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SUMMARY 

Improved laboratory methods allow one to investigate the contribution of measured allelic 
variability at a locus physiologically involved in determining the expression of a quantitative 
trait. We present statistical methods that incorporate measured genotype information into the 
analysis of a quantitative phenotype that allows one simultaneously to detect and estimate the 
effects of a measured single locus and residual polygenic effects. Likelihoods are presented for 
the joint distribution of the quantitative phenotype and a measured genotype that are 
appropriate when the data are collected as a sample of unrelated individuals or as a sample 
of nuclear families. Application of this method to the analysis of serum cholesterol levels and 
the concentration of the group specific component (Gc) are presented. The analysis of the 
contribution of the common Gc polymorphism to the determination of quantitative variability 
in Gc using samples of related and unrelated individuals presents, for the first time, the 
simultaneous estimation of the frequencies and the effects of the genotypes at a measured locus, 
and the contribution of residual unmeasured polygenes to phenotypic variability. 

INTRODUCTION 

The study of the genetics of a quantitative phenotype in humans can be viewed as utilizing 
one of two basic strategies. The first strategy we refer to as the unmeasured genotype or 
biometrical approach. This approach utilizes information about the distribution of the 
phenotype among related individuals to estimate genetic parameters. The second strategy uses 
information about the biochemical basis of the phenotype to identify loci physiologically 
involved in the etiology of a quantitative phenotype, and then determines the contribution of 
genetic variability at  these loci to variability of the trait. We refer to this second strategy as 
the measured genotype approach. Employing such a strategy can yield direct detailed 
information about the genetic architecture of a quantitative trait : the number of loci involved, 
the frequencies and effects of their alleles and the type of loci (i.e. structural genes or regulatory 
genes). The measured genotype approach has at least two requirements : first, an understanding 
of the biology of the phenotype that enables one to identify the candidate genes that may be 
contributing to phenotypic variability, and secondly, the ability to measure allelic variability 
a t  the identified loci. By employing methods presented here that relate this measured genetic 
variability to phenotypic variability, the genetic architecture of a quantitative phenotype can 
begin to be elucidated. 

Because of the shortage of mutational variation at loci involved in the metabolism of 
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interesting quantitative phenotypes, the measured genotype approach has had little impact on 
human quantitative genetics in the past. One classic example is the work by Hopkinson and 
his colleagues (Hopkinson et al. 1964) relating variability in red-cell acid phosphatase activity 
to electrophoretic variability in the same protein. With improved ability to measure variants 
at loci with known biological roles, the measured genotype approach will begin to play a larger 
role in studying the genetics of human quantitative phenotypes. 

We present here the maximum-likelihood methods for the measured genotype approach to 
investigating the genetics of a quantitative phenotype and compare this method to the 
unmeasured genotype approach. We consider data collected as a sample of unrelated individuals 
or as a sample of nuclear families. The likelihood that jointly parameterizes the measured 
genotype and the quantitative phenotype collected as a sample of related individuals allows 
one, for the first time, to estimate simultaneously the frequency and the effects of the genotypes 
at  the measured single locus, and the contribution of residual unmeasured polygenic effects to 
the total phenotypic variability. An example application of this method using the group-specific 
component (Gc) is presented. Using a sample of related individuals, we estimate the contribution 
of the common Gc polymorphism and residual polygenic effects to the variability in plasma Gc 
concentration. 

METHODS 

Modelling the quantitative phenotype 

We begin by defining the general model for the quantitative phenotype of the ith individual 

(1) 

as an additive combination of effects, 
Y i j  = Pj + Gi + Ei, 

where pj is the mean of thej th  genotype a t  a single locus ( j  = 1 . .  . J ) .  If there are two alleles 
at  the locus, j ranges from one to three. If individuals have been typed at  more than one locus 
involved in the determination of the quantitative trait, multilocus information can be included 
in the measured genotype likelihood function. & is the relative frequency of the j th  genotype 
in the general population and x;-ljj = 1. We define G, as the effect of the polygenotype of the 
ith individual. It is assumed to be the consequence of the action of a large number of genes, 
each with small effects, acting additively and independently. Ei represents the totality of all 
environmental effects specific to the ith individual. We assume that G and E are random effects, 
each normally distributed in the population with mean 0 and variance a& and a$, respectively. 
The components of the model are assumed to be uncorrelated and combine additively. The 
parameters of the model to be estimated include the J-1 genotype frequencies, the J 
genotype-specific means, the polygenic variance and the environmental variance. Other genetic 
and environmental random effects, such as dominance or a common environment, that could 
affect the phenotypic variance among individuals with the same single locus genotype and the 
covariance between individuals, may be added to the model with straightforward extensions. 

We next present the likelihood functions and the strategies for estimating the parameters 
of the model when either the unmeasured or measured genotype approaches are considered, and 
when the data are collected either as a sample of unrelated individuals or as a sample of nuclear 
families. Sampling is assumed to be random throughout our presentation, so that observations 
from different sampling units are uncorrelated. 
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Unrelated individuals - unmeasured genotype 

Here we consider the likelihood function for observations taken on a random sample of 
individuals drawn from a mixture of normal distributions. This function has been utilized by 
geneticists to determine if there is evidence in a sample of individuals for an underlying mixture 
of distributions, possibly due to the effect of a single unmeasured locus (Lalouel et al. 1983a; 
Turner et al. 1985). Unfortunately, the literature on the admixture model applied in human 
genetics is disperse. An admixture model has been presented by Day (1969) that parameterizes 
a mixture of two multivariate normal distributions. Hasselblad (1966) presented a model that 
classifies the data into groups and allows for unequal variances within the component 
distributions. Neither parameterization adequately addresses the applications found in human 
genetics. For completeness, we present here the likelihood function and parameter estimation 
approach for the admixture model that has been applied to human quantitative phenotypes. 

Consider a sample yl.. . yn drawn from a mixture of J normal distributions. We let n be the 
total number of individuals in a given sample and nj the number of individuals of genotype j .  
The distribution of the ith observation, conditional on the j t h  genotype a t  the single locus, 
is normal, with mean pj and variance c2 (c2 = a& + CT;) for all j = 1 . .  . J .  This distribution has 
density Cij, where 

The conditional distribution of the phenotype, given a particular genotype, is referred to as the 
penetrance function. The unconditional likelihood of the ith observation considers all possible 
genotypes weighted by their relative frequencies and is written 

J 

When the observations are randomly sampled and uncorrelated, the likelihood of the sample 
is the product of the likelihoods for the individuals. 

The maximum likelihood estimates of the parameters of the model can be found using the 
Newton-Raphson method. This scheme, a version of a more general EM algorithm previously 
used in admixture problems (Dempster et al. 1977), uses the iterative relationship 

(4) = @S-H(@S)-lD(@S), 

where OS is the vector of parameter estimates on the sth iteration, D(OS) is the vector of first 
partial derivatives of the likelihood evaluated a t  0", and H(OS) is the matrix of second partial 
derivatives evaluated a t  0". The values of 0 that maximize the likelihood function are taken 
to be the maximum likelihood estimates. An estimate of the asymptotic variance-covariance 
matrix of the parameter estimates for a sample of data is -H-l evaluated a t  the maximum 
likelihood estimates. The first derivatives of the natural logarithm of the sample likelihood 
function, denoted 2, are given in equations ( 5 ) .  

I3 H C E  50 
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( 5 b )  

The second partial derivatives are given by 

(6f 1 
where j and j’ each range from 1 to J .  The Kronecker delta function, a,,., is equal to one when 
j is equal toj’, and zero otherwise. 

Tests of hypotheses may be carried out using a likelihood ratio criterion. The test statistic, 
A, is the ratio of the value of the likelihood function maximized under the full model ( H , )  to 
the maximum of the likelihood function under some reduced model (H, )  in which one or more 
of the parameters is restricted to a hypothesized value. Because the exact distribution of A is 
not known, a chi-square approximation to the distribution of A is utilized to establish whether 
the value(s) of the restricted parameter(s) deviates significantly from the hypothesized value(s). 
When H ,  is true, the value of - 2 In A is distributed approximately as a chi-square with degrees 
of freedom equal to the number of parameters constrained to a hypothesized value. 

Unrelated individuals - measured genotype 

Here we consider the situation where the value of the quantitative phenotype and the 
single-locus genotype are measured for each member of a sample of unrelated individuals. This 
approach has been used in plant and animal genetics, and to a lesser extent in human genetics, 
to investigate the effect of variability at  a measured locus on a quantitative phenotype and to 
estimate the genotype frequencies. This application is equivalent to the single-classification 
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linear statistical model used in the analysis of variance (Neter & Wasserman, 1974 ; Scheffh, 1959) 
where the classifications are determined by the genotypes at the measured locus. Estimates of 
the genotype frequencies are obtained by counting the number of individuals with a specific 
genotype. Estimates of the means of the measured single-locus genotypes are given by the 
average values of individuals sharing the same genotype. The best estimate of the random 
variance component is obtained from the within-class error mean square of the analysis of 
variance. The F ratio from the analysis of variance can be used to test the hypothesis of equal 
genotype means. 

One of the first applications of the measured genotype approach in humans studied the 
relationship between red cell acid phosphatase (RCAP) activity and the discrete electrophoretic 
types of the same enzyme. Hopkinson et al. (1964) found mean differences in RCAP activity 
among the five different genotypic classes determined by electrophoresis of the RCAP protein. 
We have reported similar examples involving the Gc protein (Daiger et al. 1984), Apo E and 
cholesterol (Sing & Davignon, 1985), and a-glycerophosphate and a vector of glycolytic 
intermediates in Drosophila (Clark et al. 1983). 

The experimental design in each of these four examples (RCAP, Gc, Apo E ,  a-GPD) 
addresses the effects of the measured locus only and does not provide an estimate of the 
contribution of other unmeasured loci that may also affect the phenotype. We consider below 
likelihoods that parameterize a sample of observations collected on a set of related individuals, 
so that one may simultaneously estimate the relative frequencies and effects of genotypes at 
a single locus, and the contribution of unmeasured polygenic loci to variability in the phenotype. 

Related individuals - unmeasured genotype 

When the data are collected on a sample of related individuals it is possibe to construct a 
likelihood function that includes parameters that define the contribution of unmeasured shared 
genes to the phenotypic correlations between relatives. The distribution of the phenotype among 
a sample of related individuals is used to obtain information about the values of the parameters 
of the model. Evidence supporting an unmeasured single locus with a large effect comes from 
the distribution of the phenotype in the population and from the transmission of the phenotype 
from parents to their offspring. Analysis of the distribution of a quantitative phenotype among 
members of a pedigree for evidence of an underlying large single-gene effect has been termed 
complex segregation analysis (for a review see Elston, 1980). 

The likelihood function developed by Elston & Stewart (1971) or the alternative parameteri- 
zations developed by Morton & MacLean (1974) and Lalouel et al. (19833) may be used to relate 
the distribution of the quantitative phenotype in a sample of nuclear families to the parameters 
of the model. A chi-square approximation to the likelihood ratio test provides a criterion for 
assessing support for competing hypotheses. This model has been used extensively to investigate 
the genetic contribution to a quantitative phenotype (Boerwinkle et al. 1984; Moll et al. 1984; 
Lalouel et al. 1 9 8 3 ~ ) .  

Related individuals - measured genotype 

By sampling groups of related individuals and measuring values of the quantitative 
phenotype and the genotypes at a single locus known to be involved in the quantitative trait, 

13-2 
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one can partition the overall genetic variability into a proportion attributable to the measured 
single locus and a proportion due to the segregation of unmeasured polygenes. The joint 
likelihood of observing the phenotypes and the measured single-locus genotypes on the members 
of a family can be partitioned as 

(7)  

where y and j are the vectors of phenotypes and measured single-locus genotypes, respectively. 
L(y 1 j) is the likelihood of observing the phenotypes on each member of the family conditional 
on their single-locus measured genotypes and is a function of the means and variance 
components of the model. LU) is the likelihood of observing the genotypes of the family members 
and is a function of the measured single-locus genotype frequencies. From the factorization 
theorem (Bickel6 Doksum, 1977), the information in the data about the measured single-locus 
genotype frequencies is all contained in Lo), and the information in the data about the means 
and variance components of the model is all contained in L(y1j). 

The likelihood of the measured genotypes in a nuclear family can be partitioned into the 
likelihood of observing the genotypes of the parents and the product of likelihoods for the 
genotypes of the children conditional on the genotypes of the parents. The value of these 
likelihoods depends on the single-locus genotypes of the parents and Mendelian transmission 
probabilities. Assuming random mating, the likelihood of observing a certain mating type is 
the product of the likelihoods for each parent. The likelihood of the constellation of measured 
genotypes in a nuclear family with C children is 

L(Y and j) = Lei) L(yIj), 

C 

LO)’ = L(jmjjf,jc-i...jc-c) = f j m f j , z l L ( j c I j m j f )  (8) 

where jm, jf andj, are the measured genotypes of the mother, father and children, respectively. 
To illustrate an application, we consider the four-member pedigree and data given in Fig. 1. 
Assuming Hardy-Weinberg equilibrium and Mendelian transmission, the likelihood of the 
constellation of measured genotypes is p3q/2 .  Maximum-likelihood estimates of the relative 
genotype frequencies from a sample of nuclear families may be obtained by counting the number 
of parents with each genotypic class and dividing by the total number of parents. 

The second part of the likelihood function given in equation (7) considers the distribution 
of the phenotypes among pedigree members, conditional on their measured genotypes. Lange 
et al. (1976b) and Smith (1980) parameterized the distribution of a quantitative phenotype 
measured on related individuals as a multivariate normal distribution but did not include 
measured genotype information. When measured genotype information is available a multi- 
variate normal parameterization can be extended to estimate genotype means and other genetic 
and environmental parameters, as suggested by Moll et al. (1979) and Hopper & Mathews (1982). 
Their work parameterizes the likelihood of a quantitative phenotype measured on a sample of 
related individuals conditional on the genotypes at the single measured locus. They do not 
consider the joint distribution of the quantitative phenotype and the measured genotype among 
pedigree members. The amount of information contained in a sample about the parameters of 
the model depends on whether the phenotype is modelled in the likelihood as being conditional 
on the measured genotype or jointly with it. 

The distribution of the quantitative phenotype among family members is assumed to follow 
a multivariate normal distribution with mean vector p and covariance matrix Z. The natural 
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jf = AA j, = Aa 

j,, = AA jc2 = Aa 

Fig. 1 .  Example of a four-member pedigree with quantitative phenotype data (y) and measured 
genotype data (j) at a hypothetical two-allele (A,a)  I O C U S . ~ ,  m, e ,  and c2 represent the father, mother, 
first child and second child, respectively. 

logarithm of the likelihood function of the quantitative phenotype for one pedigree conditional 
on their measured single-locus genotypes is given by 

(9) 
- 1  

a Y U )  = ~lnIZl-~Y-p) 'Z-l(Y-.) ,  

where the constant term has been omitted to simplify the notation. The dimensions of the mean 
vector and the covariance matrix are determined by the size of the family. The mean vector 
takes the values of the genotypic means determined by the measured genotypes of the 
individuals in the pedigree. The elements of Z are functions of the variance components of the 
model and the transmission of the unmeasured polygenotype from parents to offspring. The 
conditional covariance between any two individuals i and i' is 

where is the kinship coefficient between individuals i and i' (MalBcot, 1948) and Stir is equal 
to one when i is equal to i' and zero otherwise. The elements of the data vector (y), and the 
parameters of the mean vector (p) and covariance matrix (Z), for the family in Fig. 1 are given 

When the data are collected from randomly selected and uncorrelated pedigrees, the likelihood 
of the sample is the sum of the In likelihoods for the pedigrees. 

Estimation of the variance components and the vector of genotype-specific means of the 
likelihood can be carried out by Fisher's scoring algorithm. If 0" is the vector of parameter 
estimates a t  the 6th iteration Fisher's scoring algorithm updates 0 using 

g s + l  = 0 5  + 1 ( 0 ~ ) - 1 ~ ( 0 5 ) ,  ( 1 1 )  

where D(0") is the vector of first partial derivatives of the likelihood evaluated a t  0" and I(@") 
is the information matrix evaluated at 0". An estimate of the asymptotic variances and 
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covariances of the parameter estimates is given by the elements of the negative of the inverse 
of the information matrix evaluated at the maximum-likelihood estimates. Using the generalized 
form of the first derivatives presented by Lange et al. (1976b), the first derivatives of equation (9) 
with respect to each parameter are given by: 

where @ is the matrix of kinship coefficients among individuals in the vector y and c; = (clj .. . cn j )  
is a design vector of indicator functions where cu = 1 if individual i has the measured single-locus 
genotypej and zero otherwise. These derivatives make up the elements of the score vector (D). 
The information matrix (I), which is the negative of the expectations of the matrix of second 
partial derivatives, is more difficult to obtain. The expectations must be taken over both the 
observed phenotype and the observed measured single-locus genotype distributions. According 
to the principle of conditional expectation, the expectation of a function ( f )  with respect to 
the random variables y and j  can be obtained in successive expectations as Egj( f )  = E,(Eg,,(j)). 
The expectations of the second derivatives with respect to the distribution of the observation 
vector, conditional on the value of the measured genotype, are: 

The expectations of equations (13) with respect to the measured genotype (i) only affect the 
second partial derivatives with respect to the means (equation 13a). This expectation can be 
rewritten as tr [Ej (c j  c;) Z-l]. The expectations of the joint indicator functions over the random 
variablej are equal to the joint probabilities that individual i will have genotypej and individual 
i' will have genotype j'. These probabilities are a function of the allele or genotype frequencies 
and the transmission probabilities of the measured single-locus genotypes. They can be obtained 
for general pairs of relatives using Jacquard's coefficients of identity (Jacquard, 1974) or the 
I T 0  method of Li & Sacks (1954). Some examples are: E(cfAA c,,,) = 2p3q, E(cfAA ccAa) = paq, 
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where f A A  in the subscript refers to  the father having genotype A A  for example. m and c are 
mother and child, respectively. 

The question of primary interest is to obtain estimates of the means of the measured single-locus 
genotypes and the variance components of the model. One may then wish to  test the hypothesis 
that the means are all equal. This, and other hypotheses, can be tested using the chi-square 
approximation to the distribution of the likelihood ratio statistic, 

APPLICATIONS 

Sing & Davignon (1985) recently presented an application of the measured genotype approach 
using the apolipoprotein E (Apo E) isoelectric focusing polymorphism and a profile of lipid 
measures. They reported significant differences in LDL-cholesterol and total serum cholesterol 
among Apo E genotypes. We examined the same sample of data to  determine if an unmeasured 
genotype analysis could detect the effects of variability in Apo E. I n  these data, the Apo Eeffects 
on these phenotypes were only detectable by considering the measured genotype information. 

We next present an application of the related individuals-measured genotype likelihoods and 
compare the results with those obtained using an unmeasured genotype analysis on the same 
set of data. The sample of data consists of related individuals measured for the concentration 
of the group-specific protein (Gc) and the common polymorphism for Gc published by Daiger 
et al. (1984). The measured genotype analyses presented here on the Gc data for the first time 
simultaneously estimate the effects of a measured locus and unmeasured polygenes on a 
quantitative phenotype. 

Gc is approximately 50000 molecular weight and reversibly binds vitamin D and its 
metabolites during transport. There is quantitative phenotypic variation among individuals for 
the concentration of Gc in the plasma. The Gc locus is polymorphic. There are two common 
alleles, GC' and Gc2, separated by gel electrophoresis. The common Gc electrophoretic poly- 
morphism is a logical tool to begin to  investigate the genetic architecture underlying variability 
in plasma Gc concentration. 

Daiger et al. (1984) have investigated the effect of the Gc polymorphism on Gc concentration 
from a sample of 89 unrelated individuals. They also estimated the polygenic heritability from 
a sample of 44 twin pairs. The measured genotype likelihoods presented here allow one to use 
the combined samples of unrelated individuals and twins, both samples measured for the 
common Gc polymorphism and Gc concentration, to  estimate simultaneously the single-locus 
genotype effects of the Gc electrophoretic polymorphism and the residual polygenic component 
on Gc concentration. We compare the results from an application of the measured genotype 
approach to an unmeasured genotype analysis of these same data. 

Analyses were carried out on Gc concentration adjusted for the linear effects of sex and age. 
A complete model defining three means, one for each of the three Gc genotypes underlying the 
phenotypic distribution, and a reduced model constraining the three means equal to the same 
value, were fitted to these data. Both models include separate variance components for the 
polygenic effects and the random environmental effects. The variance components describe the 
variability within a mode and the covariance between pairs of individuals conditional on their 
Gc locus genotypes. From the sample of 89 unrelated individuals, the genotype frequencies for 
the Gc polymorphism were 0*58,0.30 and 0.12 for the 1-1, 1-2 and 2-2 genotypes, respectively. 
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Table 1. Results of the measured genotype analysis on Gc concentration using the common Gc 
electrophoretic polymorphism measured on 89 unrelated individuals and 44 twin pairs 

Models 

Parameters I Mode 3 Modes 

P l ~ l  30'4 3 1'7 
Pl-2 29.5 

26.1 Pz-2 

- 

- 
u i  I 3.6 10'1 

4 2'5 2'5 
In likelihood - 230'3 -217.9 
Difference I 2.4 

Table 2. Parameter estimates and In likelihoods from an admixture analysis for Gc 
concentration measured on 89 unrelated individuals 

Models 

Parameters I Mode 2Modes 3 Modes 

P1 

PZ 
P3 
U2 
In likelihood - 
Difference 
f l  

f i  

f 3  

30'30 26.57 
3 1.63 - 

- - 
I 6.89 I 1.90 

0.28 

0736 

170'27 -169.99 - 

I '0 0.264 
- 

- - 

25.90 
29'7 1 

32.14 
11.49 

169.99 
0.0 

0.182 
0.289 
0.529 

Estimates of the means and variance components and the relative In likelihoods for the 
measured genotype analysis are given in Table 1.  The complete model, with pll =I= p l z  + pzz, 
fitted the data significantly better than the reduced model, with p,, = p l z  = pZz (xi = 248, 
P < 0.001). The maximum likelihood estimates of the parameters of the model were obtained 
using all of the data and the iterative relationship defined in equations (11) to (13). The 
estimated means of the 1-1, 1-2 and 2-2 genotypes were 31.7, 295 and 261, respectively. The 
estimate of the polygenic variance component was 101 and the estimate of the environmental 
variance component was 2.5. The ratio of &$/(g% + u;), or the residual polygenic heritability, 
was 0.80. The point estimates given in Table 1 are similar to those reported by Daiger et al. 
(1984). The variance of the estimates of the measured genotype means is, however, lower for 
the analyses presented here because we used information from all the data whereas Daiger et al. 
used only the unrelated subset of the sample. For example, the variance of the estimate of y,, 
was 0.217 for the analysis reported here and 0.255 for the analyses reported by Daiger et al. 

We carried out an admixture analysis on the subsample of 89 unrelated individuals to 
investigate whether multiple modes could be detected in the distribution of Gc levels which 
correspond to the multiple modes detected in the measured genotype analysis. Three models 
were fitted to the data corresponding to one mode, two modes and three modes underlying the 
distribution of Gc levels. Parameter estimates and In likelihoods for the unmeasured genotype 
analysis are given in Table 2. The model with one mode could not be rejected in favour of a 
model with more modes. It is interesting to note that the parameter estimates for the three-mode 
model correspond to the Gc effects estimated from the measured genotype analysis, even though 
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no significant effect could be detected by this admixture analysis. In these data, a statistically 
significant effect of the electrophoretic polymorphism a t  the Gc locus on Gc concentration could 
only be detected by a measured genotype analysis. 

DISCUSSION 

One of our goals in the study of the genetics of a quantitative phenotype in humans is to 
understand the genetic architecture underlying phenotypic variability. By this we refer to 
information concerning the number of loci affecting the quantitative phenotype, the number 
of alleles at each locus, the frequency and the size of the effects of these alleles and the type 
of loci making the contribution. These issues we feel can best be addressed by measuring an 
individual’s genotype a t  loci which are known a priori to be involved in the metabolism of the 
phenotype and then relating variability a t  these measured loci to variability in the phenotype 
of interest. 

Fisher’s seminal work of 1918 forms the basis of the biometrical approach that uses the 
correlations between relatives to estimate the extent to which genetic variability among 
individuals is contributing to the quantitative phenotypic variation in the population. Although 
the biometrical approach implicates the presence and quantifies the effects of unknown loci, no 
information about the identity and action of alleles at specific loci is obtained. The biometrical 
approach is limited to detecting only those single-locus effects that are relatively large (MacLean 
et al. 1975; Go et al. 1978; Burns et al. 1984). It is likely that there is a spectrum of single-gene 
effects on the quantitative phenotype that form a continuum from large to small. A necessary 
assumption about the polygenic component considered by a biometrical analysis is that there 
is a large number of genes contributing to the quantitative phenotype of interest. Although this 
assumption seems to have been accepted as biological fact, findings from experimental animal 
work suggest that this assumption may not be valid, at least for certain traits (Thompson, 1975; 
Thompson & Thoday, 1979). As for the biological nature of the polygenic variation that was 
investigated, in Thompson’s own words : ‘ Polygene is a nonspecific term used to describe what 
is probably a very heterogeneous set of gene effects.’ There does not seem to be a clear pattern 
of one type of gene (e.g. structural, modifier, etc.) making up the class of polygenes. Establishing 
the genetic component of a quantitative trait through the direct estimation of the effects of 
specific loci is required to clarify these issues. 

One of the primary applications of information obtained by a measured genotype analysis 
is to partition the total phenotypic variance into the contribution of separate loci. Estimators 
of the proportion of the total phenotypic variance attributable to variability at a single locus 
that replace parameters by estimators in a ratio have been suggested (Blackwelder & Elston, 
1974; Lange et al. 1 9 7 6 ~ ) .  These estimators have been shown to be biased (Neimann-S~rensen 
& Robertson, 1961 ; Boerwinkle, 1985; Boerwinkle & Sing, 1986). They will, on the average, 
overestimate the proportion of the phenotypic variance attributable to the single locus. It is 
important when determining the action of a locus on a quantitative phenotype to distinguish 
between the relationships that exist between the effect of a single locus on the level of a 
phenotype for an individual and the contribution to the variance of the phenotype by that locus 
in the population a t  large. Loci with very large effects on the individual, such as familial 
hypercholesterolaemia and its effects on serum cholesterol levels (Goldstein & Brown, 1979) for 
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example, do not contribute greatly to the phenotypic variance in the population because of the 
rare frequency of the variant genotype(s). The contribution to cholesterol variability by common 
alleles for marker loci such as Secretor and others (Sing & Orr, 1976) is also small because of 
their very minuscule effects on individual differences. It is the class of loci that have alleles with 
polymorphic frequencies and moderate effects on the level of the phenotype, such as the 
apolipoprotein E and its effect on cholesterol levels (Sing & Davignon, 1985), for example, that 
we hypothesize is contributing to the majority of the genetic variance of many quantitative 
phenotypes. 

The measured genotype approach to examining quantitative variability has several advantages 
over the unmeasured genotype or biometrical approaches. First, the measured genotype 
approach allows one to address directly questions about the genetic variability underlying the 
variability of a quantitative phenotype. Secondly, the variance of an estimate of a genetic 
parameter of interest is smaller and the power of hypothesis tests about the parameters is greater 
in the measured genotype case than for the unmeasured case because of the additional available 
information (Boerwinkle, 1985). Thirdly, many of the assumptions about the frequencies and 
effects of the unmeasured loci, such as Hardy-Weinberg equilibrium and additivity among 
effects, are practically necessary for an application of the unmeasured genotype approach. These 
assumptions are not practically necessary for a measured locus. And fourthly, the application 
of multiple-locus models to quantitative phenotypes is feasible only with the measured genotype 
approach. 

Advances in our understanding of the biology of many quantitative phenotypes have 
identified loci which are involved in their etiology. More sensitive measurement techniques, such 
as two-dimensional gel electrophoresis combined with silver staining (Celis & Bravo, 1984) and 
the restriction fragment length polymorphisms (Wyman & White, 1980), will allow one to 
identify genetic variants at these candidate loci. Using these measured genotypes and the 
measured-genotype analysis strategies presented here, the loci contributing to quantitative 
phenotype variability can be identified and their effects estimated. As more loci in a system 
are measured, the unmeasured polygenic random component will be reduced, and fundamentally 
important questions about the genetic architecture of quantitative phenotypic variability can 
begin to be addressed. 
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