn+1)’ if Vn =1
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A (1,n,vn,sn), if =0
Gw,M((('e,n:Vn)r) se) ,1) =
£ + l,n,vn,r -e), ifL£>0

The tie-breaking rule for double scheduling is of the composition

type. The state-trajectory representation of w is STRAJq such that
w’ w
q, = (SO,O) where
A (0,1,v1,m), if KO = 0 -
S = and n = 01,
(£ys1,vy557)s if £, > 0 J

Example 2.5.3 (Queuing network)

A) Informal description:

Consider a queuing system composed of m service stations labeled
1,2,...,m ecach housing a single server, and an infinite capacity
waiting line with FIFO discipline. The initial line_length at service

station i1 is a random variable Li 0 with distribution function FL .
. .
i,0

Each service station can have a random input stream of customers from

an exogenous source. The j-th inter-arrival time interval to service

station i is a random variable Ai . with distribution function FA
’ i,j

Customers are served at the service stations for random time periods.

The j-th service time given in service station i is a random variable

S. . with distribution function F When service is done, each

2

S, .
1,]

customer enters a decomposition switch and a random decision is made
regarding the next destination (switching) of that customer. The

j-th switching decision at service station i is a discrete random

variable Vi j with distribution function FV . Each Vi . can assume
i, .. s
1,]
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a switching value from the set {0,1,...,m} where a value 0 means that
the customer leaves the system altogether and all other values stand
for service stations in the system. The topology of a queuing net-
work may be described by a directed graph whose nodes represent
service stations and whose arcs stand for permissible flow paths
(switchings) of customers. It is often convenient to add to such a
graph a fictitious node 0 which represents the '"environment". The
"environment' can be viewed both as the source of all exogenous
customer streams as well as the sink of all customer streams that
leave the system altogether.

In the sequel we shall often discuss the network in terms of its
associated graph. As a matter of fact, we use the terms '"nodes'" and
"service stations' interchangeably, and similarly for the terms "arcs"
and "switching decisions".

As usual we assume that there is given a consistent and symmetric
family F of finite dimensional distributions for the random variables

L. ., A, ., S. . and V. . above.
1,07 1,37 "1,] i,

B) The coordinate probability space:

To determine a sample queuing history we need to know an initial
line length at each node, a particular sequence of exogenous inter-
arrival time intervals at each node, a particular sequence of service
times awarded at each node and a particular sequence of switching
decisions made at the decomposition switch of each node. Consequently,

a sample point weQ is an aggregate

A © o .
= ({4 }’{ai,j j=1,{s {Vi,j}j=1’

K,i,] 3.0 =1,2,...m)

i3 517

where for every i = 1,2,...,m
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[eo]

0. { = £, _ is an initial line length at service

%0,1,j'5=1 = 4,0

station 1i.

o0 o]

Wy, . .1}. = {a, .} is a éam le sequence of inter-
1,i,j j=1 i,j P 4

l- { j=1

arrival times of exogenous customers at service station i.

[ee] [}

2. { }j=1 = {Si,j}

is a sample sequence of service times

w . . .
2,i,j i=1

given to customers in service station i.

wS,i,j}j=1 = { } is a sample sequence of switching

3. | V. .}.
i,j j=1

decisions made at the decomposition switch of service station
i.
The coordinate probability space is now constructed analogously to
part B) of Example 2.5.1.

C) The generator set:

}

[} [e o) (=]

I {S IOV I CRIS SN A0 S

i,00 i=1,2,...m}

i,j
is the generator set and its elements are redefined on Q as the obvious
projection functions, with the obvious interpretations.

D) System-theoretic representation of Q:

A natural way of representing w€Q as a DEVN is as follows.

j=1’{si,j}j=1’{v } 10 1= 1,2,...m)

{a, .} L
1,] J=

Let w = ({Ki’o}, ai,j

be a sample point, and define a sequence {Zi 3 1 <ix<m, of

»3 3=
random variables almost everywhere on by
(0, if j =0

, tw) 5 4 min{k: k > Zi,j-l(w) anq Vi,k(w) # i}, if j > 0 and the

minimum exists

\_undefined, otherwise
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}

I} ot

aeD’ uueD’

Let N(w) =(D,{M (w)} {z {0}y ep) be the

a€eD ’
RBe Ia

DEVN associated with w. N(w) is defined as follows:

For 1 < a < m, Iu 4 {nodes B: there is an arc (a,B) in the

associated graph}

(X ,8 ,e,& ,8 ,+) is a state-DEVS
O, G,Ww 0,0 0,Ww

For 1 <a<m, M (o) =
given by

X a {1 : Bel and B8 # a}VU{1 }
a )

o ,w o,B

9]
"

A ,
o0 {(O,n,va,n, ): n = %, j- l(w) + l,JGIV}U

{(K,n,v 1) L,neN,0 < <s n}

,

H

A
t £,n =
0,0t Vg oo T)

b

ne>

(£,n v ,T)

a w, ¢ o,n

e 3 -
(0,n + 1’Va,n+1’w)’ if £ = 1 and Ve on # o

’

a,n+l’sa,n+1)’ if £ > 1 and Va,n # a

g (L - 1,n+ 1,v

&(E,n +1,v Sa,n+1)’ if v = a

s
a,n+1 o,n

(v, ,s ), if &=
(((£,n WV poT)»€) %) 4 a,n’"a,n

a w,M
£ + 1,n,va’n,r -e), if £>0
For 1 € a,8 < m,

1B o’ if Von = B # a

ne>

B(/e,n’va n’r)

undefined, otherwise
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~

Q. x2 0L’“—’-—~t>SO‘ " is defined by

For 1 <a<m,J :
o,w "o,w s

A
Jo o ((@nv, .7),e) E ) =

’

(s m,¢(£ + lEal - 1,n,v

N n,r), if ¢ae-Ea
3

H

e N

Sy (& * [El - Linv  .x),e),x), if ¢ #E and E_ # ¢

I

\ﬁﬂ,n,va 00T - e), if Ea =9

b

Finally, we expand the DEVN N(w) into the state-DEVS MN(w)
associated with it (see Ch. 1, Sec. 1.1) and we derive the DEMS

SG(MN(w)) (see Ch. 1, Sec. 1.2).

The state trajectory representation of w is STRAJ such that

w’ W

q = (50,0) where

W

S, = (51,0"‘f’sm,0) is defined by

0
(0,1,v w), if £ =0
[ é ’ o,1’ a0 for 1 <0 <m
o,0
(£, g 1ovy 1054 102 14, >0
and n = (.8 1 ,.3 1 ,...,.8 1 ) .
w =1"a, .’j=1"a, . =1"a .
1=5 8,5 977 P, 170 %,



CHAPTER 3

STOCHASTIC MORPHISMS AND SIMPLIFICATIONS

3.0 Introduction

In Chapter 2, a conceptual framework for stochastic discrete
‘event systems was set forth. In particular, Chapter 2 exemplified
how a stochastic discrete event system may be canonically represented
in coordinate probability space.

In this chapter, we extend this underlying conceptual framework
to relations among stochastic systems in probability space represen-
tation. In accordance with Appendix B, these relations will be
collectively referred to as stochastic morphisms; these will give rise
to stochastic simplifications. Formally, stochastic morphisms are
described as measure preserving relations between probability spaces.
Such relations are employed, for example, in [Col] in a modeling
context. Since the treatment in this chapter is at the probability
space level, the extension alluded to above goes beyond stochastic
systems, as inte}pretations of probability spaces are not restricted
to stochastic systems in the sense of Chapter 2.

The organization of this chapter is as follows.

Section 3.1 introduces é class of stochastic morphisms of the
measure preserving transformation type (cf. [D1] Ch. X and [H1]

Ch. VIIT), - the so-called measure preserving point morphisms.

Section 3.2 fits stochastic simplificetions into the broader
conceptual framework of Appendix B. This section’treats the so-called

point simplifications, brought about by measure preserving morphisms.

122
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In addition, Theorems 3.1.1 and 3.2.1 provide sufficient

| conditions that establish a point simplification and guarantee it

to preserve the probability law of behaviorél frames. These theorems
supply a basis for reducing the problem of '"stochastic" preservation
of stochastic processes to that of '"deterministic' preservation of

their sample functions.

Finally, Section 3.3 discusses the effect exerted by point
simplifications on behavioral frames.

As in the previous chapter, the discussion in this chapter
assumes familiarity with the basic concepts of Probability Theory.
The reader is referred to standard texts such as [D1], [Fl1], [F2],

{Hl], [L1] and [W1] for the relevant background.

3.1 Stochastic Morphisms

Throughout this chapter we shall always assume, without loss of
generality, that all probability spaces under consideration are
complete.

The following definition isolates a class of stochastic morphisms.

Definition 3.1.1

Let S = (Q,A,P).and §$” = (Q°,A”,P") be probability spaces.
Let H:Q-+=Q” be a surjective point mapping satisfying:
a) VE“eA”, IlEH)eA
i.e. preservation of events .
b) VE“€A”, P7(L7) = P(H 1(E"))

i.e. preservation of measure .
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Then H is called a measure preserving point morphism (abbreviated

m.p.p.m), or simply a point morphism from S to S~. O

Measure preserving point morphisms are variants of measure
preserving point transformations (cf. [D1] p. 453 and Sec. 3 of
Supplement; [H1] Ch. VIII). Observe the simplification effect
implicit in this class of stochastic morphisms (see Appendix B for a
formal discussion of the simplification concept). A complexity
reduction is achieved at two levels. At the sample space level, H lumps
sample points, due to the fact that H is surjective but not necessarily
injective. At the o-algebra level, H1(A®) is a sub-o-algebra of A
by a) in Definition 3.1.1, so that the original event information in
A may be reduced. The preservation effect is described by condition
b) as a measure preserving effect.

Note also that conditions a) and b) of Definition 3.1.1 do not
generally hold in the other direction. For one thing if Ee€A then
the m.p.p.m definition does not guarantee that H(E) e A”. Even so, a
probability preservation relation P(E) = P”(H(E)) does not necessarily
follow, due to the inclusion ECH l(H(E)). To illustrate this'point

consider

ot

Example 3.1.

ne>

Take @ = [0,2], Q° 4 [0,1],and let A and A” be their respective

Lebesque measurable sets.
A 0, if EC[0,1]
Define P(E) =

Lebesque measure of E, otherwise
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and define P” to be the Lebesque measure. Finally define a m.p.p.m
H:[0,2]—=[0,1] by H(w) £ & mod 1.
Take N = [0,1]. Then, P(N) = 0, but P"(H(N)) = P"([0,1]) = 1. 0

The foliowing definition gives a standard hierarchy of point

morphisms.

Definition 3.1.2

Let Il be a m.p.p.m from S = (Q,A,P) to S” =(Q°,A",P") .

a) If H1(A") = A, then H is called a measure preserving point
homomorphism (abbreviated m.p.p.h), or simply a point
homomorphism from S to S7,

b) If in addition H is bijective, then H is called a measure
preserving point isomorphism (abbreviated m.p.p.i), or simply

a point isomorphism from S to S”. O

A simple instance of a measure preserving point morphism is a

real random variable with a Borel measurable range.

Example 3.1.2

Let Y be a (real) random variable over a probability space
S = (Q,A,P), such that the range of Y is Borel measurable. Define a
probability space S° = (Q”,A”,P”) where

2 2 y(a)

A” is the Borel field over Q-

p~ é P, is the probability measure induced on A” by the distribu-

Y
tion of Y.
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Define H:Q---Q” by H £ Y. H is surjective by definition of Q~.
Moreover,
a) VE'eA”, H1(E") = {w: Y(w) eE“}cA

b) VE“e A“, P*(E7) = Py(E7) = P{w: Y(w) €E”} = P(H 1(E")).

We conclude that Y is a m.p.p.m from S to S~.

Two more examples of point morphisms follow.

Example 3.1.3

Let S = (Q,A,P) be a probability space and let A be a sub-c-algebra
of A. Take S° = (Q”,A”,P”) where Q” 4 Q, A” 4% and p- é-P|7\-.
Finally, H:Q-+Q”, defined as the identity function is a m.p.p.m

from S to S”. 0

Example 3.1.4

Let Sl = <Ql,A1,P1> and 32 = (QZ,AZ,PZ) be probability spaces.

Let S = {(Q,A,P) be the product space of Sl and 32, i.e. Q 4 Q) %05,

A is the minimal c-algebra generated by A1XA2,and P is the product

measure. Finally take S~ 4 S Define H:Q—+=Q” to be the projection

1

function H(wl,wz) 8 w Then H is a surjéctive map satisfying:

X
a) VE“e¢ A", H 1(E") = E“xQ, ¢ A

b) VE“eA”, P"(E") = Pl‘(E’)PZ(Qz) = P(E"xQ,) = P(H L(E*)).

lHence, H is a m.p.p.m from S to Sl' 0O

The following theorem characterizes the class of measure

preserving point morphisms.
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Theorem 3.1.1

Let S = (Q,A,P) and S” = (Q”",A”,P”) be probability spaces and
let H:Q—=Q” be a surjective map. |

Then H is a m.p.p.m from S to S° Zff there are stochastic
processes Y = {Ye}eee and ¥~ = {Yé}eee over S and S~ respectively,
such that |

a) Y~ generates A up to completion.

b) Y and Y~ are distribution equivalent.

c) For every 6 €0, there is a null set N & A such that

(c.1) thNe,Ye@Q =Yéﬁﬂwn.

Proof
(<=) Assume that there are Y and Y~ satisfying conditions

a) - ¢). Fix any finite L 2 {6 ,...,en}c:@ and any B(EBlLI = Bn,

1
where |L| = n is the cardinality of L. Consider the sets
M B2 (o (Yg (@), -,Y, @) €B} €A
1 n
() B ot (7)., Y ) eBle A”
1

n
and the Borel spaces

3) 8@ 2 (Rl"l,B|L|,PL)
@ s (Rt

Since Y and Y~ are distribution equivalent, it follows from Definition
2.4.4 that

(5) P =P/

In particular, it follows from (5) that

(6) P(E) =P (B) = P (B) = P7(E").
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Next, let N be the collection of all null sets in A. Then clearly

7y N, & U NyeN

L 6eL
Furthermore, in view of (c.1), (1), (2) and (7)
(8) H‘I(E')-NLCECH"l(E') N,
Since A is complete we can conclude from (8) that there is a null set

NC NL such that

(9) HIE") = EpNeA
whence, due to (6),
(10) P(H Y(E?) = P(E) = P (E7).

As L ranges over all finite subsets of © and B ranges over all
L]

events in B , the resulting sets E” in (2) range over the minimal
algebra a(Y”) generated by ¥Y°. Thus, from (9) and (10) we conclude
that conditions a) and b) of Definition 3.1.2 hold for any event
E“e a(V7).

A standard application of the Caratheodory Theorem (see [L1]
p. 87) extends the validity of (9) and (10) from the minimal algebra
a(¥Y”) to the minimal o-algebra o(Y”) generated by <. It then readily
follows that (9) and (10) are also true for every E” in the completion
o(Y?) = A. Hence Ul is a m.p.p.m from S to S”.

(=) Assume that H is a m.p.p.m from S to S”.

Define 0 2 Ac, Y 2 {IE,}

is the indicator functionvof the set A. It follows that Y and Y~ thus

A
poeA- and Y = {IH'l(E’)}E'&A’ where I,

defined trivially satisfy conditions a) - c).
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3.2 Stochastic Simplifications

Stochastic simplifications are defined via stochastic morphisms
whose simplificational effect is discussed in the preceeding section

and in Appendix B. For measure preserving point morphisms we make

Definition 3.2.1

Let S = (Q,A,P) and S~ = (Qf,A’,P‘) be probability spaces.
We say that the ordered pair (8,S7) is a simplification pair, if there
is a m.p.p.m H running from S to S”. 1In this case we Qrité
SHbS- and refer to it as a (stochastic) point simplification.
In this context, S will be termed the base space, and S” the lumped

space of the point simplification LN 0

We note in passing that the point simplification relation among.
probability spaces is transitive.

The complexity reduction effect of a point simplification
is that of lumping, since the map H and the set transformation h
induced by H may be thought of as coarsening the base space's
sample space and c-algebra respectively.

The preservation effect of a stochastic simplificafion SeS-
on a behavioral pair (Y,Y”) should naturally be a statistical one.
The most important preservation notion from an anélytical standpoint
is that of distribution equivalence of ¥ and ¥°. This situation
will be referred to as preservation in distribution.

Weaker notions of preservation include preservation of one

dimensional distributions, preservation of means and of higher moments
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of the respective random variables in ¥ and Y .
For preservation in distribution we have the following sufficient

condition.

Theorem 3.2.1

Let st g- be a point simplification where S = (Q,A,P) and
S =<(Q",A",P"). Let Y = {Ye}eee and Y~ = {Ye}eee be stochastic

processes over S and S” respectively. Suppose that the m.p.p.m

H satisfies
a) for every 6 €0 there is a null set NeeA such that

(a.]) VwgNg, Y (w) = YI(H(w)).

Then Y and Y~ are distribution equivalent.

Proof

.. A .
Take any finite L = {8 ,...,en}c:e and any B eB'. Define

1

NL & U Ne; then NL is a null set of A. ‘Consider the events
€L
(1) E 2 {u: (Yg (0),-++,Y, (@) & B} e A,
, 1 n
@) E- & (b (Y5 (@),e.,¥ ")) e B} 6A”.
1 n

It follows from (1), (2) and a) that

(3) H_I(E’)-NLCECH_I(E’)UNL.

From (3) we conclude that there is.a null set NeA such that
(4) E=HIE)D>N.

But sirce H is a m.p.p.m, (4) implies

(5) P(E) = PH YEHDBPN) = PH I(E")) = P (E).
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Consequently, the Borel spaces B(L) é(IR[L'I,I.%II‘I,I)L) and
B~ (L) é(lRILI,BILl,P[" ) (see Definition 2.4.4) satisfy

(6) PL = Pi for any finite LCO.

whence Y and Y~ are distribution equivalent, as was to be proved.

Corollary 3.2.1

Replace condition a) in Theorem 3.2.1 by the following one:

a ) for every 6¢0, there is a null set Né €A’ such that

(a.1) VwENZ, Ye(w) = Yé(w’)

where w is any inverse image of w” by H, i.e. H(w) = w”.

Then Theorem 3.2.1 still holds.

-
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3.3 The Effect of Point Simplifications on Behavioral Frames

In this section we shall investigate the simplification effect
exercised by a point simplification on the behavioral frames of the
base space. Our goal is to elucidate the nature of this effect
and to derive an interpretation that would properly fit the under-
lying conceptual framework of Appendix B and Chapter 2.

We start with an interpretation based on the characterization
of measure preserving point morphisms in Theorem 3.1.1. Loosely
- speaking, the theorem states that the existence of a m.p.p.m between
probability spaces is equivalent to preservation in distribution of
certain distinguished and comprehensive behavioral pairs.

Under our conceptual framework, this interplay between ''structure'
and 'behavior' is hardly surprising. It coincides with our general
view that structure is the totality of behavior and that the two
notions are dual. Thus, in Theorem 3.1.1, point simplifications which
are structure lumping at the sample space level and measure preserving
at the o-algebra level, emerge as equivalent to preservation in
distribution of certain superframes.

Now, Theorem 3.2.1 provides a natural way of matching random
variables over point morphic probability spaces. In the sequel, if
S = (Q,A,P) is some underlying probability space, then M(S) will denote

the set of random variables over S.

Definition 3.3.1

Let SH&S” be a point simplification from S = (Q,A,P) to

$* =(Q",A",P”). The matching operator from S to S’ associated with
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SHb S s HiM(S*)—=M(S) defined by

H(Y”) = Y, where for every wef Y (w) 4 Y (H(w)). a

The matching operator is investigated in [D1] (see Sec. 3 of

Supplement). Some properties of H are given in

Lemma 3.3.1
Let H be the matching operator associated with a point
simplification SF5>S‘. Then

a) H satisfies RVl, RVZ’ RV3 and RV4

in [D1] pp. 453-454.
b) The range of H (denoted R(H)) satisfies

R(H)c {Y: YeM(S), and Y is constant on H !(w”), Vw’eQ”}.
c) Every pair of random variables Y e M(S”) and H(Y") € M(S)

~is distribution equivalent.

Proof

H 1A E {A: A = HY(A”) for some A“€A”} is a sub-c-algebra of A.
Consider the set transformation h: H 1(A”)—=A induced by H where

(1) h(A) & U HW?}, vAeH 1(A").

weA
It can be verified that h is bijective, and furthermore, that both
h and h™! satisfy MP,, MP, and MP, in [D1] pp. 452-453. From [D1] p. 454
it now follows that H is the unique transformation satisfying a).
Condition b) follows from the fact that if Y = H(Y"), then
(2) VweQ, Y(w) =Y (Hw))
by definition of H. Equation (2) further implies that

(3) {w: Y(w)eB} = Hl({w": Y (0*) €B})
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for any Borel set B, whence c) follows by the measure preserving

property of H 1, -

A full characterization of the range of H is given in the

following theorem.

Theorem 3.3.1

Let H be the matching operator associated with a point simplifi-
cation Skﬂ>3' where S = (Q,A,P) and $° = (Q@°,A",P"). Then

(a) R(H) = {Y: Y is measurable on H 1(A")}.

If YeR(H), then Y is measurable on H !(A*) by (3) in Lemma
3.3.1. Conversely, suppose that Y is measurable on H 1(A”). Suppose
first that Y = IA for some A €H 1(A“). Then Y €R(H) because
H(I

IA by RV The proof for an arbitrary Y measurable on

H(A)) * 2
H 1(A”) follows from RV, and RV,. 0

3 4
Loosely speaking, Theorem 3.3.1 shows that the effect of H on
M(S”) is to match it with a subset of M(S), whose elements have
restricted measurability. Moreover, Y~ is a distribution equivalent
lumped version of H(Y”), due to c) and b) respectively in Lemma 3.3.1.
Y~ is also seen to be a coarser version of H(Y”) by (a) in Theorem 3.3.1.
Later on, we shall argue that this restrictional effect may be
viewed as the effect of the point simplification SFELS’ on the set
of behavioral frames of S. To clarify this view we shall consider

point simplifications which are substantive in the following sense.
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Definition 3.3.2

Let S = (Q,A,P)Y and S” = (Q",A”,P” ) be probability spaces.
A point simplification sHbg- is called striect if

a) HE & A such that VE“eA”, P(EODH-I(E‘)) >0 . O

Observe that non-strictness means that S and S” are point Homo-
morphic (i.e. H !(A”) equals A) up to null sets.

In the sequel, we shall use the equivalence relation Z.3- (equality
almost surely) on M(S), where S = (Q,A,P) is some underlying probability
space. This relation is defined by

Y, &2 v ifF P({u: Yy () # Y ()} = 0.

An equivalence class under 2:3 is denoted [Y] for any representa-
tive Y ¢M(S), and will be referred to as the set of versions of Y.

Next, we characterize strict point simplifications in terms of

its matching operator H.

Theorem 3.3.2

Let S-ES- pe point simplification. Then
SHES” is strict iff
H is not surjective in the sense that there is Y € M(S) such that

(@) [YINRH) = ¢ .

Proof

(=) Assume sHbg- is strict. Let E € A be the event satisfying

0
(a) of Definition 3.3.2. Consider the indicator function IE of EO.
0
Suppose that for some null set Ne A there is a version I of I

>
EO N E0
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€ R(H). But from Theorem 3.3.1 it follows that

such that IEDN
O i
I is measurable on H 1(A“). In particular,]a?hleffl(A’) viz.

ED N

0
T lpey = - -

(1) H (EO) —E(l)>N for some EOGA.

Taking note of (1) we have

PEDPH L(EY)) = P(EP(ED =

(EPHL(ED) = PEPEPN) = 0

which contradicts (a) of Definition 3.3.1. We conclude that

[I. 1NRH) = o.
Eo

(<€=) Assume that Skﬂ>3’ is not strict. Then A = o({H 1(A*) UN})
where N is the class of null sets in A. Consequently, if Y is
A-measurable, there is a version Y* € [Y] which is H 1 (A*)-measurable.

By Theorem 3.3.1, Y* €R(H); so that [Y]NR(H) # ¢ as required. ‘ t]

From Definition 3.3.2 we see that in order to render a strict
point'simplification a nonstrict one, one needs to coarsen the
o-algebra of the base space. Now, Theorem 3.3.2 asserts that this is
equivalent to limiting the scope of random variables over it to
those which have a version in R(H), and by Theorem 3.3.1 these are
H !l (A”)-measurable. We then proceed to claim that this can be viewed
as the effect of a point simplification on the behavioral frames of
its base space. To do this we argue that the underlying point simpli-
fication may be replaced by an equivalent one as follows.

Let Skﬂ>3"be a strict point simplification where S = (Q,A,P)
and S* = (Q°,A",P”). The alleged equivalent point simplification is
SF£>§ where I is the m.p.p.m of Example 3.1.3; that is, § = (6,&,5)
where & 2 Q, N H 1A, p 4 PIA, and T is the identity map.

(See Figure 3.3.1.)
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S” ={Q",A”,P")

S = (Q,A,P)

$ = (a,H1(A"),P)

Figure 3.3.1: Relations among the Equivalent Point

Simplifications SHe=S” and SHe3.
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To qualify the equivalence claim above we merely point out that
S and S” are point homomorphic, so that $-5- is a nonstrict point
simplification. Consequently, S!H>S’ and SF£>§ can be viewed as
equivalent simplificatiohs, since their base spaces are identical,
and their lumped spaces are point homomorphic and therefore probabilis-
tically equivalent in the sense of Definition 2.1.1.

In particular, Theorem 3.3.2 guarantees that all random variables
in M(S*) and M(8) can be exhaustively matched (up to equality almost
surely) in a distribution preserving manner via the matching operator
H associated with the non-strict point simplification S’kﬂLﬁ.

Thus, we are justified in trying to determine the simplification
effect of the point simplification sties- from the equivalent point
simplification SFL>§, especially as regards the behavioral frames.

The lumping effect of Sk£>§, as far as '"'structure' is concerned,
is evident, since H !(A”) is a coarsening of A in the sehse that the
former is a sub-o-algebra of the latter. In particular, every a'comJr
of H1(A") is a union of atoms of A.

The simplification effect of sHe3 as far as '"behavior" is
concerned can now be described as a reduction in the scope of the
behavioral frames of the base space S. For one thing, M(S):)M(§).
Furthermore, the random variables in M(§) are coarser than those in
M(S), because restricted measurability of random variables increases
their sets of constancy.

This simplification effect can be seen even more clearly when one

examines random variables in M(S) and M(§) that have mathematical

1_An event A is an atom if every measurable subset of it is either
A or 9.
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expectations. It is easily seen that the class of such random
variables over § can be obtained as conditional expectations'of
random variables in M(S) with respect to the o-algebra H 1 (A).

The smoothing effect of conditional expectations is well known (see
[L1] p. 349); loosely speaking, random variables (with expectation) in
M(S) are averaged to constants over the non-null atoms of H'l(Af),

thus yielding a random variable in M(S”).



CHAPTER 4

JACKSON QUEUING NETWORKS

4.0 Introduction

Jackson queuing networks are a generalization of M/M/s queues,
and as such they provide the simplest generalization from single
queues to networks of queues.

Thus, their study constitutes an essential step in the study of
queuing networks. However, the apparent simplicity, alluded to above,
is rather deceptive. Actually, one witnesses a steep increase of
conceptual and analytical complexities (see Appendix B Sec. B. 3), when
going from M/M/s queues to Jackson networks. This increase is char-
acteristic of the difficulties presented by queuing networks as
compared to single queues.

The term "Jackson networks" was chosen to acknowledge the pioneering
work of R. R. P. Jackson and J. R. Jackson during the 50's and 60's.
In [JR1] and [JR2] R. R. P. Jackson initiates the study of tandem
Jackson networks, with the main result being a now-classical derivation
of the equilibrium line lengths distributions.

The work of J. R. Jackson in [JJ1] and [JJ2] subsumes the previous
work, by extending the line length results to arbitrarily connected
Jackson networks (which are called by Him Jobshop-1ike networks).

Jackson networks provide an analytical stochastic model for a
variety of real life systems. Typical applications are: computer
operating systems, communication networks, and industrial manufactur-

ing and repair processes. In this chapter we investigate various

140
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operating characteristics of arbitrarily connected Jackson networks.
The discussion will be restricted to Jackson networks whose stations

consist of single servers, unless otherwise specified.

4.1 Informal Description of Jackson Networks

A Jackson network is composed of finitely many stations, each
housing a finité number of identical independent servers operating in
parallel. The service stations are arbitrarily interconnected by di-
rected arcs, indicating permissiblé paths of customer flow.

A typical service station is depicted in Figure 4.1.1. A customer
may arrivé at a service station either from an exogenous source or from
other service stations. Exogenous customers arrive according to inde-
pendent Poisson processes. Each service station has a recomposition
switch that superposes all incoming customer streams. An arriving cus-
tomer is directed into a FIFQT (first in first out) waiting line with
infinite capacity. Consequently, customers are never lost at the recom-
position switch on account of lack of waiting room. When a customer's
turn comes to be served, he samples an exponentially distributed service
time. When service is done, the customer enters a decomposition switch
which is a stochastic’decision maker whose task is to route a customer
to his next destination. At this point the customer may leave the system
altogether for an. exogenous sink, or he may be directed to any other
service station. Each routing decision is obtained according to a multi-

nominal Bernoulli trial. Such decomposition switches are called BernoullZ

Actually, almost all results are independent of queue discipline.
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a. exogenous input

endogenous inputs

recomposition switch q

!

waiting line o0

|
|
o o » |o. service station i
)
|
i

decomposition switch endogenous outputs

exogenous output

Figure 4.1.1: Typical Node i in a Jackson Network with
Multiple Server Nodes.
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switches (see [DC1]). All switchings are instantaneous operations.

Finally, all exogenous arrival processes, all service processes and
all routing decisions consist of mutually independent random variables.
This completes the informal description (in the sense of Chap-
ter 2) of Jackson queuing networks. A formal representation of a Jackson
network as a coordinate probability space follows Example 2.5.3. Notice

that a family of finite dimensional distributions has been specified
via one-dimensional ones,due to the mutual independence of the subse-
quent generator set, viz. exogenous arrivals, services and routings.
The coordinate space representation will be used in the next chapter.
It is convenient to associate with a Jackson network a directed
graph, to describe its '"stochastic" topology. The nodes of the graph
are numbered 1,2,...m and stand for service stations. The node set of
a Jackson network is denoted M & {1,2,...m}; the arcs are denoted
(1,7, 0 < 1,3 < m, in the natural way. Node 0 denotes a fictitious
service station interpreted as the '"environment' (i.e. both the exo-
genous "source' and the exogenous 'sink'"). Each arc (i,j),1< i,j < m,
is labeled with the routing probability pij associated with it. The
mxm

resulting substochastic matrix P_= [pij] is called the switehing matrix

of the network. The probability Pio of quitting the network at node i
is denoted b 41 3 £
ya; =1 - ngpij = Pip-

The arcs leading to the environment sink and those originating at
the environment source are called, respectively, outlets énd inlets of
the network.

The parameter of the Poisson arrival process to node i is denoted

by o . The vector of input parameters a A (al,a ...am) is called an

2’
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Figure 4.1.2: Graph Representation of the Topology of a
Jackson Network.
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arrival vector if a 2 0. Observe that Poi ='ui/:§%aj. We shall label
inlets of the network by oy rather than by Py, JI_Jikewise, the service
vector is o & (01,...,om), provided ¢ > 0.

The graph associated with a Jackson network is depicted in Figure
4.1.2. Note that arcs labeled by pij =0 or a; = 0 are simply deleted.

Graph terminology is extensively used throughout Chapters 4 and 5.

Definition 4.1.1

Let M = {1,2,...m} be a finite node set. Let o = (ul,...amj be an
arrival vector, o = (01""’Om) - a service vector, and mem - a switch-
ing matrix. Then the quadruple JN = (M,a,0,P) is called a Jackson

network specification. O

Once the background conventions of Jackson networks are understood,

a Jackson network specification JN is an economical way to describe a

particular network by specifying its parameters.

4.2 A Stochastic Queuing Model

In this section we develop a formal stochastic model for the

queuing process described informally in the previoué section.

Let JN = (M,a,0,P) be a Jackson network specification. We begin
with m(m+2) mutually independent right-continﬁous Poisson processes
denoted {A?x(t)}tzo (each with intensity ai) and {Sij(t)}tZo (each with

t20

intensity oipij), for L<i<m,0< j<m. The {A?x(t)} -, model the incom-
ing streams of exogenous customers at the respective nodes. Each

ex . ,
{Ai (t)}tzo is called the exogenous arrival process at node i. The

{Sij(t)}tZo’ 1<i<m0°%j<m will later on aid us in modeling the

traffic processes on the arcs (i,j).
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The service mechanism at each node i is modeled by the process

m .
A .
{Si(t)}tzo where Si(t) = ;g%sij(t). The {Si(t)}tZO are mutually inde-

pendent Poisson processes (see [Cil], p. 87) with respective intensities

0. Each {Si(t)}t>0 will be referred to as the service process at

node i.

Finally, the associated underlying jump process {J(t)}tZO is de-

© : ,
fined by J(t) & 3 ASX(t) + 3 f; S. . (t) = ﬁl(A(?x(thS.(t)).
i & = 1 & i

i=1

The queuing model to be described is motivated by the following
observation.

Consider the stream of customers emerging from service station i
at its decomposition switch. Given that throughout some time interval
the queue was nonempty (busy period), the customer stream in that infer-
val accords with a Poisson process with intensity o, - When the queue
becomes empty (idle period), the customer stream dries up. Thus, this
customer stream is, loosely speaking, a periodically suspended (inter-
mittent) Poisson process.

Another way of saying it is that this customer stream is a filtered
Poisson process whose count in idle periods is masked out, so that only
counts taken during busy periods are registered.

A similar observation is valid for the customer stream on the arcs
(i,j). During busy periods, these streams are obtained from a Poisson
process with intensity o5 acted upon by a Bernoulli switch,with proba-
bility pij for choosing arc (i,j). It follows that during busy periods,
these traffic streams are mutually independent Poisson processes with

intensities inij (see [Cil], p. 89). The {Sij(t)} defined before

t20

will play the role of the background Poisson processes whose appropriate
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filtering will later on yield the traffic processes on the arcs (i,j).
We now proceed to define two sets of stochastic processes. First
some preliminaries. A process in the first set is called the traffic

process on arc (i,j) and denoted {Aij(t)} 1<i<m0<3j<m.

t20°

Aij(t) is the traffic count on arc (i,j) in the time interval [0,t].
A process in the second set is called the (local) state process at

node i, and denoted {Qi(t)} 1<i<m Q) is the line size at

tz0’

node i (including any customer in service at time t). We shall also
need the following auxiliary processes derived from the above whenever
they are defined.

The endogenous arrival process‘{Agn(t)}t>o at node i is defined

by

m
AN & LA , 1fiSh,
3=1 |

The departure process {Di(t)}tZo at node i is defined by
m

D, (t) & dOALL(Y) , 1<i<m.
j=

The state indicator process {Bi(t)} at node i is defined by

t20
A 0, if Qi(t) =0
Bi(t)= ,].Siim.
1, if Qi(t) >0
We assume that there are given random variables Q,(0), 1< i <m, such
that Q(0) & (Q(0),...,Q (0)), the A$*(t), and the 5;3(t) are mutually

independent. Qi(O) is called the initial state of node i.

Let {Tn}n:o be a sequence of random variables where T, is the n-th
jump instant of {J(t)}t>0 and To 2 o. Then, almost surely

0 = Tg STy € e ST < een Recall also that almost surely

Agx(o)=0andsij(o)=o,1§ism,05jfm.
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The definition of the traffic processes and local state processes

is carried out in two steps.

In the first step we define simultaneously the sequences of random

variables {A..(T )} Z and {Q (t )}n 0? 1<4i<m,0%j<m, by

(A1) Ags(r) = 2: By () [855 (1) = 8y5(ry )]

(A.2) Q;(r) & (0) + ATX(r) + AT (1y) - Dy (7)),

Lemma 4.2.1
The sequences ﬂﬁj(Tn)}n=0 and {Qi(Tn)}n=o, 1<i<m0¢%j<m,

are well-defined.

Proof

The proof follows from the fact that the Aij(Tn) have a recursive

representation

‘o, ifn=0

(1) A..(t) ="
tom A5 (o) * By (g ) 855 () = Sy5(ry DI, A m > 0 O

In the second step, we extend the {A..(T )} j and the {Q. (t )} i

0 i n’ "n=0
to the respective continuous parameter stochastic processes {A (t)} >0
and {Q, (t)}t> , 1<i<m 0<% j<m by setting for any t 2 0

J(t)
A
(B.1) Ay (1) = 1?::1 B () [8;5 (%) Sij(Tk-l)]-

(B.2) Q1) 2Q(0) + AS*(®) + AST(®) - D, (1)

We point out that the processes defined above do indeed comply with
their informal description in the previous section.

First, note that the sum in (B.1) is taken over all possible jumps
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k
most surely equals O or 1. Only when both Bi(rk_l) and Sij(rk) —Sij(rk_l)

of {J(t)} in the interval [0,t]. Each term S. . (t,) - S..(t. .), al-
t>0 ij ij k-1

evaluate to one, does the respective term contribute to the sum in (B.1).

A J(t)

Next consider Di(t) =y Bi(

Py (Tk—l) [S;(t, ) - 8, (r, ]

which counts service completions at node i in the time interval [0,t].
Clearly, the time interval separating any two consecutive jumps of
{Si(t)}tZO is exponentially distributed with parameter o, We argue
that any time interval separating any jump of {A:x(t)}tzo and the very
next jump of {Si(t)}tzo is also exponentially distributed with parameter

0., due to the forgetfulness property of Poisson processes. Further-

i
more, all such time intervals are mutually independent. Consequently,
exponential services rendered are correctly modeled.

Finally, (B.2) is a stochastic balance equation that keeps track
of the line length at time t, in terms of its initial value and the
traffic through the respective node during the time interval [0,t].

In order to facilitate the investigation of the processes ébove,

we shall rewrite (B.1) in equivalent intergral representation

t
(C.1) Aij(t) =jr Bi(x—)dSij(x) ' (almost surely)
; v
by which we mean that the sample functions are Riemann-Stieltjesintegrals
t
(C.2) Aij(w,t) =.}rBi(w,x-)dSij(w,x), for almost every w.

0

(C.2) is almést surely well-defined, because for almost every w,
Bi(m,t) and Sij(w’t) are step functions with finitely many jumps. It
can now be directly verified that the integral representation (C.1)
reduces to the random sum representation (B.1).

Henceforth, o(Y) will denote the o-algebra generated by a set Y

of random variables.
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Theorem 4.2.1

IA

Forany 1 <i<m 0<j<mandtz20
t

inija/;r(Bi(x)=1)dx'

]

(2) E(A;;(0)

Proof

Consider the integral representation
t

(1) Ai_‘) (t) = fBi(x—)dSij (x).
0

For any fixed t, let I : 0 =t) <t < ... <t{ =t

1
n
be a sequence of partitions of the time interval [0,t] such that

>

(m) ,(n) }
A = - ——— .
n osrﬁf? {|t k1" Tk | s

n
For the same fixed t, define a sequence {Agg)(t)}n:1 of random
variables where
Ln
(n) Ay (n) (n) (n)
Next, we show that

(3) A§?)(t) _— Aij(t) (almost surely).
nro

Let w be a sample point such that

il

(4) Aw) L inf{t'-t": J(w,t") - J(w,t") > 0 and t',t"e[0,t]} > O.
Observe that A(w) > 0 almost surely.
Next, let nO = no(m) be an integer such that

(5) A < A(w) , Yn 2 n

n 0

Then
(n) — >
(6) Aij (t) = Aij(t) , 7 ¥n - n,
- whence (3) follows.

Next, we deduce from (1) that E(Aij(t)) exists and is finite
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because
(7) 02 E(A;;(2)) = E(S4;(8)) =
Hence
(8) BT () 2B
We now proceed to compute this limit. Since each B, (t( )) is
measurable on

o ({Q, (0, A?"(t), S.j(t): 1$i<mo0<j<mo0cts t(n)})

(cf. Lemma 4.2.1), each B. (t( )) is independent of S (t(n)) Sij(tﬁ?z).
Consequently, from (2) '
Ly
9 AT ) = T B MR M) - 5y e™)) -
k 1
Ly
Y‘pr(B &™) = 1o iPs (M-t

k
(9) Is a Riemann sum whose integrand Pr(Bi(t)=1) is continuous in t.
To see this, note that {Bi(t)}t>0 is stochastically continuous, viz.

(10) Ppr(|B, (t+e) - B, (t-€) |[#0) € Pr(|J(t+e) - J(t-)|) =

—(Zu +Zo )-2e

1 - e i=1 ~ i=1 ~E:ﬁ>0

which implies convergence in distribution (see [W1], p. 23). Thus, (a)

is obtained from (9) by passage to the limit as n, O

We now direct our attention to the state process {Q(t)}t>-0 where

Q(t)

time t. We shall likewise denote B(t) (B (t),...,Bm(t)),

(Ql(t),...,Qm(t)) is the vector of line sizes in the network at

A%X(e) & (TR0, AR (), AT 2 AT (D), AT (),
D(t) = (D (t),...,D (t)), etc. We shall also denote for any s < t,
A% (s,t] & A% () - A%%(s), A% (s,t] & A%P() - A%T(s),

D(s,t] Q_D(t) - D(s), etc.
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Theorem 4.2.2

The state process {Q(t)}tZOiS a Markov process with stationary

transition probabilities. Moreover, {Qpleyq is eonservative. T

Proof

Consider the stochastic equation
(1) Q) = Q) + AT(t) + A% (t) - D()  ,  tZ0
derived from (B.2).

For any s t, (1) can be rewritten as
(2) Qt) = Q(s) + A% (s,t] + A% (s,t] - D(s,t]

From this representation and by tracing back the definitions of
Aex(s,t], Aen(s,t] and D(s,t], we deduce (with the aid of the recursive
representation in Lemma 4.2.1) that Q(t) is measurable on

(3) o{Qy(s), Agx(u) - Agx(s), S35 - 8;5(s): ue(s,t], 1<i<mn,

for any s < t.
Since Q(s) is measurable on
(4 o({Q;(0), AN (D), S;;(0: rSs, 154<m, 05j <nh,
it follows that o¢(Q(s)) is independent of the o -algebra
o({A?x(u) - A5 (), S35 - S;5(8): ue(s,t], 1<ism, 055 <mh).
The Markov property of {Q(t)}tzo now follows from Theorem C.1.1 in

Appendix C, in view of (2) and (4).

Next, it follows from (4) that {Q(t)}t has stationary transition
, >0

probabilities, because the {Aix(t)} and {Sij(t)}t>0 have independent

t>0

increments with stationary distributions.

Finally, {Q(t)}t>o is conservative because its jumps are contained

THas finite number of jumps in every finite interval with
probability 1.
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in those of the conservative process {J(t)}tzo' O

In view of Theorem 4.2.2, the discussion in Sec. C.1 of Appendix C
applies to the state process {Q(t)}t20° Accordingly, we denote the
probability vector of Q(t) by q(t). In particular, the Kolmagorov
forward equation of the state process (see ibid.) is equivalent to the
system of integral equations

_ -cyt -cy(t-x)
0 q,(t) = q,(0)e + }% q,(x) ¢ r e dx
for every state v = (nl,...,nm) 2 0. The summation in (D) is over all
m-dimensional non-negative integer vectors u.
In our case
m m .
= . - . - 2
(B) ¢, gg%QI+£§%Oi(l pii) b(ni), for any v (nl,...,nm) ‘ 0
where
0, if n, = 0
bhH)= 7
1, ifn, >0
1 .
Furthermore, the quantity e Cvt giving the probability that no event
capable of altering the state v occurs during (0,t], also satisfies
-cyt m m :
e =Pr(N N (A;:(t) = 0))
. A j
i=0 j=0
j#i
Hence, the probability of a jump from state v in the interval (t,t+h]
is cvh + o(h).
Since a transition between non-adjacent states (see Definition

C.2.2 in Appendix C) requires more than one jump, it follows that the

time derivatives of the respective transition functions satisfy

Pvu(t,t) = Puv(t,t) =0 s tz20.
Thus, {Q(t)}tZO is an m-dimensional birth-and-death process (see Defini-

tion C.2.3, ibid.).
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. A _ _ .
Denoting Pt(nl,...,nm) = Pr(Ql(t)‘- nl,...,Qm(t) = nm) and with a
dot to denote derivative with respect to t, the birth-and-death equa-

tions for a Jackson network JN = (M,a,0,P) with single server nodes are

(F) Pt(nl,nz,...,nm) =

m
(F.1) i;lpt(nl,...,ni-l,...,nm)ai-b(ni) +
-1
(F.2) }é&Pt(nl, .,nj+1,...,nm)ojqj +
m m
(F.3) Z ZPt(nl,...,ni-l,...,nj+1,...,nm)ojpji-b(ni) -
i=1 j=1
j#1 .
m m m m
(F.4) P.(n,,...,n)[2o. + 2 0.q,°b(n,)+ 2.0.p..bm,)]
e T R o O POUE FE A L
j#1

Note that lines (F.1) - (F.3) give transition rate into state v;
(F.1) is due to exogenous arrivals, (F.2) is due to exogenous depar-
tures, and (F.3) is due to departures from node i resulting in an
endogenous arrival at node j, Observe £hat traffic on feedback arcs
(i,1) does not change the state of the system.

Line (F.4) gives the transition rate out of state v.

It turns out that equilibrium solutions (see Definition C.3.1 in
Appendix C) for (F) depend crucially on the so-called traffic equation.

This equation will he investigated in Sec. 4.4.
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4.3 Notational Conventions and Terminology

In the sequel we shall occasionally discuss convergence of matrices
“and vectors. Usually we deal with finite dimensional matrices and vec-
toré. In this case it is not necessary to specify the underlying norm,
because on finite dimensional linear spaces all norms are equivalent.+
However, whenever norm evaluation is required, it will allude to the

norm

n
@ 1Al = mex 2 ay |
1<i<nm j:l
for any mxn matrix A E [aij]‘

Observe that for a vector v 4 (vl,...,me this convention implies
m

@ vl = 2 v

i=1

A1l arithmetical relations involving vectors and matrices are
pointwise relations; e.g. if A = [aij] is a matrix, then A 2 0 means
that ajj = 0 for all i and j. The transpose of a matrix A is denoted
by AT.

If S is a subset of a universal set U, then S will denote the
complement U-S of S in U. The cardinality of a set S is always denoted
by |S|.

Toldesignate submatrices and subvectors, we introduce the follow-
ing notation. If v is a vector with index set K and S C K, then v

S

denotes the partial vector obtained from v by deleting all coordinates
/

Vis ieS. Similarly, if Q is a square matric with index set KxK and

S C K, then QS denotes the partial matrix obtained from Q by deleting

"all rows and columns, indexed by S.

o norms over the same normed space are equivalent, if they give

rise to the same set of convergent sequences over the space.



156

Further preliminary comments and additional notation, concerning
stochastic processes, may be found in Appendix C.

We now proceed to establish a classificatory terminology for
Jackson networks and related conventions. Consider again the graph
representation of a Jackson network (see e.g. Figure 4.1.2). Suppose
a customer arrives along an inlet at some node i. Then, the pcu‘:hJr
traced by him thereafter constitutes a finite Markov chain whose states
are the nodes of the graph, and whose transition probabilities are those
labeling the arcs of the graph. Thus, the graph may be used to repre-
sent the transition probabilities of this process, provided all outlets
are understood to lead into a fictitious node 0 (the ”énvironment sink').
This node corresponds to an absorbing state.

The transition matrix P of this Markov chain is obtained from P by

adjoining an absorbing state 0 as follows.

/"1 i 0 07
[

i e

~A P10| . .
(©) P = . : p , if P is not stochastic

l
p |

_m0| J

P, otherwise

m
A = -
where Pip =9 = 1 j§pij.

The Markov chain induced by P will be seen to play an important
role in determining system and customer behavior. In discussing it,we
shall adopt the usual Markov chain terminology and notation. The

reader is referred to Chapters XV and XVI in [F1] for the pertinent

.1..
- A path in the associated graph is any sequence of nodes connected
by arcs which are labeled by positive probabilities.
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theory. In particular p§?) designates the n-step transition
probability from i to j.

befinition 4.3.1

Let mem be a substochastic matrix. Then:

(n)

a) j is acoessible from i (denoted i ~.»j), if Py >0 for some n 2 O.

b) i communicates with j (denoted i «.~xj), if i ~3 j and j ~~ i. O

In the sequel we shall make it a habit to interchange the terms
"state' and '"node'", so as to take advantage of the intuitive content
of the graph representation.

The forthcoming classifiqation of Jackson networks is baéed on
their probabilistic topology, and cast in terms of P and its associated

graph. First, we give a node classification.

Definition 4.3.2

Let F be the stochastic matrix associated with a Jackson network

JN = (M,a,0,P). Let i be ény node in M. Then

(m) | 0.

a) 1i is called open if lim Ps,

N
The set of all open nodes is denoted O.

) _ .
0

b) i is called completely open if lim p;

N0
The set of all completely opén nodes is denoted A.
c) 1 is called partially open if 1lim Pg?) < 1.
n-roo

The set of all partially open nodes is denoted B.

d) i is called elosed if lim pgg) = 0.
o
The set of all closed nodes is denoted C. O
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Figure 4.3.1 depicts a decomposition of a switching matrix P which

illustrates the relations among the node sets of Definition 4.3.2.

Henceforth, the sets R and T denote the recurrent and transient

node sets, respectively, in a Jackson network.

We make the following remarks concerning the "random walk" of a

customer in the network. This 'random walk" is described implicitly

in the informal description of Jackson networks in Sec. 4.1.

Remark 4.3.1

a)

b)

c)

d)

An open node i has a path leading from it to an outlet
of the network (i.e. i ~= 0). Thus, a customer in
node i will eventually leave the network with positive
probability.

A customer at a completely open node i will eventually
leave the network with probability 1. In particular,
A is an open set closed under ~, that is

ieA and i ~oj = jeA

A partially open node i must have a path leading from
i to the sink 0, and another path leading from i to a
closed node. That is,

i~ 0 and i —~5 j for some jeC.

A closed node i has no path leading from it to the
sink 0 (i.e. i ~f» 0). Any customer in it is trapped in
the sense that he leaves the network with zero proba-

bility. C is closed under ~. in the same sense as A.

O
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Figure 4.3.1 Decomposition of a Switching Matrix
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Remark 4.3.2

o

a) M=0UC where oNc

b) 0=AUB where AMNB = ¢. All the nodes in O

are transient.

c) C contains a nonempty finite collection R = {Rk}kgK of
recurrent equivalence classes of nodes (under the communi-
cation relation of Definition 4.3.1), where each Ry is
irreducible.

d) The set of all transient nodes is T = 0 U (C-R). ]

We now introduce a Jackson network classification which follows

- the pattern of the node classification.

Definition 4.3.3

Let JN = (M,0,0,P) specify a Jackson network.

Then

a) JN is called open,if 0 = M.
b) JN is called closed, if C = M.
c) JN is called mixed, if it is neither open nor closed.

d) A subnetwork of JN is called autonomous, if it is not accessible

from any inlet of the network. '

Remark 4.3.3

a) If a Jackson network is open then all its nodes are completely
open, because in this case B = ¢; thus, O = A by part b) of

Remark 4.3.2.
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b) If a Jackson network is not open then it contains a collec-
tion of mutually non-communicating closed sets. This
collection is {Rk}kEK in c) of Remark 4.3.2.

We now demonstrate our classification in

Example 4.3.1

Consider the Jackson network of Figure 4.1.2. We have

A = {4,5,6}

B = {1}

0=AUB = {1,4,5,6}

C = {2,3}

R = {2}
T=0UC-R=1{1,4,5,6,3}

The network is clearly a mixed one.
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4.4 The Traffic Equation

The traffic equation is a formal expression of a flow conserva-
tion relation,which plays a crucial role in determining the equilibrium

behavior of a Jackson netwbrk.

Definition 4.4.1

Let JN = (M,0,0,P) be a Jackson network specification. The
traffic equation associated with it is
(A) 8 =oa+ &P
in the unknowns ¢ = (61,...,6m).

A solution § 2 0 for (A) is called a traffic solution. O
The intuitive content of (A) is best seen when we rewrite it as a

system of linear equations.

= < i <
(B) Gi—ai+jgléjpji , 1 2i:-m

Now, if one interprets each 51 as the traffic intensity of customers
through node i in equilibrium, then (B) merely states that the total
input intensity to node i equals the output intensity from it when the
system is in equilibrium.

J. R. Jackson used this intuition in [JJ1] to give sufficient con-
ditions, for open Jackson networks to evolve into equilibrium, in terms
of the traffic solutions of (A). However, he does not investigate (A)
and its solutions nor does he justify the intuiti?e interpretation
above of §.

In this section we shall investigate the formal equation (A). The
results will be later on tied to a discussion of state equilibrium in

the next section.
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Lemma 4.4.1 (cf. [BMZ1], Theorem 4.1)
Let JN = (M,a,0,P) specify a Jackson network,and let T be its
set of transient nodes. Then there is always a unique traffic solution

for T; given by

n
(a) GT_OLTZPT,
n=0

Proof
It follows from our definitions that

(1) ieT and jeR =P j ~L>i = pji=0.
Now, (B) and (1) enable us to write

(2) ST = o+ STPT

From the transience of T we have (see [KS1], p. 22) that > P¥ is
‘n:O
finite.

Furthermore,
-1 d n
(3) (I - P =Z:1>T
N=0

where I is the identity matrix.

Next, rewrite (2) as
In view of (3) we immediately conclude that (a) is a traffic solution
for T. Moreover, this solution is guaranteed to be unique by the
existence of the inverse (I - PT)'l. []
Lemma 4.4.2

Let JN= (M,a,0,P) be a Jackson network specification, and define
D& U (C - R). Assume that o, = 0.

D

Then GD = 0 is the unique traffic solution for D.
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Proof
It follows from our definitions that
(1) ieD and jeD == j ~L»i B ) pji =0 .
Again, (B) and (1) permit us to write
(2) 6D =0+ GDPD
and since o = 0, (2) reduces to

(3) & P

= %pPp-
Since DC T, it follows from Lemma 4.4.1 that there is a unique solution
for (3). Clearly SD 2o is a solution for (3). Hence, this must be the

unique traffic solution for D. [l

We are now in a position to characterize the existence of a traffic

solution.

Theorem 4.4.1

Let JN = (M,a,0,P) be a Jackson network specification and let A be
its set of completely open nodes.

Then, a traffic solution exists iff ag = 0.
Proof

Partition P, a and 8§ as follows:
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Consequently, the traffic equation (A) is equivalent to the following

two equations:

(1) (SA = aA + (SAPA + SAQ
Note that

(3 A=BUC=BU(C-RUR=DUR.
If A = ¢ the theorem holds trivially by Lemma 4.4.1. Therefore we may
assume that A # ¢ in the sequel.
(&) Assume that
(4) o = 0.

A
Since AC T, there exists a unique solution for GA due to Lemma 4.4.1.

Therefore, the existence of a traffic solution is equivalent to the
existence of a solution for GA in (2).
But by assumption (4), Equation (2) reduces to

which has a traffic solution GA = 0,
(=) Suppose oz # 0, and let ieA have

(6) oy > 0.

By (3), ieBUC. If ieC,vthen there is clearly a node reR such
that i.~\J>f. If ieB, then by c) of Remark 4.3.1 there is
a node ceC such that i —~5c. Consequently, for each ieA
(7) dreR such that i ~, v, 1i.e. Hno such that pi:o) > 0 .
1t follows from Markov Chain Theory ([Fl1], p. 389) that
Cno) k (n-ng,)

2 Pry —>

n=n, k>

Next, substituting I repeatedly on the fight hand side of (2)

k times yields
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k k
(9) 63 = GA‘.QE% (PM; + 5A(Pk+1)ﬂ > ag e EE% (Pn)ﬂ .

For node reA we have from (9)

£ (n) < (n)
(10) &§_ 2 E:a S ol 2 Q. 24 P Ty
T jeh Jn 5 T 154 ko
k
$i d t 8 » (l’]) ©
ince due to (8) nz—o Prm E——'} X

Hence, Gr has no bounded solution, and consequently,@i has no

solution either. []

Corollary 4.4.1

ag = 0 iff no closed node is accessible from an inlet. Moreover,

ag = 0 === SRQ = 0, where Q is a partial matrix of P given in the

Theorem above. E]

Although Corollary 4.4.1 follows from Theorem 4.4.1, the following
direct proof of of = 0 === & Q = 0 sheds more light on the situation.

Refer to Theorem 4.4.1, assuming that oy = 0.

Notice that each coordinate in GAQ has the form 2: 63 34 for some
jeh
ieA,

In view of (3) in Theorem 4.4.1, either jeD or jeR.

If jeD, then Gj = 0 by Lemma 4.4.2, since in particular ap = 0.
If, jeR, then j. A i, since ieA. This implies that Pij = 0.
Consequently, either dj = 0 or le 0.

Hence, in any event,@J.pji = 0 for any jeA and any ieA, whence

AJJ

We now proceed to characterize the uniqueness of the traffic

solution.
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Theorem 4.4.2

Let JN = (M,0,0,P) be a Jackson network specification for which
a traffic solution exists.

Then, the traffic solution is unique iff the network is open.

Proof

(&=) Assume that the network is open. Then by a) in Remark
4.3.3, A= 9, so that M= T. The uniqueness of the traffic equation now
follows from Lemma 4.4.1.

(=) Assume that the network is not open. Then C # & and conse-
quently A # o.

By Theorem 4.4.1, for a traffic solution to exist, it is necessary

that

(1) U.A =0

so that Equation (2) of Theorem 4.4.1 reduces to

By Lemma 4.4.2 §. = 0, where D 4B U (C - R), since (1) implies o, = 0.

D D

Hence, in particular,

(3) 8qp = O

Now, (3) and (B) allow us to deduce from»(2) that

(4) SR = SRPR

1]

where R {Rk}keK is the set of recurrent nodes and each Rk is irredu-

cible. Observe that PR is a stochastic matrix. Due to the nature of R,
Equation (4) is equivalent to the system of equations

(5) &, =6,P , keK

where each Rk is a stochastic matrix.
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It is known from Markov Chain Theory (see [KS1], p. 100), that for
each keK, there is a probability vector L satisfying the respective
equation in (5). It is also clear that for each keK, the entire
linear space spanned by M solves the respective equation in (5). Hence,

(4) does not have a unique solution in § We concludebthat the traffic

R’

solution is not unique. 1

Corollary 4.4.2

If JN = (M,a,0,P) specifies an open Jackson network, then the
unique traffic solution is
-1 X n
§ =a(l -P) =0) P . -
nz=:o [
Since the traffic solution may not be unique, it is of interest to

determine the dimensionality of the traffic solution space.

Theorem 4.4.3

Let JN = (M,0,0,P) specify a Jackson network for which there is a

* »*
5 ... 3 6 )} be such
R1 R|K|

*
non-unique traffic solution. Let ¢ 4 (6;; 8
a solution, where K is the index set of the irreducible classes {Rk}kFK
Then, the traffic solution space is |K|-dimensional in the sense
%

that any traffic solution § has a representation ¢§ = (6;; ylsR; e 3

*®
Y110 ) in terms of §" and some scalars LY 2 0.
IKI R K 1 'KI

Proof

Since the traffic solution for T is unique and in view of

Theorem 4.4.2, it suffices to show that for every keK the respective
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equation

(1) 6, =6 P
Re o Ry Ry

has a l-dimensional traffic solution space in the sense above. But

R

this follows immediately from the fact that (1) has a unique probability

solution (see [KS1] p. 100). O

The conservation aspects of the traffic equation is illustrated in

Theorem 4.4.4

Let JN = (M,0,0,P) specify a Jackson network for which there exists
a traffic solution 8. Then
m m
(&) 25 = 2 6;9;.
=1 1=1

{5

Proof
From the traffic equation (A) we have
(1) a=6(I -P).
Let u £ (1,1,...,1) be the m-dimensional row vector of 1's. Post-
maltiplying both sides of (1) by ul gives
(2) oul = &(I - P)ul .

m
A direct computation shows that auT = z:ai and (I - P)uT = qT, where
i=1
q 5 (ql,...,qm). Hence (2) becomes
m T m
(3 2.0y =8q = 3 8;a;
i=1 i=1

which was to be proved. U

Intuitively, Theorem 4.4.4 asserts that the total influx intensity

of customers into a Jackson network equals the total outflux of
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customers from it, when the network is in equilibrium.

On the basis of the facts accumulated thus far, we can now give an
intuitive interpretation summarizing the investigation of the traffic
equation.

First, by Theorem 4.4.1, the existence of a traffic solution is
equivalent to the fact that only completely open nodes may have inlets.
If, however, any other node had an inlet, then there would perforce be
a path from an inlet to a recurrent subset of nodes. 'Such subsets are
closed by definition, and hence are customer trapping. Intuitively,
this means that customers would pile up indefinitely in a trapping sub-
network. Clearly, this subnetwork would be out of balance as regards
the rates of customer flow through it; the influx of customers into it
would be positive but the outflux would be zero, in contradiction with
the intuitive interpretation of the traffic equation as describing a
balanced flow rate of customers through each node and each subnetwork
for that matter.

Indeed, the transient node set has always a traffic solﬁtion by
Lemma 4.4.1, since customers will never be trapped in them and flow
rate balance can be always maintained. When a traffic solution is
guaranteed to exist, it follows that, in particular, nodes in T-A can-
not have access from an inlet. Consequently, they eventually lose
their customers due to their transient nature,without being replenished
with new ones. Eventually, customer traffic in them would die out and
this part of the network would come to a standstill. Indeed, Lemma
4.4.2 shows that the equilibrium traffic rates through them is zero.

However, customers that drain out of this set and into the recur-

rent nodes of the network would cycle there forever. Since this set
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is autonomous, it neither gains nor loses customers. Eventually, the
number of customers in each irreducible class will reach a fixed level,
and a balanced flow rate through its nodes will be attained.

Indeed, even though a traffic solution exists for the recurrent
part, by Theorem 4.4.3 it cannot be unique. It depends on the total
(fixed) number of customers that cycle in each of its ifreducible
classes. Intuitively, this depends on the initial configuration of
customers in the network and how they drain into the recurrent node set
from the non-completely open part of the transienf node set. Since
there are |K| irreducible classes, the solution has IK] degrees of
freedom in accordance with Theorem 4.4.3. Each degree of freedom cor-
responds to a choice of total number of customers in each irreducible
subnetwork (in equilibrium), and the resulting traffic solution is
proportional to this total number.

Our discussion has several important ramifications, provided that
§ may be interpreted as equilibrium flow rates of customers through
nodes, and that the existence of a traffic solution is necessary for
equilibrium. Since these will be shown to be true in the next section,
we shall defer the discussion of this issue until this intuition can

be formally justified.
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4.5 The State Process in Equilibrium

In this section we study equilibrium properties of the state
process and equilibrium’ related aspects. The reader is referred to
Appendix C, Sec. C.3 for some relevant background. Accordingly, a

probability vector of the state process {Q(t)} will be denoted by |

t20
q(t), and an equilibrium vector by qo.

State equilibrium results may be found in the literature for open
Jackson networks and autonomous ones. These we now proceed to cite;
the reader is reminded that all Jackson networks alluded to have single
server nodes.

The following classical result for open Jackson networks is due to

J. R. Jackson (See [JJ1]).

Theorem 4.5.1 (Jackson's Theorem?)

Let JN = (M,a,0,P) specify an open Jackson network. Suppose that

for each 1 € i S m,
S,
A 1
(a) pi=-6-:—<1
i
where 6§ = (8 ,...,ém) is the (unique) traffic solution of JN.

1

Then, the birth-and-death equations of the state process {Q(t)}t>0

have an equilibrium solution vector qo, which for any v =(n1,...,nm) 20
is given by

nj

1

— 8

S Pr(Q(t) =m0 (t) =y =
1

< O

Proof

By direct substitution into the birth-and-death equation (F) in

Sec. 4.2 (see [JJ1]). ‘ o 1

LI .
Originally, this theorem was proved for open networks with arbi-
trary number of servers in the nodes. '
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An analogous result was proved by Gordon and Newell for autonomous

closed Jackson networks (see [GN1]).

Theorem 4.5.2 (Gordon-Newell Theorem')

Let JN = (M,a,0,P) specify an autonomous closed Jackson network
with communicating nodes. Let #M be the total number of customers in
the network, such that
(a) Pr(#M =n) = 1.

Then, the birth-and-death equations of the state process have an equi-
librium solution vector q° = q°(n) (depending on n), which for any

- > - 3
Vo= (nl,...,nm) 2 0 is given by

0 A - - - -
(b) qj(n) = Pr(Q(t) =n ,...,Q (t) =n | =n) =
0, if ||v|] #n
1 M™on
[1p.1
gn) 1
A §
where g(n) is a normalization factor, and Py =5 where

§ = (61,...,6m) is any traffic solution.

Proof
By direct substitution into the birth-and-death equations (F) in

Sec. 4.2 (see [GN1]). []

fOriginally, this theorem was proved for autonomous closed
networks with arbitrary number of servers in the nodes.
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The results cited above reveal a remarkable property of the state
process; they exemplify an equilibrium solution for the state process

{Q(t)}

£20° whereby the local states Qi(t), 1 <3i<m, are mutually
independent for every fixed t 2 0. Moreover, each local state process
{Qi(t)}tZo in the open network behaves as if node i were a M/M/1 queue
with exogenous input parameter Gi (see [JJ1] pp. 378-379).

J. R. Jackson points out (see [JJ2] pp. 135-136) that for open
networks, the recurrent state set of the global state process is irre-
ducible, and thus the equilibrium solution vector of Theorem 4.5.1
is a long run vector (see Definition C.3.1 in Appendix C). However,

only an outline of a proof is given by him. We shall now prove this

fact in detail.

Theorem 4.5.3

Let JN = (M,a,0,P) specify an open Jackson network that satisfies

the conditions of Theorem 4.5.1.

. s . o .
Then, its equilibrium solution vector q 1is a long run vector.

Proof
It suffices to show that the recurrent states of the global state

process are irreducible (see [Cil] p. 264). To do this we show that

the zero state 0 4 (0,...,0) is accessible from every state

v = (nl,...,nm) 2 0. It suffices to show that v' .—~_, v for every pair

of adjacent states v' and v such that v' = v + e; for some 1 € i < m

(ei is the unit vector with 1 in the i-th coordinate). The desired

result v' ~» 6 then follows by an immediate induction on Ilv'[].
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Now, since the network is open there is a sequence of distinct

nodes jl’jz"°"jk such that

1 s DPs s «oDP: >0
(1 Pi5,%5,3, kaO
k+
Consider the sequence of adjacent states {vz}g_;, where v, = v',
= = - < <
Viwp =V and vy = Ve ejz + ej , 1 S8 <k. We show that
-1 L
P, (t) >0 for 0 < 2 <k and t > 0,by using the integral represen-
2 L+1

tation (G) in Sec. C.1 of Appendix C for the functiomns pvzvz (t) viz.
¥ +1

(t-x)
dx

nv
2+1

(@) p, Pl® }:c/ (X)e r o Vi
k

because v, # Vo2 0 248 °% However (see ibid.),

—C' t
(3) () 2e " >0,
2 2
Substituting (3) in the term u = v, on the right hand side of (2)
yields for t > 0,
t ' —cv2+1(t-x)
4 »r (t) 2fp (x) c. r e dx 2
VeVe i ’ VoVe Ve VaVael
t—cv p' : -cy  (t-x)
fe Le, r,, e 241 dx.
2 L7041
0
Observe that r > 0 for all 0 < & < k since
v,V
L7e+1
G.Pss
1°1)
rv Vv = rv'v = c : >0
01 1 Vo
and Os Ps
I 303
L - R IR 0 for 1< <k,
L79+1 <
2
due to (1).T Hence,
(5) »p (t,) >0 for some t. > 0
va£+1 %
.1.
The r are the conditional probabilities that the state will

M AES)
jump from v, to vz . given that a jump has taken place.
+
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Now, applying repeatedly the Chapman-Kolmogorov equations gives us

k k
(6) p,,,(2t) = Ilp (t,) >0,
VIVITO Y a0 VeVan t
Consequently, V' ,~ v as required. ]

We note in passing, that Theorem 4.5.3 holds for the networks of
Theorem 4.5.2, but it does not hold, in general, for a;bitrary ones.
Also, the state process need not be recurrent iﬁ mixed networks. For
example, transient states are engendered by putting ni >0 in
v = (nl,...,nm) for any open node i with Si = 0.

Even if a mixed network has an equilibrium vector q°, it may not
be unique, because the asymptotic state of closed subnetworks does de-
pend on the initial conditions.

Our next step is to exhibit to what extent condition (a) in The-
orem 4.5.1 is necessary for existence of equilibrium in mixed Jackson
networks.

A requirement of the form ;% <1 is an "obvious'" necessary condi-
tion for equilibrium, provided Glcoincides with the vector of equili- -
brium traffic rates through nodes. |

We shall now show that this intuition is largely justified. For-

mally, we prove

Theorem 4.5 .4

Let JN = (M,a,0,P) specify a mixed Jackson network that possesses
an equilibrium vector qo for its state process. For any t 2 0,
: A
let E(D(t,t+1]) = (E(D (t,t+1]),...,E(D _(t,t+1])).

Then, E(D(t,t+1]) satisfies the traffic equation,provided q(0) = ¢°.
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Proof

Since Di(t) 2: A (t) , it follows from Theorem 4.2.1

_') =0
(1) E(Di(t)) = J-z__:ooipij E)/11’1-(Bi(x)=1)dx = ci'fPr(Bi(x)=1)dx.
= 5 ‘
In particular,
t+1
(2) E(Di(t,t+1]) = E(Di(t+1)) - E(Di(t)) = o.l-fPr(Bi(x)=1)dx.
t

By the equilibrium assumption on {Q(t)}tZO it follows that each

{Bi(t)}

£20 is in equilibrium and thus Pr(Bi(x)zl) = const. for all

xe(t,t+1]. Hence, (2) becomes

(3) E(Di(t,t+1]) = oiPr(Bi(t)=1) = oiPr(Qi(t) > 0?.
Next, we apply generating function methods to the birth-and-death

equation (F) in Sec. 4.2. The generating function of qo is defined by

A o M n,
4 ®(zl,...,z ) = E q °*I1z.1t
Voo 1
= yee.,N_)20 i=1
1 m
and it exists in the domain {z = (zl,...,zm); Izil <1, 1<isml,
provided we define 0° 4 1. |

For each v = (nl,...,n ), multiply both sides of (F) in Sec.
m
n,
4.2 by [I Zs 1 and sum the outcome over v = (nl,...,nm) > 0. Since the
i=1
left hand side of (F) in Sec. 4.2 is always zero for qO (see Theorem

€C.3.1 in Appendix C), we obtain after some algebraic manipulation

m
(5) 0= 2: @(zl,.L.,zm)ai[zi-l] +
1=]

1

1
2:[¢(zl,...,zm) - ®(z1""’0"""zm)]giqi[E;" 1] +

m m
L T 100 - 0tep g alegn G-
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llere and in the sequel 0j indicates a zero in the i-th coordinate and
similarly for li'

Observe that by setting 2, = 1 in @(zl,...,zm), the resulting
function ®(zl,...,1k,zm) is precisely the generating function of the
process (Ql(t),...,Qk_l(t),Qk+1(t),...,Qm(t)),subject to q(0) =
thus, ®(z1,...,lk,..;,zm) = ®(21""’Zk—1’zk+i""’Zm)' Consequently,

whenever we set Zy = 1, Xk # 1 for any fixed 1 < i < m, (5) reduces to

6) 0 = ®(Zi)ui[zi_l] + [@(zi) - Q(Oi)]Oiqi[E¥‘- 1] +
i

3

J; (D(Zl) - Q(Zi’oj)]ojpji[zi_l] +
j#i

m

?%[@(z ) - (0. ]o, plj[;— - 1]

J#1

0 < |zi| <
After collecting terms, (6) becomes

m

(7) 0= (9(zp)ay + 2 [0zy) - o(2;,09)]0;p5;) [24-1] +
J::
J#L

m
1
[0(z;) - 0(0,)](0;a; + ;g%oipij)[;;-- 1]
j#i
0 < lzil <
and a further simplification of (7) yields

®) 0= (s(z)a, + EZ [o(z;) - 0(2;,00)]0,p5;) [2;-1] +
j=1

j#
[0z = 8010, (1-pyy) - - 1]

0< |z.| <
1
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For 0 < lzil < 1 we may divide both sides“of (8) by 2. - 1,
whence (8) becomes
m
(9) [o(zy) - #(0,)]o; (1-p,,) = (o(z))ay + JZ=: ¢(z;) - @(2;,05)]0,p5,)2;
j#i
0< |z.| < 1.
i

n,
Equating coefficients of the zi1 on both sides of (9) gives us

(10) Pr(Qi(t) ni)Uicl'Pii) =

Pr(Qi(t) = nifl)ai +

m

j;llpr(Qi(t) = ni"]-)' Pr(Qi(t) = n]._—l,Qj (t) = 0)]Gjpji
j#1

For each 1 £ i £ m, sum the system of equations (10) over 1 = n; < e,

We get
(11)  Pr(Q;(t) > 0o, (1-p;;) = o, + ZPr(Q (£) > 0)o, iP5
j=1
J#
1<4i<m,

Substituting (3) in (11) and rearranging its terms gives us

—t
N

e
IA

E]

(12) E(D, (t,t+1]) = o, + ZE(D (t,t+1Dpy; ,
j=1

Comparing (12) with (B) in Sec. 4.4 shows that E(D(t,t+1]) does

indeed satisfy the traffic equation, for any t 2 0. 1

Corollary 4.5.1

If JN = (M,a,0,P) is a mixed Jackson network in any equilibrium
qo, then

a) the associated traffic equation always has a solution " defined by

*

>

E(D(t,t+1])
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where 8" depends on the equilibrium vector q°.

b) E(D(s,u]) = 8" (u-s) for any s < u.
t+1

c) 6; = Ui.fPr(Bi(x)ﬂ)dx < o s 1<i<m , foranytx>20.

t

We now refine part (c) in the above corollary, as follows.

Theorem 4.5.5

Let JN = (M,a,0,P) specify a mixed Jackson network. If there is
an equilibrium vector qO for {Q(t)}tzo,then
(a) o, <1, for every node i with p.. <1
i 5 ii
i A

where Ps 4 33- and 6; = E(Di(t,t+1]) for‘any t20
i

Proof
*
By c¢) of Corollary 4.5.1 the traffic solution § & E(D(t,t+1])
. satisfies

(1) Gi s 04 s 1<is<m,

Suppose, howéver, that there is ieM with Py < 1,but 8§, =05
Then by ¢) of Corollary 4.5.1 we get Pr(Qi(t) > 0) = 1 whence
(2) Pr(Q(t)=0) =0
We proceed by induction. Suppose that
(3) Pr(Qi(t)=ni—1) =0.
Setting (3) in (10) of Theorem 4.5.4 yields
(4) Pr(Qi(t)=ni)Gl(1‘pli) =0.
By assumption p;; < 1, whence from (4)

(5)  Pr(Q;(t)=n;) =0

as 0. > 0 always. .
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But (5) shows that every state of {Q(t)}tzo is transient,which is
impossible in view of the fact that it has an equilibrium vector qO
(see [Cil] p. 263).

We conclude that §. = 0. is impossible for nodes i with p.. <1,

so that (a) follows from (1). Ul

We can now sum up our discussion of state equilibria situations of
open and autonomous Jackson networks with single server nodes.

The following theorem characterizes existence of equilibrium in

mixed networks.

Theorem 4.5.6

Let JN = (M,a,0,P) specify a mixed Jackson network. Then,

the network has a state equilibrium vector q0 iff the following two
conditions hold:

a) the associated traffic equation has a traffic solution

* A
§ 2 E(D(t,t+1]), t 2 0;
®
a8
b) py = 5 < 1 for any completely open node.
’ i
Proof

(=) Suppose the network has an equilibrium vector qo.
Then a) holds due to part a) of Corollary 4.5.1 and b) is implied by
(a) of Theorem 4.5.5_(observe that iﬁ equilibrium every cémpletely
open node i always has Py; < 1).

(€&=) Suppose a) and b) hold.
Denote by J(vA) the Jackson solution (see (b) in Theorem 4.5.1) for

the completely open part A.
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Denote by qo(llvR I]) the Gordon-Newell solution (see (b) in Theorem
k

4.5.2), obtained for each recurrent irreducible node set Ry keK.

Having chosen a distribution for each #Rk’ keK (recall that #Rk is

the total number of customers in Rk in equilibrium), we define

A o
(1) Gy, ) 2 X q° mPr@#r, =n) = q° (||v, |Pr#r =] |v, |]).
R Y k v R k R
k n=0 R R k k
k k
Lemma 4.4.2 guarantees that the remaining node set D has a unique
1, if vp = 0

A

traffic solution 8., = 0. Denote Z(v,.) =
D .

0, otherwise

D
Finally, it can be verified by direct substitution into the

birth-and-death equations (F) in Sec. 4.2 that

o A . . -
(2) q, = J(vA) Z(vD) I G(\)R ), Vv = (nl,...,nm)
keK k
is an equilibrium vector of these equations. 1

Condition a) of Theorem 4.5.6 agrees with the heuristic observa-
tion that a network containing a closed subnetwork, which is accessible
from an inlet, cannot have an equilibrium vector.

Intuitively, in this case, customers would be 'trapped" in that
closed subnetwork, and their number would grow indefinitely. Indeed,
Theorem 4.4.1 guarantees that this does not happen, because existence
of a traffic solution & is equivalent to the requirement af = 0.

Condition a) of Theorem 4.5.5 agrees with the intuition that in
equilibrium each node i, excluding the trivial case P;;=1, must have
service rate oy which exceeds the influx rate 62 of customers into i.
Otherwise, customers would 'pile up'" in that node and its line would
grow indefinitely.

We now proceed to characterize uniqueness of an equilibrium

vector for mixed Jackson networks.



183

Theorem 4.5.7

Under the conditions of Theorem 4.4.6
a) there is a unique equilibrium vector q°
iff
b) the traffic equation has a unique solution §.
Otherwise, every initial condition q(0) determines an equilibrium vec-

tor q° such that q(t) —3q°.

t>o

Condition a) holds iff the equilibrium vector defined in (2) of
Theorem 4.5.6 has no G factors.

Now, this happens iff the network has no closed nodes (i.e. iff the
network is open). But then we know by Theorem 4.4.2 that a Jackson

network is open iff it has a unique traffic solution.

Next observe that q(0) determines the asymptotic distribution of
total number of customers in each Rk and hence of #Rk, keK (see, e.g.
[KS1] p. 52 for absorbing probabilities of single customers). This in

turn determines the choice of the G(ka) in (2) of Theorem 4.5.6. O

The fbregoing discussion shows that in equilibrium, the state pro-
cess of a mixed Jackson network can be studied separately for the com-
pletely open part A and each irreducible recurrent part Rk, keK. The
remaining node set D is devoid of customers with probability 1, and
for all practical purpbses can be removed from the network.

It is also interesting to note that the equilibrium state behavior

can be completely determined from a simple algebraic equation--the
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traffic equation--as far as cxistence, uniqueness and form of equilibria

solutions are concerned.

4.6 Total Service Times and Number of Visits to Nodes

In this section we investigate two customer-oriented behavioral
frames: total service time and number of visits to individual nodes.

The total serviee time S of a customer is the sum of all service
times the customer receives at the various nodes of a Jackson network
from the instant of his arrival at the network until he exits the
system at some outlet. The total service time of a customer in the net-
work, given that his entry node to the network was i, is denoted here gi.

Our main tool of analysis will be generating functions--in this
case the Laplace-Stietjes transform (abbreviated LS transform) --of the
relevant distribution functions.

The LS transform of the distribution of S is defined by

(o]

) g éfe-cxng(x)

-0

where ng{x) designates the Laplace-Stieljes measure induced by-the
distribution Eg of §i‘ Likewise, fi(g) denotes the LS transform of the
distribution of §;,and Vi(c) denotes the LS transform of the distribu-

tion of the service time Si at node i. Observe that

O.
1

(B) Vi(C) =

[
Y%
[

because node i accomodates exponential servers.

Next, let f be the column vector f & (fl,...,fm)T‘and q the column

A
vector q = (ql,...,qm)T where a3 4 Piy: Finally, let T be the

diagonal matrix whose i-th diagonal entry is g,
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Theorem 4.6.1 (cf. [BMZ1], Theorem 5.1)

Let JN = (M,0,0,P) specify a Jackson network. Then for ¢ > 0

(1) £(2) = U (D)q

where U(g) = [uij(g)] is an mxm matrix defined by

A T
(2) uij(c) = (57-+ g - py
1

j

where Gij is Kronecker's delta.

A customer arriving at node i receives a service time Si with LS
transform vi(g). Then, he either exit§ the network (with probability
qi) or is routed to node j (with probability pij)’ whereby his residual
total service time is §3 with LS transform fjt;),

Since all individual service times are mutually independent, we

are led to the renewal-like equation

[
IA
e
IA
=

m
(3) £,(2) = [a; +,;§ipijfj(g)]vi(c; ,

Substituting vi(c) into (3) from (B) and switching to vector notation
gives us

(4) (g1 + I)f(x) = T'(q + Pf(z))

Premultiplying (4) by r~'and factoring out £(z) yields

-1

(5) (eI’ +1I-P)f(g) =q .

Now, define

6) u(z) 2 gr!

+1-P .,
Then U(z) coincides with (2), and (5) becomes
(7) Uu(@)f(z) =q .

It remains to show that U(z) is invertible for any ¢ > 0.

Now, U(z) can be written as
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-1 -1

) U = (I-pPrt+n™h. @+,

-1 -1

-1
Clearly, gI' = + I is invertible. Moreover, ||(zI™ + I) ] <1

for any ¢ > 0, and ]|P|| < 1. From these we immediately have

dlaert s ] <1,

and we conclude that (I - P(cr—l + I)—l)_1 exists (see [KS1] p. 22).

llp(er™ + 17| < |

Hence,
0 Ul =@l harertsn™H ) <o
exists since each of its factors exists.
We now show that f(t) as defined by (1) is indeed a generating
function.

Define a sequence of vector functions {f(n)(;)}n=0 as follows.

a
A
= 0, and let f(n+1)(;) be recursively defined by

Let f(o)(c)
1) 1+ ™V @™y, 2o

It can now be shown by induction on n (using (3) and (10)) that
for any 1 < i < m and n=0,1,..., the following hold:
(11.a) OSfJ{“)(c)sr , £20.
(11.b) fin)(;) is a possibly defective generating function (shoWn by

sending £ —> 0+).

11.e) £™V () = [q Zpljfj(n)(C)]v (©) 2

57‘p13f§“ 1)(c)]v =M@ , czo.

We conclude that the vector function sequence {f(n)(;)}nzo is
monotone and bounded in each coordinate i for every ¢ 2 0. Hence this
sequence converges pointwise such that
(12) f(n)“5:35'f(w) )

Moreover, the limit function f(m) is itself a possibly defective
generating function (see [F2], XITI.1, Theorem 2). Taking limits as

n>o in (10) shows that f(w)(c) solves (4).
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By uniqueness of the solution f(z) of (4) we conclude that

w) A
(13) f = f( ) L lim f(n) (pointwise limit)
n--we
so that f is indeed a possibly defective generating function. O

The defect of each fi(c) is interpreted as Prﬁgi = «), To compute

the defect we employ

Theorem 4.6.2 (cf. [BMZ1], Theorem 5.1)

Let JN = (M,a,0,P) specify a Jackson network. Then, for any
1<ism Pr(g. < ®) = 11m p( ). Moreover, lim p(n) = lim £, (%)
? i > e Ti0 >0+ i
or alternatively lim p( ) 1 $i g m, constitutes the minimal solution
N->oo
of the equation

(1) u=q+ Pu

in the column vector of unknowns u = (u,...

Proof
The defect of each fi(g) is

(2) 1 - 1im fi(c) = Pr(Si = )
Tr0+

By (11.c¢) in Theorem 4.6.1 we know that for any z 2 0, f(n)(c)¢fC;)
as n»», Furthermore, since Vi(c)+vi(0) as ¢»o+ for each i (see (A)),
it follows from (10) in Theorem 4.6.1 that for every n = 0,1,...
f(n)(§)+f(n)(0) as ¢»0+, by induction on n.

Using these facts we obtain from (2)

(3) Pr(§£ < w) = 1lim f£,.(z) = lim 1im f(n)(z)

>0+ 1 >0+ N

lim 1im £ (g) = Lin f(n)(O) - f( )0) = £.(0)
mo gror 1 1
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because monotone limits are interchangeable.

Next, denote f(n)(O) 4 u(n) and set ¢ = 0 in equation (10) of
Theorem 4.6.1. Premultiplying the outcome by F-I for each n = 0,1,.
gives us
(4) u(o) = 0 and u(n+1) = q + Pu(n) s n=20,1,...

Now,{u(n)}nzo is a monotone and bounded sequence and thus its
pointwise limit u exists. Sending n>» in (4) shows that u satisfies (1),

and by induction on n one can show u to be the minimal non-negative

solution of (1). Hence

~ A
- o] = = S <
(5) I‘r(Si < ) fi(O) u, , 1 <ismnm
and it remains to show
s (n) <3 <
(6) u, = 112 Pio , 1<ism.

Expanding (1) by components and writing Pio for q; gives us

m
= < i s
(7w, =py, + ;gipijuj , 1<ism.

A standard result in Markov chain theory (see [F1], Sec. XV.8,
Theorem 2) shows that the minimal non-negative solution of (7) is pre-
cisely the probability of eventually being absorbed in node 0, given

that the initial node is i. Thus, (6) holds as required.. U

The defect of f(z) can now be characterized in terms of the

topology of the network as follows.

Corollary 4.6.1

For any Jackson network

a) Pr{S. <«) =0 R if ieC .

, if ieA .

o
<
o)
=
—~
N
H-I
A
8
—
it
Pt
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c) 0 <Px(S; <= <1 ,  if ieO-A . 1

It is interesting to note that f(g) has a relatively simple form.
The represéntation f(g) = U"l(c)q shows that each fi(c) is a rational
function whose denominator is a polynomial in ¢ of degree m at most.
This is so because the denominator of each entry in U-l(c) is the deter-
minant of U(z), and by definition of U(g) it is seen to be such a
polynomial. Consequently, f(z) is a transfprm of mixed exponentials.

The comments above are also pertinent to the unconditional total

service time S due to the following.

Lemma 4.6.1 (c¢f. [BMZ1]), Sec. V)

Let JN = (M,a,0,P) specify a Jackson network. Then the generating

function of S is g(z) = r-f(z) where r 4

o]

Proof

The probability that a customer enters the network at node i is

Cf.i ai ~
- = - Hence the generating function of S is
el
j=17
m
g(r) = E:'rifi(g) = r.f(g) as required. a
i=1

Corollary 4.6.2 (cf. [BMZ1], Sec. V)

m
E(S) = ) r;E(S,)
i=1

Consequently E(S) < « iff ay = 0, i.e. no closed node is accessible

from an inlet. This is equivalent to existence of a traffic solution

by Theorem 4.4.1. !
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We now proceed to compute E(§§ when it is finite. Clearly, in

this case, it suffices to compute E(S) for open Jackson networks.

Theorem 4.6.3 (cf. [BMZ1], Theorem 5.2)

Let JN = (M,a,0,P) be an open Jackson network. Then E(§) = 1 ]]
a
8 8
where p a (—L,...,-ﬂh,
m
Proof

By Lemma 4.6.1, the generating function of S is
(1) g(z) = r-f(7) .
Using in (1) the moment property of generating functions (in our case
LS transform) we get

(2) E(S) = - lim r-f'(g)
>0+

where the prime indicates differentiation with respect to C.
Next, differentiate both sides of

(3) U(R)-f(z) = q , z>0.

(Cf. Equation (1) of Theorem 4.6.1.)

We obtain
(4) U(m-£'(z) +U'(g)-£(z) =0 , g>0
and since Uul(C) exists by Theorem 4.6.1 for ¢ > 0, (4) becomes
(5) -f'(0) =V DU (@, © >0.
Now, for open networks, the defect of each fi(c) is
(6) 1- Pr(¥, <=) =1 - lin p§g) —1-1=0
because cvery node is transient in 3;save 0 which is an absorbing node.

Therefore

. T
(7) f(C),C_“’(;—) u

where u is the row vector of 1's.
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Next, since U(g) = cF'l + 1 - P (see (6) in Theorem 4.6.1), we have
(8) U'(g) = It
Finally, we assert that

@ vl —a-nt= Y.

>0+ n=0
To see this observe that (U(c)-r)‘1= RC where RC is defined as the
resolvent operator for (I - P)T at the value ¢ (see [T1] Ch. 5, Sec.
5.1). The origin beiongs to the resolvent set as R0 = (I- P)_1 exists.
Hence, RC———a*R0 as L>0+; i.e. P_IU—I(c)-Z:;f FflUfl(O) (see ibid.).
(9) now follows, since U—l(O) = (I - P)—1 by (6) in Theorem 4.6.1.
Substituting (5) into (2) and using (7), (8) and (9) gives us

(10) ES) = lim 7-U ()0 () f(g) = £~ (I - P) " Ler Leul,

L0+
Substituting r 2 ]]ull and denoting 0—1 Q (8%3...,%—9 , We see
a m
that (10) becomes
(1) B = —2— (1 - p T HT = O @ HT = el
o] =] el
since ¢ = a(I - P)—1 from the definition of the traffic equation. ]

We now proceed to investigate the number of times Ki’ that a

customer visits node i during his stay in the network. LetX denote

the vector K 2 (K K.

12Ny

Theorem 4.6.4 (cf. [BMZ1] Theorem 6.1)

Let JN = (M,0,0,P) specify a Jackson network. Then

(1) E(K) = (I - )~}
o

o]

where r é
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Proof

Let Kij be the number of visits of a customer to node j, given
that his entry node to the network was i. It is a well known result

(derived from the finite Markov chain with transition matrix P) that

E(K; ;) = ngopi(?) (see [KS1] p. 46).

Hence the unconditional number of visits Kj to node j satisfies

m [
E(Kj) = }Etgi E:P(n). In matrix notation this is expressed as (1),
i=1 7 n=

ij
which was to be proved. ]
Remark 4.6.1
A -
Since r = —— , we have E(K) = a (I - P) 1 Consequently,
| ol] ol
E(K) < « iff the traffic equation has a traffic solution §. O

Since in this case o = 0, we have that E(K. ) = 0 for any iecA.
1

6*
- . Thus, E(K) then
sl

r + E(K)P of the traffic

Taking &* a (6A; 0) we can write E(K)

i

satisfies the normalized version E(K)
equation 6§ = o + 6P, obtained by dividing the forcing term a--and hence
the solution &--by ||a||. If no traffic solution exists, then

E(Ki) < o for ieA, E(Ki) = 0 for every i which is not accessible from

any inlet, and E(Ki) = « for all the other nodes.

Remark 4.6.2

The expected total number of visits to nodes by an arbitrary

customer is ||E(XK)]].

If E(K) <'w, this becomes llﬁLL

lal] O
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4.7 Traffic Processes on Arcs

In this section we investigate traffic processes on the arcs of
Jackson networks. Recall that {Aij(t)}tZO is the traffic process on
arc (i,j),where Aij(t)iis thé customer count on it during the time
interval (0,t].

In the process, we isolate a class of arcs whose traffic processes
will be shown to be Poisson processes, when the network is in equili-
brium. This result may be viewed as a generalization of Burke's The-
orem (see [B1]) which states that the traffic process on the outlet of
a M/M/1 queue, in equilibrium, is a Poisson process. The generalization,
however, is stronger in that we show that the set of arcs to which it
applies includes the outlets of Jackson networks. Moreover, for cer-
tain sets of such arcs, we will show that the Poisson traffic processes
on them are mutually independent processes.

The treatment relies heavily on the switching matrix P, or equiva-
lently, on topological properties of the graph associated with the
underlying Jackson network. Recall that the associated graph can be

viewed as a representation of the accessibility relation ~ (see Defi-

nition 4.3.1) among the network's nodes. The communication relation
~—y (see ibid.) is easily seen to be an equivalence relation; as such
it induces a partition into equivalence classes, each consisting of
mutually communicating nodes.

Let us call each such equivalence class a component of the net-
work, and for every node i, let [i] denote the component C such that
ieC.

The accessibility relation .~» on the node set of a Jackson network

induces a partial ordering on its set of components. This partial order
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will also be denoted by ~»; namely C; —~»C, iff there exist isC1 and

such that i ~yj.
It follows that if G, ~» C, then i ~+ j and j ~» i for any
ieC, and jeC2. The partial ordering of network nodes and com-

ponents induces a hierarchy of Jackson subnetworks as follows.

Definition 4.7.1

Let JN = (M,a,0,P) specify a Jackson network and let L CM.
We say that JN(L) a (L,aL,OL,PL) is a partial network of JN if

a) ielL and j ~» 1 =— jel. []

Remark 4.7.1

Equivalently, L in Definition 4.7.1 satisfies
iel and j¢L = py; = 0 O
Observe that a partial network of some underlying Jackson network
is self-contained in the sense that it can be analyzed as a full-fledged
Jackson network. As a matter of fact its complement can be completely

ignored because a partial network is not accessible from its complement.

Definition 4.7.2

Let LC M be a subset of nodes in a Jackson network JN = (M,a,0,P).
Let T 2 {i: ieM and GjeL such that i ~u j}.

Then JN(I) a (f,at,of,Pt) is called the partial network generated

by L. '

Notice that the partial network generated by a subset of nodes L,
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containg all the components [i] such that iel together with all the
components from which L is accessible.

In addition to the hierarchy of partial networks, the accessibility
relation ~» may be used to partition the arcs of a Jackson network
into two claases as follows.

If C1 and C2 are components such that C1 ~p C then C2 ~» Cl'

2°
Thus, arcs fall into two disjoint categories: those between components’
and those within components. The former set may be characterized as

follows.

Definition 4.7.3 (cf. [BM1], Definition 3.1)

S m, in a Jackson network

An arc (i,j), 1 i Sm, 0 € j
JN = (M,0,0,P) is called an exit are if

a) Pij > 0 but j ~f» i. : []

Intuitively, an exit arc (i,j) is characterized by the fact that a
customer that takes it will never return to i for further services. In
this respect, an exit arc behaves much like an outlet. Indeed, every
exit arc is an outlet of some partial network, and this fact provides

the basis for the aforesaid generalization of Burke's Theorem.

Theorem 4.7.1

Let JN = (M,a,0,P) be a Jackson network, and let R(t)>be any sub-

15iSm0%3jSm on some

set of the traffic processes {Aij(t)}t>o,

subset of arcs.
Then (Q(t); f\(t))t>0 is a conservative Markov process with station-

ary transition probabilities.



196

Proof

For any s £ t, the stochastic equation

(1) (Q(t)A(t)) = (Q(s);A(s)) + (A(s,t];A(s,t]) - (D(s,t];6)
holds almost surely, where 6 is a vector of zeros.
The rest of the argument is analogous to the one used in the proof

of Theorem 4.2.2. []

Let JN(L) = (L,mL,cL,PL) be a partial network of JN = (M,a,0,P),
where without loss of generality L 4 {1,2,...,%}. Denote
L2 {oru .

If (i,j) is an exit arc, then we write Eij(t) for Aij(t). The
vector of traffic processes on the outlets of JN(L) (which are all exit

arcs) is denoted by EL(t). Thus,

A
B8 8 (B (0B, (8,00 0B (6)50 By (8B (8),0. 0 By (1),

Im
By virtue of Theorem 4.7.1,(QL(t);EL(t)) is a Markov process, and in

view of Appendix C we may proceed to treat the appropriate birth-and-

death equations.

.k ) &

Denote Pt(nl,...,n : o

' klo’klg+1""’k1m""’kgo’kgg+1"‘

for any t 2 0 and any vector of non-negative integers

(nl""’nm;klo’k12+1""’klm""’kzo’k22+1”°"k2m)'
With a dot to denote a derivative with respect to t, the birth-

and-death equations of the process (QL(t);EL(t) are
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(A Bytn,eemgs Kook ek ) =
E:Lp (ny,eeeamy-doonoongs kLK ee kg Josb(ng) +

Z EP (nl,...,ni+1-,...,n2; klo’k12+1""’kij—1""’kSLm)inijb(kij)+
iel jelL

EE: Z:I’ n,,..., n, - 1,...,n.+1,...,n_; k. .k ye o Jo.p b(n.) -
ieL jel 1 J 22 T10°718+1 zm J i

j#i
Po(ny,eeesmys Kok g km)[Ea + 2o 2,0.p, sblng) +
ieLl iel jelL
L Liop;bn)]
iel jeL 33
it
for any (nl,...,nz; klO’k12+1""’kzm) 20.
0, if n, = 0
Recall that b(ni) =
1, if n, > 0

Theorem 4.7.2 (cf. [BM1], Theorem 3.1)

Let JN(L) be a partial network of JN = (M,a,0,P) in equilibrium.
Then, the random variables in the set (QL(t); EL(t)) are mutually
independent for each fixed t > 0. Moreover, each Eij(t) in EL(t) is

Poisson distributed with parameter Gipijt.

We may assume that the network is open,because the closed part C
has no outlets except for trivial ones on which the traffic process in
equilibrium is zero almost surely.

In view of the birth-and-death equations (A), the equilibrium

assumption is
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Po(nl,..

k,,,k

"ngl, 10)

1941°°°°
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L

)k ) -

im

. i
ggl(l'pi)pi

n
, if k, .
1]

0, otherwise

due to Jackson's Theorem (see Theorem 4.5.1).

0
VieL,Vjel

We shall analyze (A) by

means of generating functions, similarly to the equilibrium analysis of

the state process.

In our case, the generating function is the

L(m - 2 + 2)-dimensional z-transform defined by

(2)

@(zl,..

P,
v

1]

(v) j

o0z i
z, Loy,
iel jeL 1 .

%5 Yip Y1417

Yy

’ IZil < 1, Iy..

)YQ‘O ’yQ‘Q’_’_l 3¢

A
"yzm) =

| <1, ielL, jeL
ij

where the sum ranges over all non-negative integer vectors

Vo= (nln
The
equation

with the convention 0° & 1, and then summing the resulting equations

over all

e esNygs klo’k12+1"'

b

).

2m

>

z-transformed version of (A) is obtained by multiplying each

n,
corresponding to each v by [I l]_z.l-y.

integer vectors v

iel jeL

k

(nl,...,nz; k1o’

ij

AR

k

>
. Zm) = 0.

12+1°°

After manipulating the above summation and collecting terms,

analogously to the procedure in Theorem 4.5.4, we obtain

ij

3) % D2 =
( ) @t(zly ’ZQ’ le,y12+1"*'3YQm) -
s .
rJQt(zl,..',le, y10;y12+1,---;yzm)ai[zi"]-] +
1el
> o [¢(z ,...,2,; y. .,y veesYo ) -
et 22 Y10V 1ge1 Y im
% (z 0 Zii
t 12 i"'.’zﬁ’ y101y11+1:-'-,YQm)]inij[ 2. - 1] +
1
20 LI0 (2,25 YyooY1gatoe Vo) -
i€l jeL t 1 2 10°719+1 m
J#L
Z.
o (z ,...,0.,...,2 ; y ... 21
t( 1 j ZSZ, le’yU?,"'l, ’yg’m)]gjpji[zj 1]
< < . .« T
0<z,| s1 lyijl <1 ; ieL , el .

| <1,
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Here 0i stands for zi = 0.

The initial condition (1) is z-transformed into

g 1P
(4) ‘boczv---’223Y10’Y12+1’“"yzm) = 1 1-p.z.
ieL 171

We shall now show that equation (A) and initial condition (1) are

satisfied by

* A
(5) Pt(nl,. . ’n9,5k10’k12+1" . ’kQ,m) =

'k..
n. (8.p.-t) 1]
8:D:st
[l (1-p,)p;" Tl_e *iPi] ——
iel jel ij’
Equivalently, one has to show that (3) and (4) are satisfied by the

z-transformed version of (5), namely by

170 s at(yss-1)
1 61p13 Yij
l-pjz. [_e

i jel

s )
(6) q>t(zls°°-,Zz;y10’y12+1:"',y2m) = [1
ieL

To prove this we use the following identities:

*
(7) ‘1’0(21,-~~,Zz;}’10,)’1g+1:---,}'gm) = H

2%
(8) Qt(zls'--’Zz;ylo,ylz.'_l,-'-,)rg,m)

® !
cbt(z]_,'--:zz,yl()’ylz*_l"°"y5zlm) E z_ﬁlpij(ylj'l) .
iel jeL

* *
(9) @t(zl...zz;ylo,y12+l...y2m) - @t(zl...oi...zz,ylo,y1£+1...y2m) =

* . < . <
thzl"'zz’YIO’y12+1°"yzm)'pizi R 1 -1i-m.

for any i=1,2,... m.

Equations (7) - (9) may be verified by direct calculation.

Now, (7) shows th * ; isfi
) at that Qt(zl""’zz’ y10’ylz+1“‘yzm) satisfies

initial condition (4).

Setting identities (8) and (9) in (3) and writing Q* for
t

¥%

Qt(zl""’zg; Ylo,y12+1,...,y2m) gives us
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(10) of & T.85pys ;-1 = & o, (z;-1) +
ieL jeL iel
PP Yij
 Pj24 0, p ( - 1) +
iel. jeL i

E: 2. 0.2, (—— - 1)

iel jeL j J J Jl z
J#

0< |zl <1, IyijI?l ; iel  ,  jel .

*
Since ¢ > 0 for all t Z 0,whenever 0 < |Zi| <1, |yijl < 1, we may

divide both sides of (10) by @i. Noting that o.p, = 6;, 1 <1 <m,

we can further simplify (10) to

(1) 2 XZop.lys; -1 =
iel jeL 13 )
IDIENCINVID M VLN SN A 72t X & 8:p; (z—z)
iel ielL jeL iel JEL

AL

0 < lzil < , Iyijl <1 ; ieL , je@ .

After some manipulation and regrouping of terms in (11) we obtain

1) ¥ Top, 057y - (B Ldipyg -20.) =

iel jeL iel jel iel

2:(u +2. 8, P )z - 21(2:6 p Z:G.p.Jz.
iel jel ANE iel jel jeL et

j#i j#i
0 <zl <1, yyl =1 5 der 0 el

Now, from (B) in Sec. 4.4 it follows that

13.1) a, = - £ics
( ) 0’-1 + L.J(SJPJ 61(1 Pll) H 1 -1 -m.
jeL
j#i
(13.2) Zap + 8P = 2.08:pss = 8. (1-p; s 1 <4 ¢
jel SeL itij 520 1p13 1( p11). g =t=n
j#i j#i

and by Theorem 4.4.4

(13.3) 2 X 8.p, Zoz
ieL jeL 1] jelL *
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In view of the identities given in (13.1) - (13.3), Equation (12)
is seen to reduce to an identity.

This completes the proof of the theorem. ]

Lemma 4.7.1 (cf. [BM1, Corollary 3.1)

Under the conditions of Theorem 4.7.2, the random variables in the
process {(QL(t); EL(t) - EL(s))}tZS are mutually independent for every
fixed s, s < t.

Moreover, in this case, for any fixed s, each Eij(t) - Eij(s) in

EL(t) - EL(s) is Poisson distributed with parameter Gipij(t-s).

The process {(QL(t); EL(t) - EL(s))}tZs is Markovian by an
argument identical to the one in Theorem 4.7.1. 1In view of the time
invariance of the birth-and-death equations (A), they still hold when
t is replaced by u : t - s. In particular, the initial condition (1)
in Theorem 4.7.2 holds for u A 0. Consequently, we obtain the required
independence. It also follows that each Eij(t) - Eij(s) is Poisson
distributed with parameter Gipiju = Gipij(t-s), for every fixed u 2 0.

Notice that the mutual independence, alluded to in Theorem 4.7.2,

applies to each fixed t. We can, however, prove a stronger independence

result with the aid of Lemma 4.7.1.

Lemma 4.7.2 (cf. [BM1], Theorem 3.2)
Let JN = (M,a,0,P) and JN(L) be as in Theorem 4.7.2. If JN is in

equilibrium, then for any fixed s and t such that 0 < s £ t we have
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that every event Aec({(QL(u); EL(u) - EL(t))i u 2 t}) is independent of

every event in U(EL(t) - EL(S)).

Proof

We show first that for every n = (nl,...,nz) 2 0 and
kL = (k
(1) Pr(A|Q (t)=n , E (t)-E (s)=k;) = Pr(A|Q(t)=n)).

10’k12+1""’k2m) 2 0 we have

First, observe that for every interval (s,u]
(2) o({Q(t): te(s,ull}) :)o({EL(t)-EL(S)i te(s,u]l)

because the jumps of the process {EL(t)-EL(s)} are determined by

te(s,u]

the jumps of the process {QL(t)}ts(s,u]'
Therefore, it follows from (2) that

(3) Aeo({QL(u): u 2 t})

and (1) is true in view of (3) and the Markov property of {QL(t)}t20

(see Appendix C, Sec. C.1, Equation (C)).

Taking advantage of (1) and of Lemma 4.7.1, we compute

(4) Pr(n,Q(t)=n, ,E, (t)-E, (s)=k ) =
Pr(AlQL(t)=nLJ%ft)-EL(S)=kL}Pr(QL(t)=nL,EL(t)—EL(S)=kL) =
P(A]Qq (t)=n }P (Q (t)=n }Pr(E (t)-E (s)=k ) =

Pr(A,QL(t)=nL}Pr(EL(t)-EL(s)=kL)

Summing (4) over all integer vectors n, 20 gives us

L
(5) Pr(AE (£)-E (s)=k;) = Pr(A)Pr(E  (t)-E (s)=k )

which was to be proved. [l

Intuitively, Lemma 4.7.2 asserts that the instantaneous independence

of the state QL(t) and the count EL(t) engender a stronger independence
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whereby every increment of a past count EL(t)—EL(s), s £ t, is independ-
ent of the future evolution of {QL(u)}uZt' But since the c-algebra
generated by every future increment {EL(u)—EL(t)}uZt is contained in

the o-algebra generated by the future state {QL(U)}uzt’ we have in

particular

Corollary 4.7.1

The process {EL(t)} has independent increments in equilibrium.

t20

Consequently, for any ieL and jeL, {Eij(t)} is a Poisson

t20
process in equilibrium. u

We now prove an even stronger independence property of {EL(t)}t>0.

Theorem 4.7.3 (cf. [BM1], Theorem 3.3)

Let JN = (M,a,0,P) and JN(L) be as in Theorem 4.7.2. If JN is in

are mutually

.f.

equilibrium,then the traffic processes in {EL(t)}tZO

independent Poisson processes with respective parameters Gipijt.

Proof

We already know that each traffic process Eij(t) in EL(t) is a
Poisson process by Corollary 4.7.1.
Let T: 0 ='t0 <t < ...<t=t be any partition of the time

interval [0,t]. Define a set of events

TThis result agrees with more general results due to F. P. Kelly
(see [K1] p. 553).
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(n) A _ My . r
(1) cij = (Eij(tn) - Eij(tn_l) = kij ), ieL, jeL

for any choice of integers k§?).

(n)

It suffices to show that the events CiJ are mutually independent.

Proof is by induction on r. For r = 1 we have
@ pr(ncty = ey
. . ij
ielk ieL
jelL jeL
by Theorem 4.7.2.
Assume that the Cg?) are mutually independent for every partition
T with r-1 division points, and show that this is true for every parti-
tion I with r division points.

By Corollary 4.7.1 we have

. (n) ol (n) (x)
3) pr(N Necy=prr((n Nc;Yyncnes’y =
n=1 ielL n=1 ielL ielL *J
jeL jeL jelL
r-1
pr(n N c™yprcncl™y
n=1 el ieL M

jelL jel

By the induction hypothesis

-1 -1
@ ercn ncy =1 mere®)
n=1 ieg J n=1 iel 1]
jeL jeL

Furthermore, by Lemma 4.7.1

(r) (r)
(5) Pr(Nnc::’) = Ipr(c;t) .
ier, Y iel T
jeL jelL

On substituting (4) and (5) on the right side of (3) we get

’ (n) T (
© pr(n Nnc™y = 1perec™)
n=1 ielL - n=1 iel, %7
jel jeL

which shows the induction step to be valid. |
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Corollary 4.7.2

In particular, the traffic processes (Elo(t),...,Emo(t)), on the
outlets of a Jackson network JN = (M,a,0,P) in equilibrium, are mutually

independent Poisson processes with respective intensities qui. M

The foregoing discussion allows us to identify the traffic proc-

esses on exit arcs of a Jackson network in equilibrium.

Corollary 4.7.3

Let JN = (M,a,0,P) specify a Jackson network. If the network is in
equilibrium, then the traffic process Eij(t) on each exit arc (i,j) is
a Poisson process with intensity Gipij'

Consider the partial network JN({T}), generated by i. It is easy
to see that (i,j) is an outlet of JN({f}). The required result follows

immediately from Corollary 4.7.1. O

The Poisson nature of traffic processes on exit arcs of a
Jackson nétwork in équilibrium has interesting ramifications as regards
the decomposition of the network into components.

J. R. Jackson's cautious statement,that every node i in a Jackson
network JN = (M,a,0,P) in equilibrium behaves as ¢f it were a single
M/M/1 queue in equilibrium, can now be strengthened. The italicized
reservation in the above statement stems from the fact that it was not

known whether the arrival process {Ai(t)} is Poisson,or equivalently,

t20
whether the traffic processes in {(Aoi(t),Ali(t),...,Ami(t))}tzo are



206

mutually independent Poisson processes which are in addition independent
of the service and switching processes of node i (as is the case in the
M/M/l_ queue) .

As a matter of fact, this is no? the case in general, and we shall
qualify this statement in the sequel. Nevertheless, certain subnetworks
which are not partial networks do more than behave as 7if they were
Jackson networks; it can be shown that in equilibrium they indeed are
Jackson networks. |

Formally we have

Theorem 4.7.4

Let JN = (M,a,0,P) be a Jackson network. Then, inequilibrium,
every component C is a Jackson network JNC = (C,YC,OC,PC) where

\f 4 o, + 2:6jpji , for any ieC.
: jfC

Proof
Let I(C) be the set of inlets of C, not including inlets of the
network JN; that is,I(C) £ {arcs (i,j): ieM-C, jeC and py; > 0.
Now, every arc in I(C) is an exit arc since it runs between dis-
joint components. Consider the partial network generated by the set
L 8 {i: ieM and 3jeC such that (i,j)eI(C)}. Clearly the exist arcs in
I(C) are a subset of the outlets of this partial network. Furthermore,

the traffic process {Eij(t)} (i,j)eI(C), are mutually independent

t20’
Poisson processes with respective intensities Gipij’ due to Theorem
4.7.3.

Observe that c({Eij(t): (i,j)eI(C), t 2 0}) is independent of

o({Qi(O),Aix(t),Sij(t): ieC, 0<jsm, t 2 0}), because the former is
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contained in o({Qi(O),Agx(t),Sij(t): i¢C, 0<j<m, t20}) (see Sec. 4.2).
In particular, for each ieC we may group (superpose) the independ-

ent Poisson processes {Aix(t)}t>

, and {Eji(t)}tZO’ jEC, into a Poisson

process {(7%%(t) + E.. (1)} .. Which has intensity vy, as required.
i j4C Jj1 tz20 i
ex . '
Furthermore, the {Ai (t) + gEéEji(t)}tzo @ieC), the {Sij(t)}tzo
(ieC, 0 £ j < m), and QC(O) are all mutually independent. We conclude

that, in equilibrium, JN_, is a Jackson network by definition. ]

C

Theorem 4.7.4 shows that every Jackson network may be decomposed
into components such that, in equilibrium, each is a full—fledgéd Jackson
network, which can be treated separately.

We remark that the results have been obtained for Jackson networks
with single server nodes.

We are, however, prepared to make the following

Conjecture 4.7.1

The results obtained thus far hold true for Jackson networks with

arbitrary number of servers in each node. u

In order to validate Conjecture 4.7.1, one has to modify the birth-
and-death equations (A) and attempt to verify that the alleged solution
still holds.

The rest of the argument is virtually unchanged. We shall not
undertake to prove or disprove Conjecture 4.7.1 in this work.

The intuitive basis for making Conjecture 4.7.1 is the topological
properties of exit arcs. We observe that this class of arcs is amenable

to a generalization of Burke's Theorem, because exit arcs behave as
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outlets in the sense that they don't "affect'" the component from which
they originate. Heuristically, this "effect" is carried by customer
traffic, and the lack of "effect' means here that customers that take
an exit arc will never visit it again.

Thus, the independent increments of the Poisson counts on exit arcs
in equilibrium may be intuitively attributed to this inherent lack of
future effect.

Quite naturally, this situation begs the question whether on non-
exit arcs (i.e. arcs within components), the equilibrium counting process
is no longer Poisson. If this is true for every non-exit arc, then the
intuitive explication for the Poisson counts on exit arcs would gain in-
creased credibility. This would also lead to a characterization of
equilibrium traffic processes on arcs, and considerable insight into
them will be gained.

The salient feature of non-exit arcs is, of course, that customers
taking these arcs may revisit them with positive probability. In terms
of the associated graph, there is a cycle (closed path) that begins and
ends with each non-exit arc. This is due to the fact that non-exit
arcs are within components and these consist of mutuaily communicating
nodes. Thus, in contrast with exit arcs, customers that travel on non-
exit arcs do carry future "effect" on them. As a matter of fact, part
of the customers in a past count increment on a non-exit arc wiii
revisit it and contribute to future increment counts on the very same
non-exit arc. Thus, we cannot intuitively expect to have there inde-
pendent count increments in non-overlapping time intervals, even in
equilibrium.

The foregoing discussion leads us to state
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Conjecture 4.7.2

Excluding the trivial case Piy = 1, the traffic processes on a

non-exit arc (i,j) can never be a Poisson process or even have inde-

pendent increments. [l

While at this juncture we are unable to prove Conjecture 4.7.2 for
every non-exit, we can, however, show that the traffic processes on cer-
tain subsets of non-exit arcs are not Poisson processes in equilibrium.

We know from Theorem 4.7.1 that every process (Q(t); Avw(t) is a
Markov process for any arc (v,w). However, in writing the relevant
birth-and-death equation, one has to distinguish between two cases.

Using the previous notation we have:

Case 1: v # w , 1 <v, w<m.
In this case we have

(1.a) Pt(nl,.. SN 3k )*- Z:P (nl,...,n -1, ...,nm;kvw)ui-b(ni) +

m
Z:P (nl,...,nj+1,...,nm;kvw)o.q. +

m m
> YP.(ny,...,n.-1,...,n:+1,...,n ;k_)o.p.. b(n,) +
i=1 §=1 thl i j mv 2o M R B! i
j#i
(j,1)#(v,w)
Pt(nl, .,nw—l,...,nv+1,...,nm;kvw—l)ovpvw-b(nw)b(kvw) -

Po(ny,..oumpsky )[Eu . qub(n) >8> BIICBY
i=1 j=1
j#i

o >
(nl""’nm’kvw) 20 .

The z-transformed version of (l.a) is
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m
(1.b) @t(zl,...,zm;va) = Egaét(zl,...,zm;va)ai[zi-l] +

m
1
;g%{¢t(zl,...,zm;va) - ¢t(zl:-°-,Oj:~-uzm;va)]onj[E;'— 1] +

m n Z.
i
E : . - N P ]—-1]+
E: £ Et(zl""’zm’va) Qt(z1""’03’ Zm yVW]]GJpjl[Zj ]

fde
"
—

'ZWyVW
T B R N L M e

1<is<m ; vawl <1, Ll

Case 2: v=w , 1Sv:im
In this case we have

m
(2.2) P (np,....n 5k ) = E;ipt(nl,...,ni-l,...,nm;kvv)ai°b(ni) +

m
m
;Eapt(nl,...,nj+1,...,nm;kvv)chj +
m m
Z: z:Pt(nl,...,ni-l,...,nj+1,...,nm;kvv)ojpji-b(ni) +
1=1 J:l
J#

Pt(nl,...,nm;kvv—l)avpvv-b(nv) -

m m
. by
Pty ompik [ 2as; + Soojaghing) +

m’ vV jo1 j
Z LogpyPny) * P b))
#i
. >
(nl""’nm’kvv) 20,

The z-transformed version of (2.a) is



m
(2.b) @, (zy,...,2.5y,) = EEiQt(zl,.--,zm;yvv)ai[zi—ll *
m
. _ . i S

jz=l‘1 [q)t(zl’ ,Zm,)’vv) q)t(zlx---:oj’-'-:zm:yvv)]ajqj[zj 1] +
m m , ' z.

S . - . I
I L e B N € R MR ) LS 9 b VI
i=1 j=1 J

i

[0 (2 e zsyy ) = 0 (2see 0,0z sy, Vo p Dy -1

0<lzls1, 15ism 5 |y | <1 N

We now proceed to characterize conditions under which a traffic
process is Poisson distributed. This will later on aid us in showing

the non-Poisson character of certain non-exit arcs.

Theorem 4.7.5 -

Let JN = (M,a,0,P) specify a Jackson network. Then

- < < »
a) every traffic process {Avw(t)} 1= v,w»- m, with p > 0

t20°
is Poisson distributed
iff

b) Bv(t) and Avw(t) are independent for every fixed t > 0.

Proof

Set 2, = 1, 11 3m, in (1.b) and (2.b). In both cases the equa-
tions reduce to
. _ _ ) . ) <
(D) by, = Lo O, ~ .05y, o p Ty, -1 , Yol =1
(==>) Assume that Avw(t) is Poisson distributed. Then its param-
t
eter must be (see Theorem 4.2.1) E(Avw(t)) = ovpvw"[Pr(Bv(x)ﬂ)dx. Hence,
' _ E(A (t))(Yvw‘l)
(2) 4, ly,) =& W :

(3) &0y,

1}

0 (V) Oy PP T (B, (B)=1) Iy o-1]
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Substituting (2) and (3) in (1) yields
(4) 8, (7, ) O\ Py P (B, (1)=D) Iy -11 = [o (y, ) - @, (0, 5y 0 1o py Iy -1l

<
Iyl € 1.

Dividing both sides of (4) by ovpvw[va-l] for va#l gives us (recall
that O Py > 0)

(5) o, (y, IPr(B,()=1) = 2,0y, ) - 2,005y, )
[l <1

Equating coefficients on both sides of (5) results in the system
of equations
(6) Pr(A,,(t)=k )-Pr(B (t)=1) = Pr(A, (t)=k ) - Pr(Q,(t)=0,A  (t)=k )

k =0,1,...
vw

The required independence now follows, since (6) is equivalent to
(1) Pr(a,, (t)=k J-Pr(B,(t)=1) = Pr(A  (t)=k ,B (t)=1)
=0,1,...
VW
as Bv(t) is a zero-one random variable.

(<) Assume that Bv(t) and AVW(t) are independent for every fixed

t 2 0. Then (1) may be rewritten as

®) b0y, = [o,(y, )-0, (0 )0 (y 1o p Iy, -11,

[

DA

which reduces to
9 oly,) = o, -2, 0o p Ty, -1]

|val < 1.

But
(10) 1 - @t(ov) =1 - Pr(Qv(t)=0) = Pr(Qv(t)>0) =_Pr(BV(t)=1).

Hence, (9) becomes
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A e lyy,) = 2 b IPr(B (0)=D)o p Iy -1]
and (11) can be recognized as the z-transform of a Poisson distributed

random variabl ith i i =
iable with intensity Pr(BV(t) l)ovpvv. | O

Corollary 4.7.4

Under the conditions of Theorem 4.7.5, {Avw(t)}t>0 has fixed inten-

sity iff {Bv(t)} is in equilibrium. Moreover, in this case, the

t20
. . L * A
intensity is 6vaw, where for a recurrent node v 6V = E(Dv(t,t+1])

depends on the initial condition q(0) = q°. o

Remark 4.7.2

Theorem 4.7.5 and Remark 4.7.2 remain true for each departure
m
process D, (t) a ZA. (t).
i i
3=0
It can be shown that the proofs of Theorem 4.7.5 and Corollary 4.7.4

go through for the {Di(t)} This is so, because for each ieM the

t20°

birth-and-death equations for {(Q(t);Di(t))}tZO constitute a combination

of Case 1 and Case 2. 1

We are now prepared to point out a subclass of non-exit arcs on

which the traffic process is not Poisson in equilibrium.

Theorem 4.7.6

Let JN = (M,a,0,P) specify a Jackson network in equilibrium. Let
v be a node satisfying :

»
a) A

6V = E(Dv(t,t+1]) > 0.
b) 0 < Pyy < 1.

Then {Avv(t)}tzo is not a Poisson process.
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Set z; =1, ieM-{v}, in equation (2.b) of Case 2. We obtain

m

(@, (z5y,)0, * jzl[cpt(zv;yw) - 04(2,,055y, ) ]o.p5 ) [2,-1] +
j#

JmJv
v

. - . 1
[@t(zvs}’vv) CIDt(ov,yvv)]O'V(]-"pvv) [E:,' - 1] +
(04 (2 5yyy) = 005y, Mo p Iy, -1]
< <
0 < lz‘vl -1 ’ lyVVI = 1.
Equating the free coefficients on both sides of (1) yields

(2) 5 Pr(Q,(0) =0,A (£)=0) =
-Pr(Q, () =0,A  (t)=0)a, -

m

jZzll[Pr(Q\,(t)=0,AW(t)=0) - Pr(QV(t)=0,Qj(t)=-0,AW(t)=0)]°J-PJ-V *
j#v

Pr(Q, () =1,A, (t)=0)o (1-p ),

t20.

If we assume that Avv(t) is Poisson distributed, its intensity

must be 6;p by Corollary 4.7.4.

vv’
Moreover, by Theorem 4.7.5,Avv(t) is independent of Bv(t) for every
fixed t 2 0. Therefore,

(3) Pr(Q,(t)=0,A,, (£)=0) = Pr(B,(t)=0,A, (£)=0) = Pr(B,()=0)e VPV

B _ _ _ _ ‘(S:;pv-vt _ *
(4) 57 PrlQ,(t)=0,A, (t)=0) = Pr(B (t)=0)e (-8,Pyy)
since Pr(BV(t)=O) is constant in t.
Next send t>0+ on both sides of (2).
By continuity in t of all functions in (2), we may set t = 0 on both

sides of (2). 1In view of (4), the left-hand side (LHS) of (2) becomes
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-8t
(5) 1im (LHS of (2)) = lim Pr(B_(t)=0)e “VEVW'(_s*p ) =
Vv A'ah'A"S
t-+0+ t>0+

*
Pr(B,(0)=0) (-67p_) < 0
because in equilibrium, Pr(Bv(t)=0) > 0, due to ¢) in Corollary 4.5.1.

The right-hand side (RHS) of (2) becomes

(6) 1im (RHS of (2)) = -Pr(QV(0)=0,A,VV(O)=O)av -
t+0+

m
;Ei[Pr(QV(0)=O,AVV(O)=O) - Pr(QV(O)=0,Qj(0):0,AVV(O)=0)]0jij .
j#v

Pr(Q,(0)=1,A  (0)=0)o (1-p, ) =

-Pr(Q,(0)=0)a, - X [Pr(Q,(0)=0) - Pr(Q,(0)=0)Pr(Q; (0)=0]o,p; +
j=1
jEv '

Pr(Qv(0)=1)0v(1=va) =
m
-Pr(Q,,(0)=0) [o + ;E%P:(Qj(0)>0)0jpjvl + Pr(Q,(0)=1)o (1-p ) =
j#v
*
-Pr(Q (0)=0)8) (1-p ) + Pr(Q,(0)=1)o, (1-p,,) -
In the calculation above we used the mutual independence of

Ql(O),...,Qm(O),AvV(O) since Ql(O),...,Qm(O) are mutually independent

in equilibrium and Pr(AVV(O)=O) = 1.
We now nroceed to argue that in equilibrium

6*
(7)  Pr(Q,(0)=1) = = Pr(Q,(0)=0)
.V

To see this, observe that v is either completely open or recurrent.
If v is completely open, then (7) follows from Theorem 4.5.6 and
Theorem 4.5.1. Otherwise, v is in an irreducible set Rk' From Theorem

4.5.6 and Theorem 4.5.2 we see that for every t 2 0

*

(8) Pr(q,(t)=1]#R,=n) = EX-pr(QV(t)=o|#Rk=n); n=1, 2, ...
Vv
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where #Rk is the equilibrium total customers in Rk' Using (8) we deduce

(@) Pr(Q,(t)=1) = Zpr(qv(t)=1I#Rk=n)pr(#Rk=n) =

n=1
0 % 6*
] v _ _ _’ _ __\_,_ _
pypns PT(Q, (t)=0 |#R, =n)Pr(#R,=n) = = Pr(Q (t)=0,#R, > 0),
n:l V Vv
t20.

But the'assumption 6* = E(D(t,t+1]) > O imﬁlies that Pr(#Rk>O) =1,
whence (7) follows. Substituting (7) into (6) yields

(10) 1lim (RHS of (2)) =

t+0+ *
* $
Pr(Q,(0)=008,(1-p, ) + Pr(Q,(0)=0)G=0,1-py,) = 0
in contradiction with (5).

We conclude that A, (t) cannot be Poisson distributed and hence is

. ® . ] .
not a Poisson process in equilibrium. O

We are now in a position to make

Remark 4.7.3

Under the conditions of Theorem 4.7.6, the departure process

from node v cannot be Poisson distributed. Otherwise, the

{Dv(t)}tzo

Bernoulli switch would render {AVVIt)} Poisson distributed, in con-

t20
tradiction with Theorem 4.7.6. []

We remark in passing that fhe method employed in Theorem 4.7.6
breaks down when attempting to apply it to non-exit arcs which are not
feedback arcs. The reason for this phenomenon is that equation (1.a)
applies to exit arcs as well as non-exit arcs, so‘that the topological
‘properties of non-exit arcs are not captured by it. However, equa-

tion (2.a) does capture the topological properties of feedback arcs
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(which can never be exit arcs by definition), and the desired contradic-
tion can be demonstrated.
We now proceed to identify another subset of non-exit arcs on which

the equilibrium traffic process fails to be Poisson distributed.

Theorem 4.7.7

Let JN = (M,a,0,P) specify a Jackson network in equilibrium. Let
* *A
(v,w) be an arc such that Svpvw > Ilal] where 6V = E(Dv(t,t+1]).

Then, the traffic process {Avw(t)}t20 is not a Poisson process.

Proof

We already know from Theorem 4.7.1 that (Q(t);Avw(t))t>0 is a

Markov process. By Theorem C.2.1 in Appendix C, the birth and-death

equations of this process are equivalent to the integral equations
t
(1) P,(v) =P (v)e SVt +-Jf§:1> (We v e Sv(tX)gy
t 0 Oux TRV

v = (nl""’nm;kvw) 20,

where p ranges over the state space of {(Q(t);Avw(t))}t>0.

From (1) we conclude

(2) P (v) 2 Py(w)e VT,

Next, set v, A (01,...,0 ;0. ) in (2). Observe that

m m’ vw
<, ==_z:ai = ||a||; also Po(vo) A K > 0, because

0 121 n
PO?vO) = Pr(Q(0) = vo) = ]I (l—pi) = K. Hence,

i=1

(3) pt(vo) 2 K'e-Ha”t > 0 s t20
or equivalently
() Pram=05a, (=0 2k eIt

Now, assume that Avw(t) is Poisson distributed in equilibrium.
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In view of Corollary 4.7.4, we have in particular
—n% t
(5) Pr(A, (t)=0) =e VPW' >0 tz0,

Dividing both sides of (4) by (5) yields

*

(6) Pr(Q(t)=0]AVW(t)=O) > K-e_l{u|{t+5vnth =

K.e(azl’w-| lo‘l !)t_.,oo
toro

. *
since we assumed 8'p - la]] > 0.
This is a contradiction, since (6) must be bounded by 1. We con-

clude that {Avw(t)} cannot be Poisson distributed,and thus is not a

t20

Poisson process in equilibrium. C

Remark 4.7.4

An identical argument shows that any departure process {Dv(t)}tZO

or arrival process {Av(t)} with 6; > f!all, cannot be Poisson dis-

tz20°

tributed in equilibrium. ]

We now demonstrate by an example that the class of arcs satisfying

Theorem 4.7.7 and Remark 4.7.4 is not a trivial one.

Example 4.7.1

Consider the Jackson network in Figure 4.7.1. We have that

|lal| = o, and the traffic equation is
‘6 =0, + 8
1 1 2
(1
‘62=p1261
The traffic solution is
Oy Py,
1 Pi2%™
(64,8.) = (—, ) .
1772 Q" q,
!
Clearly,§, = — > a = ||a|| whenever 0 < q, < 1.
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a
1
ex
A7 (t)
A (t
1 - )<
A () P
A
8
2
1 2
61
D (t) A_(t)
1 2
— >
) A (t)
A t 12
10( )
ql
Figure 4.7.1: A Jackson Network with Arcs Satisfying

Theorem 4.7.7 and Remark 4.7.4.
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Thus, by Remark 4.7.4, {Dl(t)} is not a Poisson process in equili-
brium nor is the arrival process {Al(t)}tZO’ where Al(t)é.Afx(t)4.A21(tl

Furthermore, if p12 > ql, then by Theorem 4.7.7 neither {Alz(t)} nor

t20

{Azl(t)}t>o can be a Poisson process in equilibrium.

Indeed, all the above are non-exit arcs. The only exit arcs are
the inlet arc (0,1) and the outlet arc (1,0), on which the traffic

processes are Poisson in equilibrium, due to Corollary 4.7.3. ]

We note in passing that an exit arc (i,j) never satisfies

6ipij > ||a]|. It suffices to show this for outlets of the network

since every exit arc is an outlet of some partial network. ‘But this
m m m

follows immediately from the identity S a, = $.68.q, & ¥.s.p.
~T1 0 &1t T &= Titio
i=1 1=1 i=1

(see Theorem 4.4.4).

As a closing remark we conjecture that Theorem 4.7.6 and Theorem

4.7.7 can be extended to arbitrary Jackson networks in accordance with

Conjecture 4.7.2.



CHAPTER 5

SIMPLIFICATIONS OF JACKSON QUEUING NETWORKS

5.0 Introduction

Simplifications of queuing networks fall within the scope of the
general conceptual framework outlined in Appendix B.

Simplifications of queuing networks are motivated by the consider-
able analytical complexity frequently encountered by the investigator.
As a matter of fact, in trying to extract stochastic properties of
queuing networks, one often finds the problem to be analytically intrac-
table. Consequently, it becomes necessary to resort to computer simu-
lation. However, the computer complexity of such simulations (i.e.
the requisite computer resources) could often render a simulation pro-
hibitively costly or even impossible.

Thus, conditions for simplifications that reduce the conceptual
complexity, simulation complexity, etc. are of interest at both the
theoretical and applied level.

The organization of this chapter is as follows.

Sections 5.1 - 5.3 investigate three classes of simplifications
that take Jackson networks into Jackson networks (recall that all the
networks alluded to are always assumed to have single server nodes).
These are the so-called F-simplifications (which remove feedback arcs
from nodes), A-simplifications (which remove all arcs among a subset
of nodes), and L-simplifications (which lump a subset of nodes into a
single node).

Section 5.4 discusses simulation complexities of Jackson networks.

Two types of such complexities are treated: time complexities and

221
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space complexities. Finally, we compare the effect on such complexi-
ties under the three classes of simplifications above.
The reader is referred to Appendix B for a description of the

underlying framework and for further orientation.

5.1 F-Simplifications

An F-gimplification (feedback simplification) of a node i takes a

Jackson network JN = (M,a,0,P) into a Jackson network JN' = (M,a',o',P'L
subject to
1 . =7p,. for any keM-{i} and 0 £ j = m.
) Pkj = Pyy y j
0, if 1= j
2) Ifp.. <1, then P!. =
ii ij Ds s
Pij

= ' = S'<

3) If Piz 1, then Pij pij s 02jiZm

In other words, F-simplifications eliminate feedback arcs in Jackson
networks (see Figure 5.1.1), excluding the trivial case p,, = 1.

It will be shown that certain F-simplifications preserve the dis-
tributions of the state and traffic processes. To do this we use
measure preserving point morphisms (see Ch. 3) in coordinate probabiiity
space (see Ch. 2). We are justified in taking a coordinate space
representation because the probabilistic structure in terms of distribu-
tions doesnot depend on the sample space representation.

The fact that enables us to use system-theoretic models for coordi-

nate sample points is contained in
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Figure 5.1.1: The Effect of a F-Simplification on a

Typical Node i in a Jackson Network.



224

Lemma 5.1.1
Let S =<Q,A,P?> be the coordinate probability space of Example
2.5.3 corresponding to a Jackson network. Let N(w) be the state-DEVN

associated with a coordinate sample point weR2. Then, for almost every

weQ, the state-DEVS M T

N (w) of Example 2.5.3 is regular.

Proof

The underlying stochastic processes of a Jackson network are
finitely many and mutually independent Poisson processes. The Lemma
follows (see [D1] p. 401) because each of these processes is conserva-
tive (has almost surely finite number of jumps in every finite interval).

o

We start with a F-simplification of a M/M/1 queue with feedback.

Consider the F-simplification in Figure 5.1.2. This F-simpli-
fication takes the M/M/1 queue with feedback and maps it into a M/M/1
queue. The arrival parameter is ﬁnchanged but the new service parameter
is ¢' = qo, where ¢ is the old service parameter and q is the proba-
bility of leaving the system. The quantity p is the feedback probabil-
ity and it assumed that p + q = 1.

Consider the coordinate probability space S = {Q,A,PY of Example
2.5.2 for the base queue, and the coordiﬁate probability space
St = &',A",PD of Example 2.5.1 for the lumped queue, both in Figure 5.1.2.

Let us define a map H:Q — Q' as follows:

[+ ]

Let w = (2,,{a. ® ,15. 3.7
w= (2, {aJ}j=1 {SJ}j=1’{VJ}j=1

and define a sequence of random variables {Zj}.m0
J:

Jeq ,

almost everywhere on

2 by

tSee Definition 1.2.7.
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F-simplification

Figure 5.1.2: A F-Simplification of a M/M/1 Queue
with Feedback.
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0, if j =0
(A) Zj(m) 4 min{k: k > Zj_l(w) and Vk(w)=0}, if the minimum exists
' undefined, otherwise

<0

-1’ i.e. in an infinite

Zj is the index of the j-th zero in {Vj}j

sequence of Bernoulli trials.

Now, define H(w) = w'eR' such that

Zj(w)

- J

A o '

(B) w' = (8,,{a,}. ,{s!}. '} where s, = S
0' 73 =15 5=t J i=25 )+

On the null set of Q for which {Zj}j:O is undefined, we define H arbi-

trarily.

Theorem 5.1.1

The map H above is a measure preserving point morphism (m.p.p.m.).

We show that the sufficient conditions of Theorem 3.1.1 in Chap-
ter 3 are satisfied for H.
H is clearly surjective (but not injective) because for every

has the represen-

w'eQ' there is at least one wef such that {sj}jzl

. 23 (w)
tation Sj = izz;;:%i)+lsi
J-1
Let V! é {Lé,Aé,Sé: j=1,2,...} be the obvious projection functions
on the coordinates of w'eQ' (see Ch. 2, Sec. 2.4). Then V' generates
A' in S' by definition of S' (see Ch. 2, Sec. 2.2), and condition a) of

Theorem 3.1.1 is satisfied. Likewise, let G é'{LO,AJ.,SJ.,VJ.: j=1,2,...}

be the generator set of S (see Definition 2.4.1).
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[c]

=0° are mutually

By definition of the sequence {Zj}j the Zj-Z._

j-1

independent, identically and geometrically distributed with common
parameter q.

Define a sequence of random variables {Sj}§_1 over S by
A Z5(w)
= A )
S.(w) = Z- Si(w) almost surely.
J : i=Zj_1(w)+1

Then the Sj are mutually independent and identically distributed with a

common Laplace-Stieltjes (LS) transform f(g). Moreover, if we let

co

_1> e

g(z) 2 Egg- be the common LS transform of the service times {Sj}j

can write

(1) f£(z) = qg(z) + quz(a) + qp2g3(c) + ... =

- n _ 1 _ 0q
qg(C);;%(pg(a)) = 8Ty = Teoq -

Consequently, each Sj is exponentially distributed with parameter qo.

It follows that VY 2 ﬂb’Aj’Sj:l’z""} and V'é ﬂ%,A},S;: j=1,2...}
are distribution equivalent since the one-dimensional distribution func-
tions are identical, and both sets consist of mutually independent random
variables. Thus Condition b) in Theorem 3.1.1 is satisfied.

To verify that condition c¢) of this theorem also holds we note that

(2) Lo(w) = 20 = Lé(H(w)) almost surely
(3) Aj(w) =3 = A%(H(w)) almost surely
and finally from (B)
25 |
(4) §j(m) = :E::: s; = sj = Sj(H(m)) almost surely.‘
1=Zj_1(w)+1.

We conclude from Theorem 3.1.1 that H is a m.p.p.m. as required.

n
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A few comments regarding the simplification aspects of H are
warranted at this point.

In the terminology and the conceptual framework of Chapter 3
(Sec. 3.2),.Shﬂ>8' is a stochastic point simplification, since H was
shown to be a m.p.p.m. The lumping effect of H at the sample space
level is evident. The map H eliminates the last component of w by

lumping the service sequence {Sj}jzl and the switching sequence {Vj}3=l

into the new service sequence {sj}jzl as given in (B). The matching
operator H of Definition 3.3.1 sends the set Y' to the set ¥ in Theorem
5.1.1. The essence of H is captured by the observation that the service

times {8.}.". and {S!'}.
J J

5=1 j=1 are identically distributed, because the total

service time awarded between departures in the base queue is distributed
as a single service time in its lumped version. We also have the fol-

lowing relation at the sample point level.

Theorem 5.1.2

Let M(w) be the state-DEVS associated with weQ in D) of Example
2.5.2 and let M(H(w)) be the state-DEVS associated with H(w)eQ' in
D.1) of Example 2.5.1. Then for almost every uwef, M(wIJM(H(w)vaia a

TC-DEVS state-homomorphism (i,L;h).TT

Proof

Let w be such that M(w) and M(H(w)) are regular and {Zj(w)}j:1 is
well-defined. For such fixed w, denote Zj(w) A zj, jo=1,2,...

For any s = (z,n,vn,r)gsw;. there is a (unique) j=j(n), such that

< s g & i S
Zj_'l <n < zj. Ta'klng Sw = Sw, we deflne —h.Sw —> SH((D) by

7] is the transitional covering relation (see Definition 1.4.2).
TtSee Definition 1.4.4.
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0, j, »), if 2 =0

A
(1) -ﬁ(lyn,vn,r) = Zj

2, j, r +.Z: s;), 1f 2> 0
‘ i=n+}

where j = j(n).
Note that in s = ﬁz,n,vn,r)esw, % represents line size, n the current
customer, v, the current switch position, and r the residual current
service time. The interpretation of components in s' = (2',n',r')eSé(w)
is analogous.

Note that the map ¥ is surjective because every 0 < r' < s! has a

unique representation

23

(2) r" =1+ iggalsi for some n satisfying 2y, <M szy
Next, define for any s 4 (z,n,vn,r)esw
lo, if 2 =0
L(s) &

zj -n,if £ >0
. A,
where j = j(n). It follows that

@, if L =0 L(s)

(3) 0y (L)) = = 126 £,(8, ,(,1)).

Z .
j
T+ oy, s;, if 2> 0
i=n+l

Also, for s 4 (z,n,vn,r)eSw with & > 0, and denoting j 2 j(n),

(4) (3
W

¢)(s,L(S)H)) = ﬁ(aw ¢(s,zj-n+1))

’ b

h(O,zj+1,vzj+l,w), if ¢ =1

h(2—1,2j+1,vzj+1,szj+1), if L > 1

(0’j+1)°°)s if e =20 (n( ))
= g s)) .
H
(3-1,3+1,51,0), if & > 0 (0,0
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‘- ~ ~ S ~
Finally, for any seSw and 0 T < tH(w)(h(s)), represent
n
o A oA . . s A
s = (l,n*k,vn_k,r) and T =T +i=Eikllsi-d, provided j(n-k) = j(n) =

Let (s,e) : SG((§,O),¢T) where §

j.

G is the transition function of G(M(w))

(see Lemma 1.4.1); hence s = (z,n,vn,r) and e = r-d. Then,

h(l,n,vn,sn), where n z._1+1, if 2 =0
(5) (S, ((s,e),1)) = )
w,M =
h(2+1,n,vn,r-e), if 2 >0

23
(l,j’ Sl) s if 2 =0
i+
Jj-1 -
Z .
(+1,5,r- e+ Ei s;) , if 28>0
i=n+1 T
(1,j,5§) ) if L =0
z; -
(Q:'f’l, j,d+ ﬁS.) s if2>0
i=n+1 1
Sy M(((0:3,9),0,1), if & =0
A Zj = GH(LO) ’M((,'h(S) ,7),1) .
6 ((('Ql,j,r + S')’T),l),if 2 > 0
Hw) M 15§;£§1 1

From (3), (4) and (5) we conclude (see Definition 1.4.2) that
M(w)TIM(H(w)), and this is true almost surely due to Lemma 5.1.1 and

by definition of {zj}jjo. O

Comment 5.1.1

In particular STRAJq ,n:]STRAJqH n via (i,h) where
w oW (w), H(w)
h(s,e) é (h(s),h2(s,e)), by Conclusion 1.4.2. To see this we note that
M = MH(w) 8 ol -
=1 J

(zo,l,vl,w), if 2 =0
Furthermore, q, = (sO,O) where Sy =
(20,1,v1,sl), if ¢ >0
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((2,,1,2), if 2=0
and q = (s!,0) where s! =
Hlw) — ™o S (NS FETOIE Y A I

Finally, h(qw) = qH(w)’ because‘ﬁ(so) = sé and hz(so,O) = 0. O

Having established the fact that H is a m.p.p.m. such that
M(w) IM(H(w)) almost surely, the next step is to check the scope of

' H
preservation of behavioral frames under the point simplification S=—>S'.

Theorem 3.2.1 is used as a sufficiency criterion for preservation

in the sense of distribution equivalence, in the following theorems.

Theorem 5.1.3

Suppose an L-simplification of an M/M/1 queue with feedback
JN = ({1},0,0,p) yielded a M/M/1 queue JN' = ({1},0,0q,0) where q = 1-p
(see Figure 5.1.2). Then the L-simplification JN > JN' preserves the

state process, provided the initial states are distribution equivalent.

Proof

Let {Qt}tZo and {Qé}tio be the state processes in the base queue and
lumped queue, respectively, of Figure 5.1.2,
For weQ such that M(w) and M(H(w)) are regular and {Zj}j:’0 is well-

defined, let OTRAJ and OTRAJ be the ''line size' output
L, My UM (w) , "H(w)
trajectories of STRAJ and STRAJ respectively. That is
%, H(w) ,"H(w)

A
(1) OTRAqu,nw(t) = A(STRAqu’nw(t)) = a((e,m,v ,1),e) = 2

(2) OTRAJ (t) = A" (STRAJ () = (et e 2.
M (w),"H(w) W (w), "H(w)

Now, for any t 2 0



232

(3) Q.(w) = OTRAJ (t) and Q%(H(w)) = OTRAJ (t).

U, " W (w),™H(w)

Since STRAJ 3 STRAJ via (i,h) by Comment 5.1.1, it
Y, " W (w),H(w)

follows that in particular

(4) h(STRAJ _(t)) = STRAJ (t) , t 20
Ay, Moy U (w), "H(w)

where h = (hl’hz) = Cﬁ,hz) and 1 is defined in (1) of Theorem 5.1.2.
But by (1) in Theorem 5.1.2

(5) 'ﬁ(z,n,vn,r) = (L',n',r') = 2 = &'

whence by (1) and (2)

(6) OTRAJ. _ (t) = OTRAJ ®  , tzo.
qw,nw qH(w),nH(w)

From Lemma 5.1.1 and by definition of {Zj}j:0 we conclude that for
almost every wef
(1) Q. (w) = Qi (H(w)) , t 20 almost surely

are distribution equivalent.

i

whence by Theorem 5.2.1,{Qt}t>0 and {Qé}t>0

Corollary 5.1.1

The busy and idle period processes are also preserved under the

F-simplification of Theorem 5.1.3. O

Theorem 5.1.4

The departure process is preserved under the F-simplification of

Theorem 5.1.3, provided the initial states are distribution equivalent.

Proof

Let {Dt}tZO and {Dé} be the departure counting processes in the

t20

7
base queue and in the lumped queue, respectively, of Figure 5.1.2. For

wef2 . be such that M(w) and M(H(w)) are regular and {Zj}j:0 is well-
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defined, 1let OTRAJ and OTRAJ n be the "departure count"
qw,nw qH(w), H(w)
output trajectories of STRAJ o and STRAJ respectively.
%, M H(w),"H(w)
That is,

(1)

A .
OTRAJ t) = A(STRAJ = x((&,n,v _,r),e) = j-1
gy n, (7O (6) = A (Gnvm),e) 2

where j = j(n) satisfies Zj_l(w) <n < Zj(w), and

(2)

(3)

(4)

OTRAJ (t) = A(STRAJ (t)) =
UH(w),H(w) UHw),H(w)

AT((2',n',T"),e') 2 nr-l.

Now, for any t 2 0

D, (w) = OTRAJ (t) and D!'(H(w)) = OTRAJ ().
t Ay, N t UH(w),™H(w)

By Comment 5.1.1 it follows that in particular

, t 20

h(STRAJ (t)) = STRAJ (t
qw,nw qH(w),nH(w) )

where h = (hl’hz) = (h,hz) and N is defined in (1) of Theorem 5.1.2.

But by (1) in Theorem 5.1.2

(5) 'TT(Q,,D,VH,T) = (2"n',r') :_—':}n' = J(n) é J

where Zj_l(w) <n < Zj(w)

Hence, by (1) and (2)

(6) OTRAJq . (t) = OTRAJ (t) , t 20

w,w W (w),"H(w)

From Lemma 5.1.1 and by definition of {Zj}jo_o0 we conclude that for

almost every wef

(7)

whence by Theorem 3.2.1, {D

Dt(w) = D%(H(m)) s t 20

. . . . .
t}tzo and {Dt}tzo are distribution equivalent.

Theorems 5.1.3, 5.1.4 and Corollary 5.1.1 agree with related results
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in [Dal] where F-simplifications of a large class of single queues with
feedback are investigated. It is possible, howeveér, to extend these
results in a different direction, namely to arbitrarily connected Jackson

networks with single server nodes.

Theorem 5.1.5

Let JN = (M,a,0,P) be any Jackson network with single server nodes.
Suppose an F-simplification is performed only on each node ieM with
0 <py; < 1, such thaF the resulting lumped network JN' = (M,a,c',P')
satisfies (see Figure 5.1.1):
a) Oi = Oi(l-pii) , 1 5ism.
Pij

T , ifi#3j, 1sis<m 0S5jSm
b) pi. ={ Pii
0

ij
, if i

i}
e
—
N
-
A
=

Then, the state process and each traffic process on a non-feedback
arc are preserved, provided the initial states are distribution equiva-

lent.

Since the proof is analogous to the one for the F-simplificafion
of Theorem 5.1.3 (see Figure 5.1.2), only an outline will be given.
Consider part D) of Example 2.5.3. As usual, S =<Q,A,P> and
St =<4Q',A",P')> denote the coordinate probability space of the base
network and the lumped network of this theorem. First, we define a

m.p.p.m. H: & —> @' as follows. Let

o [+2] [ee]

23,5 5e0 154,50 5m00 Vg 5h5m® 3512000 om)en

(1) w = (2'0,'1’ {
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For every i = 1,2,...m, define a sequence {Zi j};wl of random variables by
sJ J=
A 0, if j=0 _
(2) Zi,j (w) ={min{k: k> Zi,j-l (w) and Vi,k(m) # i}, if the minimum exists.
undefined, otherwise ’

Note that the Zs o Zi i-1 are mutually independent, and for every
s 3

fixed i=1,2,...,m they are identically and geometrically distributed with

common parameter 1 - P;; - This is so, because Zi j is the index of the

b

j-th non—feedback switching decision at node i, where the sequence of
switching decisions constitutes an infinite sequence of multinomial
 Bernoulli trials. Now, the sequences {Zi,j(m)}j:1 are almost surely
simultaneously defined.

For such we, define H(w) = w' where
(3) o & (Qi,O’ {ai,j}jzl’ {si,j}jzl’ {Vi,j}jzlz
where for any j = 1,2,... ‘
Zi,j(w)
Wosis= S Sim M Vi TYVig (W)
n=zi,j-l(w)+1

On the null set of Q for which the {Z. .} ® are undefined, H is defined

1,j7i=1
arbitrarily. Thus, H is surjective because every sequence {si j}jzl and
{vi j}jfl has at least one representation as in (4).
,jli=
A . . . ' .
' = ! . . s Sy = [P -
Let Y {Ll,o’Ai,j’Si,j’vi,J isism,j=1,2, } be the obvi
ous projection functions on Q'. Then Y' generates A' in S' (condition a)

of Theorem 3.1.1).

Finally, let G & {L, ,A 15i<m j=1,2,...} be

e, LL,VL .
1,0 1,37 1,)° 1,]
the generator set of S, and define a set of random variables

1,j

<

v &L, A 3.
1,

M S'S .=
oM | is<m, j 1,2,...} over S where

32

1,]

e

' . Vi 7 almost surely .
n=Z, 41 & %1,3

A -
(5) S. .= i Sn and Vi

1,]
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A calculation similar to (1) of Theorem 5.1.1 reveals that each pair
Si j and Si . has the same exponential distribution with parameter

oi(l—pii). Moreover, each pair V. . and Vi . has the same distribution,
b4

’

1,]
as for every fixed 1 < i £ m, both Vi . and Vi i correspond to a multi-

5]

nomial Bernoulli trial that assumes values in the set {n: neM-{i}}

with probabilities
Pin
1-py5

We can now conclude that Y and Y' are distribution equivalent

vV — - ' — - ' =
(6) Pr(Vi’j n) Pr(vi,j n) P,
(condition b) of Theorem 3.1.1), because they consist of mutually

independent random variables. Finally, condition ¢) of Theorem 3.1.1

is verifiable as in Theorem 5.1.1.

This establishes the fact that H is a m.p.p.m. from S to S'
according to Theorem 3.1.1.

Next, we expand each N(w) into MN(w) and each N(H(w)) into MN(H(m))
(see Ch. 1, Sec. 1.1), and compare the state trajectory representations
of w and H(w) at the DEMS level. It again follows that for almost every
wek, M and M are regular state-DEVSs.

N(w) N(H(w)) &

To verify that the state and traffic processes are preserved we

merely make the following observations.

First, it can be shown that for each a, 1 <

a £ m, we have

M,(w) 3 M_(H(w)) almost surely, as in Theroem 5.1.2. ‘Thus, departures from

each component Md(w) are concurrent with those of Ma(H(w)) almost surely.

Furthermore, the switchings in Ma(H(w)) were set up so that departures

along each non-feedback arc are also concurrent, almost surely.
Consequently, MN(w)jj MN(H(w)) in such a way that line sizes and

traffic along each non-feedback arc are identical for almost every

wefl, because the initial line sizes are identical.
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This completes the outline of proof for this theorem. 3

We remark that Theorem 5.1.5 can be verified directly by writing
the birth-and-death equations of the state process augmented by any sub-
set of traffic processes, and observing that the same equations ensue.

However, the merit of stochastic simplifications via measure pre-
serving point morphisms is twofold. First, it provides considerable
intuition and insight into simplifications because it enables the user
to employ system-theoretic tools and principles which are iﬁherent in
queuing systems. Second, Theorems 3.1.1 and 3.2.1 (which provide the
basis for stochastic point simplifications) are rather general and are
not restricted a priori to a certain class of stochastic processes.

It should also be pointed out that once a m.p.p.m. is found, one
may test its scope of preservation via the sufficiency conditions of
Theorem 3.2.1. Furthermore, using system-theoretic tools, these condi-
tions can be readily tested by comparing queuing histories and observing
the behavioral frame of interest. In our case, we saw that the existence
of H allowed us to conclude that behavioral frames such as line sizes,
traffic process, busy and idle periods etc., which require no informa-

tion concerning customer identity, are all preserved.

It is natural to ask whether customer-oriented behavioral frames
such as waiting times and transit times are also preserved. First, we
point out that such behavioral frames cannot be defined on representa-
tions of sample points w which are derived from the associated DEVS
M(w). The reason is that the M(w) model does not contain information
regarding individual customers, because the & components of its

sequential states retain line size rather than line configuration
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M(w)

TM-DEVS TC-DEVS
state-homomorphism state-homomorphism
M(w) M(H(w))

TC-DEVS TM-DEVS
state-homomorphism , state-homomorphism
M(H(w))

Figure 5.1.3: System-Theoretic Relations Engendered by the
F-Simplifications of Figures 5.1.1 and 5.1.2.




239

(see Examples 2.5.1 - 2.5.3). Consequently, a more elaborate model
M(w) has to be associated with every w, whereby the % component is re-
placed by a ¢ component where c is an ordered string of customer tags
which describes the line configuration (see Examples 1.1.1 and 1.1.2).

On comparing M(w) with M(H(w)) and the state trajectories that
they engender under the F-simplification of Theorem 5.1.3, one observes
that condition a) of Theorem 3.2.1 cannot be verified for wéiting and
transit times. This stands in agreement with the facts found in [Dal].
There is no reason to believe that customer-oriented behavioral frames
are preserved in the F-simpiification of Theorem 5.1.5 either.

We conclude this section with some system-theoretic remarks.

The DEVSs M(w) and M(H(w)) are more complex and contain more in-

\

formation than M(w) and M(H(w)) respectively. This explains why cus-
tomer-oriented behavioral frames are relatively difficult to derive.
It can be shown that there is a TM-DEVS state-morphism (g;h) from M(w)
to M(w) such that §=5 (see Definition 1.5.2). The effect of the map
on the sequential states of ﬁ(m) is to lump the c-component into a
g2-component such that |c| = 2 where |c| is the length of the string c.

Figure 5.1.3 summarizes the system-theoretic properties of<H and
the relations among the DEVS models associated with coordinate sample

points engendered by the F-simplification of Theorems 5.1.3 and 5.1.5.
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5.2 A-Simplifications

In the rest of the chapter we shall adopt the following notation.

Let JN = (M,a,0,P) be a Jackson network with single server nodes.

H

[

3 A A%
As usual we write Piy 1 - z:pij a; and po. = |I'||is the
J:

L el
norm of (A) in Sec. 4.3,while |-| is used as the cardinality symbol.

For any 1i,jeM and C,D C MU{0} we write p(i,C) 4 E:p.. and

jec
.y A . . e . ‘
p(C,i) = z:pji for the switching probabilities from i to C and from C
jeC
to i, respectively. We shall also use the notation §(i,j) 8 sipij

for the expected equilibrium traffic rate on arc (i,j). Likewise, we

shall use 6(i,C) & 226(i,i), 8(C,i) & S°5(,i) and
jeC jeC
A . . s sts .
s§(C,D) = Z ES(l,J) for the expected equilibrium traffic rates from
ieC jeD
i to C, from C to i, and from C to D, respectively.

Finally, complements of C C M will always mean complements of
MU{0}, i.e. C 4 MU{0})-C. We shall often deal with partitions
I = {CR}ZeL of the node set M, in which case the c, will be referred
to as blocks of the partition I.

A A-simplifiecation (arc simplification) of a Jackson network
operates on a subset of nodes C, to the effect of removing all arcs
among all nodes in C (see Figure 5.2.1). Formally, it takes
JN = (M,a,0,P) into JN' = (M,q',0',P') such that

1) p = Pij for any i¢C and 0% j Sm.

!
ij

2) pij

0 for any ieC and jeC .
In this section, we shall be interested in A-simplifications that
preserve distributions of equilibrium line sizes and the total service

time obtained by a customer in a subset of nodes C.
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'~——_——-——-————--

|
from from from . - ’ * { from
C C eee C : .f C
‘ ,
interconnected o '
block C ﬁCl |
| I
to to to 3
C '}C e « o C9 | M 1:_0
, . c
L --—*————.-—-__—'
A-simplification
a1 --——~~——~‘—_
! l
| '
. . . s o fr_om
from) ¢ | N Y &
C
| |
| disconnected '
o, block C' = C
{ } |
. | to
to ). [ :
C ° L] [ ] [y

-

-y Tgm e

Figure 5.2.1: The Effect of a A-Simplification on a Typical
Block C in a Jackson Network.
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Theorem 5.2.1

Let JN = (M,a,0,P) be an open Jackson network. Let CC M satisfy
p(k,C) > 0 for all keC. Suppose an A-simplification was performed on
C (see Figure 5.2.1), yielding a Jackson network JN' = (M,a,0',P') where

a) for any i,jeM

Oi’ if 1¢C
(a.1) o! é . = e
i Gip(l,C) , if ieC
pjj - if ifC
(2.2) P, 8} 0, if ieC and jeC
Ps

1 if ieC and jéC
p(i,0)

Then, the A-simplification above gives rise to a new traffic solu-

tion &' satisfying

isi’ if i¢C
(b) & = ,  VieM
§(C,i), if ieC
and
. .
(¢) pi=p; , VieM
iff

(d) MC¢)=5ﬂﬂhé) , VkeC .

Proof

( ——=) Suppose that (b) and (c) hold.

From (a.l) and (b), it follows that
(1) o) =gr=-—rr,  VkeC.

Applying (1) to (c) gives us

s
@) Sk _ €K

— VkeC
Ik 0, P (k,C)



243

whence (d) immediately follows.

(&) Suppose that (d) holds.

We show first that ¢' as given by (b) satisfies the traffic equa-
tion of JN'. Taking note of (g.Z) and (d) we have:

(3) for ieC,

(4) For ifC,

R Y
:!L = 1 + Z(S' + E(S',p'_i = 0. + Zﬁjp.i + Z(S(C,j)p jJ]_: =

o, + 28:p.. + 2.8.p(3,0)

j£C R jeC J (J,C)
Since the traffic solution is unique for an open Jackson network,

we conclude from (3) and (4) that Equation (b) is perforce the traffic

solution of JN'. Finally, using (a.l), (b) and (d) gives us for every ieM,
5
L=, if ik
' 83 %
(S) pi = 'E;i'— = -
§(C,1) .
opd,0y > I
%
— , if igC
= ' = —(E—:.-l— = p
8:p(i,0) L %
—— = 1f 1¢
o,p(1,0)
as required. ]

Corollary 5.2.1

If the A-simplification JN &> JN' of Theorem 5.2.1 satisfies con-

dition (d), then JN has a state equilibrium iff JN' does. Moreover, in
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this case the equilibrium state distributions are identical. 1

Condition (d) of Theorem 5.2.1 can be equivalently stated in terms

of node parameters in C only as follows.

Lemma 5.2.1

The condition
(a) 8(C,k) = §,p(k,0) , VkeC
is equivalent to the condition

(b) 8(C,k) = & p(k,C) , VkeC .

Proof
By definition we can decompose for every keC

(1) 8 =8(C,k) + 8(C,K)

(2) 1 =pk,0) +pk,0).

Hence, for every keC

(3) 8, = 6, [p(k,C) + p(k,B)] = §,p(k,C) + §,p(k,T).

From (1) and (3) we conclude that (a) holds iff (b) holds. ‘ O

The equivalent conditions (a) and (b) of Lemma 5.2.1 are conserva-
tion equations which assert that in equilibrium, the expected traffic
rates through the nodes of C are balanced with respect to C. In other
words, condition (a) requires that in equilibrium, the expected traffic
rate into each node keC from the nodes outside C (including the exogenous
input) equals the expected traffic rate from keC to the nodes outside C.
Likewise, condition (b) requires that,in equilibrium, the expected traffi-

rate into each node keC from the nodes inside C equals the expected
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traffic rate from keC to the nodes inside C. This is a stronger
balance condition as compared to the balance condition postulated by the
traffic equation,whereby the expected traffic rate into a node equals
the expected traffic rate out of it, in equilibrium.

Theorem 5.2.1 also enables us to make the following extension.

Theorem 5.2.2

Let JN = (M,0,0,P) be an open Jackson network. Let I = {Cz}zeL

be a partition of M, such that

(a) p(k,ﬁg) >0 , whenever keC,

Suppose the A-simplification of Theorem 5.2.1 was performed on each CREH-
Then, the A-simplification above gives rise to a new traffic solu-

tion 8' where

™) 8

G(Cl,k) , whenever keC,
and
() of=p; , VieM

iff

(d) G(Cﬁ,k) = ka(k,éx) , whenever keCZ.

(=——=>) Necessity is proven exactly aé in Theorem 5.2.1, as every
keM is in some CQEH.

(€&=—=) The A-simplification of this theorem can be obtained by suc-
cessive A-simplifications of the C2 (simplification procedure) as follows:
NO 2N e N — e N ED g

It follows from Theorem 5.2.1 that at each stage we obtain a Jackson

network JN(n) whose traffic solution 6(n) satisfies for every ieM,
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s(n-1) if ieC
1 L
(n) _
(1) ai =
s "M ¢ ) if ieCy .
It is easy to see by induction that on setting 0 = |L| in (1), con-

dition (b) follows. Condition (c) holds,because the p parameters

n-1 n
remain unchanged at each simplification stage N e ) e

to Theorem 5.2.1. []

Since the preservation effect of the last theorem depends on condi-
tion (d) of Theorem 5.2.2 (which is derived from the base network speci-
fication), we now proceed to give a set of structural conditions that

imply the behavioral condition (d) above.

Theorem 5.2.3

Let JN = (M,a,0,P) be an open Jackson network. Let Il = {CQ}QeL

be a partition of M, such that for each 2eL,
(a) P(CK) = p(k,C) ,  VkeC,.

(b) p(Cz,k) = const., ‘VkeCn, VCnaH .
(c) o, = const. , VkeC.

Then, for each felL,

(@ 8(C,,%) = 8pk,C,), VkeC, .

Proof

We show first that conditions (b) and (¢) imply that for each feL,
(1 Gk = const. , ngCz,

By Corollary 4.4.2

(2) & = ap, P,
n=g



247

Now, the set
(3) K@M é {v = (V1""’Vm) elRm: for eachyleL, vy = const., VkeCR}
is a linear subspace of R™. It can be directly verified that K(II) is
invariant under linear transformations whose matrix representation is a
mxm matrix satisfying condition (b).

Hence, since oeK(), it follows that
4) aP“eK(n)_, n=0,1,...
and from (2) we conclude that‘(l) holds, as K(II) is complete.

Now, condition (a) can be written for each %2¢L as

6) X pj = Ty VKeC, .
JECQ JECQ

In view of (5), Equation (1) allows us to write for each feL,
(6) 2. 8.p.. = 3. &P, , vkeC, .

. jrik ! k¥kj 2

]ECQ JECQ
But Equation (6) is by definition for each %¢L,

(7) G(Cz,k) = Skp(k,Cz) s VkeCl

and (7) is equivalent to condition (d) by Lemma 5.2.1. ]
Finally, we observe

Corollary 5.2.2

Let 11 = {Cz}zeL

network JN= M,a,0,P). If for each %eL,

be a partition of the node set of an open Jackson

a) pkj = ij > VJ,kECQ‘
b) pij = Py R VieM , VJ,kECQ
c) a, = const. s Vkecz

then conditions (a), (b) and (c), respectively, of Theorem 5.2.3 hold;

hence, condition (d) of Theorem 5.2.3 is also satisfied. M
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We now proceed to discuss A-simplifications that preserve the
total service time obtained by a customer from a subset of nodes. More

~

precisely, Sk C will denote the sum of service times obtained by a
customer that enters a given subset of nodes C at node keC, till the
first departure from C (cf. Ch. 4, Sec. 4.6,where the case C = M was

investigated).

Theorem 5.2.4

Let JN = (M,a,0,P) be a Jackson network and let C C M. Suppose
the A-simplification of Theorem 5.2.1 was performed on C.
Then the total service time in C is preserved (in distribution) iff

(a) okp(k,C) = const., keC.

~

In this case, the Sy ¢ are exponentially distributed with common param-
’ b

C
eter okp(k,C).

Proof

k,C’
Let vk(c) be the LS transform of the service time Sk at node keC, viz.

Let fk(c) be the Laplace-Stieltjes (LS) transform of keC.

o
r %k
(1) Vk(C) = E;E;‘, keC.

The fk(c) satisfy the equation (cf. (3) in Theorem 4.6.1)

2) £,(2) = p(k,C |

@ £ = pUCIV(E) + Zpy v ()£ (0)

jeC

We show first that the gk c are identically distributed iff (a) holds.
Suppose the Sk c are identically distributed with the same LS transform
(3) £(2) = f (1), keC.
Setting (3) and (1) into (2) gives us

Oy > Oy
1) £f@) = pk,0)—— + 2_p,. =—— £(1) keC
2oy jeC kj "
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Solving (4) for f(z) yields

(5) f(z) = —E(—k-—éjjli— ,  keC.
z+p (k,C)oy
Thus, whenéver i,jeC,
© o - p(i,C)o, _ p(j,C)oy -
- t+p (1,00, ¢+p (3,00 ’ i

whence p(i,C)oi = p(j,C)oj for any i,jeC,so that (a) follows.
Conversely, suppose ckp(k,C) = const., for all keC. Define
Okp (k s C)

(7 £(5) E——— £ , ke .
C+ka(k,C)

It is easy to verify by direct substitution, that the fk(g), keC, in (7)
satisfy Equation (2). Moreover, Theorem 4.6.1 implies that this is the
unique solution for (2), so that fk(;) = f(z) for all keC.

We note that, in particular, (a) ensures the §k,c, keC, to be
exponentially distributed with the common parameter okp(k,ﬁ), keC. The
theorem follows from the observation that the nodes in C in the simpli-
fied network are disconnected, so that the new §i’c coincide with the

new service times S', for all keC.

5.3 L-Simplifications

A L-simplification (lumping simplification) of a Jackson network
operates on a subset of nodes and lumps it into a single node (e.g. Fig-
ure 5.3.1). Typically, one partitions the node set of a Jackson network
JN = M,a,0,P) via some partition I = {CQ}ZeL’ and then one proceeds to
lump each block CR into a single node 4%, thus obtaining a new Jacksqn

network JN'" = (L,a",o",P"). This situation will be referred to as a
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L-simplification of JN with respect to I.
Now, suppose that the matrix P is strongly lumpable with respect
to T,or equivalently (see [KS1], p. 124)
(A p@i,C) =p@,C)) , Vi,jeCy, vC,,C el .
In this case, one can define the switching probability from Cl to Cn as

the common value above, viz.

i
A ’i—_."g.
(B) p(C,,Cy) = plk,C) C,,C el

where k is any representative node in Cy -

If a partition II gives rise to condition (A), then Il will be called
a strongly Llumpable p&rtition of P,

In this section we shall be interested in L-simplification of
Jackson networks with respect to strongly lumpable partitions II.

We first investigate the effect of such L-simplifications on equi-

librium operating characteristics and especially on the traffic equation.

Theorem 5.3.1

Let JN = (M,a,0,P) be an open Jackson network. Let I = {CQ}RFL
be a partition of M which is strongly lumpable with respect to P.
Let JN'" = (L,a",0",P") be obtained from JN by means of a L-simplification

with respect to II such that

a) for every &,nelL

(a.l) oV ;-A. Z: o
[ k
kng

(a.2) OE 4 z: O
keCz

" é
(a.3) Py, = P(Cz’cn)’
Then

(b) 80 = 2. 8y , Vel .
keCQ
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(c) 6"(2'3:“) = S(CZ’CH) V&,nel .

Proof

For every keM,
m
(1) Gk =0+ .ZGjpjk
j=1
Summing (1) over keC, for any zeL,yields‘

(2) 26 Zu 2 .Z-'(S'pjk=

keC, keC, keC
m

al + 2: 2y, = 9+ 2850(3,C))
o1 keC, j=1

due to (a.l1l) and (a.3). But

(3) Zsm,m > Lap(J,C)—
j= 1) nelL JeC

2. L 8.p(C,,Cp) = Zp(c wCy) 2o 85
neL JEC JEC

due to strong lumpability of T.

Since p(Cn,Cb) 2 pgz and in viéw of (3), Equation (2) becomes

(4) C_‘ k = G'” + (_Jp Z: 63 ) Vel .
ksC nel JaC

Thus, (4) shows that (b) satisfies the traffic equation of JN'", and
therefore must be the (unique) traffic solution of JN".

Next,'we compute for every %,nel ,

(5) 8(C,.C) = L X oypys ) 2Py
keC J€C keC JEC
2 §,p(C,,C) =py I8
keC, ke " keC, k

Equation (c¢) now follows by substituting (b) into the right-hand side

of (5).

]



252

Corollary 5.3.1

Under the simplification JN += JN" of Theorem 5.3.1, JN" evolves

into equilibrium if JN does. O

An interpretation of Equations (a.3), (b) and (c) in Theorem 5.3.1

results in

Corollary 5.3.2

Let the partition II of Theorem 5.3.1 induce a partition II' of L
into singletone blocks, i.e. {2)}l' iff C,ell. Then, the L-simplifica-
tion of Theorem 5.3.1 leaves the following quantities unchanged:

a) the switching probabilities between blocks of II and the respective
blocks in 1I';

b) the expected equilibrium traffic rates through blocks of II and
the respective blocks in 1';

¢) the expected equilibrium traffic rates among blocks of T and the

respective blocks in TI'. : [

The next theorem exemplifies how a simplification procedure (see

Appendix B) may simplify the investigation of complex simplifications.

Here, a L-simplification is decomposed into two simplification stages:

a A-simplification followed by a L-simplification (see Figure 5.3.1).

Theorem 5.3.2

Let JN = (M,a,0,P) be an open Jackson network which possesses a

state equilibrium. Let I = {CQ}QEL be a strongly lumpable partition of

P such that -
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a) for each fel,

(a.1) p(k,f‘.l) >0 , VkeC,
(a.2) o) = const. s ngCQ
(a.3) 6k = const. R Vkscl
(a.4) 8(C,,K) = §,p(k,Cp). VkeC) .

Next, let JN" = (L,o",0",P") be obtained from JN by a L-simplifica-
tion with respect to I (see Figure 5.3.1) such that

b) for every g,nel

Sa
keCQ k

>

(b.1) “;

ne

(b.2) o) & 2 op(k,C)

keCz

0, if 2 =n
A

(®.3) py, o .
p(C,,C)

Then, the L-simplification JN p—> JN" above possesses a state

for any keCR, if 2 #n .

equilibrium, and it further gives rise to the following relations be-

tween behavioral frames of JN and JN'":

c) for any blocks Cg,CneH in JN and the respective nodes &,nel
in JN" we have that

(c.1) the equilibrium line distribution of any node keC2 equals that
of node &;

(c.2) the switching probability from CZ to C_ and from & to n are
related by pgn-p(k,ﬁg) = (1_62n)'p(cz’cn)’ where 62n is
Kronecker's delta and k is any node in Cz;

(c.3) the expected equilibrium traffic rates from C2 to Cn and from
2 to n are related by &"(2,n) = (l-dzn)'a(cg’cn);

(c.4) the ratio of expected total service time in Cz to expected
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Figure 5.3.1: A Decomposition of the L-Simplification of
Theorem 5.3.2 When Operating on a Typical
Block Cj.
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service time at & is IC 1

o
(c.5) the ratio of the expected total number of customers in C2 in

equilibrium,to the expected line length at node % in equilibrium

is ICQI 1.

Proof

By strong lumpability of P with respect to II, we have
(1 vp(k,Cn) = const. R Vkng

for any 2,neL. It follows that for each f¢L,

(2) p(k,ﬁﬁ) = const. , vkeC,
Combining (2), (a.3) and (a.4) yields for each %¢L,
(3 8K = §pk,E) = const. VKeC, .
We now show that the L-simplification JN #=== JN'" can be decomposed
into two simplification stages JN r=— JN' +=—> JN" (see Figure 5.3.1),
where the first one is the A-simplification of Theorem 5.2.1 and the
s¢cond one is the L-simplification of Theorem 5.3.1.
More specifically, JN +—> JN' is the first stage A-simplifica-
tion, where JN' = (M,o,0',P') such that
(4) for every i,jeM,
(4.1) af 4 in(i’cz) whenever ieC2
, 0, if ieCQ and js:C2 for some 2¢eL
4.2 '.0=
(4.2) le _;EL;__ , if jeC, and j¢C, for some R2eL.
p(i,Cy) L 2

Thus, JN +=—> JN' is the A-simplification of Theorem 5.2.1, and by virtue

of Theorem 5.2.2 and (a.4)
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' - p= . — - p= .
(5) éi = 6(C2,1) = Sip(l,cz) whenever 1eCQ.
Next, show that II is a strongly lumpable partition of P'. For

every keM, CneH,

0, if kan
A ) P, .
(6) p'(k,C) = 2 p!. = k . -
n jECn kj jzg,p T if keCQ, L #n
n

0, ©if keCn 0, if kan

PG e, c) ;

p(k,CQ) ) if ke 2°? 2#1’1 m", if ke ,Q,"Q' #n.

From (6) it is seen that for every 2,neL
(7) p'(k,Cn) = const. , VkeC2
i.e. I is a lumpable partition of P'. Consequently, we may proceed to
perform the second stage L-simplification JN' > JN'",6 where
JN" = (L,a",0",P'") such that

(8) for every #,nel ,

8.1 b T = X
2 keC k keC %
g )
(8.2) o) & 5 o = Zokp(k,éz)

keCR keCR
0, if 2 = n
n A =
(8-3) pzn - P'(CQ,Cn) - p(cz’cn)
W for any kECQ, if 2 #n

Thus, JN' #=> JN" is the L-simplification of Theorem 5.3.1. In view

of Theorem 5.3.1 and (5)

]

(9) &) = 8= X 6(C,,K = L &pk,C,) , Vel .
keC, keC, keC, 2

A comparison of (8.1) - (8.3) with (b.1) - (b.3) shows that the simpli-

fication procedure resulted correctly in JN".
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Since JN was assumed to possess a state equilibrium, it follows
from Corollary 5.2.1 that JN' possesses a state equilibrium, as
JN b=+ JN' was defined to be the A-simplification of Theorem 5.2.1.
It now follows from Corollary 5.3.1 that JN" also possesses a state
equilibrium, as JN' = JN" was defined to be the L-simplification of
Theorem 5.3.1.

We now proceed to prove assertions (c.1l) - (c.5).

Proof of (c.1):

From (a.2) and (a.3) it follows that for each %¢L,

8
(10) Py = R const. R VkeC, .
< Gk L

Moreover, in view of (9), (a.3) and (2)
(11) &) = |c,2|<skp(k,6 ) for any keC , VeeL .
Finally, in view of (8.2), (a.2) and (2)
(12) oy = lczlokp(k,cg) for any keC,, VeeL .

Hence, from (10), (11) and (12)

k(G loplaty) oy

2% (G100 sy,
Oy -

(13) oy = oy for any keC , V2eL .

Assertion (c.l) now follows,since the equilibrium line distributions

are determined by the p parameters.

Proof of (c.2):

Follows directly from (8.3).

Proof of (c.3):

For any CR’CnEH s
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0, if 2 =n
A . =
(14) 8'(C,,C) = & 2 §ypys = =

3 2
keC, jeC, k§: S 8, p(k,C }_ﬁ?Tfff if 4 #n
eC2 JeC
0, if & =n 0, iff=n
> E:,Skpk , if 2 #n §(€,,C) , if 2 #n

keCR J€C

by virtue of (5) and (4.2).
Hence, for any CQ,Cngn,
(1) 8'(C,,C ) = (1-8, )8(C ,CP)
But by Theorem 5.3.1
(16) 6'(C,,C) = 8"(1,m) » V&,nel

whence assertion (c.3) follows.

Proof of (c.4):

By ‘Theorem 5.2.4 and in view of (2.2) and (2), the expected total

. . . . 1
service time in each C _ell is ———er—ro where k is any n in C .
. ekt is any node in .
k L .
From (12) we conclude that the expected service time at the respective

1
|C2]okp(k,f )

node feL is , where k is any node in CZ'

Pt
.

The requisite ratio is, thus, seen to be ICQI

Proof of (c.5):

Since the equilibrium distribution of the line size at node i is
0
i

l-pi

geometrical with parameter Pys the respective expectation is

Consequently, the expected total number of customers, in equilib-

rium, in each block Cgeﬂ is
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P C le
a7n 2 : L l1% k for any keC,
keC, Pk °x
L
due to (10).

We already know from (13) that p! =

¢ = Py where k is any node in CQ.

Hence, the expected line length, in equilibrium, at each node %eL is

Py Pk
(18) = = T, , for any keC,

From (17) and (18) it follows that the requisite ratio is [C

2‘ 1. [

We note in passing that Theorem 5.2.3 and Corollary 5.2.2 may be
used to give structural conditions that imply the behavioral conditions
(a.3) and (a.4) of Theorem 5.3.2.

In conclusion,we remark that Theorem 5.3.2 illustrates a heuristic
principle involving simplifications of the lumping type. In such situ-
ations, a network of components is partitioned into blocks and then each
of them is lumped into a simpler component.

Heuristically speaking, we can expect a considerable preservation
of behavioral frames, when the block in the base model consists of
components which are similar or uniform in some sense. Consonant with
this view, the base network of Theorem 5.3.2 was partitioned into blocks
with ”Similar” components, and then each block was lumped into a single
node.

The resulting lumped network turned out to be a scaled down version
of the base network with a variety of remarkably related operating

characteristics.
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5.4 Simulation Complexities of Jackson Networks

A simulation complexity is a measure of computer resources required
to run a computer simulation of a model. In practice, the model may be
run for some interval of simulation time until a sufficient number of
customers are simulated, or until some other stopping criterion is met.
A good simulation complexity should not only allow a user to compare
the simulation costs of various models but should also aid him in ob-
taining a reasonable estimate of computer resources, e.g. total CPU
time énd average memory space needed for the simulation. Other measures
such as maximum requisite memory, time-space product, etc. are of con-
siderable interest in estimating simulation cost, though hard to compute.

In this section,we shall discuss some time complexities and space
complexities as described above. In what follows we have in mind a
discrete simulatién language which is of the transaction flow type (e.g.
GPSS: see [Schll), or of the event scanning type (e.g. GASP; see [PK1]).
Such a discrete simulation language makes it easy for a user to simu-
late a discrete event system, say a DEVS.

The language software handles the queuing up of future sequential
state transitions (jumps) in an ordered list (called the future event
ltst) according to their time of occurrence. It then processes the
jumps by computing the new sequential state, again in order of occur-
rence. In this context, the jumps alluded to above, are called "events"
(not to be confused with probabilistic events).

In queuing-theoretic context, the probabilistic analogue of a
system-theorctic event is, loosely speaking, a discontinuity in the sam-
ple functions of the state process {Q(t)}tzo' To avoid ambiguities we

shall refer to system-theoretic events as simulation events.
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Since a particular computer simulation pertains to a particular
though "random" queuing history, it is often reasonable, as an inter-
mediate step, to define first random time complexities and random stor-
age complexities. These random complexities should be random variables
whose realizations measure the cost of CPU effort and memory space
required by the respective sample simulation run.

| The resulting time and space complexities would then be defined as
deterministic quantities in terms of the respective expectations, time
averages, etc. Throughout the impending discussion, we shall assume that
JN = (M,a,0,P) is an underlying Jackson network with which those com-
plexity measures are associated.

We begin with a discussion of simulation time complexities (de-
noted CT). Consider the time complexity
(1) C,El) Ml =m .

C%l) is a measure of network size, and it reflects on the rate of simu-
lation events in the network, since every node is a location of "ac-
tivity". (The number of arcs is irrelevant in this respect, because only

: 1) |,
arrivals and departures at nodes generate such events.) Cé ) is a crude

measure because it does not take note of the probabilistic topology of

JN.
Céz) is similarly crude;
@ @ &Ll + o]l = Sy + 3o
T : i ~Ti T
1=1 1=1

It is defined as the sum of expected arrival rates and potential depar-
ture rates in the network. C%z) has the additional disadvantage of
being dependent on the time units, in which o and ¢ are measured; e.g.
(2)
CT

if the time unit changes from seconds to minutes, also changes.

A better time complexity is provided by network ''closedness.'
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Loosely speaking, network '"closedness' measures how '"difficult"
it is to leave the network. Its validity as a time complexity stems
from the fact that the harder it is for a customer to leave the network,
the more simulation events are going to be induced by him,

m
Denoting q by Z:pij’ we define for open networks
j=1

(3)
T

Observe that 0 < C§3) < 1; thus, the larger C , the larger the number

of visits paid by a customer to nodes in the network. For closed net-

works C§3) = © 35 it should be.

Cég) is defined as the 'average closedness', but it does not take

note of how likely a customer is to arrive at node i. Thus, if we add

nodes which are never reached by any customer, C%3) will still be

affected.
To remedy this deficiency, consider the number of visits of an
incoming customer at node i, during his stay in an open Jackson net-

work. Denoting this random variable by Ki’ we define
m

4) A
4 cj(, ) 4 E(i;lxi) .

L) . . s .
Cé ) is the expected total number of visits to nodes made by an incom-

ing customer during his stay in the network. This time complexity comes

closer to CPU effort than any of the above. Cé“) has the additional

advantage of being computable for open networks (see Remark 4.6.2)
5) o) - Lell
[ ol

which also shows that C

i“) takes full account of the network topol-

ogy. Recall that & is the traffic solution of the network, and that
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in equilibrium it coincides with the expected rate of service comple-
tions at network nodes.

Thus, (5) gives rise to another interpretation; namely, that C%q)
is the equiiibrium ratio of expected service completion rate to expected
exogenous arrival rate. This ratio can be viewed as the internal load
(= |]6||) induced by a unit of external load (= o) in equilibrium, and
it makes sense to compare these quantities for networks with fixed ex-
ternal load. However, Céh) ignores simulation events induced by cus-
tomers that were initially in the network, as well as those whose stay

in the network has not been completed.

L . .
C% ) has yet another interpretation as a measure of ''closedness'.

m m
To see this note that Z:ai = Z:qui (see Theorem 4.4.4) whence
i=1 i=1
1 ) < 1
6 SC S o -
(6) max{q,: 1<i<m} T mlﬁTqi: 1<igm}
i _

L 3
Thus C% ) is approximately equal to Cé ), and this approximation becomes
exact as the N approach a common value. Indeed, it can be shown that

cé“)m-\a ® as c1(,3)-—-> 0.

()

T is suited for situations when the cost per simulated customer

is of interest. For instance, one may wish to simulate a certain num-
ber of customers, so as to obtain reasonably reliable statistics. Typi-
cally in this case, the number of customers to be simulated is fixed,
while the simulation time interval is unspecified.

A different situation arises when the simulation interval is fixed
and the number of customers is unspecified. 1In this case, the total
number of simulation events occurring in a simulation interval [0,t]
reflects on the requisite CPU effort. Observe that a simulation event

occurs iff there was an exogenous arrival or a service completion at
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some node. This observation gives rise to

1
L(ED (1))
Tle]ft 42

where Di(t) is the total number of service completions at node i in the

(5)
Cp

1 cfP b

simulation interval [0,t]. is interpreted as the total internal

load per unit external load in the simulation interval [0,t].

C%S) differs from Céq) in the way it accounts for customers ini-

tially in the system and those who don't leave it. It has the repre-
sentation (see Theorem 4.2.1)

m
1

HD‘Htil

from which we conclude that C%S)(t) = ll~ll- for any t 2 0. For open

[ lel]

Jackson networks in equilibrium, C%S) becomes

8 ¢S =

T f Pr(Q; (x)>0)dx

© ) =

(5) gng ¢

T coincide.

It is interesting to note that in this case C
Cé ) may be used to estimate the total number of service comple-
tions that occur during a simulation whose stopping rule is the arrival

of N exogenous customers. We define
0y ¢ & E(ZD (!I )
0.

which for open networks becomes, in equilibrium,

T Il
Notice that IINII is the expected arrival time of the N-th customer.
o

Thus,Cé ) is an estimate of the number of simulation events in the simu-

lation interval [0,

(6)
CT

N
TalT

However, is not the exact expectation of the total service
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completions required to simulate the network until the arrival of the
N-th customer, because this time interval and the total number of
service completions occurring in it are apparently correlated.

We now consider time complexities that come closer to measuring
actual CPU time.

Let T be the processing time of a simulation event. T is a random
variable whose randomness is mainly due to the variable length of the
future event list at the time of processing. In practice, T might
be a constant plus a term proportional to the length of the future
event list.

Next, refine C£7) by

m
(12) c{” éE(ZKiT)

In other words, C is the expected CPU time required for simulating an -

(7)
T
incoming customer. Unfortunately, it is not readily computable. Even
if E(T) is known, we still need to know how Ki and T are correlated.

. 7
When zero correlation can be assumed, C% ) becomes for open networks

. m
7 . 8
(13) cé) = b(ZKi)E(T) = L8]] E(T)
i=1 el
A similar situation arises when an attempt is made to refine CéS) and
C%GJ by defining respectively
m
8 A 1
a9 i & LT, (01)
[allt i=1
and
(9) A z N
(15) €y () = E(ZD; (——T) .
i=1 * | ]af|
C%S)(t) is the expected total CPU time required to process service com-

pletions (total internal load) in the simulation interval [0,t] per unit

external load in the same interval. Likewise, Cég)(N) estimates the
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expected total CPU time reqﬁired to simulate the network until the N-th
exogenous customer arrives.

We now proceed to discuss simulation space complexities (denoted
CS). Space complexities have two components: static and dynamic.

Static space complexities arise from the memory storage required
to represent a queuing network topology in a computer, not including
waiting lines. Thus, these complexities are essentially a measure of
network size in terms of nodes and arcs. For example,

(16) C(l) A S M| + EE: s

s = syl

where SN and Sp denote memory storage required to represent a node and
an arc respectively in the computer, exclusive of waiting lines.
Dynamic space complexities, on the other hand, reflect the total

length of waiting lines in the network during a simulation. For example,

m

(17) c{? (t) L E( sup {0 (1) 0stsed) .
i=1

Céz) estimates the maximal total length of queues in the simulation
interval [0,t]. Unfortunately, it is difficult to compute. Consider

instead the smaller measures

m
(18) cs(” (t) & sup {E(ZQ,()): 0srst)
i=1
and
m
19 ¢y &1 [ECq (0)dr
i=]1

which are more amenable to computation.

(3) g (W)

For open Jackson networks in equilibrium, both CS S

reduce to the same time independent function
m L
20y ¢ = ¢ ) = E(Z Q1) = T2

i=1 i=117P3
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S,
where Py = 81' (see Theorem 4.5.1).
i

As the network approaches instability (viz. pi_—-91 for some i),

(3) 5o
o —2© 3as T,

Notice that the variance of the instantaneous total length of

m
queues Z:(%ﬁt) in equilibrium is
i=1 .
m m 0.
i
21 \Y . (t = —
(21) (Elczlc )) 1221 SERE

due to the independence of the individual queues (see Theorem 4.5.1).
m
Consequently, as the network approaches instability, V(Z:(%It))——~%>“

i=1
1 ¥ , and our confidence in Cé3) and

-a§ ————r C(q)
(1-p4 S

as dynamic storage

estimates decreases very quickly.
Cé3) and Sé”) were defined as functions of the simulation interval.
When the simulation requires that sufficient number of customers be

simulated, the counterparts of Cé3) and Céq) are respectively

(5) yy A w _ N
(22) Cg7 (N) 2 sup {E(Z2Q;(1)): 0 <7 < =7}
: i=1 o]l
and N
T,
Heall in

In equilibrium, Cés) and Cée) reduce to the same constant function.

We conclude this chapter by comparing the effect of some of the
simplifications in Sections 5.1 - 5.3 on some of the simulation com-
plexities of this section. Figure5.4.1 summarizes these effects. It
employs the following notation.

A simulation complexity can be non-increasing (denoted by +), or

unchanged (denoted by =). A question mark indicates that the behavior
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F-simplifi- A-simplifi- L-simplifi- L-simplifi-
cation of cation of cation of cation of
Theorem 5.1.5 [Theorem 5.2.1 |Theorem 5.3.1 {Theorem 5.3.2
c,%” = = v v
cl? v y - y
cé 3) v y ? ?
cq(f*) v v - v
CTES) ¥ vo =0 ¥°
c,l(fs) v +° =0 +°
Cé” ¥ ¥ ¥ ¥
céz) = ? ? ?
c&¥ . =0 ? +°
cé”) = =0 ? +°
Cés) = =° ? +°
cée) = =’ ? +°
Figure 5.4.1: A Comparison of the Effect of Various Simplifications

of Jackson Networks on Some Simulation Complexities.
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is unknown or mixed (depending on simplification parameters). An
appended circle means that both the base model and the lumped model
of the indicated simplificatién are assumed to be in state equilibrium.
The results in Figure 5.4.1 follow from the theorems alluded to
in the headings of its columns and from the discussion in this sec-
tion. It should be born in mind that the results presuppose that the
conditions of those theorems hold for the simplifications under con-
sideration. For those complexities which are functions of t or N,‘

the comparison is valid for any fixed argument.



CHAPTER 6

CONCLUSION

6.0 Summary

Two lines of rese;rch have been pursued. The first line of
research concerned analysis and simplifications of discrete event
systems. The logic of deterministic discrete event systems was
studied, when formalized by DEVS-related concepts. A hierarchy of
morphic relations was developed in accordance with the conceptual
framework of Appendices A and B. An extension of this framework to
stochastic discrete event systems was proposed. In this approach
system-theoretic and statistical-theoretic aspects are combined via
representation in coordinate probability.space. A hierarchy of morphic
relations for stochastic systems was then developed in terms of
measure preserving transformations. Finally, we derive a methodology
that provides sufficient conditions which ensure preservation of
behavioral frames under point simplifications.

The second line of research concerned analysis and simplifications
of Jackson queuing networks with single server nodes. In studying
their operating characteristics, especially state equilibfium, a
number of theoretical gaps in the extant theory have been closed.
Results on open and closed Jackson networks were unified as results for
mixed networks. The main result is derived in a study of equilibriumr
traffic processes on arcs, as an extension of Burke's Theorem (see
[B1]) from M/M/s queues to Jackson networks with single server node.

This result has applications to decompositions of Jackson networks.

270
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Finally, three types of simplifications of Jackson networks are
exemplified, as well as their effect on a number of simulation

complexities associated with them.

6.1 Further Research

Several lines of further research emerge from these studies. As
regards the area of discrete event systems, the DEVN (discrete event
network specification) concept warrants special attention.

The ability to identify components in a DEVS (so that it can be
represented as a DEVN) entails a conceptual simplification and better
understanding of its operation. A hierarchy of DEVN morphisms, where
each morphism can be decomposed into local DEVS morphisms between
components, is of interest for similar reasons. This line of study
has potential applications to modeling of discrete event systems.

In the study of Jackson networks, the lack of customer-oriented
operating characteristics, such as waiting and transit times, is a
glaring omission. Little is known about these important problems
(see [R1] for a survey of related problems). We remark that their
solution is necessary for attaining a balanced set of operating
characteristics.

More research is also needed to elucidate the nature of traffic
processes on non-exit arcs. An immediate problem is to prove or
disprove the conjecture that such arcs cannot have Poisson or even
renewal traffic on them (excluding the trivial case pii=1)' This line
of research has potential applications to decompositions of Jackson

networks.
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Finally, an attempt should be made to generalize Jackson networks
to more realistic queuing network models. The main directions of
generalization that have recently emerged are: general servers, general
switches and multiple classes of customers.

In addition, we suggest that the simplification methodology (set
forth in Theorems 3.1.1 and 3.2.1 in Chapter 3) can be abplied to
simplifications of the generalized queuing networks alluded to above.
As an example, we claim that it readily provides a proof for the
following conjecture: in any queuing netwofk, the idle-busy period
process is invariant (in distribution) under queuing disciplines such
as first come first served, last come first served, time sharing and

preemptive resume.



APPENDIX A

SOME BASIC SYSTEM THEORY

A.0 Introduction

This appendix provides some system-theoretic background for
readers who are not familiar with the terminology and mathematically
oriented approach to System Theory. The entire appendix is a digest of
the relevant sections in Part 2 (Chapters IX and X) of [Z1], with
rather minor modifications. The latter merely consist of slightly
altered conventions and terminology that better conform to the goals of
this thesis.

The appendix is intended to be an introduction to Chapter 1. It
also outlines the conceptual framework into which Chapters 1, 2 and 3

are fitted.

A.1 Mathematical Systems

The Mathematical System concept is a fundamental formal tool for
description and analysis of most real life systems. The central con-
ception is that the system evolves in time through a succession of
states, under some external input. It producés an output according to
its current‘state. The following is a standard formal definition of a

mathematical system.

Definition A.1.1

A Mathematical System (also known as an Input-Output System, or

I/0 System) is a structure

273



S =
where
T is
X is
Q 1is
Q is
Y is
§ is
X 1is
subject t
a)

b)

d)

Vw
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(T,X,2,Q,Y,8,})

the time base set

the imput value set

the input segment set

the state set

the output value set

the state transition function
the output function

o the following constraints:
T is a well-ordered Abelian group

The input segments in Q are functions w = w where

(t),t,]
wi(ty,t]—eX  t,t €T,

Q is closed under composition (juxtapoéition) of contiguous
input segments, viz.

EQ = o

W , Wo Ouw? €q
(tl’tz] (t2,t3] (tl’tz] (t2,t3]

14

®Cw’ =
(t),t,0 (t,,t] ~ “lt),t,]

w (t), if t.< t
é )ﬁ (tl,tz] 1

} w (t), if t,< t <
(ty,t,] 2 3

\\

where the function w is defined by

A
o+

w" (t)

A
ot

§ is a function §:QxQ—+Q satisfying the following composi-
tion property:

SW7 €Q,Vqeq,
(t,,t,07 (]

§(q,w ®Ow? ) = 8(8(q,uw, . ), w? ) .
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e) A is a function A:Q—Y.

An important operation on the input segments is described by the

translation operator TRANST where TRANST(w) = & such that if

A _ A . . A é
w = w(tl’tz] then & = w(t1+r,t2+r] is defined by w(t) = w(t - T).

If @ is closed under translation, we may extend the composition

operation from contiguous input segments to arbitrary input segments

W= w and w” = w’ by
(ty»t,] (tg,t,]

wow” = w" where w" = w” is defined by
(ty,ty*t,-t,]

w(), if t.<t <t

1 2

Hes>

u)H (t)

(TRANStz_tS(w )) (), if t2< t < t2 + t4 - t3

We now define an important class of systems.

Definition A.1.2

A Mathematical system S = (T,X,Q,Q,Y,8,)) is time invariant if
a) § is closed under translation viz.

weEN = TRANS _(w) € @, for any T 2 0.

b) & is time invariant viz.

VgeQ, Ve, VTt 2 0, §(q,w) = G(q,TRANST(w)).

Notice that for time invariant systems, it suffices to consider

only those input segments that start at the origin.

Our interpretation of the system concept runs as follows.
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A system is conceived of as having two elements: an internal element
which we call "structure', and an external elément we call "behavior".
The term "structure' refers to the state space and the state transi-
tion function §. Pictorially, a system is viewed as some black box
which undergoes internal changes when stimulated by an input segment.
The internal change (the transition function) sends the system into

a new state as a function of the initial state and the input segment
only. Moreover, this internal state transition is deterministic.

On the other hand, '"behavior" refers to the external and observable
manifestations of the internal processes of state transitions.
Pictorially speaking, a behavioral aspect is recorded by inserting a
particular probe into our 'black box'" which can measure a certain
aspect of the system's internal state.

Consonant with these views, we introduce the following definitions.

Definition A.1.3

A mathematical state-system is a mathematical system
s = {(T,X,9,Q,+,8,+) with unspecified output value set Y and output

function \.

O
Definition A.1.4
A behavioral frame of a mathematical state-system
s = (T,X,2,Q,-,68,*) is a structure ¥ = {Y,\) where the symbols in
the angular brackets have the same meaning and constraints as in
Definition A.1.1.
g

Our definition of a behavioral frame is a simplified version of
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the concept of experimental frame in a modeling context (see [Z2]
and [Z1] Ch. ITI). 1In this context the term experimental frame is
used to captufe the observational limitations imposed by reality on
the modeler. Here, however, we deal with an idealized situation and
both terms may be considered coincident. Notice that when we parti-
cularize to a certain behavioral frame of a mathematical state-system,
we obtain some I/0 system of Definition A.1.1.

In other words, a state-system is more fundamental in the sense
that it spawns a host of I/0 systems which stand in a one-one relation

to all possible choices of its behavioral frames.

We regard this collection as an equivalence class induced by a
state-system. The symbol (T,X,0,Q,+,8,*) will also stand for a
representative of such a class. This notation will be used in the
sequel, whenever we wish to focus on the state structure, whereas the
behavioral frame may remain unspecified. Consequently, the dots in
the structure (T,X,2,Q,+,8,+) should be understood as generic variables
or "don't care" symbols according to the context. Furthermore, the
terms state-system, representative system or simply system will be
used interchangeably, whenever the context precludes ambiguities.

Indeed, from a modeling standpoint, '"structure'" is more fundamen-
tal than 'behavior". The modeler starts with a set of empirical data
(""behavior"), and tries to postulate a model ("structure"), that can
account for the data. The process of modeling consists of successive
refinements of that model (structure adding) to account for a growing
set of empirical data. Theoretically, if the full structure (state-
system) is known, then the modeler can predict any system behavior, and

modeling is completed. In most cases, this requires infinite time and
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cannot be accomplished.

Mathematically, the concepts of "structure'" and '"behavior" are
completely dual; '"structure' accounts for all "behavior', while given
all "behavior'" we can always postulate a "structure'" to account for it.
To clarify our view wevpoint out an analogous situation in the field
of formal languages, (see e.g. [AUl] Ch. 2, Sec. 2.1.2). A formal
language is the analogue of a mathematical system. It may be dually
defined either by a set of transformations (called productions) on
some initial strings, or by specifying the set of strings thus gener-
ated. Given the set of productions ("structure') we may run (or
simulate) the system in various ways to yield various strings
("behavior'"). Conversely, the enterprise of modeling becomes that of
finding the set of productions that can account for a given set of
strings.

Mathematical systems can be described in terms of their state and
output trajectories. .These trajectories assign a full state and an

output value respectively to time points.

Definition A.1.5

Let S = (T,X,9,Q,Y,8,\) be a mathematical system. Let q€Q be
any state and let w€ Q be any input segment where w:(tl,tz]—ﬂﬁx.

The trajectory of (q,w) is a pair TRAJ(q,w) & (STRAJq w,OTRAJq w) where

a) STRAJq,w:[tl,tz]—w>Q is a function defined by

- ift =
g, 1f t = t1

ne>

STRAJq,w(t) < 6(q,w|(tl,t.]), if te(tl,t] and w[(tl,t]eﬂ

undefined, otherwise
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and called the state trajectory of (q,ou).Jr

b) OTRAJq w:(tl,tz]—4>Y is a function defined by

A
OTRAJ, (£ = A(STRAJ_  (£))

b

and called the output trajectory of (q,w).

To wrap up the discussion of mathematical systems we show how to

identify subsystems within a mathematical system. Formally, we define

Definition A.1.6

Let s = (T,X,2,Q,Y,8,)) be a mathematical system. A mathematical

system S = (T,X,ﬁ,ﬁ,Y,g,X) is a subsystem of S if

a) fcQ

b) QcQ

c) & = 6|Qxa
d) A =1Q

]

In other words, a subsystem is a system restricted to a subset of
states. Notice that for a subsystem S of S to be well-defined, it is
necessary and sufficient that 6 be closed under & and . That is

A A A
q€Q and we€Q = 6(q,w)€Q .

Next, we turn our attention to relations among mathematical
systems and their trajectories. The class of relations, that we con-
sider here is called morphisms. Roughly speaking, morphisms preserve

various aspects of system structure and behavior, in a complexity-

+A vertical bar designates restriction of a function domain.
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reducing manner.

Definition A.1.7

A system morphism from a (mathematical) system S = (T,X,Q,Q,Y,8,})
to a (mathematical) system S” = (T",X”,Q”,Q",Y*,8", ") is a triple
(g,h,k) subject to the following restrictions:

a) g is a function g:Q"—e=Q called the <input segment encoding

function.

b) h is a surjective (onto) function h:6?¢>Q’ called the state

decoding function and QCQ.

c) k is a surjective function k:Y—=Y~ called the output decoding

function.

d) VqeQ, Vwu’€ Q" we have h(6(q,g(w?))) = §°(h(q),n")

i.e. transition function preservation.
e) VqeQ we have k(A (q)) = A”"(h(q))
i.e. output function preservation.
£
The relations among the components of S and S” are depicted in Figure
A.1.1.

The preservation aspects of the functions h and k with respect to
§ and A respectively are described by the commuting diagrams of
Figures A.1.2 and A.1.3 respectively.

An important way of viewing morphisms is to regard them as system
simplifications (see Appendix B for more details). Informally, a
simplification involves reduction of complexity as well as preservation
of certain aspects of structure and behavior. Consonant with this view

we give the following interpretation.
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Figure A.1.1: Relations among Components of Morphic Systems.
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§(q,g(w”))

q” = h(q) 67 (h(q),w”) = h(8(q,g(w™)))

Figure A.1.2: Transition Function Preservation.

A (q)

q” = h(q) A7 (h(q)) = k(r(q))

Figure A.1.3: Output Function Preservation.
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The encoding function g matches compatible input segments. The
decoding functions h and k simplify the system structure and behavior
respectively. The simplification aspect of h and k results from the
fact that they are surjective (onto) but not necessarily injective
(one-one), in view of properties b) and c) in Definition A.1.7. Such
maps iﬁcur an information loss, when one attempts to deduce the pre-
image from its image. This information loss embodies the complexity-
reduction effect while properties d) and e) in Definition A.1.7
represent the preservation effect of a simplification.

State and outpﬁt trajectories are sufficiently important to

warrant a separate morphism concept.

Definition A.1.8

-~

and w

Let w be input segments of two mathematical

systems S and S” respectively. Let q and q” be states of S and S~

respectively.

A trajectory morphism from TRAJ(q,w) to TRAJ(q”,w”) is a triple
(MATCH,h,k), subject to the following restrictions:
a) MATCH:[tl,t2]~w>[t3,t4] is a bijective (one-one and onto)
function called the time matching function. |

b) h:Q —-Q7. . is a surjective function where
q,w q ,w

Q = {qeQ: dteft,t,] 3q-= STRAJq

(t)} and similarly
q,w w ‘

s

for Q&, 0 h is called the state decoding function.

b

¢) k:Y—=Y~ is a surjective function called the output decoding

function.
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Vt,t’e[tl,tz], t <t = MATCH(t) < MATCH(t")

i.e. MATCH preserves ordering.

Vee [t),t,], h(STRAT, ()] = STRAJ . . (MATCH(t))

b 2

i.e. state trajectory preservation.

v -
telt),t,l, k(OTRAJq,w(t)) OTRAJ . - (MATCH(t))

3

i.e. output trajectory preservation.

Roughly speaking, a system morphism (g,h,k) is a super trajectory

morphism which is uniformly good for any (q,g(w”)) and (h(q),w”).

We now define some important cases of specialized system

morphisms.

Definition A.1.9

Two systems S = (T,X,2,Q,Y,8,\) and S = (T",X",2°,Q",Y*,8",\")

are called compatible if

a)
b)
c)
d)

T=T"
X = X~
Q= Q"
Y=Y

Definition A.1.10

Let S and S” be compatible systems and let i denote the identity
map. Then:
a) A system morphism (i,h,i) from S to S” with Q = Q is called a

system homomorphism.
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b) A system homomorphism (i,h,i) from S to S” such that h is

bijective is called a system 18omorphism.

When focusing on the state structure we obtain the following

analogue of the system morphism concept.

Definition A.1.11

A system state-morphism from a representative system
S = (T,X,2,Q,*,8,*) to a representative system S* = (T*,X",0°,Q",+,87,*)
is a pair (g,h) with the same meaning and restrictions as in Definition
A.1.7.

Likewise, a state-trajectory morphism is a pair (MATCH,h) with

the same meaning and restrictions as in Definition A.1.8.

It is now obvious how to define compatibility of representative
systems and how to proceed to define the concepts of state-homomorphism
(i,h) and state-isomorphism (i,h) among them. The case of state-
trajectory morphisms is analogous.

Finally, we note that morphic relations induce a hierarchy on the
class of systems, as it is not difficult to see that these relations

are transitive. We shall not dwell on this point in this section.
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A.2 Iterative Specifications of Mathematical Systems

When dealing with a mathematical system of a special type, it is
often more convenient to specify it indirectly at a certain level of
detail. A translation process will then furnish the means of going
from that particular specification to the normal system specification
of Definition A.1.1. An important class of more structured specifi-
cations for time invariant systems is the class of iterative system
specifications. Essentially, what happens here is that the input
segment set is generated by a set of elementary input segments and
similarly for the.state transition function.

First some background concepts. Let (X,T), be the set of func-
tions‘of the form w:(0,7]—X, T€T. The composition operation

defined on (X,T), becomes where

w Cw? = wff
(0,7,1°°00,7,1 7 “(0,7,+1,]

(t), if < t < 1

w
) (O,Tl] 1

"
w(O T +T ](t)
1 2 .
Tl), if ;< t<T, +1

_m(O,TZ](t B 1 2

This renders (X,T), and the composition operation a semigroup.

If TC (X,T), , then the composition closure of I' is called the
semigroup generated by T and is denoted r'. If 1= Q, then T is
called the generator set of Q. 1In that case, given w€ Q, we wish to
decompose it into generator segments in a canonical manner, via right
or left segmentation. The term segmentation refers to the operation of
restricting an input segment w to subintervals. More specifically, a

left segment of w at t is defined by W, i w[(tl,t] for any

(t],t,]

w|(t,t,] is a right segment of w

t e(tl,tz]. $1m11ar1y, 0y
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for any t G(tl,tz]. The canonical decomposition we choose is that
obtained by taking successive maximal left segments and then chopping
them off the remaining segment repeatedly.

More accurately, w ,w,,...w €T is a maximal length segment
(m.l.s8) decomposition of w if for each i = 1,2,...n, whenever w’ €T
i; a left segment of wi®wi+l@...®wn then w” is a left segment of W, .
The merit of the m.1l.s decomposition is the fact that if it exists,
then it is unique (see [Z1] Ch. IX Sec. 9.8.1). We say that T is an
admissible generator set for Q if Q = r" such that each w€Q has a

(unique) m.1l.s decomposition.

We are now ready for the main definition.

Definition A.2.1

An iterative specification (of a mathematical system) is a
structure G = (T,X,9,Q,Y,8,)) where

T is the time base set

X is the imput value set

Q is the input generator set

Q i1s the state set

Y is the output value set

8§ is the transition function

A is the output function
subject to the following restrictions:

a) T is a well ordered Abelian group.

b) © is an admissible set of generators of the form

w: (0,1]—=X, TE€T.
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c) 6 is a function 6:QxQ-—+Q satisfying the following

composition property:
Wy ,0, € Q and w,Ow, € 9 = VqeQq, 6(q,m1®w2) = 8§(8(q,u0y),u,)

d) X is a function A:Q—=Y.

|
The function § in the above definition can be extended as follows:
Definition A.2.2
Let ©' be the translation closure of Q' . The extension of § is
a function 8:Qx¢ —=Q defined recursively by:
VqeQ, Vv e’
qe, Vu = w
8 (q,TRANS (w)), if TRANS (w) €Q
- A B! s
§(q,w) =
§ RN O ‘
d(é(q,wl),wZG wn), otherwise
where wawZQ"'an is the m.1l.s decomposition of w in terms of the
translated generators TRANSt (f). O
1

We now show how an iterative specification is translated into a

time invariant system.

Theorem A.2.1

If ¢ = (T,X,2,Q,Y,8,)) is an iterative specification, then it

induces a time invariant (mathematical) system S; = (T,X,27,Q,Y,5,1).

Proof

See [Z1] Ch. IX Sec. 9.8.2. .



289

»

An iterative subspecification G of an iterative specification G
is defined by restricting 6 and X to QC:Q and QcQ precisely as in
mathematical subsystems (see Definition A.1.6). It is easily seen
that if an iterative specification G induces a mathematical system SG,

A
then any iterative subspecification G of G induces a mathematical
b S.of S
0 .
subsystem S, G

We now turn our attention to morphic relations among iterative

specifications. This will follow the pattern, set up for system

morphisms in the previous section.

The basic definition now follows.

Definition A.2.3

A specification morphism from an iterative specification
G = (T,X,92,Q,Y,8,\) to an iterative specification G* =
(T*,X*,2°,Q°,Y*,8°,A"? is a triple (g,h,k), subject to the following
restrictions:
a) g is a function g:Q‘—-M?+ called the generator encoding
function.
b) h is a surjective function h:Q—-Q~ called the state decoding
funetion and Q< Q.
c)' k is a surjective function k:Y~=Y" called the output decoding
funection.
d) Vq€Q, Vu € Q” we have h(§(q,g(w?))) = 6" (h(q),w")
i.e. transition function preservdtion. |
e) Vq¢eQ we have k(A(a)) = A7 (h(q))

i.e. output function preservation.
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Just as iterative specifications translate into mathematical

systems, specification morphisms expand into system morphisms.

Theorem A.2.2

Let (g,h,k) be a specification morphism from G to G”. Then

(g,h,k) is a system morphism from S; to Sj. where
a) g is the extension of g to Q% derived as follows:

Let wi@wé@,...,@wﬁ be the m.l.s decomposition of

w’ = w? ¢’ in terms of the translated generators

TRANS, (2°). Then g(w”) = g(w)egwl)®...eg(w’).
t1 1 2 n

=
il
=

b)

P
i
o

c)

Proof

See [Z1] Ch. X Sec. 10.5.

Specification homomorphisms and isomorphisms as well as the con-
cepts of specification state-morphisms and trajectory morphisms may
be defined analogously to those in the previous section.

We will not elaborate on this point.



APPENDIX B

FORMAL SIMPLIFICATIONS

B.0 Introduction

Simplification is a widely used method in the Sciences. Simpli-
fications are applied to such diverse entities as equation systems,
networks, system-theoretic models etc. They are extensively employed in
modeling and simulation of systems, deterministic as well as stochastic.

In the conceptual framework developed by Zeigler in [Z2], [Z4],
[Z5] and [Z6], going from a base model to some lumped model is a
typical instance of a simplification process. The simplification effect
manifests itself at various levels. When operating on informal descrip-
tions of system-theoretic models, a simplification may aggregate compo-
nents, simplify assumptions etc. (See e.g. [WZL1], [Z3], [Z7]). On
the other hand a simplification of a probability space may be viewed as
a measure preserving coarsening of the underlying sample space and
o-algebra. A simplification of an equation system is obvious enough.

In spite of their different appearances, all the simplification
notions above have an underlying conceptual similarity demonstrated by
two salient features.

1) They all reduce, in some sense, the complexity of the entity

to be simplified.

2) They all are meant to preserve some aspects of the entity to

be simplified.
The rationale for the enterprise of simplification is what may be

termed the "simplification strategy'. The essence of this strategy is

2901
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the ability to take advantage of a simpler entity [due to feature 1)],
whose manipulation is easier, yet yields valid conclusions pertaining
to the original entity [due to feature 2)]. Thus, a simplification
could enable us to use the simplification strategy towards a solution
of our problem.

In order to bhe able to deal uniformly with the diverse manifesta-
tions of simplifications in a variety of contexts, it is necessary to
formalize the conceptual similarity described by features 1) and 2)
above. A formal definition is required to capture these intuitive
features, so as to allow us to derive and recognize a broad range of
simplification instances by an assignment of the appropriate semantics.
In particular, this would provide us a uniform conceptual framework
for treating simplifications of deterministic systems and stochastic
ones alike.

We proceed to propose such a formalism in the sequel.

B.1 Simplification Predicates

Our discussion employs predicate-like notation similar to [Fol].
Assume that the following are given:
a) A set I of '"systems" (descriptions).

b) A family {WO}O of "aspect'" sets for each element in

€

""'systems''.
¢) A set C of "complexity" functions for "systems'l where ceC is

a function c:Z—tﬁKC and KC is a totally ordered set under an

order relation ”sc”.
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d) A set II of "preservation'" relations between "aspect" pairs in

- 3 1" 1"
Y oox WO . We write wl m wz if "aspect wl € Wo

(0,,0,) € 22 1 92 1

is "preserved" in the sense of we Il by "aspect" wz € WG
2

The terms cloaked in double quotes should be understood as
semantics free, although they were chosen sovas to be suggestive.
Instances of the cloaked terms are obtained by interpreting them in
some domain of application. Thus, an instance of '"systems' can be a
system of equations, a set of mathematical systems (see Appendix A), a
set of DEVSs (see Ch. 1), or a set of queuing networks. An instance of
"aspects' could be a particular set of solutions, behavioral frames
(see Ch., 1 and Ch. 2) and functions thereof (e.g. means, time averages

etc.).

The complexity functions are devised to capture quantifiable as
well as intuitive complexity notions; e.g. computational complexity of
algorithmic solutions, conceptual complexity of a mathematical system,

size of a queuing network etc. (See also Sec. B.3).

A "preservation' notion can range from outright equality to the
existence of a translation process from WO to WO (e.g. as formalized

1 2
by various morphisms in Ch. 1 and Ch. 3).

Various concepts of approximate preservation, e.g. allowing a
tolerance of an €-error such as in approximate morphisms (see [Z1]
Ch. XIII) and other relaxed versions of preservation (e.g. in mean
rather than in distribution), fall into the category of "preservation"

notions.
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An ordered pair (B,)\) € £2 is a. simplification over I relative to c,
if c()) ”sc” c¢(B). To stress this fact we shall also write Bfa>x .
Following [Z3] we term B the base model, and X the lumped model of the
simplification 8F3>A-

Next, a simplificafion procedure over L is a finite chain of pairs
(Bl,xl), (Al,kz),..., (An_l,An) over Zz,such that Bﬂ~é>kn is a simplifi-

cation for some c€ C. In this case we write Bf;g-xlkﬂ>...k—>xn.

A simplification procedure merely decomposes a simplification
operation into a chain of successive stages, each of which may be re-
garded as an "intermediate simplification'. Simplification procedures
simplify the analysis of complex formal simplifications. For if a
simplification can be broken down into a composition representation in
terms of successive application of "elementary simplifications', then

its analysis reduces to the examination of the "easier'" simplification

effect that is brought about in each stage. Thus, simplification pro-
cedures provide a means for "simplifying simplifications'. An example
of a simplification procedure is described in Sec. 5.3 of Ch. 5.

Let us define a simplification predicate S on sets of the form

U (B, IxCx (Y, x ¥,)xIl by
(B,A) €52 8

S((B,A),C,(WB,¢X),H) = 'true' iff wsw wk under BFEvA; (that is, iff the

"aspect" wee ¥ is w-'"preserved" by the "aspect" wke ¥, under the

B A

simplification (B,\) relative to the 'complexity'" notion c).

In this case we say that the simplification Br=2 is valid in the

"aspect'" pair (we’wk) under the ''preservation' notion .
Simplification predicates enable us to make statements about

simplifications in a formal manner. They also embody our intuitive
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requirements which were preimposed at the outset on any formalism for
simplifications. The complexity reduction idea is obviously captured
by the "complexity' function concept; the preservation idea is built

into the concept of ''preservation' relations.

B.2 Simplification Problems and Their Solutions

A simplification problem SP is stated in terms of a set of
simplification predicates to be evaluated over a simplification problem

domain D(SP) such that D(SP) ¢ U {(B,A)} xCx(¥ xy )xI ,
(8,1) € 52 B

Some of the frequently encountered simplification problems can be
formulated as follows:
SP1: Given a simplification B* FC—*"“‘)\*, characterize all "aspect" pairs

(ws,wx)e \PB*XWA* and '"preservation'" relations wé& I, such that
SC(B*,A*),c*, (Vg,¥y),m) = "true'.

The problem domain of SP1 is D(SP1) = {(B*,A*) }X{c*}X(‘PB*X‘P}\*)XH.
Intuitively, SPl1 is tantamount to taking a particular simplification
B* *E*o A* and asking: what "aspects'" are 'preserved" by it, and in what
sensAe of preservation? More simply, the problem is to find the

preservation scope of B* f(":; A%,

SP2: Given a subset of '"systems' pairs I'C 22, a collection of "aspect"

pairs {(\Dg,w;)}(s,)\)e o where (wg,w;\)eysx \PA’ and a preservation

relation w* €l - characterize all simplifications Br—év-x over T,

such that S((B,A),c,(tpg,w;),n*) = "true'.

The problem domain of SP2 is D(SP2) = U  {(B,A) IxCx{(y*,p*) Ix{w*}.
(B,\) €T o
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Intuitively, SP2 is tantamount to taking a set of prospective simplifi-
cations, then choosing an "aspect' pair for each and a 'preservation"
notion, and asking: what simplifications would be valid in their
respective "aspect' pair, under the predetermined '"preservation
relation, and relative to what '"complexity'" criteria? In other words,
we wish to find out the validity scope of our prospective simplifica-

tions and the scope of complexity reduction achieved by them.

A solution SSP of a simplification problem SP is a triple
SSP = <'assertion‘, 'proof!', ‘algorithm;> where
1. 'assertion' is a statement asserting the scope of truth of
a simplification predicaté S when evaluated over D(SP).
2. ‘'proof' is a proof of correctness for 'assertion'.
3. 'algorithm' is a finite decision process that effectively
evaluates the simplification predicate S for any argument in
D(sp).
The quotes cloaking the elements in SSP merely indicate that they are
generic. Usually, only 'assertion' and 'proof' need to be given,

whereas 'algorithm' often turns out to be implicit in the condition

set of 'assertion' (see Example B.4.3).
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B.3 Complexity Notions

Complexity notions, be they formal or intuitive, are used to
capture some aspect of difficulty presented to the investigator by
the entities under consideration. Formally, a complexity notion for
a set of entities I is represented by a complexity function c:2—4>Kc,
where Kc is a totally ordered set under some order relation <.
€, the

This definition ensures that for any two entities o,,0

1,

associated complexities c(cl) and c(oz) are comparable under S

2

When the complexity notion ¢ is quantifiable (that is, KC is a
subset of the reals), then the complexity function c will be referred to
as a complexity measure.

Our main interest ih the complexity concept will lie in its role
as a simplification criterion. Since simplifications are perceived as
complexity reducing maps among the entities under consideration,
examining the complexities of the prospective base and lumped models is
- a means of deciding whether or not they constitute a simplification
pair. Furthermore, if Kc has sufficient structure, say group structure,
then the same process would allow us to determine the extent of a
simplification, as well as to compare the complexity reduction effect
among simplification pairs.

We now proceed to discuss rather briefly some important classes of

complexity notions, both intuitive and quantifiable.

Cl) Conceptual Complexities:
Conceptual complexities have to do with the parsimony of syétem
specification. Two main components are involved: structural complexi-

ties and behavioral complexities.
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If, for example, the system is specified as a DEVS (see Ch. 1)
or an informal stochastic DEVS (see Ch. 2), then its structural
complexities reside in the size and nature of its state space, while
its behavioral complexities reflect the concéptual difficulty of the
rules that govern state transitions.

For probability spaces structural complexities are identified
with the size or detail level of the underlying sample space and
o-algebra. Deterministic system morphisms as well as stochastic ones
give rise to simplifications which are primarily structural complexity
reducing (see Chapters 1, 2 and 3).

For systems describable by networks of interacting components,
structural complexities can be derived from the topological complexity
of the associated graph (e.g. its size in terms of nodes and arcs).

In a queuing network, behavioral complexities involve the waiting
line discipline, rules of servicing and the method of customer
switching.

Conceptual complexities are probably the most important and
fundamental notions of complexity. While structural complexities are
relatively amenable to quantification, most behavioral complexities

remain intuitive notions.

C2) Analytical Complexities:

Analytical complexities bear a close relation to conceptual ones.
They have to do with analytical manipulations aimed at finding mathe-
matical solutions for the operating characteristics of a system. It
is obvious that analytical complexities are directly linked to

conceptual complexities, both structural and behavioral.
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In Queuing Theory we find that the analytical complexity (in
the intuitive sense) jumps tremendously when passing from single
queues to queuing networks. We also find that the equation systems
are analytically less complex for exponential servers as compared to
Erlangian ones, for FIFO queue discipline as compared to preemptive
resume, and for Bernulli switches as compared to non-Markovian ones.
If there are algorithmical solutions, then analytical complexities
may be quantified as ordinary computational complexities, i.e. as

measures of time and space required for finding such solutions.

C3) Simulation Complexities:

Simulation complexities are the analogue of:computational complexi-
ties when the algorithm is a simulation run of the system, (mainly a
stochastic one). Simulations of a stochastic system are used to derive
some information, when a complete analytical solution is not within our
reach. Simulation complexities are inherently programming oriented and
fully quantifiable. They measure computer resources in terms of CPU
time and memory storage required to simulate a system under some
stopping rule. For stochastic systems, one simulates sample histories
(realizations) using random number generators. For such cases, the
resources required for a run become random functions of the sample
histories to be simulated. When these random functions are measurable,
one is typically interested in the respective expectations and variances,
as they project the average resources and the fluctuations about it,
to result from repeated simulation runs. Some examples of simulation
complexity measures of stochastic discrete event systems (specifically,

queuing networks) may be found in Sec. 5.4 of Ch. 5.
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In general, different complexity notions need not be consistent in
the sense that their behavior could involve opposing monotoneity trends.
For example, if an Erlangian queuing network admits of a reduction to
an exponential network, then this would decrease the behavioral and
analytical complexities. bn the other hand, the structural complexity
would increase considerably, as we add more nodes and arcs. Similar
phenomena are pointed out in [Z5] in the‘domain of structured functions
(abstractions of networks).

The choice of a complexity notion is up to the user, and it varies
from situation to situation. Therefore, a simplification process as

guided by complexity criteria is really in the eye of the beholder.

B.4 Examples

In this section we further exemplify instances of simplifications

and demonstrate how our formalism works.

Example B.4.1

For deterministic systems such as mathematical systems, iterative
specifications (see Appendix A) and DEVSs or DEVNs (see Ch. 1), the
set of "systems'" is the corresponding set of state-systems while
"aspects'" are formalized as behavioral frames. The main vehicle for
simplifications over classes of such deterministic systems is»the
morphism concept (see ibid.). A morphism (g,h,k) has inherent simpli-
fication properties of ''complexity'" reduction, and the '"'aspect preser-
vation" effect is manifested by the existence of a translation process

via h and k between the structure and behavior, respectively, of
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the base and lumped models. For a more detailed discussion of the
simplification effect of morphisms, the reader is referred to Appendix
A. Observe that in a hierarchy of morphisms, the more specialized

the morphism, the smaller the simplification effect. As we specialize
h from a mere ﬁorphism to a homomorphism and an isomorphism, the struc-
tural modification of the morphic preimage to its morphic image is
reduced, the gradient of structural complexities declines, and we can
expect to preserve more behavioral frames.

O

Example B.4.2

Simplifications of stochastic systems such as stochastic DEVSs
(see Ch. 2) follow the basic pattern of Example B.4.1, subject to some
modifications.

The set of '"systems'" is composed of probability spaces. These
are usually coordinate probability spaces that represent informal
descriptions of stochastic systems. The "aspects' set consists of
behavioral frames formalized as stochastic processes (see Ch. 2).
Stochastic simplifications are identified with the existence of a
stochastic morphism H defined as a variant of the measure preserving
transformation concept (see Ch. 3). The simplification effect of
a stochastic morphism is analogous to its deterministic counterpart.
"Complexity' reduction and '"preservation'" are attained by lumping
sample points and coarsening the base model's c-algebra in a measure

preserving manner. The reader is referred to Ch. 3 for more details.
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Example B.4.3

In this example, we exemplify how our proposed formalism works
in a queuing-theoretic context.

Our set of "systems" is the class of Jackson queuing networks
(described in Ch. 4) in their coordinate probability space represen-

tation (see Ch. 2).

The '"'aspects' set of a '"system'" is the set of all stochastic
processes over the associated'probabilipy space. Define a '"complexity"

notion c* as the size of the networks, say the sum of nodes and arcs.

The '"preservation'" notion 7* of any "aspect' pair (wl,wz)e WO X To is
1 2

defined as distribution equivalence of ¢1 and wz (i.e. as the equality

F. = F, of their families of finite dimensional distributions).

LSES

Next we focus on "aspect'" pairs (wi,w;)'where w; is the total
service time sampled by an arbitrary customer, in the network ;-
Let us formulate an informal simplification problem as follows:
informal SP: 'Characterize all A-simplifications over the class of
Jackson networks (a A-simplification of a queuing network removes
all arcs among the nodes, and therefore is a simplification relative
to c*), such that the total time service time sampled by an arbitrary
customer in the network is preserved in distribution."

The formal version of SP runs as follows:
formal SP{ "Characterize all A-simplifications (B,A) over the class of

Jackson networks such that S((B,X),c*,(wg,w;),w*) = 'true'."

Notice that the 'preservation of total service time'" alluded to

in the informal SP really refers to an '"aspect" pair (total service
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time of arbitrary customer in B; total service time of arbitrary
customer in A). Actually the former is an informal shorthand for

the latter. This point is not altogether trivial. For example, if

in B the waiting time distribution of arbitrary customer is the same

as the transit time distribution of arbitrary customer in A such that
c(k)“sb" c(B), then our formalism would recognize BF2>A to be a valid
simplification in the "aspect" pair (waiting time, transit time).

There is no intuitive reason why ''aspect' pairs, whose components do not
play the same intuitive role, should not be regarded as being
"preserved" under sdme otherwise intuitive simplification.

The domain of SP is D(SP) = U {(B,A) Ix{c*Ix{ (p*,p*)Ix{n*} where
(8,0 €T B

I' is the set of all A-simplifications over Jackson networks.
A solution of SP is based on Theorem 5.2.4 in Ch. 5.
Define SSP = <'assertion', 'proof"', 'algorithm'> where
1. ‘'assertion' = "a A-simplification (B,2), whose lumped model
is obtained according to Theorem 5.2.4, satisfies
S((B,A),C*,(wg,w;),ﬂ*) = 'true' iff
every node n in the base model B satisfies the condition

q. o = const."
nn

(The quantities a, and o are structural parameters of a
Jackson network, i.e. part of its description.)

2. 'proof' is given in Theorem 5.2.4.

3. ‘'algorithm' amounts simply to checking the condition
q.0, = const. directly from the description of B8, and verifying.
whether it holds or not. This clearly is a finite decision
process that allows us to decide effectively the validity of

S for each simplification BGE¢>A in T. 0
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Further examples of simplifications over the class of Jackson

networks may be found in Sections 5.1 - 5.3 of Chapter 5.



APPENDIX C

SOME STOCHASTIC PROCESSES BACKGROUND

C.0 Introduction

This appendix reviews some basic facts pertaining to Markov
processes, birth-and-death equations and stochastic equilibrium.
Relevant material can be found in standard references such as [Cil]

(see Ch. 8), [D1] (see Ch. VI) and [F2] (see Ch. X).

C.1 Markov Processes

If X and {Ye: 6 €0} are random variables over a probability space
S = (Q,A,P) and E(|X]|) < =, then E(X]Ye, 6 €0) will denote the
conditional expectation of X with respect to o({Ye: eere})+ (see [D1],
Ch. I). If AeA, then P(AIYe, 0e0) will denote the conditional
probability of A with respect to c({Ye: 6 €0}) (see ibid.). Conditional
probabilities are special cases of conditional expectations when
X = I, is the indicator function of A.

A

In the sequel, 0 will denote a subset of the real line.

Definition C.1.1

An n-dimensional stochastic process Y = {Ye}eeo over a probability
space S = (Q,A,P) is called a Markov process if whenever s < t < u,
the equality

(A) P(Y, e BIYe, 8 e(s,t]) = P(Y € BIYt)

.[-
the o-algebra generated by {Ye}eee'

305
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holds almost surely for every Borel set B(&Bn, where B" is the Borel

o-algebra on the n-dimensional Euclidean spaceﬂft td

An equivalent statement of (A), called the Markov property (see
[D1] p. 81), asserts that if Y is a Markov process, then for every
random variable Z measurable on o({Yez 6 = t}) with E(]Z]) < =,

(B) E(Z|Ye: 6 <t) = E(Z]Yt) almost surely.

In particular, if Z = I, and Te 0({Ye: 6 < t}), then almost surely

A
(cf. [C1] p. 136)

©) P(Alr,Ye,e <t) = P(AIYt)

where T above should be understood as IF'

We now exhibit a sufficient condition that guarantees a stochastic

process to be a Markov process.

Theorem C.1.1

Let ¥ = {Ye}eee be an n-dimensional stochastic process over a

probability space S = (Q,A,P). Suppose that Y satisfies a stochastic

equation of the form

a) Yu = f(Ys’{Zt}s<tsu) for any s < u
where {Z_1} is a set of random variables over S, such
t s<t<u
that

b) o({Zt: s <t < u}) is independent of O({Ye: 5 <s})

and f(YS,{Zt} ) is measurable.

s<t<u

Then Y is a Markov process.
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Proof

See e.g. [S1], Ch. 3 pp. 73-75. a

We remark in passing that the term '"Markov jump process' is some-

times used, thus reflecting the fact that under mild regularity condi-
tions, the sample functions may be chosen to be step functions almost

surely (see [D1] p. 246).

For a Markov process Y = {Ye}eee with a denumerable state space,

Definition C.1.1 may be restated in terms of "ordinary' probabilities
as follows:
D) Pr(y, = vnlye; vi, 1 <1 <n-1) = Pr(y, = "n'Ye = v ;)
n i n n-1

for any indices 6, < 62 Seel< B g < o and states

Vi 1 <i <£n, and provided Pr(Y6 = Vs, 1 <1 <n-1) > 0.
i

The right hand side of (D) is called a (Markov) transition function

and denoted p (6 ,0_). To simplify matters we assume the
Vo1V n-1’"n

transition functions to be always defined.

We now restrict the discussion to Markov processes Y = {Ye}eee

with a denumerable state space R(Y), where 0 = [O,w) and Y has
stationary transition probabilities (i.e. the transition functions

Pv1v2(61’62) depend only on VsV, and t = 62—61). In this case, the

latter reduce to P, (t), and the transition matrix consisting of
172

transition functions becomes P (t) 4 [pv v (t)]. In particular, P(t)
172
satisfies the Chapman-Kolmogorov equations.
(E) P(s + t) = P(s)P(t), Vs,teo0 .

If one assumes P(t)ij:;8+1 (identity matrix), then ﬁ(O) exists as a
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right derivative (in t), but may have infinite components (see [Cl]
p. 126). However, under certain regularity conditions (finiteness of
ﬁvv(O), veR(Y)), P(t) is guaranteed to have continuous derivatives
everywhere (see [Cl] p. 130).

In this case, the Kolmogorov forward and backward equations can
be derived from (E) by differentiating (E) with respect to s and t
respectively and setting each variable to 0 (see [D1] p. 240).

With dots denoting derivatives in t, we obtain respectively

(F.1) P(t) = P(t)G subject to P(0) = I

I

i
1)

(F.2) P(t) = GP(t) subject to P(0)
where G & P(0) is called the infinitesimal generator matrizx

of ¥ (see [F2] p. 456).

Moreover, the boundedness of the €,y = Sy v e R(Y), guarantees (see

[F1] p. 475) that both (F.1) and (F.2) have a minimal solution P(t)
which is honest (i.e. its rows are probability vectors). The quanti-
ties c, are extremely important, as they hold the key to existencé and
uniqueness of an honest transition matrix for a Markov process. Each <,
is interpreted as the rate of transition from state v, and by station-
arity of the transition probaﬁilities, this rate does not depend on t.
If the c, are unbounded, the minimal solution (which always exists) may
not be honest, and the defect is interpreted as probabilities due to
infinite number of jumps in finite intervals (see [F2] p. 329). In this
case, the solution for P(t) is not unique. However, with bounded:cv,
the Markov process y is guaranteed to be comservative, i.e. to have
almost surely a finite number of jumps in each finite interval, énd vice

versa. In this case, one can show by direct calculation that, say the
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forward equation (F.1), is equivalent to the system of integral equations

(see [F2] p. 484) .

-c.t -c_(t-x)

_ p\

(@) P, () =8, e *+ HGZR:(V) fp)\u(x)curwe v g
0

A,veR(Y).

Here, va is Kronecker's delta and each ruv is the conditional probabil-

ity that a jump will take place from state p to state v, given that

a jump has taken place from state u.

Furthermore, differentiating (G) yields

-C if A =v

>\,
Py, (0) =
ceru, 1f A EV

It is known that the minimal solution may be obtained as a point-

wise limit of the sequence {P(n)(t)}:=0 defined recursively by

A ~c,t
(H.1) pig)(t) = 5, e A
. . t
(n+1) A__ "C)\t+ (n) -C (t—.x)
(H.2) Pyy (t) 6)\\)6 uezR:(V)O Py (x)curwe v dx

(see [F2] p. 485 for a derivation in the Laplace-Stieltjes
transform domain).
The treatment for the backward equations is analogous, except
that the backward equations might have solutions that do not satisfy

the forward equation (see [F1] p. 478).
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C.2 Absolute Probabilities of Markov Processes

Although the development of Markov Processes is traditionally
carried out via their transition structure, in applications one is
mainly interested in the trajectories of the state absolute probabili-
ties.

Formally, we define

Definition C.2.1

Let Y = {Ye}eee be a stochastic process with a denumerable state
space R(Y). The probability vector y(6) of Y, is a vector whose v-th
coordinate, v €eR(Y),is given by

yv(e) A Pr(Ye= v).

The probability vector y(0) is called the initial condition of VY.
The function y(8) (in 6) is called the probability trajectory of Y

and yv(e) is called the probability trajectory of state v. (|

The relation between the transition structure given by P(t) and
the probability trajectory y(t) is such that the former determines
the latter up to an initial condition y(0). In other words

(A) y(t) = y(0)P(t).

If P(t) is everywhere differentiable in t, then

(B) y(t) = y(0)P(t)

Thus, premultiplication by y(0) of the Kolmogorov forward equation

(F.1) in Sec. C.1 gives us
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€©) y(t) = y(t)G
which we call the forward absolute probability equatioms.
The backward equations are similarly obtained by postmultiplying (F.2)
in Sec. C.1 by the transpose of y(0).
We now give conditions under which Y has almost surely finite
number of jumps in each finite interval. In this case, equations (C)
above and (F.1) in Sec. C.1 are equivalent in the sense of’existence

and uniqueness of respective solutions P(t) and y(t) for them.

Theorem C.2.1

Let ¥ = {Y(t)}tzo be a Markov process with stationary transi-

tion probabilities and almost surely finite number of jumps in every

finite interval. Let y(0) be an initial condition for Y, and G its
infinitesimal generator matrix. Consider the equation

(1) G(t) = u(t)G subject to u(0) = y(0)
Then (1) has a unique probability solution u(t) which is precisely the
probability trajectory y(t) of Y. Moreover, y(t) is obtained as a
minimal solution of (1) and each coordinate yv(t) in y(t) satisfies the

integral equation

t

-c_t
= v,
(2) y,(t) =y (0)e u G%Im Of y,(0¢ ¥ e

-c_(t-x)
v dx

veR(Y).

Proof

See [BM1], Lemma 2.1.
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An important class of Markov processes with denumerable state
space is obtained, when state transitions are restricted to adjacent

states in the sense of

Definition C.2.2

Let ¥ = {Y .}  , be an m-dimensional Markov process with
R(Y) = {(nl,...,nm): n, is an integer}. Let e; s 1 <1 <mbe the
m-dimensional unit vector with 1 in the i-th coordinate. Then two

states v,u € R(Y) are called adjacent if either of the following holds:

a) v u o+ ei for some 1 < i <m
b) v =y - e, for some 1 <i <m

c) vVEoutoe, - ej for some 1 < i,j £ m O

Thus, adjacent states are 'meighboring' lattice points. We now

define formally the restrictions on state transitions by

Definition C.2.3

Let Y = {Yt}tzo be as in definition C.2.2. We say that ¥ is an
m-dimensional birth-and-death process, if whenever u and v are not
adjacent states, we have
a) ﬁvu(t,t) = ﬁuv(t,t) =0, t20 (derivative with repsect to
the second argument)

In this case, Equation (C) will be referred to as the birth-and-death

equation of Y.
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Observe that for m = 1, Definition C.2.3 properly reduces to the
ordinary definition of (l-dimensional) birth-and-death processes (see

e.g. [F1] p. 454).

C.3 Equilibrium Concepts

When dealing with stochastic processes, one is often interested in
its equilibrium properties. Intuitively, an equilibrium situation may
be attained asymptotically - when the process has been evolving for a
"long time'", or immediately - if started with the appropriate initial

condition. Formally, we define

Definition C.3.1

Let ¥ = {Ye}eee be a stochastic process with a denumberable

state space R(Y). Let y(8) be a probability vector of Ye.
Then
a) We say that Y is in equilibrium (or in steady state) under
y°, if y(8) is time invariant in the sense of
y(0) = y° = y(8) =y°, Veeo.
In this case, y° is called an equi librium vector of Y.
b) 1f yo is an equilibrium vector of Y such that for any choice
of an initial condition y(0), we have

0 . .
y(t)—==Yy (pointwise convergence),
t—t>

then yo is called a long run vector of Y. 0

Although, in general, Y may have several equilibrium vectors, it

can have at most one long run vector. In this case, the long run vector
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becomes the unique equilibrium vector of Y.

Statistical equilibrium is a situation whereby the probabilistic
behavior of Y (in terms of probability trajectories) does not fluctuate
in time. If the process evolves asymptotically into equilibrium, then
in general, the equilibrium situation evolved into depends on the initial
condition. However, the existence of a long run vector guarantees Y
to evolve asymptotically into a unique equilibrium situation, regardless
of initial conditions.

We point out in passing that an equilibrium vector of a Markov
process is a long run vector, whenever the recurrent part of the
state space is irreducible (see [Cil] p. 264).

For Markov processes with denumerable state space, we have the
following necessary and sufficient condition for a probability vector

to be an equilibrium vector.

Theorem C. 3.1

Let Y =’{Yt}t>0 be a Markov process whose forward absolute

probability equation is

(1) y(t) = y(t)G.
Then y° is an equilibrium vector of Y iff yO is a probability vector
satisfying

2) 0=y,

_Proof

By Definition C.3.1, y° is an equilibrium vector of Y iff
yo satisfies (1) such that yo(t) = yo for all t > 0.

But yO(t) = y° iff y°(t)G = ¥°(t) = 0, i.e. iff (2) holds.
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