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Summary. Often in medical studies of time to an event, the treatment effect is not constant over time. In
the context of Cox regression modeling, the most frequent solution is to apply a model that assumes the
treatment effect is either piecewise constant or varies smoothly over time, i.e., the Cox nonproportional haz-
ards model. This approach has at least two major limitations. First, it is generally difficult to assess whether
the parametric form chosen for the treatment effect is correct. Second, in the presence of nonproportional
hazards, investigators are usually more interested in the cumulative than the instantaneous treatment ef-
fect (e.g., determining if and when the survival functions cross). Therefore, we propose an estimator for
the aggregate treatment effect in the presence of nonproportional hazards. Our estimator is based on the
treatment-specific baseline cumulative hazards estimated under a stratified Cox model. No functional form
for the nonproportionality need be assumed. Asymptotic properties of the proposed estimators are derived,
and the finite-sample properties are assessed in simulation studies. Pointwise and simultaneous confidence
bands of the estimator can be computed. The proposed method is applied to data from a national organ
failure registry.
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Time-dependent effect.

1. Introduction
In medical studies featuring survival time data, nonpropor-
tional hazards are very common. In Cox (1972) regression
modeling, the most frequent solution is to apply a model that
assumes that the treatment effect is either piecewise constant
or varies smoothly over time. However, it is generally diffi-
cult to assess whether the parametric form chosen for the
treatment effect is correct. Even if the correct form is chosen,
investigators are usually more interested in the cumulative
than the instantaneous treatment effect. This is particularly
true in settings where the hazard ratio changes direction over
time, in which case researchers are often interested in if and
when the two survival curves cross. Therefore, we propose
an estimator of the cumulative treatment effect under non-
proportional hazards. Under our proposed method, the treat-
ment effect is viewed as a process that unfolds over time and
is measured by the ratio of cumulative hazards; no functional
form need be assumed for the nonproportionality.

The analysis that motivated our research aims to compare
survival of end-stage renal disease patients on two dialysis
methods: hemodialysis (HD) and peritoneal dialysis (PD).
Peritoneal dialysis is less expensive than HD, but newer and
hence less established; PD has long been suspected of provid-
ing reduced survival relative to HD. The debate over PD ver-
sus HD is one of the most contentious issues in medicine and,
helping to fuel the debate, previous studies have produced
conflicting results (Bloembergen et al., 1995; Fenton et al.,
1997). Fenton et al. (1997) compared PD to HD using non-

proportional hazards models assuming a piecewise constant
hazard ratio. The authors found that the hazard ratio (PD
versus HD) is significantly decreased early in the follow-up
period, but that the effect changed direction later on. Because
the cumulative effect was not evaluated, one cannot tell which
therapy is better in terms of survival based on their results.
Applying our method to national registry data, we compare
PD and HD covariate-adjusted survival, without assuming
proportional hazards. We can estimate the time-dependent
cumulative effect of PD relative to HD on mortality without
assuming any functional form for that effect. The treatment
effect is viewed as a process over time, which is reflected by
our inference procedures.

Several methods have been proposed for the comparison of
survival or cumulative hazard functions in nonparametric set-
tings. Dabrowska, Doksum, and Song (1989) introduced a rel-
ative change function involving the survival functions for two
populations and constructed pointwise confidence intervals.
Simultaneous confidence bands for this function were con-
structed under a proportional hazards assumption. Parzen,
Wei, and Ying (1997) constructed simulation-based confi-
dence bands for the difference of survival functions. McKeague
and Zhao (2002) derived simultaneous confidence bands for
ratios of survival functions based on empirical likelihood.
Kalbfleisch and Prentice (1981) estimated an average haz-
ard ratio using a weight function. Because each of the above
methods was designed for nonparametric settings, they would
be suitable for randomized clinical trials but would generally
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not apply to observational data where covariate adjustment
is required. In the context of covariate adjustment, Schemper
(1992) suggested the estimation of average hazard ratio of
the two populations through a weighted Cox model. Xu
and O’Quigley (2000) estimated the average regression effect
through weighted score equation, under a nonproportional
hazards model with time-varying regression coefficients.

In this article, we propose an estimator based on the
treatment-specific baseline cumulative hazards estimated un-
der a stratified Cox model. The treatment effect is viewed
as a process that unfolds over time, and can be related di-
rectly to the treatment-specific survival functions. Pointwise
confidence intervals and simultaneous confidence bands of our
measure are constructed.

The remainder of this article is organized as follows. In the
next section, the proposed measure and its estimator are de-
scribed. We develop the asymptotic properties of the proposed
estimator in Section 3. Section 4 evaluates the applicability
of the derived asymptotic results to finite samples through
simulation. In Section 5, we apply our proposed method to
compare survival on HD and PD using data from a national
organ failure registry. We provide some discussion of the pro-
posed and related methods in Section 6.

2. Methods
We first set up the notation used throughout the article. Let
m + 1 be the number of treatment groups (numbered j = 0,
1, . . . ,m), where the first group (j = 0) represents a reference
category to which the remaining treatment groups are com-
pared. The total number of subjects is denoted by n. Let T i

be the survival time for subject i. The survival time of a sub-
ject is potentially right censored, with censoring time given
by Ci. The observation time and observed event indicator are
given by Xi = T i ∧ Ci and ∆i = I(T i ≤ Ci), respectively,
where a ∧ b = min{a, b} and I(A) is an indicator function tak-
ing the value 1 when condition A holds and 0 otherwise. The
event counting processes are defined as N i(t) = ∆iI(Xi ≤ t).
The risk indicators are denoted by Yi(t) = I(Xi ≥ t). Let Gi

denote the treatment group for subject i and Gij = I(Gi =
j). Correspondingly, we set Yij(t) = Yi(t)Gij and dN ij(t) =
dN i(t)Gij . The observed data consist of n independent vec-
tors, (Xi, ∆i, Gi, Zi), where Zi is a vector of adjustment
covariates.

We assume that T i follows a stratified Cox model, with
hazard function

λij (t) = λi(t |Gi = j) = λ0j(t) exp
{
βT

0 Zi

}
, (1)

where λ0j(t) is an unspecified treatment-specific baseline haz-
ard function, and β0 is an unknown parameter vector. Under
(1), proportionality of the hazard functions is not assumed
to hold across treatment groups, but is assumed with re-
spect to the adjustment covariates. Note that in the set-up we
consider, the adjustment covariate vector is treated as time-
constant. We revisit the issue of time-dependent covariates in
Section 6.

The partial likelihood (Cox, 1975) estimator of β0 is de-
noted by β̂, and is given by the solution to U(β) = 0 where
0 is a vector of zeros and

U(β) =

n∑
i=1

m∑
j=0

∫ τ

0

{Zi − Z̄j(t,β)}dNij (t),

Z̄j(t,β) = S(1)
j (t,β)

/
S

(0)
j (t,β),

with S(d)
j (t,β) = n−1

∑n

i=1 Yij (t)Z⊗d
i exp{βTZi} for d = 0, 1,

2, where a⊗0 = 1, a⊗1 = a and a⊗2 = aaT for a vector a. The
quantity τ satisfies P (Xi > τ) > 0 and would ordinarily be
set to the maximum observation time such that all observed
events are included in the analysis.

To compare each treatment group to the reference group,
we propose the following measure,

θj(t) =
Λ0j(t)

Λ00(t)
, for j = 1, . . . ,m, (2)

where Λ0j(t) =
∫ t

0 λ0j(s) ds is the cumulative baseline hazard
for treatment group j. Under (1), θj(t) can be used as a mea-
sure of the aggregate treatment effect across the (0, t] interval.

Let Λij (t) =
∫ t

0 λij (s) ds. Note that, under model (1),

Λij (t |Zi = z)
Λi0(t |Zi = z)

= θj(t).

That is, contrasting patients who have the same covariate pat-
tern but receive different treatments, the ratio of cumulative
hazards and ratio of baseline cumulative hazards are equal.
Note also that the proposed cumulative hazard ratio reduces
to the hazard ratio if proportionality holds. That is, if pro-
portionality holds across the treatment groups, such that the
model λij(t) = λ0(t)exp{ρj +βT

0 Zi} applies, then

Λij (t |Zi = z)
Λi0(t |Zi = z)

= exp{ρj}.

In this light, one could view the proposed ratio of cumulative
hazards as a generalization of the familiar hazard ratio.

The proposed cumulative effect measure, θj(t), can be es-
timated by

θ̂j(t) =
Λ̂0j(t, β̂)

Λ̂00(t, β̂)
, for j = 1, . . . ,m, t ∈ [tL, tU ], (3)

where tL is chosen sufficiently large to avoid the situation
where Λ̂00(tL, β̂) = 0, while tU is chosen to avoid well-known
instability that exists in the tail of the observation time dis-
tribution. The cumulative baseline hazards can be estimated
through the Breslow (1972) estimator, Λ̂0j(t, β̂), where

Λ̂0j(t, β̂) =
1

n

n∑
i=1

∫ t

0

dNij (s)

S
(0)
j (s, β̂)

.

In the next section, we derive the asymptotic properties of
the proposed estimator.

3. Asymptotic Properties
To derive the large-sample properties of θ̂j(t), we assume
the following regularity conditions for i = 1, . . . ,n and j =
0, . . . ,m.

(a) (Xi, ∆i, Gi, Zi) are independent and identically dis-
tributed random vectors.



726 Biometrics, September 2008

(b) Zik have bounded total variation, i.e., |Zik| < κ for all
i = 1, . . . ,n and k = 1, . . . , p, where κ is a constant and
Zik is the kth component of Zi.

(c)
∫ τ

0 λ0(t) dt < ∞ where τ is a prespecified time point.
(d) Continuity of the following functions:

s(1)
j (t,β) =

∂

∂β
s(0)
j (t,β), s(2)

j (t,β) =
∂2

∂β∂βT
s(0)
j (t,β),

where s(d)
j (t, β) is the limiting value of S(d)

j (t, β) for

d = 0, 1, 2, with s(1)
j (t, β) and s(2)

j (t, β) bounded and

s
(0)
j (t, β) bounded away from 0 for t ∈ [0, τ ] and β in an

open set.
(e) Positive-definiteness of the matrix Ω(β) where

Ω(β) =

m∑
j=0

∫ τ

0

vj(t,β)s
(0)
j (t,β)λ0j(t)dt ,

vj(t,β) = s(2)
j (t,β)

/
s

(0)
j (t,β) − z̄j(t,β)⊗2,

(4)

and z̄j(t,β) = s(1)
j (t,β)/s

(0)
j (t,β) is the limiting value of

Z̄j(t,β).
(f) P (Gij = 1) > 0.

The asymptotic behavior of our estimator is summarized
by the following two theorems.

Theorem 1: Under conditions (a) to (f), θ̂j(t) converges to
θj(t) almost surely and uniformly for t ∈ [τL, τU ].

The consistency of θ̂j(t) follows from the uniform consis-

tency of Λ̂0j(t, β̂), Λ̂00(t, β̂), and β̂ as well as the functional
delta method (Pollard, 1990) and various results from empir-
ical processes theory (Bilias, Gu, and Ying, 1997).

Theorem 2: Under conditions (a) to (f), n1/2[θ̂j(t) − θj(t)]
converges asymptotically to a zero-mean Gaussian process with
covariance function σj(s, t) = E[ξij(s, β0) ξij(t, β0)], where:

ξij (t,β) =
1

Λ00(t)
Φij (t,β) − Λ0j(t)

Λ00(t)2 Φi0(t,β), (5)

Φij (t,β) = hT
j (t,β)Ω(β)−1Ψi(β)

+

∫ t

0

s
(0)
j (s,β)

−1
dMij (s,β), (6)

hj(t,β) = −
∫ t

0

z̄j(s,β) dΛ0j(s), (7)

Ψi(β) =

m∑
j=0

∫ τ

0

{Zi − z̄j(t,β)} dMij (t,β), (8)

dMij (t,β) = dNij (t) − Yij (t) exp
{
βTZi

}
dΛ0j(t). (9)

The covariance function can be consistently estimated by
σ̂j(s, t, β̂) where:

σ̂j(s, t, β̂) =
1

n

n∑
i=1

ξ̂ij (s, β̂)ξ̂ij (t, β̂), (10)

with ξ̂ij (t, β̂) obtained by replacing all limiting values in ξij(t,
β0) with their empirical counterparts.

The asymptotic normality of n1/2[θ̂j(t) − θj(t)] can be

proved by first writing {θ̂j(t) − θj(t)} as

1

Λ00(t)
{Λ̂0j(t, β̂) − Λ0j(t)} + Λ̂0j(t, β̂)

{
1

Λ̂00(t, β̂)
− 1

Λ00(t)

}
.

The quantity {Λ̂00(t, β̂)
−1 − Λ00(t)

−1} can be written as a
function of {Λ̂00(t, β̂) − Λ00(t)} by using the functional delta
method. The proof involves decomposing {Λ̂0j(t, β̂) − Λ0j(t)}
into {Λ̂0j(t, β̂) − Λ̂0j(t,β0)} + {Λ̂0j(t,β0) − Λ0j(t)}. The cen-
tral limit theorem and various results from the theory of em-
pirical processes are applied in the proof, which is outlined in
the Web Appendix A.

Some comments on model misspecification are in order. If
model (1) is misspecified, Lin and Wei (1989) demonstrated
that β̂ converges to a vector β∗ 
= β0. Further, if the true
model is λij(t) = λ0j(t)exp{βT

0 f(Zi)}, while the assumed
model is λij(t) = λ∗

0j(t)exp{βT g(Zi)}, where f(Zi) and g(Zi)
are functions of covariates Zi, under a misspecified model,
Λ̂0j(t)(Gerds and Schumacher, 2001) converges to Λ∗

0j(t) 
=
Λ0j(t). We examine this issue numerically in Section 4.

In certain situations, investigators will want to estimate
θj(t) at a prespecified value, t = t0 (e.g., 1 year, 5 years, etc.).
In these cases, inference could be based on a Wald-type test
because n1/2[θ̂j(t0) − θj(t0)]σj(t0)

−1 will asymptotically follow
a standard normal distribution, with σ2

j(t) ≡ σj(t, t). How-
ever, in many practical applications, it makes more sense to
view θj(t) as a process over time, and this view should be
captured by the corresponding inference procedures. For in-
stance, in our motivating example, based on analyses reported
in the literature, we anticipate that the effect of PD (ver-
sus HD) will depend on time and there is no single specific
time point at which we wish to conduct our inference. Lin,
Fleming, and Wei (1994) proposed a method to construct si-
multaneous confidence bands for survival curve under the Cox
model. We extend this to our estimator. The idea is to approx-
imate the normalized distribution of Q̂(t) = n1/2[θ̂j(t) − θj(t)]

for t ∈ [tL, tU ] by a zero-mean Gaussian process Q̃(t) =
n−1/2

∑n

i=1 ξ̂ij (t, β̂)Ri, where Ri is a standard normal random

variable. The distribution of Q̂(t) is generated through sim-
ulation by repeatedly generating independent standard nor-
mal random samples Ri(i = 1, . . . ,n). To avoid the resulting
lower bound of the band being negative, we consider a log-
transformed process, n1/2[log{θ̂j(t)} − log{θj(t)}], whose dis-

tribution can be approximated by Q̂(t)/θ̂j(t) after applying
the functional delta method. In addition, a weight function,
w(t), is chosen to adjust the width of the band at different
time points. By using the weight function, w(t) = θ̂j(t)/σ̂(t),
suggested by Nair (1984) and the previously described simu-
lation method, we may obtain an approximate 100(1 − α)%
empirical quantile, q̂α, satisfying

Pr

{
sup

t∈[tL,tU ]

∣∣∣∣∣n−1/2w(t)θ̂j(t)
−1

n∑
i=1

ξ̂ij (t, β̂)Ri

∣∣∣∣∣ > q̂α

}
= α.

With the log transformation, a 100(1 − α)% simultane-
ous confidence band for θj(t) over [tL, tU ] is given by

θ̂j(t)exp{±n−1/2q̂α/w(t)}.
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4. Simulation Study
The finite sample properties of the proposed estimator were
evaluated through a series of simulation studies. For conve-
nience, we consider two treatment groups. Death times were
generated as

Ti =
{
−log(Ui)/

[
αj exp

{
βT

0 Zi

}]}1/γj
,

for i = 1, . . . ,n and j = 0, 1, where U i is a Uniform(0,1) ran-
dom variable, β0 = 0.5, and Zi is a bivariate vector with each
element following a Bernoulli (0.5) distribution. This set-up
implies that T i follows a Weibull model with hazard function

λij (t) = λi(t |Gi = j) = αjγjt
γj−1 exp

{
βT

0 Zi

}
.

Nonproportionality of the hazard functions for groups 0
and 1 is induced when γ1 
= γ0. Various values of γj were
used to make the hazard ratio constant, decrease, and in-
crease through time. Censoring times were generated from
a Uniform(τ/2, τ) distribution with τ = 5. Different values
of αj were used to vary the percent of censoring (denoted

Table 1
Simulation results for the proposed estimator

n γ0 γ1 α0 α1 C% θ1(t0.75) BIAS ASE ESD CP

500 1.4 1.2 0.4 0.35 0% 0.739 0.002 0.084 0.087 0.94
200 0.008 0.132 0.139 0.94
100 0.020 0.188 0.206 0.92
500 1.4 1.2 0.4 0.35 10% 0.741 0.006 0.084 0.084 0.95
200 0.014 0.134 0.132 0.96
100 0.030 0.191 0.199 0.94
500 1.4 1.2 0.1 0.07 0% 0.468 0.005 0.055 0.058 0.93
200 −0.001 0.085 0.088 0.93
100 0.011 0.121 0.125 0.93
500 1.4 1.2 0.1 0.07 54% 0.536 0.001 0.081 0.077 0.95
200 0.014 0.130 0.133 0.94
100 0.017 0.184 0.188 0.93

500 1 1.5 0.5 0.3 0% 0.926 0.004 0.104 0.109 0.94
200 0.012 0.165 0.170 0.93
100 0.029 0.235 0.238 0.94
500 1 1.5 0.5 0.3 10% 0.912 0.007 0.103 0.103 0.95
200 0.019 0.165 0.170 0.94
100 0.015 0.230 0.238 0.92
500 1 1.5 0.2 0.1 0% 1.123 0.014 0.128 0.131 0.95
200 0.023 0.203 0.214 0.94
100 0.042 0.289 0.308 0.94
500 1 1.5 0.2 0.1 40% 0.933 0.006 0.121 0.118 0.95
200 0.014 0.192 0.197 0.94
100 0.016 0.272 0.287 0.93

500 1.5 1.5 0.4 0.2 0% 0.500 0.003 0.058 0.058 0.95
200 0.004 0.091 0.093 0.95
100 0.018 0.131 0.138 0.94
500 1.5 1.5 0.4 0.2 10% 0.500 0.003 0.058 0.056 0.96
200 0.002 0.091 0.091 0.94
100 0.018 0.131 0.138 0.94
500 1.5 1.5 0.1 0.05 0% 0.500 0.002 0.058 0.057 0.95
200 0.010 0.092 0.092 0.94
100 0.016 0.130 0.134 0.93
500 1.5 1.5 0.1 0.05 52% 0.500 0.009 0.075 0.076 0.94
200 0.014 0.120 0.121 0.94
100 0.014 0.169 0.177 0.93

by C%). For each data configuration, the no-censoring set-
ting was also examined. We varied the sample size as n =
50, 100, 200, 500, and each data configuration was replicated
1000 times. We compared the ratio of cumulative hazard to
its true value at the 75th percentile of the observation time
distribution, which we denote by t0.75. Results are shown in
Tables 1 and 2.

The proposed estimator generally performs well in finite
samples, n = 100, 200, 500 (Table 1). Even in the presence
of a very high proportion of censoring, the empirical mean of
θ̂1(t) is approximately unbiased for sample sizes of n = 500
and n = 200, and almost all simulations with size of n = 100.
In general, the bias is reduced as the number of subjects in
each treatment group increases. The average asymptotic stan-
dard error (ASE) is generally close to the empirical standard
deviation (ESD), while the coverage probabilities (CP) are
consistent with the nominal value of 0.95.

For smaller sample sizes (e.g., n = 50), the bias of θ̂1 is
relatively large and the coverage probabilities are notably
lower than the nominal value of 0.95 (Table 2). However, if
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Table 2
Simulation results for the proposed estimator (n = 50)

γ0 γ1 α0 α1 C% θ1(t0.75) BIAS ASE ESD CP

1.4 1.2 0.4 0.35 0% 0.739 0.042 0.266 0.294 0.91
10% 0.741 0.034 0.265 0.292 0.92

1.4 1.2 0.1 0.07 0% 0.468 0.023 0.169 0.182 0.91
54% 0.536 0.048 0.269 0.300 0.90

1.0 1.5 0.5 0.3 0% 0.926 0.048 0.331 0.347 0.92
10% 0.912 0.068 0.334 0.381 0.91

θ̂1 1.0 1.5 0.2 0.1 0% 1.123 0.086 0.415 0.480 0.92
40% 0.933 0.083 0.403 0.461 0.90

1.5 1.5 0.4 0.2 0% 0.500 0.028 0.182 0.205 0.92
10% 0.500 0.031 0.183 0.202 0.92

1.5 1.5 0.1 0.05 0% 0.500 0.027 0.182 0.199 0.91
52% 0.500 0.038 0.244 0.271 0.90

γ0 γ1 α0 α1 C% log θ1(t0.75) BIAS ASE ESD CP

1.4 1.2 0.4 0.35 0% −0.303 −0.010 0.342 0.364 0.94
10% −0.300 −0.020 0.342 0.365 0.94

1.4 1.2 0.1 0.07 0% −0.759 −0.021 0.347 0.376 0.93
54% −0.624 −0.034 0.470 0.502 0.95

1.0 1.5 0.5 0.3 0% −0.077 −0.009 0.339 0.352 0.94
10% −0.092 0.001 0.341 0.381 0.93

log(θ̂1) 1.0 1.5 0.2 0.1 0% 0.117 0.003 0.342 0.373 0.92
40% −0.069 −0.008 0.398 0.436 0.94

1.5 1.5 0.4 0.2 0% −0.693 −0.018 0.348 0.387 0.93
10% −0.693 −0.009 0.347 0.379 0.93

1.5 1.5 0.1 0.05 0% −0.693 −0.016 0.347 0.377 0.92
52% −0.693 −0.042 0.461 0.488 0.94

log θ̂1(t0.75) is considered, the bias reduces dramatically and
the coverage probability is quite good. Therefore, when the
sample size is very small (e.g., n = 50), inference should be
based on log θ1(t).

We also looked at the performance of our estimator at var-
ious percentiles of the observation time distribution. The sce-
nario where the hazard ratio increases with time and sample
size n = 500 are considered. We find that our estimator is ap-
proximately unbiased even at the 10th and 90th percentiles
of the observation distribution and that the coverage proba-
bilities are close to the nominal value of 0.95 (Web Table 1).

We explored the performance of our estimator and its vari-
ance under models with functional misspecification and incor-
rect covariate adjustment (Web Table 2). We find that under
a misspecified model, the proposed estimator is biased, al-
though the bias is relatively small; as well, the ASE is close
to the ESD.

5. Analysis of the Dialysis Data
We applied our proposed methods to compare patient sur-
vival on HD and PD. Hemodialysis served as the reference
category (j = 0), while PD was labeled as j = 1. Hence,
the parameter of interest is θ1(t), which contrasts the cu-
mulative hazard for PD relative to HD. Data were obtained
from the Canadian Organ Replacement Register (CORR), a
nation-wide and population-based organ failure registry that
is maintained by the Canadian Institute for Health Informa-
tion. The mortality hazard on dialysis was investigated for end
stage renal disease patients who were either on HD or PD at

the time of renal replacement therapy initiation. The dialysis
method is inherently time dependent because a patient may
switch therapies. We carried out two separate analyses. The
first analysis, in the spirit of an intent-to-treat (ITT) analysis,
classified patients based on first method of dialysis; that is,
the type of dialysis received at the initiation of renal replace-
ment therapy. The ITT analysis compares the risk of death
between patients initially placed on PD (versus HD) knowing
that patients may switch therapies. The second analysis cen-
sored the follow-up time at the first dialysis therapy switch
(CAFS). The CAFS analysis compares the risk of death for
patients who stay on PD to patients who remain on HD.

The study population included n = 23,254 registered pa-
tients aged 18 years and above who initiated dialysis between
1990 and 1998. Patients began follow-up at the date of dial-
ysis initiation and were followed until the earliest of death,
loss to follow-up, kidney transplantation, or the end of the
observation period (December 31, 1998). For the ITT anal-
ysis, approximately 38% of HD patients (n0 = 17,766) were
observed to die, while 36% of patients on PD (n1 = 5488)
died. For the CAFS analysis, the proportion observed to die
for patients on HD was approximately 30% and 25% for pa-
tients on PD. Approximately 17% of patients initially placed
on HD and 27% of patients initially placed on PD switched
therapy at least once.

Cox regression was employed, stratified by dialysis modal-
ity, and adjusting for age, gender, race, underlying renal
diagnosis, region, and various comorbid illnesses (cere-
brovascular accident, cardiovascular disease [CVD], chronic
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Figure 1. Estimator and 95% pointwise confidence intervals and simultaneous confidence bands for the ratio of cumulative
hazard functions (PD/HD), θ1(t), for the ITT analysis. Middle solid line: point estimate; inner lines: pointwise confidence
intervals; outside lines: simultaneous confidence bands.

obstructive pulmonary disease, malignancy, peripheral vascu-
lar disease, other illnesses). Through stratification, a distinct
baseline mortality hazard is allowed for HD and PD, which
allows the effect of dialysis method to be nonproportional and
assumes no specific functional form for the nonproportional-
ity. The resulting 95% pointwise and simultaneous confidence
bands of θ1(t) in time interval [0.5, 90] months are given in
Figure 1 for the ITT analysis and Figure 2 for the CAFS anal-
ysis. This time interval is chosen to avoid imprecision at the
beginning of follow-up due to too few deaths occurring in the
HD (reference) group, and instability at the tail of the obser-
vation time distribution. Based on the ITT analysis (treating
dialysis method as fixed at t = 0), relative to HD, patients
initially placed on PD had significantly increased covariate-
adjusted survival probability over the [0.5, 28] months inter-
val with θ̂1(t) ranging from a low of θ̂1(t) = 0.33 at t = 0.5
month, to a high of θ̂1(t) = 0.90 at t = 28 months. Survival was
not significantly different for patients on PD relative to HD
during the (28, 80] months interval. Long-term survival was
significantly reduced for patients on PD after approximately
80 months with θ̂1(t) ≥ 1.17. For the CAFS analysis (censored
at first therapy switch), survival probability is higher for pa-
tients on PD than HD for approximately the first 31 months,
while the survival was not significantly different after that
point (Figure 2).

Comparing the ITT and CAFS analyses, as is evident from
Figures 1 and 2, the ITT analysis is more precise because

deaths following therapy switches are not censored. In the
short term, PD patients have significantly better survival un-
der either analysis. In the long run, PD survival is not signif-
icantly different from that of HD under the CAFS analysis,
but significantly lower under the ITT analysis. Supplemen-
tary analysis revealed that both Λ̂0(t) and Λ̂1(t) were greater
for the ITT than the CAFS analysis (Web Figures 1 and 2),
implying that switching therapies (in either direction) is asso-
ciated with increased mortality hazard. Because PD patients
were more likely than HD patients to switch, it would make
sense that PD would be viewed more favorably under a CAFS
(relative to ITT) approach.

6. Discussion
In the survival analysis of biomedical studies, nonproportional
hazards are frequently encountered. In this manuscript, we in-
troduce a measure of the cumulative treatment effects when
the proportional hazards assumption does not hold across
the treatment groups. No functional form for the nonpro-
portionality need be assumed for our proposed estimator. In
cases where hazards are in fact proportional, the proposed
measure reduces to the well-known hazard ratio. Simulation
studies provide evidence that the proposed estimator is ap-
proximately unbiased, while the estimated standard errors
are quite accurate. Applying our method to CORR dialysis
data, we found that long-term survival (after approximately
80 months) is significantly reduced for patients initially placed
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Figure 2. Estimator and 95% pointwise confidence intervals and simultaneous confidence bands for the ratio of cumulative
hazard functions (PD/HD), θ1(t), for the CAFS analysis. Middle solid line: point estimate; inner lines: pointwise confidence
intervals; outside lines: simultaneous confidence bands.

on PD relative to HD (ITT analysis). The difference in long-
term survival is nonsignificant after approximately the first
31 months based on the analysis with censoring at first ther-
apy switch.

Because dialysis modality was not randomized, our results
must be interpreted with caution. We did find that patients
who were initially put on PD are healthier than those were
put on HD in terms of comorbidity profile. This does imply
that selection bias due to unmeasured covariates may be an
issue.

Various methods previously proposed to account for non-
proportional hazards in a Cox regression model have fea-
tured a time-varying regression coefficient, β(t) (e.g., Sleeper
and Harrington, 1990; Zucker and Karr, 1990; Murphy and
Sen, 1991; Sargent, 1997; Gustafson, 1998; Xu and O’Quigley,
2000; Martinussen, Scheike, and Skovgaard, 2002; Scheike and
Martinussen, 2004). A limitation of these and related ap-
proaches is that the estimator represents an instantaneous
metric and, in the presence of nonproportional hazards, in-
vestigators are usually more interested in the cumulative than
the instantaneous effect. The quantity

∫ t

0 β(s) ds is often pro-
posed to estimate the cumulative effect. Despite its utility, a
drawback of this approach is that the integral cannot gener-
ally be connected back to the treatment-specific cumulative
hazard and hence survival functions. For example, in compar-
ing treatment (Gi = 1) and placebo (Gi = 0),

∫ t

0 β(s) ds = 0
generally will not imply S0(t) = S1(t) and usually it would

not be straightforward without further assumptions to deter-
mine b0 such that

∫ t

0 β(s) ds = b0 implies equal survival. Our
proposed approach does not consider the estimation of the
instantaneous treatment effect, but proposes a direct mea-
sure for the cumulative effect. In terms of the survival func-
tion, equal survival at time t among the treatments being
compared is implied by θj(t) = 1. In the situation where re-
searchers are interested in whether and when two survival
curves cross, our method is preferable. In addition, an advan-
tage of the method proposed in this manuscript is that it is
computationally straightforward.

We derived the variance for the proposed estimator using
the modern theory of empirical processes, instead of the mar-
tingale central limit theorem (Fleming and Harrington, 1991).
Although the asymptotic results are easier to derive using
Martingale theory, the sandwich-type asymptotic variance de-
rived through empirical processes should be more robust to
model misspecification, such as missing covariate information,
covariate measurement error, and mismodeling of adjustment
covariates. In addition, the proposed variance could be easily
extended to recurrent event setting, wherein the event of in-
terest can be experienced more than once per subject. When
proportionality does not hold across the treatment groups, we
could fit a stratified version of the proportional means model
(Lin et al., 2000), E[N ij(t)] ≡ µij(t) = µ0j(t) exp{βT

0 Zi}, for
i = 1, . . . ,n, where µ0j(t) is unspecified baseline mean
function for the jth treatment group. Among the methods
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available for recurrent event data (e.g., see Cai and Schaubel,
2004), the marginal means approach of Lin et al. (2000) would
be considered a suitable method for comparing treatments. To
compare treatment group j(>0) to the reference group (j =
0), one could use the ratio of the mean numbers of events,
θ∗j(t) = µ0j(t)/µ00(t) as a metric for the cumulative treat-
ment effect. The estimate for θ∗j(t) has the same expression
as in the univariate survival case, but with N ij(t) represent-
ing the number of events in (0, t] instead of a time-dependent
observed death indicator. The asymptotic results would be
essentially the same after adding the condition that N ij(t) <

η < ∞. The asymptotic variance of θ̂∗j(t) could be consistently
estimated by that based on Theorem 2 of the current report,
upon replacing Λ0j(t) with µ0j(t).

In this article, our focus has been on the treatment effect.
When the proportional hazard assumption does not hold for
an adjustment covariate, traditional methods can be applied
to remedy the nonproportionality, e.g., interactions with t.

Note that our proposed estimation procedure considers the
case where the adjustment covariate vector is assumed to be
time independent. This is not a limitation for at least two im-
portant reasons. First, the assumption of time-independent
adjustment covariates matches the reality in most cases, such
as the application in Section 5. Second, in settings where
Zi(t) 
= Zi, it would be preferable to use Zi = Zi(0) (i.e., the
baseline covariate value) anyway, due to interpretation issues.
For ease of illustration, suppose treatment is fixed at t = 0 but
that the adjustment covariate, Zi(t), varies over time; Zi(0),
as opposed to Zi(t), is included as an adjustment covariate.
Consider two cases: (i) Zi(t) is uncorrelated with treatment
(ii) Zi(t) is correlated with treatment. In case (i), θ̂1(t) would
be estimating the same quantity whether or not the adjust-
ment covariate was coded as time dependent, rendering the
use of Zi(t) (in place of Zi) unnecessary. In case (ii), θ̂1(t)
could be substantially biased towards 1 if the adjustment co-
variate was coded as time dependent in the model. If Zi(t) is
correlated with treatment after adjusting for Zi(0), it is much
more likely that treatment is at least in part causing the varia-
tion in Zi(t), directly or indirectly, than the other way around,
i.e., considering the temporality. Take the dialysis data in Sec-
tion 5 as an example. We adjust for comorbid conditions,
which are coded at time t = 0. In the CORR database, serial
comorbidity data are not available. But, even if they were, we
would prefer to compare PD and HD only adjusting for time 0
comorbidity. It is quite plausible that, in addition to affecting
the mortality hazard, dialysis method has other intermediate
consequences relating to (for example) hospitalizations and
the incidence of comorbid conditions. Suppose that PD (rel-
ative to HD) reduces mortality and decreases the incidence
of CVD, and that CVD onset increases mortality risk. If we
adjust for time-dependent CVD, then we end up, essentially,
comparing PD and HD patients of similar prognosis, there-
fore underestimating the magnitude of the difference between
therapies with respect to mortality. In understanding this phe-
nomenon, it helps to think of time-dependent covariates as
intermediate end-points. It is well known in survival analysis
that adjusting for components of the causal pathway is in-
appropriate; as is made clear in survival-related causal infer-
ence approaches, e.g., Robins and Greenland (1994), Hernan,
Brumback, and Robins (2001), who proposed marginal struc-

tural models for use when adjustment covariates are time de-
pendent. If time-dependent comorbidity data were available,
they could perhaps be incorporated by a marginal structural-
type extension of the methods proposed in this article.

7. Supplementary Materials
Web Appendices, Tables, and Figures referenced in Sections 4
and 5 are available under the Paper Information link at the
Biometrics website http://www.biometrics.tibs.org.
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