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Summary. Log-linear models have been shown to be useful for smoothing contingency tables when cat-
egorical outcomes are subject to nonignorable nonresponse. A log-linear model can be fit to an augmented
data table that includes an indicator variable designating whether subjects are respondents or nonrespon-
dents. Maximum likelihood estimates calculated from the augmented data table are known to suffer from
instability due to boundary solutions. Park and Brown (1994, Journal of the American Statistical Associa-
tion 89, 44–52) and Park (1998, Biometrics 54, 1579–1590) developed empirical Bayes models that tend to
smooth estimates away from the boundary. In those approaches, estimates for nonrespondents were calcu-
lated using an EM algorithm by maximizing a posterior distribution. As an extension of their earlier work,
we develop a Bayesian hierarchical model that incorporates a log-linear model in the prior specification.
In addition, due to uncertainty in the variable selection process associated with just one log-linear model,
we simultaneously consider a finite number of models using a stochastic search variable selection (SSVS)
procedure due to George and McCulloch (1997, Statistica Sinica 7, 339–373). The integration of the SSVS
procedure into a Markov chain Monte Carlo (MCMC) sampler is straightforward, and leads to estimates
of cell frequencies for the nonrespondents that are averages resulting from several log-linear models. The
methods are demonstrated with a data example involving serum creatinine levels of patients who survived
renal transplants. A simulation study is conducted to investigate properties of the model.
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1. Introduction
When categorical data are collected, it is possible that there
will be missing observations with respect to the response vari-
able. To make meaningful inference, it is necessary to adjust
for nonresponse by allocating the nonrespondents to the cat-
egories of the response variable. For example, the data in
Table 1, reported by Sung et al. (1998) and later analyzed
by Park (1998), are taken from a clinical trial designed to
investigate chronic renal allograft dysfunction in renal trans-
plant patients. Data were available from 109 renal transplant
patients who survived more than 4 years after transplant.

The table is cross-classified according to the three variables
Gender, Year 1, and Year 4. The variables Year 1 and Year 4
represent serum creatinine levels at years 1 and 4, respectively.
After transplant, the serum creatinine levels are expected to
decrease over time, showing that the renal function improves.
If the creatinine levels do not decrease over time, then there
might be some possibility of kidney allograft failure. An es-
timate of the proportion of patients whose creatinine levels
are high (“High”) at Year 4 among those were low (“Low”)

at Year 1 could be a useful indicator for assessing the kidney
transplantation procedure.

The data table is incomplete, however, since data are miss-
ing on variable Year 4. If we regard Year 4 as the response,
note that the respondents are fully categorized with respect
to all variables, but nonrespondents are only partially cate-
gorized, since their serum creatinine levels are not known at
Year 4. If we can allocate the nonrespondents to the High and
Low categories of the response variable, the proportion of pa-
tients who are High at Year 4 among those who were Low at
Year 1 can be estimated.

Handling categorical data with nonresponse has been the
subject of much research activity. Nonresponse mechanisms
are called ignorable for likelihood-based inference when the
response mechanism is independent of the subject’s unob-
served response, and nonignorable when the probability of
being a nonrespondent depends on the unobserved response.
These terms for missing data mechanisms follow the conven-
tions established by Little and Rubin (1987). Many Bayesian
approaches for incomplete frequency tables have assumed
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Table 1
Clinical trial data for 109 renal transplant patients and
estimates based on nonignorable models M 1, M 2, M 3,

and M 4

Gender Year 1 Year 4
X1 X2 Y R Count yi+2 Estimates

1 1 1 1 1 0.90
1 1 2 1 2 1.82
1 2 1 1 4 4.26
1 2 2 1 5 5.19
2 1 1 1 11 10.94
2 1 2 1 4 4.11
2 2 1 1 10 9.95
2 2 2 1 25 24.56

1 1 1 2 ? 0.72
1 1 2 2 ? 1 0.61
1 2 1 2 ? 7.47
1 2 2 2 ? 12 4.17
2 1 1 2 ? 10.57
2 1 2 2 ? 14 3.33
2 2 1 2 ? 11.05
2 2 2 2 ? 20 9.03

Note: X1 = 1: Male, X1 = 2: Female, X2 = 1: High, X2 =
2: Low, Y = 1: High, Y = 2: Low, R = 1: Respondents, R = 2:
Nonrespondents yi+2 = Marginal totals for Year 4.

ignorable response mechanisms (see, for example, Kauf-
man and King, 1973; Basu and Pereira, 1983; Gunel, 1984;
Albert, 1985; Smith, Choi, and Gunel, 1985; Chiu and Se-
dransk, 1986). In a simulation study, Park and Brown (1994)
showed that it is important to decide whether the underlying
response mechanism is ignorable or nonignorable. Estimating
cell frequencies using the incorrect underlying model can pro-
duce large biases and mean square errors compared to using
the correct model.

In the case of nonignorable nonresponse mechanisms for
categorical data, Fay (1986) and Baker and Laird (1988) pro-
posed a class of log-linear models for which the data table
is augmented by a latent indicator variable that designates
whether subjects are respondents or nonrespondents. A log-
linear model is then fit to the augmented data table to ad-
just for nonresponse. Baker and Laird (1988), Conaway et al.
(1992), Chambers and Welsh (1993), and Park (1998) demon-
strated that maximum likelihood estimations (MLEs) based
on different nonignorable models can lead to unstable bound-
ary estimates. In addition, Conaway et al. (1992) discussed
issues of model selection and interpretation, along with the
effect of discarding nonresponses.

The issue of boundary problems under MLEs produces zero
estimates for some of the cells. As a result, the estimate of the
log-linear model parameter which represents the nonresponse
mechanism is undefined (−∞ or ∞). The explicit condition
for the existence of boundary solutions was given in Baker and
Laird (1988) and Park and Brown (1997). Park and Brown
(1994) demonstrated the instability of maximum likelihood
(ML) estimation by showing that a small shift of the non-
respondents can result in large changes in the MLEs of the
expected cell frequencies.

For full data problems, Bayesian hierarchical models for
categorical and generalized linear models have been pro-

posed and are well established (see, for example, Albert and
Chib, 1997). Following their approach, we develop a Bayesian
model for incomplete frequency tables with nonignorable non-
response. In our approach, problems related to estimation
and model selection are conveniently incorporated into the
Bayesian framework by adopting a hierarchical model with
a suitable prior specification. At the first prior, a log-linear
model is induced which, when combined with the likelihood,
tends to smooth estimates away from the boundary. At the
second prior, a Bayesian variable selection procedure, due to
George and McCulloch (1997), is introduced; it averages a fi-
nite number of models simultaneously, thereby reducing the
uncertainty of smoothing estimates towards just one log-linear
model.

Until now, most attempts at analyzing categorical data
with nonignorable nonresponse have relied on the EM algo-
rithm for estimation. We build on the ideas of Park (1998)
by developing a hierarchical Bayesian model that produces
posterior estimates of cell means using Markov chain Monte
Carlo (MCMC) simulation. By using MCMC, the uncertainty
in the unobserved data for nonrespondents is taken into ac-
count by generating the missing data at each iteration of the
simulation. Section 2 describes the likelihood and prior distri-
butions. In Section 3, the stochastic search variable selection
(SSVS) procedure is outlined. The conditional distributions
and methods needed for implementation of an MCMC sam-
pler are provided in Sections 4 and 5. In Section 6, the meth-
ods are illustrated with an analysis of the data presented in
Table 1. In Section 7, a detailed simulation study is presented
to investigate the properties of the proposed model. Section 8
is a discussion with some concluding remarks.

2. A Bayesian Model
A Bayesian probability model is developed for contingency
tables when the outcome is subject to nonignorable nonre-
sponse. The goal is to estimate cell means for which data
are missing so that nonrespondents can be allocated to the
categories of the response variable. This is accomplished by
expressing prior belief in a log-linear model where the data
table is augmented by a latent indicator variable that desig-
nates whether outcomes are associated with respondents or
nonrespondents. In addition, due to uncertainty in the model
selection process for smoothing the contingency table based
on a single log-linear model, the prior distribution includes
a variable selection procedure for considering a finite num-
ber of models simultaneously. This procedure is based on the
(SSVS) method developed by George and McCulloch (1997).

Due to the categorical nature of the problem being con-
sidered here, and in the context of a missing data problem,
the following notation and terms are defined. Denote by X =
(X1, X2 , . . . ,Xs) an s-dimensional explanatory variable that
is always observed and indexed by i = (i1, i2, . . . , is). Let Y
be the response variable, indexed by j, that may be missing,
and let R be a latent indicator variable that augments the
data table. The variable R is indexed by k and corresponds
with whether a subject is a respondent or a nonrespondent
(k = 1 corresponds to a response, and k = 2 corresponds to
no response). The levels (total number of categories) of Y and
X are denoted by J and I = I1 × · · · × Is , respectively. LetN =
(I × J × 2) be the total number of cells in the augmented
contingency table. As an example of this notation, see the
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data in Table 1. The presentation represents a familiar way
in which categorical data are coded and submitted to vari-
ous statistical software programs. Note that in this example,
I = (I1 × I2) = (2 × 2) and J = 2. In general, there can
be more than two explanatory variables, each with more than
two levels and, additionally, the response variable can have
more than two levels. Regarding the latent data R, a nonig-
norable model is defined to be a model that includes a Y -R in-
teraction term, since the probability of response is associated
with the outcome variable, and an ignorable model does not
contain a Y -R interaction term. This terminology follows the
framework established by Little and Rubin (1987) for missing
data mechanisms.

The model is developed in a Bayesian framework and is
comprised of a likelihood and a prior distribution. The ob-
served cell frequencies for the respondents for which k = 1,
denoted by yij1, are Poisson, such that the log of the Poisson
mean is ηij1,

yij1 | ηij1 ∼ Poisson(exp(ηij1)).

In the data example, the Poisson counts refer to the first 8
observations in Table 1 in which the data are fully catego-
rized. Conditional on marginal totals yi+2 summed over the
nonresponses, the unobserved cell frequencies for which k =
2, denoted by yij2, are multinomial

yi12, . . . , yiJ2 |
∑
j

yij2 = yi+2, πi12, . . . , πiJ2

∼ multinomial(yi+2;πi12, . . . , πiJ2)

under the usual constraints for multinomial sampling∑
j

πij2 = 1 and πij2 =
exp(ηij2)∑
j

exp(ηij2)
=

exp(ηij2)

yi+2
.

Note that the multinomial probabilities πij2 are expressed in
terms of ηij2. As shown in Table 1, the yij2 are not observed,
but the marginal totals yi+2 are known. In the data example
J = 2 and the yij2 are actually binomial at each level of i.

At the first prior, a log-linear model is induced by allowing
the log of expected cell frequencies ηijk over the entire table
to be normal

η |β,Σ ∼ N(Zβ,Σ) ,

where η is N × 1, β is p × 1, Σ is an N × N diagonal
covariance matrix, and Z is the N × p design matrix. The
covariance matrix Σ has only two parameters, σ2

1 and σ2
2, cor-

responding to k = 1 for the respondents and k = 2 for the
nonrespondents. If N 1 + N 2 = N with N 1 = N 2, then the
first N 1 diagonal elements of Σ are σ2

1, and the remaining N 2

diagonal elements are σ2
2. We parameterize Σ in this manner,

to reflect the prior belief that the variances, with σ2
1 corre-

sponding to the respondents and σ2
2 for the nonrespondents,

may not be equal. Where convenient, η will be expressed in
terms of two individual independent components for respon-
dents and nonrespondents

η1 |β, σ2
1 ∼ N

(
Z1β, σ

2
1I
)

and η2 |β, σ2
2 ∼ N

(
Z2β, σ

2
2I
)

where

Z =

(
Z1

Z2

)

and I is the N 1 × N 1 (or N 2 × N 2) identity matrix.
As a consequence of missing data on yij2, a feature of this

model that distinguishes it from other Bayesian models is that
yij2 is designated as likelihood, but it is not observed. In the
posterior, it will be treated as other unknown parameters and
estimated by MCMC simulation. This suggests that it may
be suitable to entertain a prior for yij2. By not assigning a
prior, a discrete uniform prior over all(

yi+2 + J − 1

yi+2

)

combinations of (yi12, . . . , yiJ2) is implied. We expect that this
model could be sensitive to more informative priors, especially
in the presence of missing data. If information were available
regarding the missing data mechanism, an informative prior
could be used.

At the second stage, the hyperparameters β, σ2
1 and σ2

2 are
assigned vague, but proper, priors. The regression parameters
β are modeled as p-variate normal

β ∼ Np

(
0, 106Ip

)
.

The value 106 provides for a sufficiently flat and vague prior,
while retaining the properties of a proper probability model.
The parameters σ2

1 and σ2
2 are modeled as conjugate inverse

gamma priors

σ2
1 ∼ Inv-Gamma(ν1/2, ν1λ1/2) and

σ2
2 ∼ Inv-Gamma(ν2/2, ν2λ2/2)

where ν1, λ1, ν2, and λ2 are known and fixed in advance.

3. A Bayesian Variable Selection Procedure
The prior for β can be modified to accommodate a Bayesian
variable selection procedure for entertaining a finite number
of log-linear models simultaneously. Under the SSVS method
developed by George and McCulloch (1997), additional bi-
nary latent variables can be included as part of the MCMC
simulation, such that, as the simulation progresses, the most
promising models are visited most frequently. In particular, β
is modeled as p-variate normal

β | γ ∼ Np

(
0,D2

γ

)
,

where Dγ is a diagonal matrix. Let βl, l = 1, . . . , p be the
independent components of β and let m = 1, . . . ,M ≤ p be
the indexed subset of {1, 2, . . . , p} for which testing βm = 0
is of interest. The vector γ is a sequence of ones and zeroes
of length M. Then, the diagonal elements of Dγ are, say, 103,
which represents a vague prior when βl = 0 is not being tested,
and [(1 − γm)τm + γmcmτm] when βm = 0 is being tested.
The idea behind this strategy is that βm|γm can be viewed
as a mixture of two normals

(1 − γm)N
(
0, τ 2

m

)
+ γm N

(
0, (cmτm)2

)
such that the real scalar τm is chosen small, and the real scalar
cm is chosen large. Figure 1 provides a visual interpretation
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Figure 1. The two normals intersect at δ.

of this strategy. When γm = 1, the regression coefficient βm

(the prior shown by the dashed line) should be included in
the model, and when γm = 0, the regression coefficient βm

(the prior shown by the solid line) should be excluded from
the model. Note that the dimension of the parameter space p
does not change when it is determined that certain elements
of β are sufficiently close to zero. This is an important con-
sideration when implementing MCMC sampling.

George and McCulloch (1997) present guidelines and dis-
cuss criteria for choosing τm and cm based on Figure 1. The
first step is to specify a value δm such that |βm| < δm.
The value δm represents an a priori significance level. The
second step is to choose a value cm in the range 20–100.
Empirical evidence has shown that this range of values for
cm tends to work well when implementing MCMC. Finally,
τm = [2c2mlog(cm)/(c2m − 1)]−0.5 δm can be calculated using
the relationship shown in Figure 1. We have found that re-
sults based on SSVS can be sensitive to choices of δm and cm .
However, this is not unusual, for example, in much the same
way as variable selection procedures in classical data analysis
are sensitive to commonly used specified significance levels,
such as α = 0.05 or α = 0.15.

Alternative methods for model selection exist and have
been considered. Reversible jump MCMC is a viable alter-
native for the present model and is discussed at great length
in Green (1995). In addition, Richardson and Green (1997)
explain in great detail and provide many excellent examples
of how reversible jump MCMC allows a complete change of
parameter dimension in Bayesian model selection and mix-
ture modeling. The main reason for our choice of SSVS is
based on its compatibility and natural incorporation into the
model.

As an illustration of SSVS, we may be interested in fitting
a model to the data in Table 1, which can be written using
standard notation in categorical data analysis as

(X1X2Y, X1R,X2R, Y R),

or, equivalently, by including the main effects, some two-way
interactions, and one three-way interaction as

ηijk = µ+ λX1
i1

+ λX2
i2

+ λYj + λRk

+λX1X2
i1i2

+ λX1Y
i1j

+ λX2Y
i2j

+ λX1R
i1k

+ λX2R
i2k

+λY R
jk + λX1X2Y

i1i2j
,

where, in our notation, βT = (µ, λX1
i1
, λX2

i2
, . . . . . .) denotes the

model parameters. But there is uncertainty in considering just
one model, so we may be interested in fitting several models si-
multaneously. Suppose we are interested in the following four
models

M1 (X1X2Y, X1R, X2R, Y R)

M2 (X1X2Y, X1R, Y R)

M3 (X1X2Y, X2R, Y R)

M4 (X1X2Y, Y R).

Note that these models are not nested. Then we can define a
vector, say, γ = (γ1, γ2, . . . , γM ), where γm , m = 1, . . . ,M is
defined

γm =

{
1 include parameter

0 exclude parameter

so that γ is associated with the four models by the relation-
ship

M1 (X1X2Y, X1R, X2R, Y R) γ = (11)

M2 (X1X2Y, X1R, Y R) γ = (10)

M3 (X1X2Y, X2R, Y R) γ = (01)

M4 (X1X2Y, Y R) γ = (00).

Then, as part of the MCMC simulation, a sequence is gener-
ated

γ1, γ2, γ3 . . . . . .

such that the most promising models are visited most fre-
quently. Note that this is a sequence of four nonignorable
models, since each contains the Y -R interaction term. In ad-
dition, in this example, M = 2 because only two terms are
being considered for inclusion or exclusion.

At the third and final stage of the hierarchical model, the
γm’s are modeled as independent Bernoulli priors

p(γ) =

M∏
m=1

wγm
m (1 − wm)(1−γm) .

In practice, one convenient parameterization is to let wm =
0.5, resulting in p(γ) = (0.5)M . This prior gives no a priori
preference for inclusion or exclusion of βm. Although some in-
terest is associated with estimates for β, σ2

1, σ
2
2, and γ, the real

focus of this model is on estimating the cell means for which
data are missing, so that nonrespondents can be allocated to
the categories of the response variable Y.
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4. Conditional Distributions for MCMC Sampling
The joint posterior distribution of all unknown parameters
including the unobserved yij2 can be written as

p(η,β, σ2
1 , σ

2
2 , γ, yij2 | yij1, yi+2)

∝
∏

i

∏
j

exp [−eηij1 ] (exp(ηij1))
yij1
∏

i

∏
j

π
yij2
ij2

yij2!

|Σ|−1/2
∣∣D2

γ

∣∣−1/2

× exp
{
−1

2

[
(η − Zβ)TΣ−1(η − Zβ) + βTD−2

γ β
]}

(
σ2

1

)−(ν1/2 + 1)
exp

[
−ν1λ1

2σ2

] (
σ2

2

)−(ν2/2 + 1)
exp

[
−ν2λ2

2σ2

]
. (1)

The first line in (1) consists of the Poisson and multinomial
likelihoods. The second line contains the normal priors for η
and β. The third line is a product of the inverse gamma priors
for σ2

1 and σ2
2, respectively. The constant prior for γ, outlined

in Section 2, is used and therefore omitted. Based on (1), we
now present various conditional distributions to implement
MCMC sampling. The conditional for β is normal

β |η, σ2
1 , σ

2
2 , γ

∼ Np

((
ZTΣ−1Z +D−2

γ

)−1
ZTΣ−1η,

(
ZTΣ−1Z +D−2

γ

)−1)
.

The conditionals for σ2
1 and σ2

2 are both inverse gammas

σ2
1 |η1,β ∼ Inv-Gamma

×
(
N1 + ν1

2
,
ν1λ1 + (η1 − Z1β)T (η1 − Z1β)

2

)
,

σ2
2 |η2,β ∼ Inv-Gamma

×
(
N2 + ν2

2
,
ν2λ2 + (η2 − Z2β)T (η2 − Z2β)

2

)
.

The distribution for (yi12, . . . , yiJ2), conditional on yi+2 being
observed, is multinomial

yi12, . . . , yiJ2

∣∣∣∣ ∑
j

yij2 = yi+2;πi12, . . . , πiJ2

∼ multinomial(yi+2;πi12, . . . , πiJ2)

where πij2 can be expressed in terms of ηij2, as shown in
Section 2. The conditionals for γm, m = 1, . . . ,M are inde-
pendent Bernoullis

γm |βm ∼ Bernoulli(pm),

which by application of Bayes’ formula

pm = P (γm = 1 |βm)

=
P (βm | γm = 1)P (γm = 1)

P (βm | γm = 1)P (γm = 1) + P (βm | γm = 0)P (γm = 0)

=

1

cm
exp

(
− β2

m

2(cmτm)2

)
1

cm
exp

(
− β2

m

2(cmτm)2

)
+ exp

(
− β2

m

2τ 2
m

) .

All the conditionals except η are known distributions and
can be sampled from directly. The focus of the next section is
devoted to sampling from η.

5. Sampling from the Conditional of η
In short, we use an independence sampler with a normal can-
didate to sample from the conditional of η. (See, for example,
Tierney (1994) for details concerning the independence sam-
pler.) Some asymptotic results are provided to justify this
choice. The parameter η appears in the posterior distribu-
tion (1) as a function of the Poisson likelihood for yij1, the
multinomial likelihood for yij2, which can be viewed as latent
data, and in the normal prior. The conditional for η depends
on β, σ2

k, and the entire data vector, say, y = (yij1, yij2).
Since this conditional depends on the entire data vector, we
can think in terms of a full data problem, and the conditional
can be sampled from without regard to any missing data. In
addition, as far as estimation of η is concerned, Poisson and
multinomial sampling are equivalent, so the multinomial por-
tion can be treated as Poisson and combined into a single
likelihood. As a result, the conditional distribution for η for
a single observation ηijk is

p
(
ηijk

∣∣β, σ2
k, yijk

)
∝ exp

[
− 1

2σ2
k

(
ηijk − zTjkβ

)2
+ yijkηijk − eηijk

]
, (2)

where zTijk is the ijkth row of Z. Inspection of the conditional
distribution in (2), however, reveals that it is a product of two
separate distributions. The first part resembles the kernel of a
normal density with mean zTijkβ and variance σ2

k, and the sec-
ond part resembles the kernel of a one-parameter log-gamma
density indexed by yijk. Thus, we expect the conditional in
(2) to be quite close to normal.

The properties of the log-gamma density are well under-
stood (see, for example, Lawless (1982)) and including the
normalizing constant, it is

p
(
ηijk | yijk

)
=

exp
(
yijkηijk − eηijk

)
Γ(yijk)

,

−∞ < ηijk <∞, yijk > 0.

In particular, it is known that as yijk → ∞
√
yijk (ηijk − log yijk)

d−→ N(0, 1) ,

and that this distribution is quite close to normal, even for
yijk as small as 5. In fact, application of Laplace’s method,
by expanding log p(ηijk | yijk) in a second-order Taylor series
about the value η̂ijk that maximizes log p(ηijk | yijk), leads to
the same result, namely,

log p(ηijk | yijk) ≈ −1

2
yijk(ηijk − log yijk)

2 .

Substitution in (2) gives a normal approximation

p
(
ηijk |β, σ2

k, yijk

)
∝ exp

[
−1

2

((
ηijk − zTjkβ

)2

σ2
k

+
(ηijk − log yijk)

2

1/yijk

)]
. (3)
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The conditional distribution now appears as a product of two
normals and we can recognize that

ηijk |β, σ2
k, yijk

.∼ N
(
θijk, δ

2
ijk

)
,

where

θijk =
1/σ2

k zTjkβ + yijk log yijk

1/σ2
k + yijk

and

δ2
ijk =

(
1

σ2
k

+ yijk

)−1

.

As usual, in Bayesian data analysis, the posterior mean is a
weighted average of the data and the prior mean. In this case,
the approximate mean θijk is a weighted average of the log-
linear regression function zTijkβ, and the data log yijk, with
weights determined by the variances 1/σ2

k and yijk. Thus,
1/σ2

k can be expected to be approximately the same order of
magnitude as the data values yijk.

The normal approximation is derived merely for the pur-
pose of providing guidelines for choosing a candidate distri-
bution for implementing MCMC. It provides approximations
to the first two moments of the conditional distribution, and
this information is valuable for MCMC design. For example,
in our initial attempts, we tried a Metropolis sampler with
a normal candidate and fixed variance (2.4)2δ̂2

ijk, where δ̂2
ijk

is an estimate for δ2
ijk and the real constant 2.4 is used to

make the standard deviation of the candidate approximately
2.4 times that of the target. (See, for example, Gelman et al.
(1995) and the references therein concerning guidelines for
constructing efficient MCMC samplers.) In practice, however,
by trial and error, we found that an independence sampler
(see, for example, Tierney (1994)) performs well using a nor-
mal candidate centered at log yij1 for the respondents, and an

estimate for log yij2 for the nonrespondents, with scale 2.4δ̂ijk.
We base these judgments largely on MCMC diagnostic tools,
such as index plots and acceptance rates. Note that yij1 for
the respondents remains fixed, whereas yij2 will change at
each iteration, since these values are being generated from a
multinomial for the nonrespondents. Values for log yij2 for use
in the independence sampler can be approximated from yi+2.
On the log scale, these values tend to be quite reasonable. If
any yijk = 0, the candidate can be centered at log 0.5.

In using an independence sampler, we are sensitive to the
situation that it may be possible that the candidate distri-
bution does not adequately cover the true underlying distri-
bution, even after scaling the variance. We have found that
this is an important consideration, and examination of diag-
nostic tools from several MCMC runs helps to alleviate this
problem. In addition, a detailed simulation study, provided in
Section 7, was designed to test this specific situation. Vari-
ous properties of the model were learned from the simulation
study. In some cases, the scale of the candidate distribution
needs to be inflated to improve MCMC coverage.

The log-linear model helps to smooth the contingency ta-
ble. An independence sampler tends to perform well in this
case, because estimates based on the log-linear model should
not be very different from the data, and a good candidate
distribution can be determined in advance.

6. Data Example
In this example, we analyze the data shown in Table 1. As
stated in the introduction, the goal of this analysis is to al-
locate the nonrespondents to the High and Low categories
corresponding to the response variable Year 4, and then esti-
mate the proportion of patients who are High at Year 4 among
those who were Low at Year 1.

Park (1998) fit several ignorable and nonignorable models
to these data and found that the nonignorable models con-
sistently provided a better fit. From among a group of four
nonignorable models, Park chose one that appeared to give
the best fit based on a likelihood ratio statistic and degrees
of freedom. In this data example, MCMC simulation is used
to average over the same four models, labeled M1, M2, M3,
andM4, and described in Section 2. The MCMC simulation is
partially based on the SSVS procedure developed by George
and McCulloch (1997).

The output generated from this MCMC sampler exhibits
more autocorrelation for the unobserved nonresponse obser-
vations than for the observed responses, where data is com-
plete. For this reason, we ran a fairly long simulation based on
a chain of size 60,000, discarding the initial 10,000 simulated
values as burn-in. Once we have an approximate posterior
sample (η1, . . . ,η50,000), we may undertake various posterior
tasks, as usual. For example, for some real valued function f,
posterior estimates can be evaluated via

Ê[f(η)] =
1

50,000

50,000∑
i=1

f(ηi).

Setting f(η) = exp(η) in the above formula gives estimates
based on the four models given in the right portion of Table 1.
When R = 1, it is possible to compare observed and fitted
values.

To estimate the proportion of patients who are ranked High
at Year 4 among those who were Low at Year 1, once again
it is necessary to average the appropriate function over the
sample of 50,000 simulated values. In this case, our estimate
is 43.3%. This estimate is less than Park’s estimates of 44.7%
and 45.2%, which are based on two different methods using
model M3 alone.

In Figures 2 and 3, we provide kernel density plots based
on the 50,000 sampled values of η. The left side of each fig-
ure displays plots for the full data, and the right side dis-
plays plots associated with the nonrespondents where data is
missing. Note that when there is no missing data, the plots
are fairly well-behaved, and even close to normal. However,
when missing data are present, the plots are often skewed
and non-normal. These plots demonstrate the difficulty with
estimation involving the nonrespondents.

Since this is a categorical data problem, it is necessary to
place constraints on parameters so that the model is identi-
fiable and the design matrix Z is not singular. In regression
problems, MCMC runs more efficiently when covariates are
centered (see, for example, Gelfand, Sahu, and Carlin (1995)).
We constrain model parameters to sum to zero, resulting in a
design matrix consisting of only the two values −1 and 1.

For the SSVS method, we set cm = 50 and τm = 0.002,
m = 1, 2. These settings resulted in all four models receiving
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Figure 2. Kernel density plots for logs of cell means 1–4, 9–12.

approximately equal weight. Finally, we set ν1 = 4, λ1 = 0.22,
ν2 = 4, and λ2 = 0.60. These settings are based on the large
sample results presented in Section 5, and the prior belief that
the variance for nonrespondent missing data is greater than
the variance when data is complete.

7. Simulation Study
We performed simulation studies to compare the proposed
Bayesian method with previous methods of Park and Brown
(1994), Park (1998), and ML estimation (Baker and Laird,
1988). For simplicity, we restricted attention to 2 × 2 × 2
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Figure 3. Kernel density plots for logs of cell means 5–8, 13–16.

tables. As a criterion for comparison, the mean square errors
(MSE) of the estimates of the expected cell frequencies were
used.

We assume that the true underlying model is (XY , YR).
This model introduces three main-effect parameters and two
interaction parameters. These five parameters uniquely deter-

mine the cell probability vector π = (π111, π121, π211, π221; π112,
π122, π212, π222)

T . To determine the three main-effect param-
eters, we use the following three parameters, which represent
the ratio of the marginal probabilities of the first level and
those of the second level: (i) for X, ψX = π2++/π1++, (ii) for
Y , ψY = π+2+/π+1+, and (iii) for R, ψR = π++2/π++1. The
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Table 2
MSEs for the Nonignorable Nonresponse Model (XY , YR) in 2 × 2 × 2 tables with N = 200

Park & Brown Park Bayesian method Complete MLE
Cell MLE
(i, j, k) MSE MSE RPB MSE RP MSE RB MSE RC

a. Case when (ψX , ψY , ψR, ψXY , ψYR) = (1.00, 1.00, 0.25, 4.00, 0.25)
(1, 1, 2) 40.078 35.152 0.877 31.350 0.782 19.462 0.486 13.859 0.346
(1, 2, 2) 11.692 11.437 0.978 9.402 0.804 10.075 0.862 1.262 0.108
(2, 1, 2) 16.536 11.902 0.720 10.844 0.656 5.828 0.352 5.083 0.307
(2, 2, 2) 36.569 33.021 0.903 27.915 0.763 9.425 0.258 4.568 0.125

(1, 1, +) 61.797 65.065 1.053 59.831 0.968 51.151 0.828 44.944 0.727
(1, 2, +) 44.018 49.983 1.136 43.352 0.985 38.996 0.886 25.024 0.568
(2, 1, +) 51.510 44.770 0.869 41.921 0.814 26.049 0.506 25.910 0.503
(2, 2, +) 67.439 65.799 0.976 60.871 0.903 46.286 0.686 44.218 0.656

b. Case when (ψX , ψY , ψR, ψXY , ψYR) = (1.00, 1.00, 0.25, 4.00, 4.00)
(1, 1, 2) 40.092 34.394 0.858 30.592 0.763 6.749 0.168 4.624 0.115
(1, 2, 2) 17.527 13.278 0.758 12.121 0.692 4.904 0.280 4.902 0.280
(2, 1, 2) 12.667 11.786 0.930 10.036 0.792 6.171 0.487 1.477 0.117
(2, 2, 2) 41.094 35.945 0.875 32.234 0.784 16.052 0.391 12.607 0.307

(1, 1, +) 74.755 69.239 0.926 65.915 0.882 46.578 0.623 44.679 0.598
(1, 2, +) 59.158 53.350 0.902 50.170 0.848 30.094 0.509 29.316 0.496
(2, 1, +) 46.809 55.509 1.186 47.610 1.017 39.180 0.837 31.157 0.666
(2, 2, +) 59.368 61.778 1.041 57.017 0.960 45.558 0.767 43.670 0.736

remaining two interaction parameters are determined by the
odds ratios, ψXY and ψYR, where βXY = logψXY/4 and βYR =
logψYR/4. A further detailed description on determining cell
probabilities is given in Park (1998).

For a given set of cell probabilities, eight cell frequencies yijk

(i = 1, 2; j = 1, 2; k = 1, 2) were generated from the multi-
nomial distribution, with parameters N and π. We chose the
total sample size, N, as 200 and fixed the number of repli-
cations at 500. After the cell frequencies were generated, the
vector of observed cell frequencies (y111, y121, y211, y221;y1+2,
y2+2) was obtained by setting yi+2 = yi12 + yi22 for i = 1,
2. The nonignorable nonresponse model (XY , YR) was fitted
to the simulated data first by ML, then by Park and Brown’s
method (PB), and Park’s method (P). Also, for the purpose of
comparison, the same model was fitted to the complete data
using all eight cells. For the Bayesian method (B), the SSVS
procedure was implemented by considering two models, (XY ,
YR) and (XY , XR, YR), so that a univariate γ was either
1 or 0, depending on whether the term XR was included or
excluded. SSVS parameters were set such that the posterior
mean of γ was approximately 0.1 in all cases.

We summarize the results for four nonrespondent cells yij2

and four marginal sums yij+. Table 2(a) shows the results for
the case when (ψX , ψY , ψR, ψXY , ψYR) = (1.00, 1.00, 0.25,
0.25, 0.25). Table 2(b) shows the results for the case when
(ψX , ψY , ψR, ψXY , ψYR) = (1.00, 1.00, 0.25, 0.25, 4.00). The
first four rows summarize the results of yij2 and the next four
rows summarize the results of yij+.

The results of ML estimation are presented in the second
column for both runs. Those for Park and Brown’s method
and for Park’s method are in the third and fourth columns,
respectively. The results of the proposed Bayesian method are
summarized in the next set of columns. Finally, the last set
of columns are from the results of complete data using all
eight cell frequencies. In addition, the ratios of the MSEs to

those of the MLE are presented under columns labeled R:
RPB for the Park and Brown method, RP for Park’s method,
RB for the Bayesian method, and RC for the complete ML
method.

For the nonrespondent cells yij2, all PB, P, and B meth-
ods yield smaller MSEs than the ML method. However, for
the marginal sums yij+, only the proposed Bayesian method
has smaller MSEs than the ML method. Thus, the proposed
Bayesian method performs much better than both Park and
Brown’s method and Park’s method. For some cells, its per-
formance is quite close to that of the complete MLE.

As stated in Section 5, various properties of this model
were learned from the simulation study. In particular, it is
often necessary to conduct preliminary MCMC runs in order
to ensure that the candidate distribution in the independence
sampler provides adequate coverage of the underlying distri-
bution. MCMC diagnostic tools are valuable for checking this
condition. We often found it necessary to inflate the scale of
the candidate. However, note that this problem is not so se-
vere, since the simulation produces η, which represents the
log of the cell estimates. After the simulation is complete,
the elements of the chain are exponentiated and averaged to
produce the final cell estimates.

8. Concluding Remarks
In the past, most attempts to estimate cell frequencies in con-
tingency tables with missing data have relied on the EM algo-
rithm. In this work, the missing data is generated at each it-
eration of MCMC simulation. Thus, the missing data changes
at each iteration. This forms the basis for our belief that there
should be two sources of variation, namely, σ2

1 for the respon-
dents, and σ2

2 for the nonrespondents. The priors for σ2
1 and

σ2
2 are fairly strong, but we have found that this is sometimes

necessary when dealing with categorical data with missing
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data. When dealing with a continuous response, it is some-
times possible to relax these restrictions.

Even though this model allows for different variances for
respondents and nonrespondents, it might be possible to con-
sider a covariance matrix for Σ other than a diagonal one,
especially if we have some prior knowledge of the missing
data mechanism or the covariance structure between the two
groups. For example, specific covariance structures that de-
pend on several unknown parameters could be incorporated
into the model. It would be possible to generalize the inde-
pendent inverse gamma priors to an inverse Wishart prior by
considering a covariance structure such as Σ1/2RΣ1/2, where
Σ is a diagonal matrix, as in our model, and R is a correlation
matrix. Various forms of R can be entertained. One idea is to
allow all off-diagonal elements of R to equal a single param-
eter ρ. Certain band or block diagonal correlation matrices
could also be considered. At present, we consider a diagonal
covariance matrix and plan to investigate the effects of a more
general covariance structure in future work.

All the inference presented is based on the output from
MCMC simulation and is therefore restricted to sample
means. No attempt is made to estimate standard errors
for cell means using, for example, the method of batched
means (Bratley, Fox, and Schrage, 1987), particularly since
the MCMC output exhibits some excessive autocorrelation,
and the strong prior assumptions placed on σ2

1 and σ2
2.

We expect that the methods presented can be extended
to handle other categorical problems involving missing data,
including binomial response data, ordinal data and repeated
measures data. We believe it will be useful to direct future
research into these areas.

Acknowledgements

The author thanks two anonymous referees for helpful com-
ments that have improved the presentation of the article.
The research for the second author was supported in part by
Korea Research Foundation grant KRF-2001-115-DP0069.
Part of this research was done while the second author was
visiting the University of Pittsburgh.

Résumé

Les modèles log-linéaires ont montré leur utilité pour lisser
des tableaux de contingence lorsque les variables catégorielles
sont sujettes à des non-réponses qu’on ne peut ignorer. Un
modèle log-linéaire peut être ajusté à un tableau de données
augmenté qui inclut une variable indicatrice indiquant si
les individus sont répondants ou non. Les estimateurs cal-
culés par maximum de vraisemblance à partir de tableaux
de données augmentés, sont connus pour leur instabilité en
raison de solutions frontières. Park et Brown (1994) et Park
(1998) ont développé des modèles bayésiens empiriques qui
tendent à lisser les estimateurs à distance de la frontière.
Avec ces approches, les estimateurs pour les non-répondants
ont été calculés en maximisant une distribution a posteri-
ori par l’algorithme EM. Pour étendre leur précédent travail,
nous avons développé un modèle hiérarchique bayésien qui
incorpore un modèle log-linéaire pour spécifier la distribu-
tion a priori. De plus, du fait de l’incertitude dans le proces-
sus de sélection des variables associé à un seul modèle log-
linéaire, un nombre fini des modèles en nombre fini ont été
considérés simultanément en utilisant la procédure stochas-

tique de sélection de variables (SSVS) de McCulloch (1997).
L’intégration de la procédure SSVS dans un échantillonneur
de Monte Carlo par châınes de Markov (MCMC) est direct
et conduit à des estimations des fréquences dans les cellules
pour les non-répondants qui sont les moyennes résultantes de
plusieurs modèles log-linéaires. Les méthodes sont démontrées
avec un exemple de données de niveaux de créatinine chez
des patients ayant survécus à des transplantations rénales.
Une étude de simulation a été conduite afin de rechercher les
propriétés du modèle.
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