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Summary. In medical research, there is great interest in developing methods for combining biomarkers.
We argue that selection of markers should also be considered in the process. Traditional model/variable
selection procedures ignore the underlying uncertainty after model selection. In this work, we propose a
novel model-combining algorithm for classification in biomarker studies. It works by considering weighted
combinations of various logistic regression models; five different weighting schemes are considered in the
article. The weights and algorithm are justified using decision theory and risk-bound results. Simulation
studies are performed to assess the finite-sample properties of the proposed model-combining method. It is
illustrated with an application to data from an immunohistochemical study in prostate cancer.
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1. Introduction
Biomarkers play an important role in medical research
(Biomarkers Definitions Working Group, 2001). Using novel
genomic and proteomic technologies, new biomarkers are con-
stantly being discovered. It is becoming increasingly clear
that one single biomarker will not be sufficient to serve as
an optimal screening device for early detection or prognosis
for many diseases (Sidransky, 2002). It has been suggested
that a combination of multiple biomarkers will potentially
lead to more sensitive screening rules for detecting cancer
(Etzioni et al., 2003). One example comes from ovarian can-
cer, where multiple serum markers from patients are being
used to assess disease (Bast et al., 2005). A combination of two
markers, Mesothelin and HE4, produces an improved receiver-
operating characteristic (ROC) curve relative to that for ei-
ther marker individually. The resulting composite marker can
improve sensitivity without losing specificity. Therefore, the
natural answer to improve the clinical performance of a single
biomarker is to combine the information from multiple mark-
ers. As Bast et al. (2005) argue, new statistical methods must
be developed to facilitate multiple marker analysis and im-
prove clinical performance compared with the evaluation of
individual markers.

We consider a data set from an immunohistochemical study
in prostate cancer conducted at the University of Michigan
with eight biomarkers: ECAD, MIB1, P27, TPD52, BM28,

MTA1, AMACR, and XIAP. The biomarkers have been se-
lected from previous gene expression studies in the literature
on prostate cancer. The data have a two-level structure. The
upper level is the patient level, where a group of patients are
followed to observe their recurrence time to prostate cancer.
The lower level is the core level within each patient. The tu-
mor sample of each patient is divided into several fractions.
The core is a fraction of the tumor sample. Each biomarker
is measured at each core on a continuous scale of protein-
staining intensities using the method developed in Bauer
et al. (2000). The tissue microarray is used as a high-
throughput tool to assess the protein-staining at the core
level. The goal of the study is to establish relationships be-
tween the protein staining intensities of the eight biomarkers
and the clinical outcomes. The clinical outcome of interest in
this article is the diagnostic status of the tumor sample being
cancerous or not at the core level, which is binary. The eight
biomarkers serve as continuous independent predictors. We
are interested in combining multiple biomarkers in order to
achieve better prediction in the context of logistic regression
models for binary data.

There has been much recent work developing methods
for combining multiple biomarkers. Su and Liu (1993) and
Pepe and Thompson (2000) considered linear combinations
of biomarkers to optimize measures of diagnostic accuracy.
McIntosh and Pepe (2002) noted the optimality of the
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likelihood ratio. Etzioni et al. (2003) proposed developing
screening rules based on the consideration of logical combi-
nations of biomarker measurements.

The methods described in the previous paragraph all at-
tempt to find the best combination of all available biomark-
ers, which we term a full model approach. However, there are
plenty of biomarkers being discovered through genomic and
proteomic technologies. This necessitates selecting biomark-
ers and leads to the problem of variable/model selection.
When multiple plausible models are present, the traditional
approach is to use a model selection criteria to select a “best”
model. This selected model is then used for subsequent in-
ference and prediction. A large amount of work has been
done on the topic of model selection. These procedures ig-
nore the uncertainty in model selection. This could lead to
poor prediction and diagnostic accuracy on independent data
sets.

Because the natural objective in these studies is prediction,
an alternative approach is to combine predications from mul-
tiple models. These procedures have been considered from a
Bayesian viewpoint (Hoeting et al., 1999) as well as a frequen-
tist one (Yang, 2001). We consider the latter approach here.
In this article, we extend the algorithm of Yuan and Yang
(2005), called adaptive regression by mixing with screening
(ARMS), to logistic regression. We propose several weighting
schemes for combining biomarker logistic models and com-
pare their prediction performance with that of a full model
and Akaike information criteria (AIC; Akaike, 1973)-selected
model. In addition, we develop both risk-bound results as well
as a decision-theoretic framework to theoretically justify the
algorithm.

The article is organized as follows. In Section 2, we out-
line the model and describe the ARMS algorithm. A risk-
bound result for the algorithm, Theorem 1, is also presented
here. In Section 3, we propose various weighting methods
for the algorithm and describe a decision-theoretic framework
for the justification of certain weights. In Section 4, we study
the finite-sample performance of the proposed algorithm.
Simulation studies are performed to compare ARMS with
Bayesian model averaging (BMA; Hoeting et al., 1999) and
model selection methods in logistic regression. In addition,
we apply the proposed methodology to the previously men-
tioned tissue microarray data from the immunohistochemical
study in prostate cancer. We conclude with some discussion
in Section 5.

2. Proposed Methodology
2.1 Data and Model Setup
Suppose we have p biomarkers available in a biomarker study
on n individuals. The data are (Di, X∗

i), i = 1, . . . ,n, inde-
pendent and identically distributed (i.i.d.) observations from
(D, X∗), where D is the indicator of disease and X∗ is the
p-dimensional biomarker profile. Let X = (1

′
n,X

∗) be the de-
sign matrix in the logistic regression model. We consider lo-
gistic regression models of the following form:

logitP (Di = 1|Xi) = f(Xi, β) = Xiβ,

where f(·) is the true regression function and β = (β0,
β1, . . . ,βp). For estimating f, there will be 2p models (in-
cluding the trivial intercept-only model) to be considered as

candidates. Let Γ denote the set of all candidate models being
considered. The kth model is given by

logitP (Di = 1 |Xi) = fk(Xki, βk) = Xkiβk, i = 1, . . . , n,

where Xk is a subset of X.
The goal of model selection is to find a “best” fk (Xk i , β k )

that fits the data; by contrast, that of model combining is
to combine multiple plausible good models with appropriate
weights.

2.2 ARMS for Logistic Regression
Yang (2001) proposed ARM (adaptive regression by mixing),
a method for combining linear regression models. He exam-
ined its theoretical convergence properties and empirically
demonstrated its adaptation ability (having the best conver-
gence rate under a global L2 loss over various scenarios) in
nonparametric estimation with a small number of candidate
procedures. To deal with a large number of candidate linear
regression models, Yuan and Yang (2005) proposed an im-
proved ARM with a model-screening step (ARMS) in linear
regression. They did not include all candidate models for com-
bining. Instead, (AIC; Akaike, 1973) and Bayes information
criteria (BIC; Schwarz, 1978) criteria were used to find good
candidate models for combining. They showed that the re-
duction of the number of models for combining substantially
reduces the computation cost and also is advantageous from
a theoretical point of view.

In this article, we extend ARMS to the binary outcome set-
ting. There are three main steps involved for the new version
of ARMS. In the first step, half of the sample is used as a train-
ing set to estimate the parameters for each model; the other
half is used as a test set. The second step consists of using
AIC to select the number of most promising candidate models
for combining, namely, a screening step. At the third step, the
response values in the test set are predicted using the fitted
models obtained from the training set and the prediction per-
formance is assessed by comparing the predicted values with
the true ones. Then the models are weighted according to
the prediction performance assessment. The following is the
ARMS algorithm for logistic regression:

1. Randomly permute the order of the observations and let
r denote the rth permutation. For simplicity, assume that
the sample size n is even. Split the data into two parts
Q(1,r) = (Di, Xi), 1 ≤ i ≤ n/2 and Q(2,r) = (Di, Xi),
n/2 + 1 ≤ i ≤ n.

2. Define Γ to be the entire model space or the set of all
possible candidate models. Estimate β k by β̂rk,n/2 using

maximum likelihood based on Q(1,r) for each candidate
logistic model k in Γ. Compute the AIC values for each
model k based on Q(1,r) and keep the top m models with
the smallest AIC values. Let Γr

s denote the screening set
of the selected models, where dim(Γr

s ) = m. This step is
called AIC model screening.

3. Assess the accuracies of the models in Γr
s based on the

second half of the data Q(2,r). For each model k ∈ Γr
s , com-

pute a model accuracy measurement Br
k using a weighting

method that we present in Section 3.1.
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4. Compute the weight for each model k ∈ Γr
s based on Br

k
in step 3:

W r
k =

Br
k∑

j∈Γr
s

Br
j

.

Note that
∑

k∈Γr
s
W r
k = 1.

5. Repeat steps 1–4 (np − 1) more times and obtain an

average weight Ŵk = n−1
p

∑np

r=1 W r
k for each model k over

np permutations. The parameter np is chosen to be 20 in
our work. Let Γs = ∪{Γrs}

np

r=1 denote the union of the
screening sets over np permutations.

6. Let f̂k,n(x) = f̂k(x; β̂k,n) = xkβ̂k,n be the estimator of
the regression function f k =xk βk of the logistic model
k based on all data, where xk is a subset of x. The fi-
nal ARMS combined estimator of the regression function
f is

f̂n(x) =
∑
k∈Γs

Ŵkf̂k,n(x).

Note that our final estimator combines the union of the mod-
els selected across the permutations.

Screening by AIC can remove some very poor models,
which would affect the performance of the combined estima-
tor of the ARMS method. Of course, other model selection
criteria could also be used for screening, such as BIC. The
purpose of model screening is to get a list of plausible candi-
date models and remove other very poor models. So in this
article, we decide to stick to AIC model screening for the
purpose of illustration and simplicity.

Ideally, the number of models, dim(Γr
s ) = m, to include in

the procedure should strike a balance between the number of
models and the variability in the resulting predictions. This
is very similar to the bias-variance tradeoff in other areas of
statistics (Liu and Brown, 1993; Low, 1995). Here, we take m
to be 20.

Although we fit logistic regression models in the algorithm,
we do not require the assumption that the true model is lo-
gistic. The algorithm will adaptively obtain a combined esti-
mator that gives a good estimate of the true model even if
the true model is not of the logistic form.

2.3 Risk Bound of the ARMS under Bernoulli
Likelihood Weights

Regarding the ARM method of combining procedures, Yang
(2001) gave a risk-bound result and an improvement was made
in Yuan and Yang (2005) for ARMS. Those papers dealt with
linear regression. No known results exist for logistic regression
models. In this section, we show that the ARMS estimator un-
der Bernoulli likelihood weights in logistic regression provides
adaptivity among all possible candidate models and its L2 risk
is bounded by the minimum L2 risk of all candidate models
plus a small penalty.

Suppose we have K available candidate models for combin-
ing. Let f̂(xi) = Pr(Di = 1 |xi) be the probability of hav-
ing disease; let f̂j(xi) be the maximum likelihood estimate of

f(xi ) for model j. Define Pf (di) = f̂(xi)
di(1 − f̂(xi))

1−di and

Pf̂j
(di) = f̂j(xi)

di(1 − f̂j(xi))
1−di . Similar to Yang (2001), for

the theoretical result, we study a slightly different combined
estimator from the one we defined in the ARMS algorithm.
Let λj be a set of positive numbers satisfying

∑K

j=1 λj = 1.
They are prior weights of the candidate models. One natural
choice is uniform prior weights, that is, λj = 1/K. Let Wj ,i

be the weights for model j based on the first i observations
and let W̃j be the modified weight for model j. For i = n/2 +
1, let W j,i = λj and for n/2 + 1 ≤ i ≤ n, let

Wj,i =

λj

i−1∏
s=n/2+1

{
(f̂j(xs))

ds(1 − f̂j(xs))
1−ds

}
∑
l


λl

i−1∏
s=n/2+1

{
(f̂l(xs))

ds(1 − f̂l(xs))
1−ds

}


=

λj

i−1∏
s=n/2+1

Pf̂j
(ds)

∑
l


λl

i−1∏
s=n/2+1

Pf̂l
(ds)




.

Then let f̃i(xs) =
∑

j
Wj,if̂j(xs) be a combined estimator

based on the first i observations. Then the modified estimator
is

f̂ ∗
n(x) =

1

n/2

n∑
i=n/2+1

f̃i(x).

Note that f̂ ∗
n depends on the order of observations. For

applications (as in the ARMS algorithm), we can randomly
permute the order a number of times and average f̂ ∗

n over the
permutations to average out the order effect, which results in
the estimator f̂n of the ARMS algorithm (Yang, 2001). Thus
the risk-bound results certainly apply to the improved estima-
tor f̂n using permutations. For the theoretical development,
we focus on f̂ ∗

n.
For an estimator f̂ of f, let ||f − f̂ ||2 =

∫
(f(x) −

f̂(x))2dµ(x). The theorem on the risk-bound results requires
the following conditions.

Condition 1: We assume that for each model j, the estimators
of the probabilities are uniformly bounded away from 0 and
1, that is, there exists constants 0 ≤ Aj ≤ 1/2 such that

Aj ≤ f̂j(xs) ≤ 1 − Aj for all xs .

Condition 2: Let Γ denote the set of all candidate models in
the model space before screening. There exists a constant τ ≥
0 such that with probability one, we have

supj∈Γ‖f − f̂j‖ ≤
√

τ .

Theorem 1: Let Γs denote the union set of the models
screened by AIC and let Ks denote the size of Γs . Let λj be λj
= 1/Ks. Assuming that conditions 1 and 2 are satisfied, then
for any j ∈ Γ, the L2 risk of f̂ ∗

n using ARMS satisfies
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E‖f − f̂ ∗
n‖2

≤ τP (j �∈ Γs) + 2

{
log(Ks)

n/2
+

2

A2
j

E‖f − f̂j‖2

}
P (j ∈ Γs)

≤ τP (j �∈ Γs) + 2

{
log(K)

n/2
+

2

A2
j

E‖f − f̂j‖2

}
B0,

≤ τP (j �∈ Γs) +
4B0 log(K)

n
+

4B0

A2
j

E‖f − f̂j‖2,

where we assume that P(j ∈ Γs) is upper bounded by a constant
B0, and K denotes the size of the model space Γ.

The proof of Theorem 1 is given in Web Appendix A, avail-
able in the Supplementary Materials at the Biometrics web-
site. From Theorem 1, K0, B0, A, and τ are finite constants.
Guyon and Yao (1999) and Zhang (1993) showed that P (j �∈
Γs) ≤ c1e

−c2n
c3 for some positive constants c1, c2, c3 for a

model selection criterion of a penalized log-likelihood term
with penalty term λn p. Therefore the ARMS-combined esti-
mator f̂ ∗

n converges automatically at the best rate of conver-
gence in terms of L2 risk among the estimators {f̂j}j∈Γ of all
candidate models. In addition, for ARMS, we do not require
that the set of candidate models contains the true model.
The risk-bound result for ARMS holds regardless of whether
the true model exists in the model space.

3. Combining Weights in ARMS
3.1 Description
Yuan and Yang (2005) used the normal likelihood to construct
weights for linear regression models. In the logistic regression
models for binary data, we propose five different methods to
construct weights. For the definition of the weights, k indexes
the model being fitted.

1. Bernoulli likelihood weights
The analog of the normal likelihood-based weights from
Yuan and Yang (2005) in the current setting would be
those based on a Bernoulli likelihood:

BL
k ≡ Lk =

n∏
i=1

[
f̂k(Xi)

Di{1 − f̂k(Xi)}1−Di
]
,

where BL
k is called model accuracy measure. Then weights

are constructed to be proportional to the likelihood:

WL
k =

BL
k∑

j∈Γs

BL
j

.

2. AIC weights
We use an exponentiated function of AIC as the model
accuracy measure:

BAIC
k ≡ exp(−AIC k) = Lk exp(−pk),

where pk is the number of parameters in model k. Note
that it is a product of the Bernoulli likelihood and the
penalty term from the AIC criterion. The corresponding
weights are constructed proportional to BAIC

k .
3. Generalized degrees of freedom weights

Ye (1998) proposed a notion of the generalized degrees of
freedom (GDF) in a linear model setup. The definition

of GDF was extended to a general exponential family
by Shen, Huang, and Ye (2004). Ye (1998) argued that
the GDF can be used as a measure of the complexity or
cost of a general modeling procedure. Thus we use the
generalized degrees of freedom GDFk to replace pk in the
AIC weights:

BGDF
k ≡ Lk exp(−GDF k),

where GDFk is the GDF of model k. The GDF in logis-
tic regression is calculated using data perturbation tech-
nique (see Web Appendix B in the Supplementary Ma-
terials at the Biometrics website for details). The corre-
sponding weights are constructed proportional to BGDF

k .
4. Absolute prediction error weights

Absolute prediction error is often used in practice to indi-
cate how well the model fits; it is defined as dabs − dk

abs,x ,

where dabs = 2
∑n

i=1 |Di − f̂0|/n, f̂0 is the estimated

intercept-only model, and dkabs,x =
∑n

i=1 |Di − f̂k(Xi)|/
n. One can construct weights using the following model
accuracy measure:

BAPE
k ≡

(
dabs − dkabs,x

)
/dabs .

5. Standardized residual weights
A common goodness-of-fit diagnostic for a model is the
residuals. They can be used to construct weights as well.
In particular, we define model accuracy measurement as
the inverse of the sum of squared standardized residuals:

BRESID
k ≡ 1∑

i

e2
ki

,

where eki = (Di − f̂k(xi))/{f̂k(xi)(1 − f̂k(xi))}1/2. Note
that eki is the standardized Pearson residual for the kth
model and the ith subject.

The intuitive idea of weight assignment is that models
with good prediction performance will be given larger weight,
whereas those with worse prediction performance will be given
smaller weight. All of the above weighting methods are used
in step 4 of the ARMS algorithm to compute the model ac-
curacy measure Bk . We will compare their performance in
Section 2.4 in simulation studies and the real data example.

3.2 Weights for ARMS: Decision Theory Framework
Yuan and Yang (2005) pointed out that their weights can
be interpreted as posterior probabilities of the models after
observing the second part of the data with the uniform prior
on the linear regression estimates from the first part of the
data.

Three of our weighting methods have posterior probabil-
ities interpretation with different corresponding priors. The
Bernoulli likelihood weight corresponds to the posterior likeli-
hood with a uniform prior. The AIC weight and GDF weight
correspond to the posterior likelihood with priors exp(−pk )
and exp (−GDFk ), respectively.

We now provide an informal justification that the poste-
rior probabilities have an optimal model-ranking property in
a decision theory framework. A related result was derived by
Müller et al. (2004) for a microarray problem for genes rank-
ing. We consider a model space in which some models are
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good approximations to the true model, whereas the remain-
ing models are not. We refer to the former class of models as
good models; note that we are being loose with the terminol-
ogy. The goal is to make decisions on whether each model i
in the model space is a good model or not. We let ei ∈ {0, 1}
denote an indicator of being a good model for model i. Let
v i ≡ P(ei = 1 |D) denote the marginal posterior probability
of being a good model for model i. The decision to be made is
whether the ith model is selected as a good one (denoted by
si = 1) or not (denoted by si = 0). We have m decisions
to make if we have m candidate models in the model space.
We let S ≡

∑m

i=1 si denote the number of positive decisions,
where the positive decision is defined to be a decision of se-
lecting model i as a good model. Then we let

FD(s, e) ≡
m∑
i=1

si(1 − ei)

FN (s, e) ≡
m∑
i=1

(1 − si)ei

denote the number of realized false-positive decisions and
false-negative decisions. Conditioning on S and marginaliz-
ing with respect to D, we obtain the posterior expected count
of false-positive decisions and false-negative decisions:

F̂D(s, v) =

m∑
i=1

si(1 − vi),

F̂N (s, v) =

m∑
i=1

(1 − si)vi.

We consider the following posterior expected loss for our de-
cision framework,

LN (s, v) = cF̂D + F̂N ,

where c is a constant parameter used to balance the impor-
tance of false-positive decisions and false-negative decisions.
If both are equally important, then c = 1. We now state the
following theorem.

Theorem 2: Under the loss function LN (s, v), the optimal
decision takes the form

si = I
{
vi ≥ t∗

}
,

where t∗ = c/(c + 1).

Proof. Subject to a fixed total number of positive decisions
S ≡

∑m

i=1 si,

LN (s, v |S) = cS − (c + 1)

m∑
i=1

sivi +

m∑
i=1

vi.

The last term does not involve the decisions. For any fixed S,
the quantity is minimized by setting si = 1 for the S largest
v i . In other words, for any S, the optimal rule is of the type
si = I(vi ≥ t∗), where t∗ is the (m − S)th order statistic of
(v1, . . . , vm). Thus the global minimizer must be of the same
form. Some straightforward algebra shows that the minimum
is achieved for t∗ = c/(c + 1).

Because Theorem 2 shows that the decision based on the
posterior probabilities vi ≡ P (ei = 1 |D) is optimal and min-
imizes the loss function, this provides an informal motivation
for using the posterior probabilities or posterior likelihood to
assign weights in our model-combining method. The Bernoulli
likelihood weights, AIC weights, and GDF weights all have
posterior likelihood interpretation with certain priors. Thus
we expect that these three weights should give good perfor-
mance from a decision-theoretic point of view, compared with
other forms of weights.

4. Numerical Examples
4.1 Simulation Studies
We perform extensive simulation studies in order to assess
the finite-sample properties of the proposed ARMS method.
Sample sizes of 100 and 400 are considered; the number of ran-
dom permutations for ARMS is set to be 20. The estimation
methods are evaluated based on several criteria: L2 risk, L1

risk, error probability (EP), and the area under ROC curve
(AUC) based on 1000 simulations. Note that better predic-
tion is associated with lower EP, L1, and L2 values but higher
AUC values. In simulation studies, because we know the true
model, we generate an independent data set to compute the
L2, L1, EP, and AUC values.

For simplicity, we refer to the ARMS methods with
Bernoulli, AIC, GDF, absolute prediction errors, and stan-
dardized residuals weights as ARMS-LIKELI, ARMS-AIC,
ARMS-GDF, ARMS-APE, and ARMS-RESID, respectively.

In addition, because the BMA method (Hoeting et al.,
1999) can often produce better prediction results than any
single model, we also compare our ARMS method with BMA
in simulation. The BMA is implemented by using the BMA
package in R, available at the following website:

http://www.research.att.com/∼volinsky/bma.html.
Default parameter settings for the BMA software are used
in the simulations. The assumption that all candidate mod-
els are equally likely a priori is used (a uniform prior on the
model space); normal conjugate priors are used for the coeffi-
cients of each candidate model. The hyperparameters in the
normal priors of coefficients are estimated using the summary
statistics of the data under each candidate regression model.

In the simulation studies, because we know the true model,
we generate an independent data set to compute the L2 risk,
L1 risk, EP, and AUC values. We generate a panel of eight
biomarkers X∗ ≡ (X 1, . . . ,X 8) from multivariate normal dis-
tribution with zero mean, unit variance, and correlation 0.3.
Then the binary responses are generated from the prespecified
underlying true model.

Because of space limitations, we only present one set of
simulation results; others can be found in Web Appendix C
of the Supplementary Materials, available from the Biometrics
website. Here, we study the following case:

Case 1: We use the following true model relating biomarkers
with disease status:

logitP (D = 1) = 1.0 + 0.1X1 + 0.2X2 + 0.3X3 + 0.4X4

+0.5X5 + X1X2.

Note that we only consider the models with main effects
in the ARMS algorithm so that the true model is not in
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Table 1
ARMS simulation results of case 1 with n = 100∗

Method L2 risk L1 risk EP AUC

ARMS-LIKELI 0.087 0.191 0.391 0.771
(0.002) (0.003) (0.007) (0.007)

ARMS-AIC 0.085 0.188 0.385 0.773
(0.002) (0.003) (0.007) (0.007)

ARMS-GDF 0.082 0.181 0.372 0.792
(0.002) (0.003) (0.006) (0.007)

ARMS-APE 0.093 0.203 0.411 0.744
(0.002) (0.003) (0.007) (0.008)

ARMS-RESID 0.093 0.201 0.409 0.742
(0.002) (0.003) (0.007) (0.008)

BMA 0.090 0.196 0.401 0.751
(0.002) (0.003) (0.007) (0.008)

AIC 0.096 0.211 0.418 0.718
(0.002) (0.003) (0.007) (0.008)

Full 0.099 0.218 0.426 0.709
(0.002) (0.003) (0.007) (0.008)

True 0.063 0.143 0.328 0.865

∗The Bernoulli, AIC, GDF, absolute prediction errors, and standard-
ized residuals weights as ARMS-LIKELI, ARMS-AIC, ARMS-GDF,
ARMS-APE, and ARMS-RESID, respectively. Number in parentheses
is standard error over 1000 simulations.

Table 2
ARMS simulation results of case 1 with n = 400∗

Method L2 risk L1 risk EP AUC

ARMS-LIKELI 0.0181 0.101 0.379 0.811
(0.0002) (0.001) (0.003) (0.004)

ARMS-AIC 0.0178 0.099 0.375 0.816
(0.0002) (0.001) (0.002) (0.004)

ARMS-GDF 0.0172 0.096 0.368 0.827
(0.0002) (0.001) (0.002) (0.004)

ARMS-APE 0.0186 0.103 0.389 0.798
(0.0002) (0.001) (0.003) (0.004)

ARMS-RESID 0.0188 0.105 0.392 0.793
(0.0003) (0.001) (0.003) (0.004)

BMA 0.0182 0.102 0.384 0.809
(0.0002) (0.001) (0.003) (0.004)

AIC 0.0191 0.107 0.397 0.775
(0.0003) (0.001) (0.003) (0.005)

Full 0.0198 0.110 0.403 0.768
(0.0003) (0.001) (0.004) (0.005)

True 0.0141 0.076 0.333 0.879

∗See footnote in Table 1.

the space of candidate models for combining in this case.
The results are shown in Table 1 and Table 2. Among all
ARMS methods, we find that the ARMS methods with the
GDF, AIC, and Bernoulli likelihood weights perform better
than others and the ARMS method with the GDF weight
performs the best. For the sample size of 100, the ARMS-

LIKELI, ARMS-AIC, and ARMS-GDF methods have 10–
14% smaller prediction risks and 7–10% higher AUC values
than the AIC-selected model. For the sample size of 400, the
ARMS-LIKELI, ARMS-AIC, and ARMS-GDF methods still
have smaller prediction risks and higher AUC values than
the AIC-selected model, although the discrepancy is reduced.
Sample size affects the difference between the AIC-selected
model and the ARMS methods. This is because the data
with smaller sample size exhibit more instability with respect
to model selection procedures. Model combining thus per-
forms better than selection when sample size is 100 compared
with sample size 400. For both sample sizes, the ARMS-GDF
method has better prediction performance than the BMA
method. ARMS-GDF shows bigger gains at the sample size
of 100 relative to the sample size of 400.

The Bernoulli, GDF, and AIC-based weights tend to give
better prediction performance in the simulation studies rela-
tive to the other weights considered across the scenarios con-
sidered here. Intuitively, these methods are approximating the
posterior model probabilities better than the other weights.
The decision theory framework described in Section 3.2 gives
some justification for these three weights being optimal.

To explore the robustness of our biomarker combining
methods, we also used multivariate t distributions to generate
data. We found a similar pattern of results to those presented
here (data not shown).

4.2 Prostate Cancer Real Data Example
In this section, we apply the ARMS combining method to the
real data set from an immunohistochemical study in prostate
cancer described in the Introduction. The binary response is
the diagnostic status of the cancer sample being cancerous
or not at the core level. The predictors are eight biomark-
ers in the data: ECAD, MIB1, P27, TPD52, BM28, MTA1,
AMACR, and XIAP. They are normalized and standardized
to be nonskewed and approximately normal variables. Logistic
regression models are fit in the analysis. There are five blocks
of data. Only the first block of data is considered here. We ex-
clude the observations with missing values on either response
or predictors. This results in n = 200 complete observations
(139 cases and 61 controls).

Boxplots comparing intensity measurements of each marker
between two disease groups (cancer versus non-cancer) are
shown in Figure 1. Seven of the eight biomarkers have higher
mean intensity in the cancer group and the other one has
higher mean intensity in the noncancer group. Among them,
AMACR shows the largest difference and P27 shows the
smallest difference. However, we observe that there is substan-
tial overlap between the boxes of two groups, which implies
that using any individual biomarker might not be sufficient
for the purposes of prediction. We apply our ARMS combin-
ing methods on the data and compare it with the full model,
the AIC-selected model and the best univariate (AMACR)
model.

The performance comparison is done as follows. First, we
split the data into two parts: Ω(1) with n1 = 134 observations
and Ω(2) with n − n1 = 66 observations. The first part data
Ω(1) is used for estimation, whereas the second part data Ω(2)

serves as the validation set for performance assessment. Sec-
ond, we apply the ARMS algorithm on the first part data
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Figure 1. Boxplots of the staining intensities of eight biomarkers and their linear combination from the ARMS-GDF
method in prostate cancer data classified by the cancer (1) group versus the non-cancer (0) group.

Ω(1) to get the combined estimator. Third, we compute the
L2, L1, EP, and AUC values of the combined estimator based
on the second part data Ω(2). Finally, we randomly permute
the order of the observations in the data 1000 times and re-
peat steps 1–3 to obtain the average L2, L1, EP, and AUC
values over the 1000 permutations. The results are given in
Table 3. The results show that even the best univariate model
has much higher prediction risks and much lower AUC val-
ues than any other multivariate methods. Again, the ARMS
methods with the GDF, AIC, and Bernoulli weights perform
better than both the AIC-selected model and the full model;
the ARMS-GDF method performs the best among all. There-
fore we exhibit gains in predictive accuracy using the ARMS
methods compared with either the full model or the AIC-
selected model. The separation achieved by the ARMS pro-
cedure is shown in Figure 1 as well.

Although the focus of the ARMS combining method has
been on assessing prediction performance, it is also possible
to select biomarkers based on their average weights across
models. From the ARMS combining estimator f̂n(x), we
have

f̂n(x) =
∑
k∈Γs

Ŵkf̂k(x; β̂k) =
∑
k∈Γs

Ŵk

p∑
j=1

β̂kjxj

=

p∑
j=1

{∑
k∈Γs

(Ŵkβ̂kj)

}
xj ,

Table 3
A comparison of ARMS with AIC, full, and best univariate
models in logistic regression for prostate cancer data (n =

200) under 1000 random permutations

Method L2 risk L1 risk EP AUC

ARMS-LIKELI 0.083 0.169 0.388 0.79
(0.002) (0.004) (0.006) (0.01)

ARMS-AIC 0.082 0.166 0.382 0.80
(0.002) (0.004) (0.006) (0.01)

ARMS-GDF 0.078 0.159 0.373 0.82
(0.002) (0.004) (0.006) (0.01)

ARMS-APE 0.087 0.175 0.398 0.77
(0.003) (0.005) (0.007) (0.01)

ARMS-RESID 0.088 0.177 0.401 0.76
(0.003) (0.005) (0.007) (0.01)

AIC 0.089 0.179 0.405 0.76
(0.003) (0.005) (0.007) (0.01)

Full 0.095 0.193 0.418 0.73
(0.003) (0.005) (0.007) (0.01)

Univariate 0.106 0.214 0.439 0.70
(AMACR) (0.003) (0.006) (0.008) (0.01)

where we assume β̂kj = 0 if biomarker xj is not selected in
the model k. Thus the average weights for each biomarker
is actually

∑
k∈Γs

(Ŵkβ̂kj). The results are shown in Table 4,
which include both the average weights of each biomarker and
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Table 4
Biomarker weights for prostate cancer data and corresponding univariate prediction performance results: the first row are the
final weights assigned to each biomarker predictor by ARMS algorithm; second to fourth rows are prediction results of L2, L1,

and AUC from fitting univariate logistic models of disease status on each biomarker.

Method BM28 ECAD MIB1 MTA1 P27 TPD52 AMACR XIAP

Weights 0.60 0.57 0.65 0.25 0.21 0.76 0.84 0.31

L2 risk 0.123 0.125 0.122 0.137 0.139 0.115 0.106 0.134
L1 risk 0.249 0.251 0.245 0.271 0.278 0.235 0.214 0.267
AUC 0.66 0.66 0.67 0.61 0.59 0.68 0.70 0.62

the prediction results of its corresponding univariate analysis.
We see that the ranking tends to be concordant across the
univariate and multivariate analyses. The biomarkers that are
more discriminatory from the univariate analyses tend to have
larger weights. The two biomarkers, AMACR and TPD52, are
assigned by the weights 0.76 and 0.84, respectively, which are
approximately four times the weight of P27.

Originally, we used AIC as a screening criterion. The cur-
rent implementation requires a complete searching to identify
the top 20 models with smallest AIC values. When the dimen-
sion of the data or model is large, complete searching is not
feasible computationally. In Web Appendix D of the Supple-
mentary Materials, available on the Biometrics website, we de-
scribe some data analyses using an adaptive penalty for model
selection (Shen et al., 2004). The results appear promising and
definitely merit further research.

5. Conclusion
In this article, we propose a model-combining method with
an AIC model-screening procedure, called ARMS, for logis-
tic regression models in biomarker studies and propose five
different weights for combining logistic models. The adaptive-
risk-bound results show that the resulting combined estimator
from ARMS has the best rate of convergence in terms of L2

risk among the estimators of all candidate models. We per-
form simulations studies for comparing our proposed ARMS
method with the AIC-selected model and the full model; then
apply it to a real data set from an immunohistochemical study
in prostate cancer. The results from both simulation examples
and the real data example show that the ARMS combining
methods have lower prediction risks and higher AUC values
than those based on the AIC-selected model or the full model
when the uncertainty of model selection in estimation is not
ignorable. Among five weighting methods we proposed, GDF,
Bernoulli likelihood, and AIC weights perform better than
others and the ARMS method with GDF weights performs
the best. All those three weights have posterior likelihood
interpretations. We showed in Section 3.2 that the decision
by the posterior probabilities vi ≡ P (ei = 1 |D) is optimal in
terms of minimizing the posterior loss function. The frame-
work we have used for justification of ranking using posterior
probabilities is greatly different from the theoretical results
developed in Yuan and Yang (2005).

Comparison between BMA and our ARMS-GDF method
is also done in simulation studies. Our ARMS-GDF method
performs significantly better than BMA method when there is
large instability, whereas it performs closely as BMA method

when the instability is small or the size of underlying true
model is small. In addition, when there is data instability,
GDF weights performs better than the Bernoulli likelihood
and AIC weights in the ARMS algorithm. This suggests that
GDF is a more accurate model accuracy criterion than AIC.
Differences in BMA and ARMS might reflect this difference
in estimation, along with the fact that the current imple-
mentation of BMA for logistic regression in R uses the (BIC;
Schwarz, 1978) as an approximation to the posterior proba-
bility of a good model (Bk in the notation of Section 3.1).
In that sense, the R implementation of BMA is a special case
of the framework we have proposed in this article. A com-
parison with the method of Hoeting et al. (1999), which uses
fully Bayesian inference Markov chain Monte Carlo methods,
would be useful.

What is done in much of statistical practice is to select a
model and to do inference and predictions using the model.
Our study raises the possibility that combining results from
multiple models might be useful for prediction purposes or
from a diagnosis point of view when the uncertainty of selec-
tion procedure is large or not ignorable for the given data. In
practice, it would be quite simple to use the model-combining
algorithm. Based on the initial study for validating the panel
of biomarkers, one would save the results of the multiple mod-
els used for combining and prediction. Given new samples, one
could predict the probability of disease using the previously
saved output.

6. Supplementary Materials
Web Appendices referenced in Sections 2, 3, and 4 are avail-
able under the Paper Information link at the Biometrics web-
site http://www.biometrics.tibs.org.
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