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NOMENCLATURE

a Local acceleration - f‘t/hr2
A Area - ft°
Co Specific heat - BTU/lbm-°F
D Dia. - ft.
g Acceleration due to standard (terrestrial) gravity
32.2 ft/sec? = 4.16 x 108 ft/hre,
g6 Mass-force conversion constant = 4.16 x 108 1bm/lbe £t/hr2
h Enthalpy - BTU/lbm-°F
h Heat transfer coefficient - BTU/hr-ft2-°F
heg Latent heat of vaporization - BTU/lbm
k Thermal conductivity - BTU/hr-ft-°F
M Mass - 1lbm
Pr Prandtl number
q Heat transfer rate - BTU/hr
t Temperature - °F
T Temperature - °R
v Volume - ft2
Ap Saturation pressure difference corresponding to heater sur-

face superheat - lbp/ft2.

AN TP Temperature difference at maximum heat flux - °F
Atggt Heater surface superheat - °F

e Time = hrs

o} Density = lbm/ft5

o Surface tension - lbg/ft

W Viscosity - lbm/hr-ft
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INTRODUCTION

This paper presents results of an experimental study of boil-
ing heat transfer to a cryogenic fluid, liquid nitrogen, at standard,
fractional and near-zero gravity in the nuéleate, maximum, transitional,
minimum and film boiling regions. Comparison is made with results pre-
dicted by various correlations for the maximum and minimum heat flux and
film boiling regions.

One motivation for this study arose from previous work by the
authors(l) with high force fields. Prior to this work studies of boil-
ing heat transfer had not considered the gravitational field to be a
variable, and it was considered that further understanding may be gained
by conducting this study.

Initial research at high gravities includes a/g up to ho(l’e)
for pool boiling of saturated water, and a/g up to 20(5) for pool boil-
ing of saturated liquid nitrogen, both at atmospheric pressure. It was
found that significant changes in the q/A - Amsat relationship were
not observed except at low values of heat flux where the relative contri-
bution of non=-boiling natural convection was appreciable. This appeared
to indicate that the buoyant forces acting on the bubbles were not a
significant factor in promoting the large rates of heat transfer associ-
ated with nucleate boiling.

In view of these circumstances it was desirable to extend the
work to determine if similar effects occurred in cases where the gravity
field is less than standard. In this connection a Froude number criterion

for distinguishing the limits of a buoyant force dominated process, has
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been presented(h) based on the results of Adelberg and Forster(6) and
Forster and Zuber.(7) This will be discussed later.

Another purpose for this study is the current problem, gen-
erated by the global interest in space flight and exploration, of pre-
dicting the behavior of fluid systems under adiabatic and diabatic
conditions in environments where the force fields will be low. It may
be anticipated that, for the sake of compactness, boiling heat transfer
will continue as an important mechanism for power generation and energy
dissipation for some time to come.

A drop tower is used to achieve fractional and near=-zero
gravities. Inherent in this’method is the short time of exposure of
the test system to reduced gravities. In experimental studies of pool
boiling the primary parameters of heat flux and temperature difference
are usually measured under steady-state conditions. A steady-state is
convenient for the determination of heat flux under those conditions
where it i1s undesirable to correct the data for the thermal lag of the
heater surface. In those cases where the heater surface 1s sufficiently
small that its thermal capacity can be neglected, scaling effects may be
significant.

In view of the short test period available for these measure-
ments, no attempts were made to obtain steady-state conditions. Instead,
a transient technique was used, in which the heating surface serves as
a dynamic calorimeter. The surface heat flux i1s determined from the
rate of change of enthalpy of the heating surface as found from the
measurement of its temperature change with time. 1In addition, the cor-

responding temperature difference may be obtained by this method.






This technique is not new, and has been used by the authors
for a number of years in the laboratory to demonstrate the behavior of
lumped -parameter systems to undergraduate students in heat transfer.
Metallurgists have made these types of measurements in the study of heat
treatment of metals. Kays, EE_E£'<27) reports an application of this
method for the determination of heat transfer from tubes. Several refer-
ences with this method are given by Stolz.(ll) It is believed, however,
that this method has not been fully exploited to obtain boiling heat
transfer data. The same simple test device permits measurements in.the
film, transition, maximum and nucleate boiling regions. Ruzicka(le) has
presented boiling data for liquid nitrogen with a hollow vertical cylin-
der as a transient calorimeter.

Several studies of transient boiling have been conducted(l5’lh)
wherein power pulsations were imposed on small wires. The degree to
which a transient process represents one at the steady-state depends
upon the ratio of the characteristic times of the system and the parti-
cular process. In the present application, the residence time of the
bubble is small compared to the inverse time-constant of the calorimeter.
Hence, the results may be considered as essentially steady-state whenever
this condition prevails. PFurthermore, it will be seen that comparison
of the transient data with those from steady-state measurements valldates

this supposition.






EXPERIMENTAL APPARATUS

A cross section of the drop tower facility is shown in Figure 1.
The free fall distance of 32 feet gives 1.4 seconds of approximately zero
gravity. A special design hydraulic buffer topped by an automotive-type
coil spring and foam rubber brings the test platform, having a total mass
of 120 pounds, to rest in 2-1/2 feet with a deceleration no greater than
approximately 30 g's.

The test platform, Figure 2, consists of an aluminum I-Beam
weldment on which the insulated test vessel is mounted. Because of close
clearances in the drop area, guide wires are installed. The test vessel
is a five liter stainless steel beaker surrounded by three inches of
styrofoam, open td the atmosphere. A loosely fitting hinged cover mini-
mizes contamination of the pure liquid nitrogen (99.9+%) by condensed
oxygen from the atmosphere.

Prior to release for free-fall the test platform is suspended
from a 17 gage resistance wire. Release is achieved by melting the wire
with A.C. electrical current. The opening of the A.C. circuit furnishes
an accurate measurement of the instant of release.

A Kistler Model 303S Servo-Accelerometer (i 1.0 g range) is in-
stalled to monitor the local gravitational force field during drop.
Measurements under free fall conditions indicate that the force field lies
in the range 0.01 < a/g < 0.03, due to air drag and guide wire friction.
True zero gravity is not possible with the present test system because
of alr drag and guide wire friction. Modifications are underway to
achieve lower gravity fields by the use of a double-package drop system,

the outer vessel acting as an air screen.

e






RELEASE WIRE (FREE FALL)

;<
\

ROOF — — —3

| ————— TEST PLATFORM
(WITHOUT SHROUD)

A
L/
%
| —————WORKING PLATFORM
%
%
%

VA rzz d&

THERMOCOUPLE
— " (SHIELDED) CABLE

SECOND ___
FLOOR

_Klr

SOONONNNNNANNS SOOI NS TSSOSO S

GUIDE WIRES

\
N

DNSNOSOSIONERSNONNNNANN

Lo

smu--g 7
T 7T A
] %
% COUNTERWEIGHT
‘ / //

; % /| COUNTERWEIGHT

% 4 RELEASE

% é (FRACTIONAL GRAVITY)
BASEMENT- — ——l—;} ' /)

T ~

?
| I
\ HYDRAULIC BUFFER

ARRESTING GEAR

Figure 1. Drop Tower Facility.






‘WLIOJIBT 985] uo
DRYUNON TOSSOA 1S9 PoIBINSUL JO MOTA g oanSTg

. @mﬁﬁw@ .

.







For fractional gravity a counterweight is used. This consists
of a six inch 0.D., five foot long, closed aluminum tube filled with
variable quantities of lead shot, and may be seen in Figure 2. The
counterweight is attached to the test platform via a 1/8 inch diameter
flexible cable with light weight ball bearing pulleys. The counterweight
impact is absorbed with two automotive-type air springs venting through
ad justable orifices, Figure 2.

It was found that oscillations existed in the test platform
during fractional gravity operation as a consequence of the dynamics
initiated upon release. The test platform, counterweight and counter-
weight cable acted as a two-mass-spring system. The maximum amplitude
of the oscillations ranged from + 0.15 to + 0.05 for a/g of 0.60 and
0.20, respectively. The corresponding frequencies were approximately
10 and 20 cps. The oscillations were of a greater amplitude when the
drop was initiated by releasing the counterweight than when the test
platform was directly supported and then released. It is felt that the
results can be considered representative for the mean value of a/g.

The heat transfer surface geometry for the results presented
here is a one inch diameter sphere of electrolytic copper. A sphere
was selected for symmetry and ease of instrumentation. Copper was chosen
because its heat capacity is a well known function of temperature and
its high thermal diffusivity results in a close approximation to a
lumped parameter system. By suitable design other geometries can readily
be adapted.

Figure 3 shows the thermocouple locations in one of the test

spheres. The temperature at point tg] was measured using a 30 gage
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cu-constantan thermocouple having a spark welded junction and soft
soldered at the bottom of the drilled hole with a minute amount of
solder. The temperature differentials te - tg1 and t, - tgy were
obtained by soldering separate single constantan wires in the holes,
using the copper sphere as the intermediate metal. The differentials
were installed to determine if the results were influenced by the
orientation of the measuring junction tg). No significant effect
was observed. To prevent heat conduction from the junctions to the
liquid nitrogen through the wire itself, a polyethylene sleeve is
placed over the wires external to the sphere and sealed to the sphere.
The sphere is supported by a 1/16 inch dia. stainless rod attached
with a press fit. In some cases a 1/2 inch dia. sphere was used, in
which case it was possible to install bnly a single thermocouple at
the center.

The thermocouple wire was calibrated with a nitrogen vapor-
pressure cryostat and at the CO,, mercury freezirg and steam points.

The thermocouple emf were recorded on a Sanborn 150 series
recorder through approximately 50 feet of shielded cable which falls
free with the test platform. To take advantage of the high sensitivity
of the recorder (10 uv/mm) it was found necessary to calibrate it against
a precision potentiometer immediately prior to and after each test run.
It is estimated that the accuracy of the level of temperature measure-
ment is + 0.5°F while the accuracy of relative temperature measurement-
is better than + 0.2°F. Relative temperature measurement is considered

with respect to changes taking place during a particular test.
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The sphere is highly polished, and the only treatment given
to the surface is to cleanse with reagent-grade acetone prior to each

test to remove any oil films deposited by handling.






DATA REDUCTION

Figure 4 shows a representative curve for the cooling of the
sphere from ambient to liquid nitrogen temperature. In the film boil-
ing range the temperature difference between the center and surface of
the sphere is negligible, as might be expected since the corresponding
Biot number is approximately 0.004. The heat flux can be computed from
the direct measurement of the temperature-time slope from the cooling
data and using the specific heat corresponding to the instantaneous tem-
perature. Hence, from the first law of thermodynamics the heat flux is

related to the time rate of enthalpy change of the sphere as

m ' dtg
A = = (dh/ae) = Ps's Cp t 5 (l
Q/ S Ag ( / ) Ay s ( s/ 30 )

For measurements of film boiling under fractional gravity the
millivolt and time scales on the Sanborn recorder are expanded and the
test platform released when the sphere reaches the desired temperature
level. Normally the sphere is inserted in the liquid nitrogen at room
temperature to cool to the desired level, taking as long as 2-1/2 minutes
in some cases. To determine if the liquid motion in the container in-
duced by the film boiling influences the results during free fall, a
number of tests were conducted by pre=-cooling the sphere in the vapor
space above the liquid nitrogen, plunging the sphere in the nitrogen
and releasing the platform within several seconds. No effect of residual
liquid motion could be detected, with both one inch dia. and 1/2 inch

dia. spheres.
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In Figure 5 representative measurements in the transition-
nucleate region at a/g =1 are given. The correspondence between
the point of maximum slope and the largest temperature difference within
the sphere (approximately 2°F) is to be noted. For data under frac-
tional gravity or free-fall conditions in this region the test platform
is again released at the desired temperature level, as 1llustrated in
Figure 6.

Until recently, the experimental data in the transition-
nucleate region were reduced with Equation (1) by assuming the system
to be thermally lumped. As with film boiling the cooling rate (dts/dg)
was determined by replotting the original data as temperature vs. time,
the slope being computed manually with at least two independent checks.
Stolz(ll) has suggested that where the Biot number for the sphere
h ro/k < 0.4 the results of the lumped system approximation will be
accurate within 1%. The maximum Biot number with liquid nitrogen is
0.35.

While this method of data reduction has proven to be satis-
factory, it was time consuming and had an element of subjectivity which
was desirable to eliminate. This has been accomplished by finite=-
difference computations carried out using the IBM 7090 digital computer.
The program accepts the original temperature-time data as input and com-
putes the local temperatures at 10 spacial points within the sphere at
time intervals of 0,001 seconds. From these the instantaneous spacial
average enthalpy of the sphere and then the time rate of change of spa-

cial average enthalpy is computed, which is related to the instantaneous
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heat flux. The heat flux, surface~fluid temperature difference, and
internal temperature difference are outputs of the program.

Favorable comparisons between the carefully performed manual
computations and the digital computer results are indicated in Figure 7.
These results are modified somewhat in subsequent tests by the use of
liquid nitrogen having a higher degree of purity.

For the computer program input the temperatures measured near
the surface are taken as the surface temperatures, an acceptable approxi=-
mation in this case. In circumstances where the maximum heat flux is
considerably greater than for liquid nitrogen, an improved approximation
for temperature would be required. The inverse method as is given by

stolz(11l) also might be used in this case.
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RESULTS

For convenience and clarity the experimental results are
presented according to the sub=-groups listed below.

(a) Film Boiling Region

On the right hand side of Figure 8 the results for film boil-
ing at standard gravity, several fractional gravities and free fall are
plotted. The scatter in the data for free fall are considered the con-
sequence of large relative variations in the local effective gravity
which can occur with minute variation in guide-wire friction.

No effect of a change in size of the sphere from one inch dia.
to 1/2 inch dia. could be detected, and comparison is made with the data
of Bromley(l5> for an electrically heated horizontal tube in the steady-
state. Although the raw data agree well with the present work the cor=
relation of Bromley does not represent the behavior at a/g =1 nor at
fractional gravities. This probably results from the fact that Bromley's
correlation is for laminar conditions which do not exist in these experi-

ments. Bromley's correlation is:

jh_DP_ = 0.62[I%va(pg-pvf)g(cpp) f(hfg . O,Lp)(i) :ll/lk (2)
g

kyp ) H%f k 'V Cpﬁm

A number of other workers£20:25’26) have obtained film boiling
relationships for horizontal and vertical surfaces similar to the above
under saturation conditions,also for laminar flow.

Frederking, gz_gi,(l7) analyzed film boiling about a sphere
for laminar flow, and the resulting equation included a l/h exponent on

the modified Rayleigh number. It was noted that experimental results
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for vertical surfaces,(lz) horizontal tubes and spheres give essentially
the same results, and thus concluded that film boiling in these regions
1s independent of geometry, a characteristic of turbulent free convec-
tion. Accordingly, the exponent on the modified Rayleigh number was

changed to 1/5 and the results given as:

= 3
Mo - o.15(D0eve(egmovr)e(Opr) (Bra_ 4 0.5)(2
for 2, K VECA g

)] (3)

Figure 9 shows that Equation (3) predicts the film boiling be-
havior under fractional gravity reasonably well. Bromley's correlation(ls)
also is included using his definition of the modified Rayleigh number.

This result suggests that a transition from laminar to turbulent film
boiling appears to occur at a modified Rayleigh number. This result sug-
gests that a transition from laminar to turbulent film boiling appears

to occur at a modified Rayleigh number of about 5 x 107,

(o) Transition and. Wucleate Bailing Regiau

Experimental results in the transitional and nucleate boiling
regions also are placed on Figure 8 for both standard gravity and free
fall conditions. It will be noted that no difference exists in the be=-
havior of the 1/2 inch dia. and one inch dia. spheres. Furthermore, it
also appears that transitional and nucleate boiling are quite insensi=-
tive to the two orders of magnitude range in gravity covered.

This is consistent with the results of Sherley.(9) In this
work nucleate boiling of liquid hydrogen was obtained from an electrically
heated flat surface at standard gravity, under free-fall conditions in

a drop tower and in a KC-=135 aircraft. It was found that zero-gravity
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tests produced the same results as those at standard gravity. From
these somewhat unexpected results it might then be concluded that the
dynamic or inertial force present in bubble growths, even with satu-
rated boiling, is the controlling factor in nucleate boiling rather
than buoyant forces., A ratio of the bubble growth inertial force to
the buoyant force, having the nature of a Froude number, was defined(u)
using the bubble growth equation of Forster and Zuber.(7) With repre-
sentative values of bubble size and heater surface superheat the Froude
number varied from 452 for liquid nitrogen to 14,000 for water at a/g = 1,
In the region of the maximum heat flux the heat transfer rates
are sensitive to the effective gravity, as is evident from the scatter
of the data under free fall. Figures 9 and 10 show the complete data
for a number of tests in the nucleate-transition region for a/g =1
and including the fractional gravities of a/g = 0.20 and a/g = 0.33.
It is noted again that the behavior in the transition and nucleate re-
gion is not significantly altered by gravity whereas the peak heat flux
is decreased.
Slight shifts in the transition and nucleate region have oc-
curred from day to day, as may be noted by comparing Figures 9 and 10.

No explanation has yet been found for this behavior.

(c¢) Maximum Heat Flux Region

A number of correlations for the maximum heat flux with pool
boiling have been presented in the literature. 1In most cases a depend-
ence on effective gravity is given as (a/g)l/u. Burnout measurements

with a platinum wire in water(5) under various fractional gravities have
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shown this trend. The data in Figures 8, 10, and 11 furnish further
opportunity for verification.
In Figure 12 the maximum heat flux is plotted against the

(18)

local acceleration ratio. The correlation of Noyes, which includes
an effect of Prandtl number, gives the best comparison with the data
presented here. Some of the recent correlations for the maximum heat
flux are listed below for reference, and the values predicted for satu-
rated liquid nitrogen at atmospheric pressure are given in Table I.
Noyes:(lS)
2
(@/B)gay = 0.1k hfgp\l/g[ﬁflz:ﬂﬁ_.ggoc]l/lL

P;O°2”5(§)l/u (4)
Py g

Chang and Snyder:(19)

(2/8) g = O-145 npgor! “lagoa(oymp) 1 H(2) ! (5)

7uber « Discussion in Reference 20:

(4/8) oy = clhfgp$/2[ggoc(p£-pv)]l/h(g)l/h (6)
where

-120 < €1 < 157

Borishanskii;(22)

(0/Mnax = Kehﬁgpwlr/g[%&30(o;z-pv)]1/l‘(%)lﬂL (7)
where

K, = 0.13 + by 0%
and

0365/2 a)-l/z

vos 12le(p,0,) 1572 &
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Figure 12. Maximum Heat Flux Data for Liquid Nitrogen from

Sphere During Fractional Gravity.
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Moissis and Berenson:(23)

1 a
(a/A)y = Cghfgpv/glggoc(pz-pv)]l/h(-é—)l/4 (8)
where
Pp+oy\1/2
(——5;—)
Co = 0.18 1/2
1+2 (B977 + (5
) )
TABLE I
COMPARISON OF (q/A)__. CORRELATIONS FOR SATURATED LIQUID
NITROGEN AT ATMOSPHERIC PRESSURE AND a/g =1
Source Equation (a/A)pgax BIU/hr-£t2
Noyes (18) (4) 45,000
Chang & Snyder (19) (5) 56,500
Zuber (20) (6) 46,000 - 61,000
Borishanskii (22) (7) 61,000
Moissis & Berenson (23) (8) 65,000
Experimental Present authors 7,000

The experimental values of the maximum heat flux are plotted
in Figure 13 to indicate the corresponding temperature differences.

Chang and Snyder(l9) derived an expression for At by
equating the maximum heat flux, Equation (5), to the product of the JANTPS

and their correlation for h in nucleate boiling, resulting in:

1/h4
0.725 5 (hfgov)9/5c[ggoc(oz-pv)] / oy 1/k
Her = * 1077 2550775 ' (9)
1.4%0 oy “kglCpTg(pg=py) 15/ AP g
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The range in the constant arises from the assumption of from 25% to
50% coverage of the heater surface by the bubbles at the maximum heat
flux. For liquid nitrogen Equation (9) predicts values in the range
26°F < Aty < 50°F at a/g = 1.

In the original equation for h used in deriving Equation
(9) an empirical constant equal to 0.363 is determined from nucleate
boiling data for water. When this constant is redetermined for liquid
nitrogen nucleate boiling it is found to be 0.60 and the corresponding
constant in Equation (9) ranges from 0.26 to 0.52. The resulting values

of At.,,. for the various a/g are shown in Figure 13. The experimental

results fall within the range predicted.

(d) Minimum Heat Flux Region

(2k)

Based on the analysis of Zuber, Berenson(go) had determined

the following relation for the minimum heat flux with film boiling,

(a/8)pgp = 0.09 pgpy ol o2 Lamu) /gy (10)

(p£+pv)2 8

This value for liquid nitrogen i1s indicated on Figure 13 for a/g = 1.
The data of Figure 8 furnish approximate experimental values

of (q/A)min at the various fractional gravities, and these are compared

with the predicted values of Equation (10) in Table II. Although the

predicted values were specified as applying to horizontal surfaces, the

similarity with the experimental results from a sphere is interesting.

An equation for A$m. was derived by Berenson(go) by equating

in

the minimum heat flux, Equation (10), to h x Aty;, using his correlation
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for film boiling, resulting in:

At . = 0.107 PvEbrgr8legmeviur ]l/%__ggg___]l/2 a)-1/6
” kvf' (Dz+pv)lf2 g(pz‘pv)

m (11)

—~
o |

This result for liquid nitrogen at a/g =1 is also indi=-

cated on Figure 13.

TABLE IT

COMPARISON OF EXPERIMENTAL AND PREDICTED VALUES
OF (q/A)pip» EQUATION (10)

a/g (q/A)min-predicted (q/A)min-experimental
1 2100 1700 - 2100
.6 ‘ 1850 1550
.33 1590 1300 - 1400
.20 1400 1500
.03 875
870 - 1100

.01 666







CONCLUSIONS

For film boiling from spheres, the heat flux and the Nusselt number
have been found to be proportional to (a/g)l/5 within the range of
gravities examined, 0.01 < a/g < 1. Although these results were
achieved with a transient technique over a short time interval, it
is believed that steady-state measurements would yield the same re=-
sults. With saturated liquid, steady=-state film boiling is not
possible at zero gravity unless the vapor formed can be removed from
the vicinity of the heating surface by means other than gravitational
buoyant forces. In this case the rate of heat transfer will be a
function of the vapor-removing mechanism.

The nucleate and transition boiling regions appear to be insensi-
tive to gravity within the range covered for saturated liquids.

This may be expected to be the case with pool boiling of a subcooled
liquids as well,

Any comparison between nucleate boiling under short term and long
term zero gravity will depend on the motion of the vapor as it is
generated. If it remains in the vicinity of the heating surface
then nucleate boiling as such can no longer continue. Subcooled
liquid at the heating surface would be difficult to maintain with

no gross convection.

The maximum and minimum heat flux with pool boiling appear to follow

a dependence of gravity according to (a/g)l/u°
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