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SUMMARY.

Dependent censoring occurs in longitudinal studies of recurrent events when the censoring time

depends on the potentially unobserved recurrent event times. To perform regression analysis in this setting,
we propose a semiparametric joint model that formulates the marginal distributions of the recurrent event
process and dependent censoring time through scale-change models, while leaving the distributional form
and dependence structure unspecified. We derive consistent and asymptotically normal estimators for the
regression parameters. We also develop graphical and numerical methods for assessing the adequacy of the
proposed model. The finite-sample behavior of the new inference procedures is evaluated through simulation
studies. An application to recurrent hospitalization data taken from a study of intravenous drug users is

provided.
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1. Introduction

Recurrent events data arise in many longitudinal follow-up
studies. Medical examples include tumor recurrences in can-
cer patients (Byar, 1980), repeated opportunistic infections
in HIV-infected subjects (Li and Lagakos, 1997) and recur-
rent seizures in epileptic patients (Albert, 1991). There exist
statistical methods for analyzing the marginal distributions of
times to recurrent events (e.g., Wei, Lin, and Weissfeld, 1989),
the gap times between successive recurrences (e.g., Prentice,
Williams, and Peterson, 1981) and the intensity/rate func-
tions of the recurrent event process (e.g., Andersen and Gill,
1982; Pepe and Cai, 1993; Lawless, Nadeau, and Cook, 1997).

In general, the recurrent event times are subject to right
censoring, in that the observation of the recurrent events is
terminated at or before the end of the study. If censoring is
due to study termination or random loss to follow-up, then
the censoring time can be reasonably regarded as indepen-
dent of the recurrent event times. Dependent or informative
censoring arises if the censoring time depends on the observed
or unobserved recurrent event times. This would be the case
if, for example, the subjects who are at higher risks of recur-
rent events tend to be withdrawn from the study earlier. In
a typical medical study, the recurrent event times are sub-
ject to both independent and dependent censoring, and the
correlation structure between the dependent censoring time
and recurrent event process is complex. It is important to
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realize that the aforementioned methods for analyzing recur-
rent events data are not valid in the presence of dependent
censoring.

It is difficult to deal with dependent censoring in the anal-
ysis of recurrent events data, because the distribution of the
recurrent event process is not identifiable nonparametrically.
Limited methodological advances have been made. Chang
(2000) proposed a method for comparing two gap time distri-
butions, by postulating a multivariate scale-change model for
the joint distribution of the dependent censoring time and the
gap times of recurrent events. Wang, Qin, and Chiang (2001)
studied the proportional rate model for recurrent events by
characterizing the correlation structure between the recurrent
event process and dependent censoring time through a ran-
dom effect.

In this article, we propose a novel semiparametric regres-
sion model for formulating the joint distribution of the re-
current event process and dependent censoring. This model is
described in the next section. In Section 3, we construct ap-
propriate estimating functions for the regression parameters
and derive the asymptotic properties of the resulting estima-
tors. In Section 4, we show how to assess the adequacy of the
proposed model. In Section 5, we present the results of our
simulation studies. In Section 6, we apply the proposed meth-
ods to a longitudinal study on drug abuse. We conclude with
some discussion in Section 7.
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2. Data and Model

Let N*(t) denote the number of recurrent events that occur
over the time interval [0, ] in the absence of any censoring, let
C and D denote, respectively, the times to independent and
dependent censoring, and let Z denote a set of covariates. We
assume that C is independent of N*(-) and D given Z. By
contrast, D is allowed to depend on N*(-), even conditionally
on Z.

Let {N;(-), D;, C;,Z;}(i =1,...,n) be nindependent repli-
cates of {N*(-), D, C, and Z}. We suppose that there exist un-
known constant vectors 1 and 6, such that for glven Z; and
t, the bivariate random vectors {D;e % N (te®% )} (i =
1,...,n) have a common, but completely unspecified, joint
distribution. In other words,

Diein(‘zi
N; (teebzi)

where {Dy, Ni(t)}' has an arbitrary bivariate distribution,
and < means equal in distribution. The independent censor-
ing time C'is allowed to depend on covariates Z in an arbi-
trary manner. Model (1) is semiparametric, since the joint
distribution of {Dj, Nj(-)} is completely unspecified. Un-
der this joint model, the marginal distribution for the de-
pendent censoring time satisfies the familiar accelerated fail-
ure time (AFT) model for survival data (Kalbfleisch and
Prentice, 1980, pp. 32-34; Cox and Oakes, 1984, pp. 64—
65), while that of the recurrent event times satisfy the AFT
model for counting processes (Lin, Wei, and Ying, 1998). The
latter marginal model can be expressed as E{Ni"(te%zi)} =
uo(t)(i =1,...,n), where uo(-) is an arbitrary baseline mean
frequency function. If Z consists of a single treatment in-
dicator, then 7y > 0 (or 6, > 0) implies that the treat-
ment stochastically lengthens the time to dependent cen-
soring (or the times to recurrent events) by a scale of
e (or e%).

There are two major forms of dependent censoring. The
first case is when subjects are voluntarily withdrawn from
the study for reasons that are related to the recurrent
event process. The subjects can potentially experience fur-
ther events after the censoring time, but these events are
not observable to the investigators. The second scenario is
when dependent censoring occurs because of death; there
are no further recurrent events after death. In this case,
N*(-) pertains to the latent recurrent event process, which
is analogous to latent failure times studied in the classical
competing-risks literature (Kalbfleisch and Prentice, 1980,
Section 7.2).

The data consist of {N;(+), X;, 6;, Z;}(¢ = 1,...,n), where
Our task is to use these data to make inference about B, =
(. 85
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3. Inference Procedures
3.1 Estimation of Bo

Since D is only subject to independent censoring by C, the
existing methods for the AFT model can be used to estimate

Biometrics, December 2003

7o. Writing )?1(17) = X,e "% we shall estimate 1, from the
log-rank estimating function

. Y IHX;(m) > X))z

)= 6 |Zi— - )

- > X () > Xi(n)}

Let 7 be a zero-crossing of U;(n7). Then, 7 is consistent and
asymptotically normal (Tsiatis, 1990).

To motivate our estimator for 8, we first examine the esti-
mating function of Lin et al. (1998). For ¢ = 1,...,n and
k=1, 2,..., let Ty be the time to the kth recurrent
event for the ith subJect Clearly, N/ (t Zk AT <)
and N Zk 1 T <tANX; ) Deﬁne le(B) = leeiez
and XZ(B) Xe"’Z i(i=1,...,n;k=1,2,...). Then, the es-
timating function of Lin et alr (1998) takes the form

> I{X;(0)
> [ |a-
> I{X;(0) >t}

> t}Z;

dN;(t;9),

where N;(t;0) = S0 I{Ti.(8) < t A X,(6)}.
It is stralghtforward to show that

ZI{X ) > t}Z,
i(;,0),

Z/ - dM,

f{)?j(e) >t}

Jj= 1

where
M;(t;0) = / I{Xi(0) > s}d{N; (se®%) — po(s)},

and p(-) is as defined in Section 2. If there were no dependent
censoring such that X were independent of N*(-) given Z, then

BT (t:0,)} = / H{X.(0) > 5}

Xd[E{N*(se 0 )—ug(s)}] =0.

Consequently, U(68,) would be a sum of integrals with respect
to zero-mean processes, so that U(#) would be an asymptoti-
cally unbiased estimating function. In the presence of depen-
dent censoring,

E{M;(t;0,)} = E / I{X,(80) > s}

[E{dN* (se 0 ) | Dye % > s} - duo(s)}.
In general, there does not exist a function pg(-) such that
E{dN; (te®%)| D;e 0% >t} = dpy(t) for all 4, the only ex-
ception being when model (1) holds with ny = 6y. Thus, U(0)
is not a valid estimating function unless 1y = 6.
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The above derivation suggests that (3) would be a valid es-
timating function under dependent censoring if we subjected
the transformed recurrent event times T;x(0)(k=1,2,...)
to right censoring by X;e 7% instead of X;e~®%i. How-
ever, a difficulty would arise if n'Z; < 0'Z;, because then
X; would be multiplied by a larger factor than the Ty
(k=1,2,...), so that some of the censored recurrent event
times might need to be uncensored. To circumvent this dif-
ﬁculty, we subject the Tin (@)(k=1,2,...) to right censoring
by X; (b) = X;e "%~ where d = max,<;<, (0 — 1)'Z;. If Z
consists of a single treatment indicator, then d = 0 if n > 0
and d = @ — n otherwise. Thus, the (uncensored) recurrent
event times in the treatment group may be artificially cen-
sored if n > 0, and the (uncensored) recurrent event times in
the control group may be artificially censored if n < 6. This
kind of artificial censoring has been employed by Robins and
Rotnitzky (1992), Lee, Li and Elashoff (1993), Lin, Robins,
and Wei (1996), and Chang (2000), among others.

For fixed 1, we propose estimating 6, using the estimating
function

Us(0; 1) = / (2, - 2% (t: B) AN (1 B),

278 = ¥, X, (8)
t}, and Ny (t;8) = >, 1I{le
define 8 as a zero-crossing of U,(0;7). Write 3 = (/0\/, 7).

Let dy = max;<;<,, (6o — 10)'Z;. Under model (1), the expec-
tations E{dN; (te®?% )| D;e "M% ~% > ¢}(i =1,...,n) have a
common value, say 7((t) dt, regardless of the value of Z;. Sim-
ple algebraic manipulation yields

> 42,/ 507 H{X;(8) =
0) <tA X, (B)}. Given 71, we

where

(O =3 / (2, - 7% 8)}dMos(: 8),  (4)

where
Moy (t;:8) = / I{)?Z(ﬂ) > s}{le-* (seelzi) —ro(s) ds}.

Clearly,

B (50} = B [ 100 > 5)
X [E {dN* (se 0 ) | Dje™0%i~d0 > s} —ro(s) ds] =0.

Thus, Uy(6y; mo) is the sum of stochastic integrals with
respect to zero-mean processes. Consequently, the use of
U,(0;m) would yield a consistent and asymptotically normal
estimator, as demonstrated in the next section.

3.2 Asymptotic Properties of,B
Define Ny;(¢;m) = 6;1{X;(n) <t} and

Myi(t;m) = Nus(tsm) — / {Zi(m) > s)h(s) ds

0
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where \y(¢) is the hazard function of D,. Then

- Z/m {Zi —z(l)(t;n)}dNu(t;n)
- Z/OO {Zi _z(l)(tﬂ?)}dMu(t;n),

where  Z(tim) = Y07 I{X,(n) > 02,/ 377 1{X,(n) >
t}. Because M;(t) = My;(¢; mo)(i = 1,...,n) are orthog-
onal martingales with respect to the marginal filtration
Fi = c{Nu(s;mp), [{Xi(ng) > s}, Z;;0<s<ti=1,...,n},
the martingale central limit theorem (Fleming and
Harrington, 1991, Theorem 5.3.5) implies that n~'/?U;(n,)
is asymptotically zero-mean normal and

n71/2U1 (770) = n’1/2 Z/O' {Zl — 2(1)(t)} dM]l(t) =+ Op(l),
5)

where zV)(t) is the probability limit of z(l)(t; 7)-

It is more delicate to derive the asymptotic distribution
of n=1/2U,(By; 1) because My;(t) = Myi(t;8)(i=1,...,n)
are not martingales. Nevertheless, by applying the empirical
process arguments as found in the Appendix of Lin et al.
(1998) to (4), we can establish that

n Uy (00;m) = n '/ Z /m{zi -z (t)} dMa;i(t) +op(1),
(©

where zZ®(t) is the probability limit of 2(2)(15; By)- The in-
terested reader is referred to Ghosh (2000, Chapter 6) for a
proof of this result, as well as the proofs of other results in
this section.

Write U(B) = {U/(n), Uy(0; n)} . Because both the right-
hand sides of (1) and (2) consist of sums of n independent
random vectors, the multivariate central limit theorem implies
that n 1/QU([B ) is asymptotically zero-mean normal with co-
variance matrix

V= limn! Z E |:¢”¢,17
noeo el Yo,

fo {Z; - z! )}dMlz( ) and b, = fooc{zi —
Z?(t)} dMy; (t). By extending the asymptotic linearity argu-
ments of Ying (1993), we can show that, for 3 in a small
neighborhood of 3,

¢21¢’21

where 1, =

n VPU(B) = n ' PU(By) + An'*(B - By) +op(1),  (7)
where A is the asymptotic slope matrix of n='U(3,). It fol-
lows that n!/2(3 — B,) is asymptotically zero-mean normal
with covariance matrix A"'VA~L

A direct evaluation of A would require estimation of \(-)
and 7((-), which cannot be done reliably in practical applica-
tions. Thus, we appeal to the resampling approach of Parzen,
Wei, and Ying (1994). By replacing Ay(¢ fo Ao(s)ds and
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R(,(t)EfUt ro(s)ds in My;(t; m) and Mo(t; B) with the
Aalen-Breslow type estimators
t 7] Z/ th S n)
ZI{X ) > s}
and
(:8) = z [ et
ZI{X ) > s}
we obtain
t
Tt =Nt [ 1Fu () > o) s,
0
A~ t i fay
My;i(t; B) = Nai(t; B) */ H{Xi(B) > s} dR(s; B).
0
-~ 00 —(1 ~ L ~ - 00
Let y; = fg {Z2; - Z( )(t”?)}dMli(t;n) and t,; = fg {Z; -

Z"” (t; B)} dﬁzi(t; ,@) We construct the pair of equations

Ui(n) = Z"‘?’uGi’ (8)

0;n) = Z"?’Qz‘Giv ()
i=1

where (G, ..., G,) are independent standard normal random
variables that are independent of the data {N;(-), X, 6;, Z;}
(i = 1,...,n). Denote the solution to equations (8) and (9)
by 8" = (n",0"). ~ ~

Obviously, U(8") = >""  ,G;, where 1, =
then follows from (7) that

~1 o~
(¢1i7 ¢2i),' It

n'2(B = B) = A2 " 4h,Gi+ op(1).

i=1

(10)

The conditional distribution of n=/2%"" $,G; given the
data {N;(-), Xi, 6i, Z;}(i = 1,...,n) is zero-mean normal
with covariance matrix n~' ZL 17)11//;;, which converges in
probability to V. Therefore, the conditional distribution of
n'/2(B* — B) is asymptotically equivalent to the unconditional
distribution of nl/z(ﬁ — By). To approximate the distribution
of B, we obtain a large number of realizations of 3* by repeat-
edly generating the random samples (G4, ..., G,) while fixing
the data {N;(-), X;, 6;, Z;}(i = 1,...,n) at their observed
values and solving equations (8) and (9). The empirical dis-
tribution of B3* can then be used to perform hypothesis testing
or interval estimation on individual components of 1y and 6.

4. Model Checking

Model (1) implies that (i) D;e ™% (i=1,...,n) have
a common marginal distribution and (ii) E{dNi* (te®%)|
Dje ™% >t}(i=1,...,n) have a common value. The infer-
ence procedures developed in Section 3 rely on model (1) only
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through these two conditions. To verify these two conditions,
we consider the “residual” processes

n) = Z Z;My;(t;m),
i-1

(11)

(12)

3 5) = ZZiM%(t;/@)'

It is easy to see that Uj(co; m)=Uj(n) and Uy(oo;
B) =U,(0; n). By extension of the arguments of Wei (1984),
the Kolmogorov-type test sup, |[n~'/2U;(t;n)| is consistent
against the general alternative that condition (i) fails; given
condition (i), the sup, |[n"/2U,(t; B)| test is consistent
against the general alternative that condition (ii) fails.

To carry out the Kolmogorov-type tests, we need
to ascertain the distributions of the residual processes
Ui(;m) and Uy(;8) under the null hypothesis that
model (1) holds. The null distribution of n~'/2U(t,th) =
{(nV2U (1), n /2U,(t1; B)} is asymptotically equiva-
lent to the conditional distribution of n Y2U*(t,t!) =
{n=Y2U% (t),n/2U% (1)} given the data {N;(-), X, 6;, Z;}

(i =1,...,n), where
~ [ =) o
_ Z/ (2 - Z"(s:7) } dilTs(5; )G
i=1 70
+Ui(t; ") — Ui m),
and

} dMQz B)G’L

Z/{Z—Z

+Us(t; 8%) — Us(t; 5)7

because it follows from the arguments used for showing (5)—
(7) and (10) that

n / {Zz - §<1)(S)} dMM(S)
n~12U(t,t) = n’l/zz 0

= / {Z; -7 (s)} dMoy(s)

FA(L N (B — By) + op(1),

and
/ {2z, ~ZY(sn }dM“ s7
n—l/zU*(t,tT) — n—1/2

“ /{Z—z

x G + A(t, thn'/? (8" — ,3) +op(1),

} dM?z ﬁ)

where A(t, t') is the asymptotic slope matrix of n 'U(t, t);
see Ghosh (2000, Chapter 6) for a detailed proof.

In view of the above result, we approximate the null dis-
tribution of U(t, t') by generating a large number of realiza-
tions of U*(t, ') using simulation. The empirical distribution
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of U*(t, t') can then be used to perform the Kolmogorov-
type tests. Furthermore, graphical model checking can be car-
ried out by comparing the observed patterns of U,(;;n) and
Us,(+;8), with a few realizations from Uj(-) and Uj(-).

5. Simulation Studies

We conducted extensive simulation studies to assess the finite-
sample properties of the proposed methods. Because 7 is a
nuisance parameter, we focused our studies on the estimation
of 8,. We compared the proposed estimator with that of Lin
et al. (1998). The latter is referred to as the naive estimator
because it does not adjust for dependent censoring.

We generated {Dy, Ni(-)} in two stages: a gamma random
variable v, with mean 1 and variance o2, was first generated;
given v, the dependent censoring time D, and the gap time be-
tween every two successive recurrent events were generated as
independent exponential random variables with hazard rates
v and 4v, respectively. We multiply D, and the gap times so
generated by e™Z and e%Z to produce the dependent censor-
ing time and gap times associated with Z, where Z is Bernoulli
(0.5), uniform (0, 0.5) or uniform (0, 2). Because of the com-
mon random effect, D is correlated with N*(-), unless o = 0.
Independent censoring time was generated from the uniform
(0, 7) distribution.

Table 1 summarizes the results for the following combina-
tions of simulation parameters: 3, = [0.25,log(3)], 0% =0, 1
or 4, 7 = 5 or 20, and n = 100. The choice of 7 = 5 or
20 yielded an average of about 2.4 or 4.7 observed recur-
rent events per subject, respectively. For each configuration
of simulation parameters, we generated 1000 data sets. For
each data set, the resampling distribution was based on 1000
realizations.
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The results in Table 1 as well as additional results reported
in Ghosh (2000) demonstrate that the proposed methods have
satisfactory small-sample behavior. The proposed parameter
estimator is virtually unbiased. The standard error estimator
reflects well the true variation of the parameter estimator.
The confidence intervals have proper coverage probabilities.
When o2 = 0, the naive estimator performs well and is more
efficient than the proposed estimator. For nonzero values of
0%, however, the naive estimator is biased, and the cover-
age probabilities of the corresponding confidence intervals are
poor.

6. The AIDS Link to Intravenous Experiences Study

We now apply the proposed methods to the AIDS Links to In-
travenous Experiences (ALIVE) cohort study (Vlahov et al.,
1991), which collected data on HIV infection, in-patient ad-
missions and other variables from a group of intravenous drug
users in the city of Baltimore, Maryland, U.S.A. Following
Wang et al. (2001), we consider hospitalization data collected
between August 1, 1993, and December 31, 1997, from 715
subjects. In this study, the dependent censoring is caused
by death. We focus on the comparison between the subjects
who are HIV-positive (coded as Z = 0) at baseline (i.e.,
August 1, 1993) versus those who are HIV-negative (coded as
Z =1).

Table 2 summarizes the hospitalization and survival experi-
ences for the subjects in the two groups. The Kaplan-Meier es-
timates of the 4-year survival probabilities are approximately
0.95 and 0.72 for the HIV-negative and HIV-positive sub-
jects, respectively. The log-rank statistic for comparing the
two survival distributions is 71.7, yielding to a p-value less
than 0.0001. Figure 1 displays the estimated cause-specific

Table 1
Summary of simulation results

Naive method

Proposed method

Z a? T Bias SE SEE CP Cp* Bias SE SEE CP CP* AC
Bernoulli (0.5) 0 5 —0.01 0.21 0.20 0.94 0.95 0.01 0.24 0.22 0.94 0.95 0.27
20 -0.01 0.15 0.14 0.95 0.95 0.00 0.18 0.17 0.93 0.94 0.26

1 5 —0.28 0.16 0.14 0.75 0.77 —0.01 0.20 0.19 0.94 0.95 0.27

20 —0.32 0.13 0.11 0.71 0.72 -0.01 0.16 0.15 0.94 0.94 0.28

4 5 —0.39 0.14 0.13 0.60 0.62 0.00 0.17 0.16 0.94 0.94 0.27

20 —-0.43 0.11 0.10 0.56 0.57 0.01 0.13 0.12 0.94 0.95 0.26

Uniform (0, 0.5) 0 5 0.01 0.14 0.12 0.95 0.95 0.00 0.17 0.17 0.95 0.95 0.12
20 —0.01 0.11 0.09 0.94 0.94 0.00 0.15 0.14 0.95 0.94 0.13

1 5 -0.10 0.10 0.08 0.85 0.83 0.00 0.12 0.11 0.94 0.94 0.13

20 —0.12 0.09 0.08 0.82 0.80 —0.01 0.09 0.08 0.94 0.94 0.12

4 5 -0.17 0.11 0.10 0.79 0.78 0.01 0.12 0.11 0.95 0.95 0.12

20 —0.19 0.07 0.08 0.77 0.75 —0.01 0.08 0.07 0.94 0.94 0.13

Uniform (0, 2) 0 5 —0.01 0.21 0.23 0.95 0.94 0.01 0.27 0.26 0.95 0.95 0.29
20 0.01 0.18 0.17 0.95 0.95 0.00 0.19 0.18 0.94 0.94 0.30

1 5 —0.15 0.20 0.19 0.85 0.83 —0.01 0.22 0.20 0.94 0.95 0.30

20 -0.18 0.16 0.16 0.80 0.78 0.01 0.15 0.14 0.93 0.94 0.29

4 5 —0.22 0.19 0.19 0.77 0.75 —0.01 0.20 0.20 0.95 0.94 0.31

20 -0.26 0.14 0.13 0.73 0.71 0.01 0.17 0.16 0.95 0.95 0.30

Note: Bias is the sampling mean of the estimator of 6y minus 6y; SE is the sampling standard error of the estimator of fy; SEE is the sampling
mean of the standard error estimator; CP is the coverage probability of the Wald 95% confidence interval, and CP* is the coverage probability
of the 95% confidence interval based on the empirical percentiles; AC is the percentage of artificially censored observations.
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Table 2
Hospitalization and survival experiences for the HIV-negative and HIV-positive subjects in
the ALIVE study

Number of hospitalizations

Number of Number of
HIV status subjects 0 1 2 3 4 5 >6 deaths
Negative 430 209 95 47 20 25 7 21 22
Positive 285 109 61 35 36 15 3 26 78

hospitalization rates (i.e., the rates of hospitalization given
being alive) obtained from the Nelson-Aalen estimates by
monotone splines (Ramsay, 1988). These results show that
the HIV-positive subjects tend to have higher hospitalization
rates than the HIV-negative subjects.

Table 3 provides the results of fitting model (1) to the
ALIVE data. As expected, the baseline HIV status is highly
predictive of survival. On average, the subjects who are HIV-
negative at baseline live 4.76 times as long as their HIV-
positive counterparts. The proposed method yields a much
larger estimate for the effect of the baseline HIV status on
hospitalizations than the naive method. This difference is
attributed primarily to the strong positive correlation be-
tween hospitalizations and death. Approximately 23.3% of
the hospitalizations in the HIV-negative subjects are artifi-
cially censored. The proposed estimate indicates that, on av-
erage, the times to hospitalizations for an HIV-negative drug
user are 1.78 times those of an HIV-positive drug user. Us-
ing a random-effect proportional rates model, Wang et al.
(2001) found that the hospitalization occurrence rate of the

HIV-positive drug users is about 1.64 times that of the HIV-
negative drug users. N

Figure 2 displays the observed curves of U, (+;7) and Us(+; 3)
along with 20 realizations from the simulated null distribu-
tions. The observed patterns are not extreme compared with
the simulated realizations. Based on 1000 realizations, the
P-values for the Kolmogorov-type tests sup, |U;(t;7)| and
sup, ‘UQ(t;ﬁ)' are estimated at 0.63 and 0.48, respectively.
Thus, there is no evidence of model misspecification.

7. Discussion

As evident from Sections 5 and 6, failure to adjust for de-
pendent censoring can result in serious bias in the analysis of
recurrent events data, especially when the dependence of cen-
soring time on recurrent event times is strong. The proposed
method enables one to make valid inference under mild as-
sumptions. There is a trade-off between the bias of the naive
estimator and the loss of efficiency caused by the artificial
censoring of the proposed method. The efficiency loss is a
more important concern in smaller samples, whereas the bias

0.9

0.8
|

0.7
|

Estimated cause-specific rates
0.6

0.5
|

0.4

0 1 2

Follow-up time (years)

Figure 1.
to the HIV-negative and HIV-positive subjects, respectively.

Cause-specific hospitalization rates separated by the baseline HIV status: the solid and dotted curves correspond
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Table 3
Regression estimates for the effects of the baseline HIV status on death and hospitalizations
in the ALIVE study

95% confidence intervals

Estimated
Estimate standard error Percential Wald
Death 1.56 0.28 (1.31, 1.91) (1.01, 2.11)
Hospitalizations
Naive 0.27 0.07 (0.15, 0.43) (0.14, 0.40)
Proposed 0.58 0.17 (0.24, 0.79) (0.24, 0.92)

Note: The estimated standard error and confidence intervals are based on 1000 realizations.

becomes a more prominent issue in larger samples. In this
sense, the proposed method is most useful in large samples.
The proposed estimator would be inefficient and thus of lim-
ited value if the range of (8 — m9)'Z is very large, because
then there would be excessive artificial censoring. Unfortu-
nately, that is also the situation where the naive estimator
would yield severe bias. In that kind of situation, the method
of Wang et al. (2001) may be used instead, especially if the
sample size is small. An alternative approach would be to de-
velop methods for sensitivity analysis along the lines of Scharf-
stein, Rotnitzky, and Robins (1999).

The equation N (te®%) < N (t) in model (1) essentially
specifies accelerated failure time models for the recurrent
event times: log Ty = —04Z; + € (1 = 1,...,n; k =
1, 2,...), where the error terms (&1, €p,...) (i = 1,...,n)

are independent random vectors with a common, but com-
pletely unspecified, joint distribution. By contrast, Chang
(2000) postulated accelerated failure time models for the gap
times: log(Ty — Tix-1) = —0kZ; + €, (1 =1,...,n; k =
1,...,K), where T;y = 0, Z; is the treatment indicator, 6y, is
the regression parameter for the kth gap time, and €}, are the
corresponding error terms. Because the proposed model for-
mulates the effects of covariates on the entire recurrent event
process through a single (possibly vector-valued) regression
parameter, whereas Chang’s (2000) model pertains to a fixed
number of gap times with separate regression parameters for
each gap time, our approach is more parsimonious and more
efficient than Chang’s approach. Wang et al. (2001) also used
the data on the entire recurrent event process, but they re-
lied on the proportional means model (Lawless et al., 1997),

1.0

Residual process
-0.5 0.0 05

-1.0

0 1 2

Follow-up time (years)

0.0 0.5

Residual process

-0.5

0 1 2

Follow-up time (years)

o~

Figure 2.

Plots of residual processes U, (+; 7)) and Us(-; B), shown in (a) and (b), respectively. The observed process is shown

by the solid curve, and 20 simulated realizations by the dotted curves.
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rather than the accelerated time model. Their joint model is
more restrictive than ours, in that the dependence between
D and N*(-), as well as the dependence among the recurrent
event times themselves, are characterized by a common ran-
dom effect. The Wang et al.’s (2001) approach should be more
efficient than ours and Chang’s, because it is more restrictive
and does not involve artificial censoring.

For simplicity, we have focused on the estimating functions
based on unweighted log-rank statistics. We may incorporate
weight functions into U;(n) and Uy(0; 1), and all the asymp-
totic results will continue to hold. Optimal weight functions
for Uy(n) have been well studied, and involve the unknown
density function of the error term (Tsiatis, 1990). It is unclear
what the optimal weight functions would be for Uy(8; n),
which is based on complex correlated data. Furthermore, it
would be difficult to use the optimal weight functions in appli-
cations, because they will certainly involve the density func-
tions of the underlying failure time distributions.

As mentioned in Section 2, if censoring is due to death, then
N*(-) corresponds to the latent or potential recurrent event
process. An alternative approach is to consider the marginal
mean function for the actual number of recurrent events, ac-
knowledging the fact that death precludes further recurrences.
This approach was taken by Ghosh and Lin (2000, 2002).

In many applications, the exact times of the recurrent
events cannot be observed. What is known instead is the num-
ber of recurrences since the subject’s last visit. In addition,
the subject’s visit schedule can be a random process. The re-
sulting data are commonly referred to as panel count data
(e.g., Lawless and Zhan, 1998; Sun and Wei, 2000). It would
be worthwhile to generalize the methods proposed here to the
panel count data.
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RESUME

La censure dépendante apparait dans les études longitudi-
nales d’événements récurrents quand le temps de censure
dépend des temps d’événements récurrents potentiellement
non observés. Pour réaliser une analyse de régression dans
cette situation, nous proposons un modele semi-paramétrique
joint qui spécifie les distributions marginales du proces-
sus des événements récurrents et du temps de censure
dépendant au moyen de modeles a changement d’échelle
tout en laissant la forme distributionnelle et la structure
de dépendance non spécifiées. Nous déduisons des estima-
teurs consistants et asymptotiquement normaux pour les
parametres de la régression. Nous développons également des
méthodes graphiques et numériques pour évaluer la perti-
nence du modele proposé. Le comportement de la nouvelle
procédure pour des échantillons finis est évalué par des études
de simulations. Une application de données d’hospitalisations
récurrentes dans une étude chez les usagers de drogue par voie
intraveineuse est fournie.

Biometrics, December 2003
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