A continuum theory for non-Newtonian flow of a two-phase composite containing rigid inclusions is presented. It predicts flow suppression by a factor of \((1 - V)^q\), where \(V\) is the volume fraction of the rigid inclusion and \(q\) depends on the stress exponent and the inclusion shape. Stress concentrations in the rigid inclusion have also been evaluated. As the stress exponent increases, flow suppression is more pronounced even though stress concentration is less severe. To test this theory, superplastic flow of zirconia/mullite composites, in which zirconia is a soft, non-Newtonian superplastic matrix and mullite is a rigid phase of various size, shape, and amount, is studied. The continuum theory is found to describe the two-phase superplastic flow reasonably well. [Key words: flow, composites, mullite, zirconia.]

I. Introduction

Superplasticity of fine-grain polycrystals has been widely reported for metals and, most recently, for ceramics. While a majority of superplastic materials contain two phases, definitive studies of constitutive relations of multiphase alloys and ceramics at elevated temperatures are few. From a theoretical viewpoint, Chen has drawn attention to two prototype behaviors in two-phase superplastic flow. The first type is the classical composite behavior in which each constituent phase deforms according to its own constitutive relation. In such case, the deformation resistance of the composite is bounded by the deformation resistances of the two constituent phases. Corresponding behavior of this kind in linear elasticity, viscoelasticity, and Newtonian fluid flow is well understood. In the second type, stress-driven kinetic demixing, due to different mobilities of common constituent atoms or ions shared by two phases, is predominant. As a consequence, migration of phase boundaries occurs which, in turn, alleviates back stresses and solute segregation. Diffusional flow is thus facilitated, lowering the deformation resistance in some microduplex composites to a value below those of both constituent phases. To emphasize the distinct physical nature governing two-phase superplastic flow, Chen has suggested that the first type be named rheological flow, and the second, interdiffusional flow. Evidence of both types of behavior, mostly in metals, was cited by Chen from the literature.

Rheological superplastic flow may be modeled using continuum mechanics. For creep and superplastic flow, a correct treatment must take into account the non-Newtonian nature of the constitutive laws. Such nonlinear problems are generally very difficult and rarely amenable to an analytical treatment, except in special cases. One such case, of particular interest for structural applications, is a soft power-law creeping matrix reinforced by rigid inclusions. It can be shown that the composite follows a similar power-law relation between stress and strain rate, with the same stress exponent, but with a different prefactor whose value depends on the shape and the volume fraction of inclusions. A theory addressing this problem is presented here and the superplastic flow of a family of (soft) zirconia/(rigid) mullite composites is used to elucidate such behavior.

Several considerations on the merit of the zirconia/mullite system as a model composite for the present purpose should be mentioned to provide a background of our study. First, zirconia has been reported to deform superplastically at high temperatures. While the composition typically used for such studies has been 3Y-TZP (97 mol% ZrO$_2$-3 mol% Y$_2$O$_3$), which contains 90 vol% tetragonal phase and 10 vol% cubic phase, we have chosen a lower yttria composition of 2 mol% (2Y-TZP) so that only the tetragonal phase is present. It was expected, and indeed verified in our study, that 2Y-TZP is superplastic with a very low deformation resistance. On the other hand, mullite (3Al$_2$O$_3$-2SiO$_2$) is known for very good creep resistance. For example, single crystals of mullite stressed along the c-axis do not deform plastically at 1500°C to 900 MPa, and the diffusional creep rate of polycrystalline mullite (grain size = 3 to 4 μm) is \(-6 \times 10^{-8}/s\) at 1400°C at 90 MPa. Thus, these two phases have drastically different deformation resistances, with mullite being the rigid one. Nevertheless, the two oxides have very similar elastic constants: Young's modulus around 210 GPa and shear modulus around 80 GPa, for both. Since thermal stresses can be ignored at elevated temperatures, this means that in superplastic flow the stress distribution in the zirconia/mullite composite will be entirely governed by plasticity, which is the assumption taken by our theory. Chemically, we have also found 2Y-TZP and mullite to be compatible with little mutual solubility. This implies that the phase compositions and phase fractions of the two are independent of temperature in a composite of a given composition, which simplifies the mechanical analysis. Lastly, an additional advantage of mullite as a strengthening phase is its morphological variability. It is known from our preliminary work that the grain shape of mullite varies considerably from an equiaxed shape at the alumina-rich compositions to an elongated shape at the silica-rich compositions. It thus allows us to study the shape effect in strengthening. Taken in toto, it becomes obvious that zirconia/mullite composites afford an excellent model system in which the effects of a rigid second phase of various fractions and shapes can be systematically explored.

R. Raj—contributing editor

Manuscript No. 198337. Received June 7, 1989; approved December 1, 1989.

Presented at the 90th Annual Meeting of the American Ceramic Society, Cincinnati, OH, May 5, 1988 (Basic Science Division, Paper Nos. 235-B-88 and 236-B-88).

Supported by the U.S. Department of Energy under Grant No. DE-FG02-87ER45302.

*Member, American Ceramic Society.
II. Theory of Composites Containing Rigid Inclusions

(1) Statement of Problem

We distinguish the matrix phase from the included phase and let the included phase be rigid. The matrix phase is incompressible and obeys a power law

\[\dot{\varepsilon} = \alpha(\sigma/\sigma_0)^n \]

in uniaxial tension. Here \(\dot{\varepsilon} \) is the tensile strain rate, \(\alpha \) is the tensile stress, \(\sigma \) is a reference strain rate, \(\sigma_0 \) is a reference stress, and \(n \) is no less than unity. This form can be generalized to multiaxial deformation, governed by an effective stress, in the standard way described in theory of plasticity. By necessity, the composite is incompressible itself and obeys a similar power law in uniaxial tension

\[\dot{E} = A\varepsilon(\Sigma/\sigma_0)^n \]

where \(\dot{E} \) is the composite strain rate, \(\Sigma \) is the macroscopic stress, and \(A \) is a dimensionless constant less than unity. Our task is to find \(A \) as a function of \(V \), the volume fraction of inclusions.

The flow behavior of a Newtonian fluid \((n = 1)\), with dilute rigid spherical inclusions, is well-known, i.e., \(A = 1 - 2.5V/n \). The solution of \(A \) at higher inclusion concentrations requires the use of an incremental scheme of computation. It is recognized in this scheme that the addition of more rigid inclusions to a concentrated mixture results in a lesser degree of hardening since the mixture already has a fairly high flow stress which lessens the extent of stress concentration in the rigid inclusions. If the solution of the deformation fields in an inclusion is already known, then a mean field approximation in which the mixture is treated as an effective continuum for the inclusion can be adopted. For self-consistency, the macroscopic properties of the composite itself are assigned to the effective medium. This method is repeated while more inclusions are added to the mixture. In a linear material the inclusion problem is well-known, from which the theory predicts \(A = (1 - V)^n \), where \(q = 2.5 \) for spherical rigid inclusions. Note that the above power-law form reduces to the linear form when \(n = 1 \), \(k = 1/2 \) for incompressible material. At large \(n \), \(k \) decreases because of the progressively less strain (or strain rate) hardening in a power-law material. In the nonhardening limit \(n \) being infinity, \(k = 3/2 \), which coincides with the finite difference and finite element solutions of a circular rigid inclusion in two dimensions.

We will use in this paper the above result for both spherical and equiaxed inclusions. The composite follows a power law according to Eq. (5)

\[\dot{E} = (1 - V)^{n+1/2}\alpha(\Sigma/\sigma_0)^n \]

(equiaxed)

The same equation was given by one of us previously without derivation.

(B) Perpendicular Fibers: If a fiber is perpendicular to the tensile stress direction, its stress concentration should be relatively similar to that of a spherical inclusion. (Recall when \(n = 1, k = 2.5 \) for a sphere and \(k = 2 \) for a circular cylinder when loaded in tension along the short symmetry axis, when \(n \) is infinite, \(k = 1.5 \) in both cases as noted before in Section II(3)(A).) Considering this argument, we will assume that Eq. (12) applies.

(C) Parallel Fibers: Consider a rigid fiber of a radius \(R \) and a half length \(L \) in a power-law matrix. The fiber is paral-
The composite containing random fibers follows a power law

\[\tilde{E} = (1 - V)(1+n/3)^{k} \sigma(\Sigma/\sigma_{0})^{n} \quad \text{(random fibers)} \]

(4) Numerical Results

The stress concentration factors as a function of stress exponent and aspect ratio of inclusions are plotted in Fig. 1, and the strain rates of the composite as a function of volume fraction of inclusions are plotted in Fig. 2. It is apparent from these results that stress concentrations are most severe in Newtonian flow, in parallel fibers of a high aspect ratio. On the other hand, flow reduction by a rigid phase in a non-Newtonian creeping material is more drastic than in a Newtonian material. Strengthening by equiaxed inclusions becomes significant only at higher volume fractions.

III. Experimental Procedure

(1) Materials

The zirconia used in our study was a 2YTZP. For mullite, three compositions were investigated. The first two had molar Al₂O₃/SiO₂ ratios of 1.77 and 1.97, corresponding to 75 and 77 wt% Al₂O₃, thus designated as 75A and 77A, respectively. Mullite grains of this composition were equiaxed at all volume fractions. The third one had a molar Al₂O₃/SiO₂ ratio of 1.25, corresponding to 68 wt% Al₂O₃, thus designated as 68A. Mullite of this composition develops an elongated, short-fiber-like morphology.

Mullite powders were prepared using a solution of aluminum nitrate and tetrachlorosilane with ethanol, from which precipitates were formed by adding ammonia. The co-precipitated powders were calcined at 1000°C, then attrition-milled. A commercial 2Y-TZP was added to the mullite powders, and the mixture was attrition-milled in water with a surfactant. In the above procedure, the alumina and silica pickup from milling media was monitored and compensated for accordingly by adjusting the starting composition. The milled slurry was cast under a pressure of 0.7 MPa into cakes which were dried and isostatically pressed at 175 MPa. Nearly theoretical densities (less than 2% porosity) were obtained after sintering in air at 1400°C for 1 h.

Annealing at the same temperature in air for up to 20 h was also performed to coarsen the grain size. In addition, to coarsen the mullite size more, we introduced different firing times when preparing special composites for the study of inclusion size effect. Using these methods, zirconia/mullite composites of various microstructures were obtained. The work reported here covers mullite volume fractions between 0 and 0.5 and aspect ratios between 1 and 5.

(2) Procedures

Square bar specimens of dimensions 2 mm × 2 mm × 4.6 mm were prepared for deformation experiments. Deformation was conducted in uniaxial compression to minimize the effect of cavitation on constitutive behavior. All tests were conducted in air, between 1250° and 1380°C, in a platinum furnace. SiC platens were used and found satisfactory with little evidence of end friction detectable even at very high strain rates. Most tests were run using a constant displacement rate. The axial displacement was recorded with an extensometer outside the furnace. By comparing its reading...
with the dimensions of the specimen after the test, the error was found to be within 2%. The load and displacement readings were converted into true stress and true strain rate data reported below. Since steady-state deformation could be reached with strains of the order of a few percent, a single specimen was often used for flow stress determinations at two to three increasing displacement rates. Typically, a test lasted no more than 1/2 h at the test temperature, terminated after reaching a height reduction of up to 50%. Under these circumstances, very little grain growth, if any, was found in deformed specimens.

X-ray diffraction was used both for phase identification and for verification of composition by precision determination of lattice parameters. Microstructures and textures were examined by scanning electron microscopy and X-ray diffraction. Grain size was taken as 1.56 times the linear intercept length of zirconia grains. Mullite grain size was also measured. The average aspect ratio from 100 of the most elongated mullite grains in a region of a polished section was determined. The value thus obtained would be fairly accurate if all mullite grains have the same aspect ratio in three dimensions. However, if a bimodal distribution of aspect ratio exists, then the above method could yield a substantial overestimation. The consequence of this complication will be discussed later, along with experimental results.

IV. Experimental Results and Analysis

(1) Microstructures

Microstructures of four sintered zirconia/mullite composites, containing 0 to 50 vol% mullite, are displayed in Fig. 3, in which mullite is shown as the darker grains. No intragranular phases, either zirconia or mullite, were found in these ceramics. The grain size of the as-sintered material became finer as volume fractions of two phases approached each other. Annealing at the sintering temperature for various times resulted in coarser grains of sizes up to 0.8 μm. No abnormal grain growth was found after such treatment. Only tetragonal zirconia and mullite, but not cubic zirconia or zircon, were found by X-ray diffraction after sintering, annealing, or compression.

Grain sizes of both mullite and zirconia remained constant after deformation. Indeed, a slight grain refinement was sometimes detected, presumably due to the breakup of the initial clusters of fine grains during deformation. No cavitation was evident even for heavily deformed specimens such as the ones shown in Fig. 4. Thus, microstructures of our specimens may be regarded as nearly constant during superplastic deformation.

Microstructural data and designations of the majority of sintered and annealed materials are summarized in Table I. Some relevant information on microstructures will be provided when deformation data are discussed. Further details of the deformed microstructures pertaining to textures, defects, and microanalysis will be reported elsewhere.

(2) 2Y-TZP and Mullite

Deformation data of the matrix, 2Y-TZP, are shown in Figs. 5 to 7. A stress exponent of \(n = 1.54 \), corresponding to a strain rate sensitivity \(m = 1/n = 0.65 \), was determined from Fig. 5 at all temperatures. Wakai and co-workers\(^{20}\) have recently studied this material with a grain size of 0.3 μm. His data, shown in Fig. 6 as open circles, compare well with ours in both the temperature dependence and the order of magnitude, as evident from Fig. 6. The grain size dependence at 1380°C is shown in Fig. 7, also giving a similar stress exponent \((n = 1.54 \text{ or } m = 0.64) \). Considering the relatively low stress exponent even at very high strain rates, up to \(4 \times 10^{-6}/\text{s} \) in some tests, 2Y-TZP is a superplastic ceramic indeed.

We have also tested mullite of a grain size of 0.3 μm, sintered at 1550°C. No appreciable deformation was found at stresses up to 500 MPa, when it fractured at 1380°C. Previous studies by Dokko et al.\(^{7}\) and Nixon et al.\(^{21}\) reported that, in the diffusional creep regime, mullite's strain rate was inversely proportional to (grain size).\(^{3}\) By extrapolating Dokko et al.'s data to smaller grain sizes, as in the case here, we found that the strain rate of mullite would be at least 3 orders of magnitude slower than that of 2Y-TZP in all the composites studied here.

(3) Effect of Volume Fraction

When mullite (75A) was added to 2Y-TZP, a similar stress exponent was obtained. The dependence of strain rate on the grain size \((d) \) of zirconia, characterized by \(p = \delta \ln \dot{\varepsilon}/(\ln d) \), increased from \(\sim 2 \) in 2Y-TZP to \(\sim 3 \) in the composites, as shown in Fig. 8. The change in \(p \) is apparently due to a change in the material characteristics. Such effect is beyond the realm of the continuum theory given in Section II. Nevertheless, we can proceed with an approximate analysis of the constitutive relation by focusing first on the data of mullite containing composites. Thus, to account for the grain size dependence of strain rate, we multiply strain rates by \((d/0.2 \mu m)^3 \) and plot them against stress for all composites in
Fig. 3. Microstructures of as-sintered zirconia/mullite composites containing (A) no mullite, (B) 10 vol% mullite, (C) 30 vol% mullite, and (D) 50 vol% mullite.

Fig. 4. Microstructures of deformed zirconia/mullite composites at 1350°C in two cross sections. (A) 10M-90Z; (B) 50M-50Z. The compression direction is indicated. $\varepsilon = -0.7$, $\dot{\varepsilon} = 6 \times 10^{-3}$/s.
Table I. Firing Conditions and Grain Sizes of Composites

<table>
<thead>
<tr>
<th>Composites</th>
<th>Firing conditions</th>
<th>Grain size (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sintering</td>
<td></td>
</tr>
<tr>
<td>0M–100Z</td>
<td>1400°C/1 h</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>1400°C/9 h</td>
<td>0.54</td>
</tr>
<tr>
<td>10M–90Z</td>
<td>1400°C/1 h</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>1400°C/19 h</td>
<td>0.23</td>
</tr>
<tr>
<td>30M–70Z</td>
<td>1400°C/1 h</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>1400°C/19 h</td>
<td>0.48</td>
</tr>
<tr>
<td>50M–50Z</td>
<td>1400°C/1 h</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>1400°C/19 h</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Annealing		
0M–100Z	1400°C/39 h	0.43
10M–90Z	1400°C/9 h	0.22
30M–70Z	1400°C/9 h	0.31
50M–50Z	1400°C/9 h	0.31

Mullite		
0M–100Z	0.39	
10M–90Z	0.43	
30M–70Z	0.43	
50M–50Z	0.67	

ZrO₂		
0M–100Z	0.39	
10M–90Z	0.67	
30M–70Z	0.60	
50M–50Z	0.46	

For example, 50M-50Z is a mixture of 50 vol% mullite with 75 wt% alumina and 50 vol% 2Y-TZP.

For mullite inclusion size effect study.

Grain size = linear intercept length × 1.56.

Fig. 5. Stress versus strain rate of 2Y-TZP at various temperatures. Grain size = 0.39 µm.

Fig. 6. Strain rate versus reciprocal temperature of 2Y-TZP deformed at 30 MPa.

Fig. 7. Stress versus strain rate of 2Y-TZP at various grain sizes.

Fig. 9. The strain rate sensitivity obtained from these data range from 0.68 to 0.74 at 1350°C.

Data at other temperatures were similarly analyzed. From such analysis the activation energy Q was determined. Its value, as shown in Fig. 10, is affected by the mullite content. Once again, this is due to a change in the material characteristics and not predicted by the continuum theory, although the trend of Q is qualitatively understandable since diffusional creep of mullite has a much higher activation energy. To proceed with the analysis of the constitutive relation, we can multiply strain rates by

\[
\frac{d}{0.2 \text{ pm}} \times \exp\left(\frac{Q}{R} \left(\frac{1}{T} - \frac{1}{1573} \text{ K}\right)\right)
\]

In this way, data of different grain sizes and temperatures but of identical composition fall onto a straight line as shown in Fig. 11. It seems clear that a common stress exponent, \(n = 1.50\) or \(m = 0.67\), can describe all the data quite well.

Figure 11 also demonstrates the strengthening effect of mullite additions on the composites throughout the range of deformation conditions studied in this work. At a constant stress, temperature, and grain size, e.g., 70 MPa, 1350°C, and 0.2 µm, the suppression of superplastic flow by mullite is made apparent by plotting strain rate versus volume fraction of mullite. Such a plot is given in Fig. 12, in which the prediction of our model, Eq. (12) with \(n = 1.5\), is shown as the
June 1990 Superplastic Flow of Two-Phase Ceramics Containing Rigid Inclusions — Zirconia/Mullite Composites

1561

straight line. The agreement is fairly good, considering the range of volume fractions covered, in particular at $V = 0.5$ when mullite grains are interconnected to some extent.

The above analysis suggests the following form of constitutive equation for superplastic zirconia (2Y-TZP)/mullite (75A) composites, as a function of temperature, grain size, and volume fraction

$$
\dot{E} = [(1 - V_{\text{mullite}})^{2+n/2} C \Sigma^* \exp(-Q/RT)]/d^p
$$

(21)

where $n = 1.5$, $p = 3$, $Q = 700$ kJ/mol, and $C = 4.2 \times 10^{-3} \text{ m}^3/(\text{s} \cdot \text{MPa}^3)$ from the above analysis. When normalized using this equation to a reference temperature $T^* = 1300\, {^\circ}\text{C}$ and a reference grain size $d^* = 0.2 \, \mu\text{m}$, all the data of 2Y-TZP and its composites fall onto a single straight line with a correlation factor of 0.95, as shown in Fig. 13. To check the self-consistency of this representation, we note that the slope of Fig. 13 is 0.65, corresponding to $n = 1/m = 1.54$. Thus, notwithstanding some variations in the stress exponent, grain size dependence, and activation energy with mullite addition, a simple constitutive law consistent with our theory as given by Eq. (12) has been verified.

(4) Effect of Aspect Ratio

A zirconia/mullite (68A) composite containing equal volume fractions of both phases was studied. After sintering for 1 h at 1400°C, the composite has a microstructure very similar to that of Fig. 3(D)(75A) except for a slightly larger grain size. However, after annealing at 1400°C for 20 h, many mullite grains in this silica-rich composite grew into elongated needles. A comparison of the microstructures of 77A and 68A composites after annealing for 20 h is seen in Fig. 14. The average aspect ratio of mullite grains, measured using the procedure described in Section III(2), was 5 in 68A composite. After the same annealing, mullite grains in 77A composite were larger but still equiaxed. No texture of mullite grains was observed after sintering either by electron microscopy or by X-ray diffraction.
We compared the deformation behavior of 68A composite and 77A composite in both the as-sintered state and the annealed state (Fig. 15). The slight difference of grain size of zirconia in these two materials has been taken into account in plotting data. Very similar stress exponents were obtained for all four materials. Comparing data when mullite grains were still equiaxed (1-h sintering), we found the 68A composite to deform faster, by a factor of 2, presumably due to its higher silica content which may have favored the formation of a grain-boundary glassy phase. However, this compositional advantage of 68A composite was lost after elongated mullite grains were developed, as indicated by the overlapping data of 68A and 75A composites (20-h annealing). We interpret the latter result as evidence for a more effective load transfer to the rigid phase of a higher aspect ratio. Coincidentally, in the special case considered here, these opposing compositional and shape effects just compensated each other fully in 68A and 75A composites after 20-h annealing.

Assuming the same compositional advantage, responsible for a flow enhancement by a factor of 2, as in the case of 1-h sintering, we may infer that the opposing flow suppression due to the shape change from \(L/R = 1 \) to \(L/R = 5 \) to be a factor of 2 as well. According to Eqs. (12) and (20), the flow suppression factor with equiaxed particles is \((1 - V_{\text{mullite}})^{1.5} \) at \(n = 1.5 \). With elongated but random particles, the flow suppression factor should be \((1 - V_{\text{mullite}})^{2.75} \) for \(L/R = 5 \). Since \(V_{\text{mullite}} = 0.5 \) in the present case, the predicted additional flow suppression accompanying the shape change, which can be estimated by taking the ratio of the above two predictions, is a factor of 5. This value is higher than the one inferred from our experiment. Indeed, our calculation found an increase of \(L/R \) from 1 to 2 to be sufficient to account for the experimental observation.

Two reasons are probably responsible for the discrepancy on the strengthening effect of short fibers in the present experiment. First, Fig. 14 indicates that mullite grains need to grow somewhat before becoming elongated, yet even after 20-h annealing at 1400°C some grains might still be too small and thus remained equiaxed. With a bimodal distribution of grain shapes, the procedure we used to establish the aspect ratio could have yielded an overestimate. Consequently, the flow suppression was overestimated too. This interpretation finds some support in Fig. 14 in which many small equiaxed mullite grains are visible in the annealed 68A composite. The second reason could be reorientation of mullite grains away from the stress axis during compression. Direct evidence of particle reorientation is offered in Fig. 16(A), which shows mullite grains preferentially lying perpendicular to the stress axis after large deformation. This phenomenon was further verified by a texture analysis from X-ray diffraction data, also shown in Fig. 16(B). Since the initial orientation of mullite grains was random, such reorientation caused a "geometrical softening" effect, for perpendicular fibers are not as effective as aligned fibers in carrying the load. Indeed, if all the fibers were perpendicular to the compression axis, the flow suppression would be the same as that of equiaxed particles (Section II(3)(B)). (We may likewise expect tensile deformation to cause an opposite effect of "geometrical hardening"," which is commonly used to describe the effect associated with rotations of crystallographic planes during slip. In view of the analogy between resolved shear stress on the slip plane and the shear traction on the fiber/matrix interface, we have chosen to use the same term here.

Fig. 13. Stress versus strain rate, normalized by the grain size, temperature, and the volume fraction of mullite \((V_m)\) using Eq. (21), for four zirconia/mullite compositions.

\[
\dot{\varepsilon} \left(1 - V_m\right)^{(2 + n^*/2)} \left(\frac{d^*}{T^*}\right)^3 \exp\left[\frac{Q^*}{R \left(\frac{L}{T} \right)^{1.5}}\right] = (1/S)
\]

Fig. 14. Zirconia/mullite composites containing 50 vol% mullite after sintering at 1400°C for 20 h: (A) 50M-50Z (77A); (B) 50M-50Z (68A). The weight percent of Al₂O₃ is indicated in parentheses.
coarse mullite grains, was found to deform with a slightly lower strain rate, by 20%, than a composite of the same composition but with only fine mullite grains, once the grain size effect of the zirconia was taken into effect. This comparison is illustrated by the upper two branches of data in Fig. 18. At a lower fraction of mullite concentration, i.e., 10 vol%, the mullite grains were mostly uniform in size and the deformations of composites containing mullite grains of different sizes were essentially indistinguishable from each other once the grain size effect of zirconia was taken into effect. These results are shown in Fig. 18 in the lower two branches of data. Considering the very large variation of mullite sizes studied, we conclude that the superplastic flow is not sensitive to the mullite grain size, in accordance with our continuum picture of rigid inclusions.

V. Discussion

Our theory predicts that flow reduction due to the presence of a rigid phase in a non-Newtonian creeping material is much more drastic than in a Newtonian material. This is apparent from an examination of Eqs. (12), (18), and (20) and Fig. 2 as a function of \(n \). Interestingly, the model also predicts that stress concentration in a rigid inclusion is less in a non-Newtonian material than in a Newtonian material. This is apparent from Eqs. (11), (17), and (19) and Fig. 1. The reason that the stress concentration in rigid inclusions is less in a non-Newtonian matrix is directly related to the lesser hardening capability of such material. (In the limit of \(n \) being infinity, there is no hardening at all.) Thus, load transfer from matrix to inclusion is also less. On the other hand, since strain rate increases with stress in a power-law manner for non-Newtonian materials, the resultant flow reduction is more despite a less effective load sharing by rigid inclusions. These flow characteristics are unique to composites obeying a non-Newtonian constitutive relation.

The effect of rigid inclusions on superplastic deformation of a soft matrix was previously studied in an \(\alpha / 3 \) brass by Suery and Baudelet.\(^2\) As shown by Chen,\(^3\) their data could be fitted to a form \(E = (1 - V_a) \), where \(V_a \) is the volume fraction of a phase which is rigid compared to \(\beta \) phase. Because of difficulties in obtaining a fine grain microstructure without a second phase, phase-pure \(3Y-TZP \) matrix was not tested to verify its superplastic characteristics. Wakai and co-workers\(^4\) also investigated a soft/hard composite, e.g., \(3Y-TZP \) with 20 wt% alumina, and found flow reduction. They used a previous version of our theory to interpret these results.\(^5\) Unfortunately, in their analysis, which was done for only one volume frac-
tion, they had to assume alumina to be rigid, which was not strictly valid under their deformation conditions. Covering a wider range of composition in a more ideal model system, the present work on zirconia/mullite composites has provided a rigorous test of the composite theory presented in Section II. At least for equiaxed inclusions, the agreement seems to be good. For nonequiaxed inclusions, the agreement is qualitative at the present time, for reasons related to stereographical and geometrical complications as discussed in Section IV(4).

Application of the present description of two-phase flow is not limited to superplasticity. It can be adopted for non-Newtonian fluid flow with solid particles or for creep flow of ceramic/ceramic composites. In applying this theory, readers are advised to first verify that the deformation mechanism remains unchanged by the addition of rigid inclusions, to be ascertained at least by the same stress exponent. It can also be applied to rate-independent phenomena, since the mechanics of stress–strain field and steady-state stress–strain rate field are formally the same in corresponding boundary value problems.

In retrospect, it is remarkable that composites with reinforcement particles as small as 0.2 μm, as in the present work, can be described by continuum plasticity theory, which is often reserved for coarser microstructures in which the second phase is at least of a size of a few micrometers. This size condition is thought to be necessary since finer inclusions may be small enough to interact with single dislocations for which the mechanics are nonlocal, as in the case of dispersion hardening. Only when the inclusions are so large that each interacts with “clouds” of dislocations is a continuum description appropriate. In the zirconia–mullite composite we studied, however, lattice dislocation mechanisms are not expected to operate. This can be verified by recalling two scaling “laws” which relate dislocation spacing \(\lambda \) and dislocation subgrain size \(D \) to flow stress

\[
\lambda / b = 2G/\Sigma \\
D/\mu = 100G / \Sigma
\]

where \(b \) is the lattice Burgers vector (0.36 nm in zirconia) and \(G \) is the shear modulus (80 GPa in zirconia). (The numerical constants above are only approximate but regarded adequate for order-of-magnitude estimation.) Taking \(\Sigma \) to be 40 MPa, which is in the middle range of the stresses used in our study, we calculated \(\lambda \) and \(D \) to be 1.4 and 70 μm, respectively. These dimensions are much larger than the matrix grain size in our specimens, implying that superplasticity in the present material operates via a nondislocation, diffusional mechanism with a diffusion distance (grain size) much smaller than dislocation spacing.

Based on the above observation we may now state that the continuum picture is applicable under two circumstances: first, in dislocation creep when microstructures are much coarser than the dislocation cell size, and second, in diffusional creep and superplastic flow when microstructures are much finer than dislocation spacing. Of course, implicit in the continuum picture is that each constituent phase deforms according to its own constitutive relation, and that stress-driven kinetic demixing, due to different mobilities of common constituent atoms or ions shared by two phases, is not predominant. We have pointed out previously that the application of the continuum picture may also be justified based on bounding theorems specialized to diffusional creep problems, e.g., grain-switching problems and inclusion problems.

The zirconia/mullite composites reported in this study have not yet been tested in uniaxial tension. However, they have been stretched by a hemispherical punch in biaxial tension at 1350°C to large strains when the thin disk samples were supported on a ring. Since the latter deformation mode
is even more severe than uniaxial tension, we believe that it has adequately demonstrated the superplastic ductility of the material. Details of these experiments will be reported elsewhere.

VI. Summary

A. A continuum theory for non-Newtonian flow of a composite containing rigid inclusions in a power-law matrix has been developed. It predicts flow suppression by a factor of \((1 - V/\gamma)^p\), \(q\) being a function of power-law exponent and inclusion shape. Stress concentrations in rigid inclusions have also been evaluated. As the stress exponent increases, flow suppression is more pronounced even though stress concentration is less.

B. Superplastic mullite/zirconia composites, containing submicron equiaxed grains of 2Y-TZP and alumina-rich mullite, deform according to the following constitutive equation

\[
\dot{\varepsilon} = [(1 - V_{\text{mullite}})^{3 + \eta/2} C \Sigma \exp(-Q/RT)]/\rho \tag{21}
\]

where \(n = 1.5\), \(p = 3\), \(Q = 700\) kJ/mol, and \(C = 4.2 \times 10^{-3} \text{m}^3/(\text{s} \cdot \text{MPa}^{-1})\) in the temperature range of 1250\(^\circ\)C and 1380\(^\circ\)C, with \(V_{\text{mullite}}\) up to 0.5. The dependence on the volume fraction of mullite can be quantitatively described by the continuum theory, in which the mullite phase is treated as non-deforming rigid inclusions. The mullite inclusion size was found to have little effect on deformation.

C. When the alumina-to-silica ratio in mullite was decreased to 1.25, the composite showed accelerated deformation if mullite grains were small and equiaxed. Prolonged annealing at 1400\(^\circ\)C resulted in an elongated morphology for mullite, which strengthened the composite by a fiber-reinforcement mechanism. Deformation texture of these elongated inclusions was observed. The continuum theory was found to be in qualitative agreement with the strengthening data.

D. Superplastic flow in the present study had very little contribution from lattice dislocation mechanisms. This observation is based on scaling considerations of dislocation spacing and subgrain size, which are much larger than the very small grain sizes typically required for ceramic superplasticity.

Acknowledgments: We are grateful to Dr. Shuzo Kanaki of the Government Industrial Research Institute, Nagoya, Japan for providing the elastic constant data of the mullite quoted in the Introduction and to his colleague, Dr. Fumihiro Wakai, for providing the creep data of 2Y-TZP quoted as Ref. 20.

References

