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ABSTRACT
The two-group one-dimensional neutron transport equation with isotropic
scattering is studied. No analytical sclution is found, but the equations
are cast in a form which is convenient for numerical computation. This
computation involves the solution of two coupled singular integral equations.
The explicit form of these equations is obtained for two half-space problems—

the Milne problem and the constant isotropic source problem.



I. INTRCDUCTION

In recent years, a great deal of effort has gone intc the soclutiocn of the
one-speed neutron transport equation. Most of this work is reviewed in a re-
cent book.l Attempts to deal with the energy dependent transpert equaticon
have been less successful, although a certain amount of progress has been made.
These attempts have more or less followed two lines, a multigroup approach and
a continucus energy treatment. In the multigroup method, energy effects are
treated in considerably grosser fashion than in the continucus energy scheme
but in the latter spatial effects have been quite difficult to include in
much detail. However, in a recent paper,2 it was shown that the multigroup
scheme is equivalent to a continucus energy scheme with a particular degene-
rate scattering kernel. A good review of the continucus schemes has been
given by Kué(‘Eer?’LL to which we refer the reader for references.

In the present paper we consider the multigroup apprcach, in particular
the two-group case. As usual, we limit ourselves to a single space dimension
and to isotropic scattering. Our method should be readily generalizable to
mcre than two groups and tc anisctropic scattering.

The two-group case has been studied previcusly by Zelazny and Kuszello5
They succeeded in proving a 'completeness thenrem" which in effect tells us
that the normal modes which we develop are adequate to solve all infinite and
semi-infinite medium problems. We depend upcn this theorem, but because the
results are not presented in a form convenient for numerical computaticn much
of their analysis is repeated. Analytical solutions have been cbtained in

two recent papers for a very special prcblem, but the restricticns upon the



parameters involved are invalid in the neutron transpcrt case. (The werk was
applied to radiative transport.) Siewert and Shieh7 have carried out scme
preliminary work on the more general problem considered here, but their re-
sults can be applied directly only tc infinite medium problems. Recently scme
unpublished work8 along similar lines to that presented here has come to our
attention.

In Section IT the eigenvalues and eigenfunctions for the two-grcup trans-
port equation are discussed. Essentially these same eigenvalues and eigen-
functions were cbtained by Zelazny and K.uszell,5 although, as in Ref. 6, we
select certain convenient linear combinations of these eigenfunctions.

In Section IIT we follow the Casel approach in deriving a convenient
pair cf coupled equations for the expansion coefficients of an arbitrary func-
ticn., Some important simplificaticons are made in these equations by the
Jjudicicus use of a two-group X-function identity. These coupled equaticons
are easily solved by an iteration technique using a ccmputer program. (N-
analytical sclution has been found and in fact it appears unlikely that an
analytical solution exists.) The numerical techniques and explicit results
are presented in a companicn paper.

The application tc typical half-space problems is made in Secticn IV. In
particular, the sclutions to the two-group Milne and constant scurce problems

are presented.

IT. EIGENVALUES AND EIGENFUNCTICNS
The cne-dimensicnal, two-group transport equation for isctropic scattering

can be written as



Here
Y (Zyp ) Ciz Ci2
E(Z,H) = 3 g=
Va(z,u) Cax  Co2
and
o] 0
§:< >) g>1
0 1
where

Cij = oij/Ecg and g = 01/02 .

Y1 (z,p) and Vyo(z,u) are the angular fluxes in grcups one and twc, respectively;
distance is measured in units of mean free path of the second group. We have

(without loss of generality) ordered the groups such that oz < 0, where o; and
0> are the macroscoepic total cross sections of the respective grocups and oijs

are the macroscopic scattering transfer cross secticns which describe the

scattering from group j to group i. As usual, we assume solutions of the form

Wzw) = e 2N B(nu). (2)

This ansatz when substituted inte Eq. (1), and after cancellaticn of the space

dependence, yields

A E(nu) = 18 [] E(nu)du (3)



where

on-i 0\

=
]

(4)
O n-u
The eigenvalues (n is the eigenvalue) and the associated eigenfunctions
of Eq. (3) are discussed in some detail in Ref. 6. From the matrix A we note
that three separate regions of the eigenvalue spectrum must be considered de-
pending on the vanishing or nonvanishing of the respective terms in éo We
list here the three regions of the eigenvalue spectrum with their associated

eigenfunctions as obtained in Ref. 6.
Region 1: ne[-l/c, l/o] with degenerate continuum eigenvectors

_;Lﬂ_ + [1-2nCy17(0n) 18 (0n-u)

Eﬁ (nspe) (5a)
021 - 202 n7(n)8 ()

and

/CienP 2C1 2n7(on)d(on-u) \\
on=-u i

) () = / (50)

\M_ + [1-21C227(n) 18(n-u)

Here v(n) = tanh™ 7.

Region 2: nel[-1, -1/c] and [1/0, 1]: The continuum eigenfunction is

//E;gn N\
P& () = [ M \ (6)

\ﬂ—ﬂ—ﬂ\(n )8(n /



where
t(n) = Caz - 29CT(1/0n) (7)

and

AMn) = 1 - 2nCaet(n) - 2nC1iT(1/on) + hCn®r(n)T(1/0m) . (8)

We have introduced the abbreviation
C = det C.

The symbel P in the above equations indicates as usual that integrals invelving
these eigenfunctions are to be interpreted in the sense of the Cauchy principal

value.

Regicn 3: né[-l,l]a Here we have the discrete eigenvectors

Creng/omgFu \ /i1 (u)

n3t(ni)/ng W Fie o(u) /

\,

where t(n;) is defined by Eq. (7) and the eigenvalue ny s the pcsitive rcot

¢f the dispersion equaticn,

Q(z) = 1 - 2C,27(1/0z) - 2Cssz7(1l/2) + LCz®r(1/z)T(1/oz) = © . (10)

Fcr the problems we have studied there are only two real rcots to Eg. (1C)
which we denote by #n;. In general, there are either twc cor four rccts which
are either real and/or pure imaginary, and thus cccur in * pairs. These rcots

have been studied in ccnsiderable detail by Baran and we reproduce in Table



1 his analysis of the eigenvalues. We ncte that Q(z) is analytic in the cem-

plex plane cut along the real axis from -1 to 1. Introducing the notation

i

. (n)

: 1, neRegion 1

G, T]Séi )

i

we easily find

Mi

Q% (n) 1 - 2Cozut(p) - 2C1apt(ou)6r(p) - 2CiapT(1/ou)ea(p) + 4Cu®r(w)r(ou)ey (u)

+

bop®r(u)m(1/on)ea(p) - 75uZc6 () + nip[CpoatCi1 6y (u)-2CuT(ou)6r (1)

2Cur(n)6y (k) - 20u7(1/ou)6s(n)] - (12)

Here O represent the boundary values of Q(z) as the branch cut is approached

%2%25), i.e., QF(n) = limit Q(p*ie). It is convenient to use the fol-

>0

from (

lowing linear ccmbination of Region 1 eigenvectors:

flnu) = = E;El')(n;.u) -——l——_él)(n;u)- (13a)
Cia Ciz
Explicitly,
1
. oo 3(on-u)
ARV = ) (1%b)
- CnP - 6(“'“) [Cll'gcﬂf(ﬂ”

C11Ci2(n-u)  C12Cia

nel-1/0,1/0] .

The following linear ccmbination is a convenient eigenvecter valid over

the full range, ne[-1,1]:

fa(nn) = 20an(om)er (MEY (np) + [1-2000n7 (o) Je (m)ESH (now)

+ P8, n)ea(n). (1ka)



Again the explicit form is

golnon) = : (14b)
\ ﬂ_ﬂ A ()8 (nu)/
Mk
Here we have defined
g(n) = Caz - 2Cy7(on)6r(n) - 20n7(1/0on)62(n) (15)
and
a(n) = 1 - 2C22n7(n) - 2C1in7(on)e1(n) - 2CiinT(1/on)6s(n) + LCn2T(q)
+ -
x 7(1/on)6e(n) HhenE (n)r(on)ey(n) = T o vanzce () (16)

Thus, the eigenvectors consists of two continuum modes ¢ (n,u) [Eg. (13b)]
nel-1/0,1/0]s ¢oln,n) [Eq. (14b)], nel-1,1]; and the discrete modes F..(u) [Eq.
(9)]. A half-range completeness thecrem for these modes has been proved in
Ref. 5. 1In the next section we reduce the basic equation to cne convenient

for numerical analysis.

III. TWO-GROUP EQUATIONS
1
The half-range completeness theorem states that an arbitrary (two ccm-
ponent) functicn y(u) can be expanded in terms of half the eigenvectors if we

consider only half of the range, e.g., p > 0. Specifically,

/Wl(“) l/G
ww) = \ ¢2(“) - % iy Ei+(“) + g Gl(u)é;(ﬂ:u)dq
+ glazmné;(wdn, L>0. (17)

10



Typical proofs involve the solution of this equation for the unknown co-
efficients Aj, and aj(n). This procedure also has the virtue of providing
the required answer, i.e., the expansion coefficients. In the case considered
here (as is stated in Section I) no analytical solution has been fcund. How-
ever, in Ref. 5 the existence of a unique solution has been proved. Thus, we
develop a numerical solution to Eg. (17) by a method that parallels closely
typical half-range completeness proofs. By appropriate use of half-space X-
function identities, we obtain a form which is found to be most convenient for
numerical analysis.

We delete the discrete mode from Eq. (17) the discrete modes will be in-
troduced later), substitute the explicit form of # (n,u) and go(n,u), Egs.

(13b) and (1L4b), into Eg. (17) and perform the integrations over the delta

functions to obtain

Y () = QLLEZEl + Cy 2P él co(n)d (18)
oCya on=p
and
valw) = - —S—p a1 o atur(u) o (e (1)
11laz o] n-K C11Ci2
s p Fee(n)e(n)dn 4o () )as(u). (19)

o) n-H
Making the change of variable p -+ po in Eg. (18) and solving for Oi(u), we

obtain

O (pn) = 0Crivi(op) - C11CioP fl Hzﬁialgﬂ . (20)
> -

11



This equation will determine @; (u) once Oo(p) is known. We now obtain the

equation for Qo(p) by inserting Eq. (20) into Eq. (19) to yield

yo(u) + So p pratalon)dn o o 1o pur(u) Ju (ou)6 ()
Ciz © n-H 12
- op MO A P | I 39_2111_71 + [Cry-2Cur(w)]6y (u) P - 2(n)dn
9 N =K o =K
+ pt ee(m)e(n)dn 4o )os(u) (21)
0 =M

. 10
Using the Poincaré-Bertrand formula ~ and the partial fraction decomposition

' 1 (p n>
= + 22
(n'-u)(n-n") Nk \n'-p -’/ (22)
we perform an integration over dn' in the first term on the right-hand side

of Eq. (21) to obtain

1l

ce [ wdn' p ot elnldn’ _ p t sge(nan [@l(“)cm (L -2
n-u ou

n'

¢ et (- ) - atwwn (-2
- 62(n)Cnin < - %ﬂﬂ - anu%g(u)gl(p).(%)
We can write Eq. (15) as
g(n) = Czz - Cyin (1 + i—n>+ ce (n)nin G—n - 1) + Coz(n)nin ( - i—n
(24)

The insertion of Egs. (23) and (24) into Eq. (21) yields (after some

cancellation and rearrangement), the compact form

12



V'(u) +C gl op()k(np)dn = 94w)-0() p  ma(n)dn 4 2707 (8) o ().

N=p 2nip n=H 2
(25)
Here we have defined
1
i) = veln) + S et alen)dn o 8y (g6, () ey -20ur(n)] (26)
12 - 12
and
1 1
k(n,u) = mdn (l + 8—n-> - uin <l + a) . (27)

We note that ¢'(u) is a known function.

The second term on the left-hand side of Eq. (25) is a nondegenerate
Fredholm term. If this term were absent Eg. (25) could be solved directly

1
by standard procedures, If it were degenerate, the method of Shure and
11 . f .

Natelson  could be used. However, neither of these conditions obtain and
no closed form solution of Eq. (25) has been found. Thus, we shall describe
an iterative procedure in Part II of this work9 similar to that used by

1,1
Mitsis™’

15

2
to solve the critical problem and by McCormick and Mendelscn
in treating the slab albedo problem.

We define

Next we introduce a function N(z) defined by

N(z) = Lt P moe(n)dy (29)
2ni o n-2

15



If az(n) of "class G" exists then N(z) has the following propertiesl:

1. N(z) is analytic in the complex plane cut along the real axis from
0 to 1.

2. N(z) ~1/z as z » .

3. N(u) = =P fl 2(n)dy , % uoa(p) .

2ni 0o n-=H -

We note from Property 3 that

aa(p) = : (30)

Inserting Egs. (28) and using Property 3 in Eq. (25) we find (after some re-

arrangement) that

pi"(n) = N ()R (W) - 0T (u)NT (k). (31)

We recall that Q(z) is analytic in the complex plane cut from -1 tc 1. From
Property 1, N(z) is analytic in the complex plane cut from O to 1. This re-

1
quires (as in one-speed thecry)” the introduction of a functicn X(z) such that

XT(p) - 0F() L > 0. (32)

) . 1
The X(z) functicn satisfying the necessary restrictions™ for the half-range

and for one palr of discrete roots only is

exp L 1 Arg 0%(n)du (3%)

X(Z) = _L_
1-z7 n o M=z

The ratio condition, Eq. (32), is inserted into Eq. (31) tc yield

Y (w) = NF(u)XT(u) - N-(p)X~(u) (34)

14



where

A ugp(—“l- (35)

Assuming that the left-hand side of Eq. (34) is known, we can write the solu-

tion as

_ 1 " (p)d
M(z) = 2riX(z) £ s )p i“) = (36)

10
The Plemelj formulae™ give the boundary values of N(z) from Eq. (36). We in-

sert these boundary values into Eq. (30) to obtain

) 1 1 ) 1 1 ( V)WH( v)dv
az(u) orin <X+(u) X'(M)) g é = u'-uu -
+ l_ 1 1 1 .
L () v (57)

(However, this is not a solution because we note from Eq. (28) that the un-
known Oo(u) is still contained in ¥"(u).)

We next define

iy = - % <% 11 > _ '9+(u)-9'(ui (38a)

erin \x¥(n)  X7(n)

and

1 1 1 _oat(w)+(u
i2(0) = eyt >7(u) giieerrery T )

The last form of Egs. (38) is derived from Egs. (32) and (35). By defining

the singular integral operator O(u) by

15



we can rewrite Eq. (37) in the compact form

az(u) = Oo(w)y"(u) . (Lo)

Property 2 requires that N(z) ~ 1/z as |z| > ». We note from Eq. (33)

that X(z) ~ -1/z as z » ©». Thus, from Eq. (3%6), we must require

It () [}'(u) +o [t d”“12;“>k(”’“yJ dp = 0 (L)
© o

-

where we have used Eq. (28). For the case of one pair of discrete roots we
have the discrete eigenfunctions available to satisfy Eq. (41). We make the

replacement of y(u) in Eq. (41) by

¥(k) - Ay Fra(n) - (42)

We recall that ¥'(u) is defined by Eq. (26) and is a functional of the com-
ponents of y(p), i.e., ¥1(p) and Vo(u). We define ¢,(p) as the corresponding
functional of the components of §l+(u). Thus the replacement given by the ex-

pression (42) is equivalent to replacing ¥'(u) in Eg. (41) by

V() - Apde(u) . (43)

With this replacement made in Eq. (41) we then solve for A, to yield

1

[7 7wy (w)an + ¢ él (1) du él e (1) k(n,p)dn
B 1 L ()
[ r(w)gs(n)an

Likewise with (43) inserted into (28) and subsequently into Eq. (40) we obtain

ag(n) = O(w)T¥' (1)-Auda(w)] + co(w) [ BRI (i)

16



Finally, the replacement of yi(ou) by ¢1(0H)-A+Fl+,1(u) in Eq. (20) yields

ai(p) = 0011[¢1(0H)-A+F1+,1(0H)] - C11C12P fl ﬂ@g_ﬂ%@ﬂ . (46)
o r-

An iteration procedure for solving Egs. (44) and (45) for A+ and os(p) is
discussed in Ref. 9. Providing this procedure converges, we can then insert
At and ao(p) into Eg. (46) and solve for O;(p) completely determining all ex-
pansion coefficients.

A number of important simplifications are now made for the terms con-
taining ¢,(p) in Egs. (L44) and (45). First, from Eq. (26) we can write the

explicit form of ¢4(u) as

1
piln) = F1+,2(“) + %%g P é nFl;ii(O“) + 032 F1+,1(0M)@1<H)[Cll-QCHT(H)]-
(47)

Next we insert the discrete modes as given by Eq. (9) into Eq. (47) and per-

form the integration to obtain

fulw) = | Conranta () 100 ()t (- - 1) + cuselu)an (1 - L)
- 2001 (m)pr(n) - Cniin (l + 5%:)} i (48)

We define the function

flp) = Qi&ﬂl;gliﬁl = Cop + C1101(p) - 2001 (p)pr(k) - CuGa(p)in (1 + i—\
enip oM

/

o

o o (1 ) - ot (34 5) ¢ cueatuim (1 - L)
m op
(49)
We insert Eq. (49) into Eq. (48) [recalling Eq. (27)] to write the compact

form

L7



do(p) = AL [f(u)-Ck(ni,u)] . (50)
Ni-H

The substitution of Eq. (50) into the integrand of the denominator of Eq.

(kb4) yields

W (wap = -mX(ny) - ¢ - 2leinak(n,u)dy (51)
o) 1=K

where we have used the X-function identity

X(z) = él y(we(w)dp (52)

-2z

The proof of this identity parallels closely that for the one-group case.l
Next we consider the term O(p)¢,(n) in Eq. (45). With O(n) given by Eq.

(39) and #.(n) by Eq. (50), we write

O(w)de(n) = £1(w)P gl y(p)maf(p)du’ 4 L2()mfu) _ co(y) [ﬁ;gigiigl
(p-p')(na-p') n1=H Ni-H
(53)
The partial fraction decomposition
N1 _ ni < 1 _ 1 >
(b-p')(n1-p') Ni-p \M-p'  ni-p'
inserted into the first term on the right-hand side of Eq. (53) yields
1. 1 1 1 1 ' '
o (wp ft ) maf(ut)du £1(p) [% & 7(p )f(% )dp
o (u-u")(ni-u") n-k L o k-l
1 P 1 d v_‘
- y(p') (F'l )dp J . (54)
0 Ni-p .

The last term in brackets in Eq. (54) is -X(n1) and the first term can be

written in terms of the boundary values of X(z). Explicitly,

18



p oyl 2w)f(udn o _ XF(u)+x-(p) o Zéﬁl [0t (u) +a7(u)] . (55)
) M

o pep!
The last form in Eq. (55) was derived by using Eqs. (32) and (35). We insert

Eq. (55) into Eq. (54) to obtain

nup - ARl -y ) T x(n) - 2B (af(w)40n(0)] L (56)
o (p-u")(n1-u") n1-p 2u

We insert Egqs. (38), (56), and (49) into Eq. (53) to obtain (after some cal-

cellation)

Ni-H

oW, (n) = () maX(na) co(p) [:1k( 1 M-J ) (57)

Now Egs. (51) and (57) can be substituted into Egqs. (44) and (45) to obtain a

somewhat simpler form,

gl y(W¥' (p)du + C él 7()dp él Wla(n%§ﬁnju)dn

Ay = (58a)

1 2(p)k(n1,uknidu
—an(nl)—C g T]l—p.
as(p) = (W' () + co(n) - melnk(n,p)dy
o N-p
_A+{:31(M)H1X(ﬂ1) _ Co<“)[?lk(ﬂlguil} ) (58b)
Ni-H Ni-H B

We recall that the kernel k(m,p) is defined by Eq. (27). The operator
O(pn) is given by Eq. (39) and £1(p) by (38a). Equations (58a) and (58b) are
the set which will be treated numerically,9 as simultanecus equations for the
expansion coefficients A, and Qo(n). After A" and 0o(u) are obtained from the

numerical solution of Egs. (58a) and (58b), a1(u) is computed from

19



ai(p) = oCiy [#1(0H) - Ay —giéﬂiij- C11C12P fl we(n)dn (58c)
[ o(n1-p) ° M=K

This completes the reduction of the general two-group expansion to a form
convenient for numerical analysis. In the next section, we shall find some
specific forms for ¢'(p) in Egs. (58a) and (58b) and for ¥i(ou) in Eq. (58¢c).

We are then able to simplify the terms involving ¢ '(n) in Egs. (58a) and (58b).

IV. APPLICATION TO MILNE AND CONSTANT SOURCE PROBLEMS

(a) Milne Problem
L

We define the two-group Milne probleml in a manner similar to the one-

1
group case. The solution must satisfy the conditions

v(o,u) = 0, w>0 (59a)
and
W(z,m) ~ Fp_(we?/ M, (59b)

The solution which obeys (59b) is expanded in the two-group normal modes

of the transport equation as

W) = Ay (e ™ v Ay By (e s él/ 7 oy (n)da(nm)e ™ Tay
+ é ae(n)ée(n,u)e-z/q an . (60)

We use the boundary condition given by Eq. (59a) (normalize by setting A_ = 1)

to obtain

V() = - Fp_(B) = Ay Fpu(p) + fl/qdl(n)él(n,u)dn + gl aa(ﬂ)éz(ﬂ:“)?g-
e} l)

20



The appropriate Wﬁ(p) for the Milne problem [see Eg. (26)] is closely related

to the ¢,.(u) as defined by Eq. (47). In fact

Vo) = = palpa-m) . (62)

m

This means that [see Eg. (50)]

Up(n) = - D [£(p)-Ck(-n1,p)]. (63)
N1ty

Thus we have from Egs. (51) and (57) the result that

[orwgwan = nxem) + o - reukbnpld g,
and
o(uwy ) = - LlwdmXlom) o ooy {IL—M- wil| . (es)
N1itU nith

We insert Egs. (64) and (65) into Egs. (58a) and (58b) to yield

. -mX(-n1) + C gl 7(M')n11;§;31m')du' +C gl y(p)du él Taz(n%{ain,u)dn
+
cmX(n) - C gl 7(1) k(g p)du (66)
Ni-d
and
Olg(p) - ll(H)TllX(‘T]l) + CO(u) []lk(‘ ll)“)} + CO(LL) fl W2(Tllk(n;ﬂ)dn
nitu nitu o n-u
- A, fjl(“)nlx(nl) - co(p) {blkgnlzﬂ>}:} . (67)
L ni-p Ni-K
Since
vilop) = - a2l (68)
o(na+p)

2l



we have from Eq. (46) that

A 1
ay(p) = -C1riCizm <5i+p + nlfu‘>- C11C12P é ﬂZﬁ%ﬁl@ﬂ . (69)

Equations (66), (67), and (69) are the final reduced equations for the
Milne problem which are solved by numerical methods. We note that Eqs. (66)
and (67) are two coupled equations for the expansion coefficients Ay and
Oo(p). The operator O(u) in Eq. (67) is a singular integral operator which
requires special treatment for numerical analysis,9 otherwise the solution
is quite straightforward. Finally with A, and 0s(p) known, Eq. (69) provides
the solution for ai(p).

We can easily prove from the form of the operator O(u) and Eq. (58b) that
az(p) >0, p=1/cand u=1. (70)

This result is important because otherwise the angular flux would be singular
at these values of u.

With the expansion known from the computer solution of Egs. (66), (67),
and (69), the two-group angular fluxes are calculated from Eq. (60). The
eigenvectors given by Egs. (13b), (1kb), and (9) are substituted into Eq.

(60) and the integration performed where possible to derive

C ez/nl C A -z/m -0z ‘
Vi(z,p) = =122 + 2221t E + L 0y(u/o)e /“[Ql(u)+@2(u)]
on1tu On1-H Cii0
1 'Z/ﬂ
+CyaP é le(gieu dn (71)
where
"l < “, < l’



and

va(z,n) = M2t (1) */m ﬂlt(nl)A+e_Z/nl __C 5 él/o ﬁal(ﬁ)e—z/rdq
T|1+M Ni-M Cllclg -4
%ii%l— [Cll'2CHT(H)]Ql(H)e—Z/ + P g ne( 1 Z/ﬂ
12%11 n H
s a(was(p)e ® P [01(1)+0a(1)],  wel-1,1]. (72)

The total flux and current for each group are derived by appropriate
integrals over dp and udp, respectively. We shall use superscripts on the

p's to indicate group number. Thus,

o(W(z) = [T nulz,wan = eclgan(l/oql)[eZ/”l+A+e‘Z/”l] TS 1/0
o -1 Ciz o

X al(ﬂ)e_z/n dn - Cie él Waz(ﬂ)e_z/n [g(n)-Coz]dn (732)
o{t(z) = [i wn(zw)an = 20izne” M l-omr(1/on)] + 2Cizne Ma

x  [onim(1/on1)-1] + 6%: 1/o ﬂll(ﬂ)e-z/ndn - 2C12 gl Waz(ﬂ)enz/ndﬂ

- oCiz £ n“oiz(n)e” 2/n [g(n)-Caz]dn (73b)
p§2>(z) = fl vo(z,p)du = 2nlt(n1)T(l/n1)[ez/nl+A+e-Z/nl] R

-1 C11C12

X fl/g Wll(n)T(n)e_Z/ndn - él/0[011-2CﬂT(ﬂ)]al(ﬂ)e-z/ndﬂ

0 C11Cip

-z/1 an

o 2 M netee(n)r(eV an + [ anas(n)e (73¢)
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Dgg)(z) = ii wio(z,p)du = 2T]l‘t(nl)ez/nl [1-m27(1/7m1)] + gnlt(nl)e'z/nl
x Aulnar(a/n) 2] - =2 1 () ()30 ay
11vl2
1 1/o -z/1 1
- thcm i Paln)lCi-2Chr(n)]e dn + 2[" ng(n)oz(n)
X [nT(n)-l]e'Z/n dn + gl nk(n)otz(n)e-z/n dn. (73d)

The extrapolation distance is given by either Eq. (73a) or (73c). Thus

we wish to determine z. such that

0]

2o/ |y To/m (74)

The solution for zy from this equation gives the same result as in the one-

speed case,

2 = ~ﬂim<—£) . (75)

Again we emphasize that for one pair of discrete roots the extrapolation
distances are equal for each group. For four discrete roots we would calculate
: : : 8 : :
a different extrapolation distance for each group. Baran has studied this

problem in detail.

(b) Constant Isotropic Source Problem
Assume an isotropic source Spz in Group 2. (The associated problem with
a source in group one is virtually identical.) We now seek solutions to the

inhomogeneous transport equation which vanish at +o subject to the condition,

Y(o,u) = O for p>0. (76)

2L



The solution consists of a particular integral yp(z,p) plus a solution of the
homogeneous equations, gh(z,u). The latter consists only of those modes

which vanish as +w, i.e.,

w(z) = 2,2 E )+ (M aab (e an + [ aa(ngaln e .
(77)

The particular integral can be found from the two-group transport equa-
tion [Eq. (1)] in the limit as z>w. In this case, y(z,u) approaches a con-
stant value denoted for each group by wlS and ¢ES' With g(z,u) constant, Eg.

(1) reduces to a pair of simultaneous equations which are easily solved to

yield
25C
Vg = L2 = 8 (78)
(1-2C22)(0-2C11)-4C12Co1
and
S(o-2C
Vog = ( 11) = B2 (79)
(1-2C22)(0-2C11)-4C12C21
where

g - S20

Oz

The complete solution is written as

S1

Sg) + A+e—2/nl Fo () + gl/QX1(n)é1(n,u)e_Z/n dn

e =

+ gl aa(n)éz(n,u)e_z/n dn . (80)
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By setting z = O in Eq. (80) and applying Eq. (76), we obtain

- (:;> - gl/ﬁ al(ﬂ)él(n,u)dn + él ag(ﬂ)ég(n’“)dn + A, El+(u)- (81)
We note from Eq. (81) that
A (AN S1
tu) = (\ve(u)> ) '<sg> : (82)

By inserting Eq. (82) into the appropriate terms of Eq. (26) and then per-

forming the integration on the second term on the right-hand side, we find

v§(w) = - 82 - g?—; F% + CH®1(U)£H<'§;I - l> + Cuoz(p) In ( - %ﬁ>
- 2Cpt(p)01(p) + Cllgl(M{] . (83)

The term in brackets in the second term on the right-hand side of Eq.

(83) has terms similar to Eq. (49). 1In fact we can write

-
i) = -sg-g%;_gwm + Cuin /1+§—“>-027‘ : (8l4)

We recall from Egqs. (57) that

and

are required in order to calculate the expansion coefficients Ay and Os(u).
By the same method that was used in Section III to simplify O(p)@,(n), we can

easily prove
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Also from Eq. (52) we have that

lim zX(z) = - [T () f(p)au
700
But from Eq. (33)
X(z) ~ - 1
Z>0 z
therefore, from Eq. (86),
1
é y(u)f(p)ap = 1

Thus for constant source problems, we obtain

o(w)wg(p) = 0O(w) [w - Ogig wen (l + %;ﬂ

and

(f)l FWy(man = - BL+ é ,:w - giC <1 - L>] du

where

SlC + GSlC22

w = -8z -
Cio Cio

and S; and Ss are defined by Eqs. (78) and (79), respectively.

By inserting Egs. (87) into Egs. (58), we obtain

(85)

(86)

(870)

Ciz

1
_ 8_S;|__+£ dpy(p) [Er _ 05,C pln 1+ ____>‘J+ C f y “)d“ g Tpé2 T} T];H)
12

_an nl -C é 7 nlﬂi;“)d

2T

(89)



and

ox() = o) (v - L uan (1 + L)+ cor) el
_ Ciz op /! o n-u
;,ll(u)nlx<nl) i 1k(n1,p 73
- Ayl - co() | R (90)
L Ni=K b .

The final equation for Qi(u) is obtained from Eq. (58c) where

Ya(op) = -S; .
Explicitly,
1
a1(p) = -0C118, - SriCiemif+ C12CazP ee(n)dn . (91)
Mi-p n-H

We note the similarity of Egs. (89), (90), and (91) to the corresponding equa-
tions for the Milne problem. We refer the reader to the earlier comments on
solution techniques for the Milne problem [see paragraph following Eq. (69)].
The angular fluxes for the constant source problem are given by Eqs. (71)
and (72) where we replace the first term in the right-hand side by S; and Ss,
respectively. The neutron current in each group is given by Egs. (73b) and
(73d) where we delete the first term (term with positive exponential) on the
right-hand side. For the total flux we replace the first term on the right-
hand side (i.e., term with positive exponential) of Egs. (73%a) and (73c) by

251 and 28z, respectively.
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