Technical Memorandum No. 101
03674-21-M

4K-CPS
A PROGRAMMING SYSTEM FOR THE PDP-8 SIDE
OF THE DEC LINC-8 COMPUTER

by

K. Metzger
G. Cederquist

Approved by: z ;3@7 ; (../Zé Z: Lz S

for

COOLEY ELECTRONICS LABORATORY

Department of Electrical Engineering
The University of Michigan
Ann Arbor, Michigan

Contract No. Nonr-1224(36)
NR187-200
Office of Naval Research
Department of the Navy
Washington, D.C. 20360

November 1969

Reproduction in whole or in part is permitted
for any purpose of the U.S. Government

ABSTRACT

The 4K-Cooley Programming System (4K-CPS) is a collection
of programs designed to aid in programming the PDP-8 side of Digital
Equipment Corporation's LINC-8 computer. This collection of pro-
grams consists of a file system, a loader, a symbolic text editor, and
an assembler. These programs are structured so that a user can enter,
edit, assemble, load, and execute programs entirely from the Teletype
keyboard. The system architecture is modular, and future components
are easily ''plugged-in'' as needed.

iii

FOREWORD

This report describes and documents the programming system
4K-CPS. 4K-CPS is a programming and file management system
intended for use in programming the PDP-8 side of the Digital
Equipment Corporation LINC-8 computer.

4K-CPS was written at the Cooley Electronics Laboratory (CEL)
of The University of Michigan and is based on a larger and more com-
prehensive system (CPS) designed for the 8-K LINC-8 written by
Gerald Cederquist of CEL.

When the original CPS was written, it was intended for use only
on the CEL 8-K LINC-8. However, CEL is affiliated with the Institute
of Marine Sciences (IMS) of The University of Miami in the MIMI project,
and IMS has two 4-K LINC-8 computers. It soon became obvious that
a 4-K version of CPS would give IMS a greatly increased programming
capability and would aid in the transferral of programs between the two
facilities. Thus, in the two-month period of June and July, 1969
4K-CPS was developed by CEL for use at IMS.

In producing 4K-CPS the basic CPS data structures were retained;
however, because of the smaller amount of available memory the internal
coding was extensively restructured. The resulting system closely
approximates the external features of the current version of CPS.

iv

ABSTRACT

FOREWORD

CHAPTER 1:

-t
Lo DO

CHAPTER 2:

2.2

2.3

2.4

CHAPTER 3:

LWLWWWwwWwWw
D Ol W DN

TABLE OF CONTENTS

INTRODUCTION

Why 4K-CPS?
4K -CPS General Structure
Operational Procedure

BASIC 4K-CPS

File System

2.1.1 Getting Into the File System
2.1.2 Input Line Editing
2.1.3 Prefix Characters
.1.4 Commands
ymbolic Text Editor

.1 Operating Modes
.2 Commands

.3 Special Features
embler

.1 Running *ASM

.2 Listing Control

.3 Reference Material
der

.1 Running *LOAD

.2 Operation

.3 Commands

wn N
oawwm DO DO

Mmmrwmm;}mmw
@)
o

»hbh»&

ADVANCED 4K-CPS

Tape Organization
Structure of 4K-CPS File Indexes
Key for Updating the Free Names,

Communication Area Structure
Special Commands

-S and -B
File System Command Line Structure

1ii

3.7

CHAPTER 4:

4.1

>
G W DN

CHAPTER 5:

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

TABLE OF CONTENTS (Cont.)

4K-CPS Data Structures
3.7.1 Symbolic Text Files
3.7.2 Absolute Binary Files
3.7.3 Core Image Files

SYSTEM DOCUMENTATION

Bootstraps

4.1.1 SCLD
4.1.2 SBOOT
4.1.3 SBOOT2
4.1.4 TAPEMIX
The File System
The Loader

The Editor

The Assembler

CONCLUSION

DISTRIBUTION LIST

vi

32
32
33
33

35
35
35
35
36
36
36
37
37
38
39
40
42
43
o4
58

63

1. INTRODUCTION

The 4K - Cooley Programming System (4K-CPS) is a collection
of programs designed to aid in programming the PDP-8 side of Digital
Equipment Corporation's LINC-8 computer. This collection of pro-
grams consists of a file system, a loader, a symbolic text editor, and
an assembler. These programs are structured so that a user can enter,
edit, assemble, load, and execute programs entirely from the Teletype
keyboard. The system architecture is modular and future components
are easily '"plugged-in'' as needed.

The 4K-CPS, as described in this report, uses the two tape units
present on all LINC-8 computers. However it should be easy to modify
4K-CPS to run on any PDP-8 using two TU-55 tape drives or a disc.

The programming system 4K-CPS is based on an operating
system (CPS) developed and in use at the Cooley Electronics Laboratory
of the University of Michigan. CPS itself is based on the Michigan
Terminal System for the IBM 360/ 67 and requires 8-K words of memory.
4K-CPS is intended to represent a benchmark in the external structure
of CPS and serve as a relatively fixed programming tool, . Care has been
taken to allow for limited future expansion.

The 4K in 4K-CPS refers only to the minimum required memory
size. 4K-CPS is fully capable of producing programs that occupy
thorough 16-K of memory and of loading these programs properly.

Although 4K-CPS and CPS are almost identical externally, the
internal structures differ radically. This is mainly due to the more
severe space limitation imposed by the smaller memory.

In order to run 4K-CPS a minor hardware (or software) modifi-
cation is required. Appendix A contains a description of both alterations.
In addition 4K-CPS uses LINC tapes marked using 128 word blocks.

(A utility program is included for marking such tapes.)

1.1 Why 4K-CPS?

Or for that matter, why an operating system? As an answer to
this question, look at the steps involved in preparing a program using
paper tape. It is assumed that the reader knows how to write programs
in PDP-8 machine language and wishes to use the PDP-8 side of the
LINC-8.

(1) Write the program down on paper.

(2) Load in the symbolic editor, and enter the program into
the computer.

(3) When satisfied with the program, punch a paper tape.
(4) Load and start the assembler.

(5) Feed the paper tape prepared in step 3 through the
assembler at least 2 times.

(a) If any errors occur, reload the editor, read the
source tapes back in, then go to step 3.

(b) If the program assembles, punch a binary paper tape.
(6) Load the binary loader.
(7) Load the binary paper tapes.
(8) Try the program.

(a) If it is bad, go back to step 5(a).

(b) If it works, save the binary paper tape.

With the basic PDP-8 using an ASR-33 Teletype, paper tape is
read and punched at 10 characters per second. The time spent in steps
3, 5 5(a), 5(b), 7, 8(a) (even assuming the editor, assembler, and
loader are loaded in zero time) can easily run into hours for even a
small program of one or two memory pages in length. DEC's
8-LIBRARY SYSTEM offers some speed-up but still requires paper tape
input and output for the assembler.

All of the steps are still required when using 4K-CPS; however,
those steps involving paper tape only require typing short command
lines on the Teletype. The hours become fractions of a minute. This
speed-up is due to the use of high speed bulk storage (LINC tape in this
case) at each stage where paper tape would have been used before.
However, just as the programmer had to properly store, handle, and
load the paper tapes, the proper sections of magnetic tape must be kept
track of, filed, and loaded when required. This could all be done by a
programmer with a scratch pad, a simple tape routine, and a lot of
patience. 4K-CPS is an attempt at providing an automatic scratch pad
and tape routine.

4K-CPS allows the user to store program segments
in files, to call them into memory at will, edit them, save them in files,
assemble programs from files, and to run programs stored in files.
In addition, these programs may operate on data stored in other files.
Each one of these steps requires only a single typewritten command
from the user. The file system is intelligent enough to know, on its own
whether a file contains symbolic text, binary frames, or a core image.

)

1.2 4K-CPS General Structure

The heart of 4K-CPS is a powerful, comprehensive, easy-to-use
file system. In fact, the file system along with its conventions could be
considered to be 4K-CPS in its entirety. This system allocates file
storage, transfers files, and links files as well as loading and starting
program execution. It also maintains the system indexes, keeping
track not only of where data and program files are located but also
remembering the type of material stored in each file. All other system
functions, such as assemblies, are performed by programs stored in
program files using information supplied by the user and the file system.
The structure of 4K-CPS is illustrated in Fig. 1.

USER
FILE SYSTEM [*€ > PROGRAM

A A

\
MASS STCRAGE

Fig. 1. 4K-CPS organization

In the current version of 4K-CPS magnetic tape is used to pro-
vide mass storage for programs, data and for the file system.

The three main system programs provided with the 4K-CPS
file system are:

(1) A loader, *LOAD. This loader combines core images and
absolute binary (terms to be defined later) into core images which are
in the form required by the file system "RUN'" command.

(2) A symbolic text editor, *ED. This is a greatly modified
version of Digital-08-ESAA supplied by DEC.

(3) An assembler, *ASM. This is a cut-down version of DEC's
MACRO-8 assembler. The macro and number processors have been
deleted because of the support code required for interfacing to 4K-CPS.
The symbol table capability is the same as for the standard version
of MACRO-8 with all options present.

In putting these programs into 4K-CPS it was decided to borrow

as much as possible of DEC's software and modify it in order to speed
system development.

1.3 Operational Procedure

This section illustrates the procedures involved in entering,
assembling, loading and executing programs using 4K-CPS. Typical
commands are used in order to aid in illustrating the basic system
operation. Section 2 contains a more detailed description of the various
system commands and facilities.

The following operations are performed when using 4K-CPS to
prepare and run programs.

(1) The file system must be loaded into core. (See Section
2.1.1 for instructions.) (Mount tapes, lift LOAD.)

(2) The user's program must either be typed or read from paper
tape into the system. Symbolic programs are entered into 4K-CPS
through the use of the symbolic text editor, *ED. To invoke the editor,
use the file system command

RUN *ED

This command causes the editor to be loaded into core and started in
the command mode with an empty text buffer.

4

The use of the editor is described in Section 2.2. When the
desired program (or as much of it as the editor can handle in a single
text buffer) has been typed in, and is in satisfactory shape, the editor
should be placed in the command mode and the "'S" command given.
This command causes the editor to write its current text buffer into the
temporary file -S and then return control of the computer to the file
system.

(3) Since *ED always stores its text buffer in the file named -8,
the contents of -S should be saved into a permanent file for later use
and modification. This is done by giving the file system the command

SAVE -S SFNAME

This command causes the contents of -S to be copied into the file named
SFNAME. SFNAME is a file name of 8 characters or less in length
supplied by the user. If this file does not exist, the file system will
create it on the proper tape unit and then copy the contents of -S into it.
If SFNAME already exists on either tape the question

#REPLACE
?

will be typed. The only affirmative response is !(CR). A lone (CR) is
the proper negative response. All other responses cause the comment
ILLEGAL COMMAND to be typed; the command is then ignored. If the
! is given, the contents of -S will replace the contents of SFNAME. If
it becomes necessary to modify the contents of SFNAME it can be re-
loaded into *ED through the use of the command

RUN *ED SFNAME

(4) Once the symbolic version of the program has been stored
in the file SFNAME it can be assembled (converted into binary form).
This involves using the program *ASM which is a modified version of
DEC's MACRO-8 assembler. Note: it is assumed that the symbolic pro-
gram stored in SFNAME conforms to the rules imposed by MACRO-8.
(See Section 2.3 and the MACRO-8 manual.) The assembly procedure
converts the contents of SFNAME into a binary representation that ends
up in the temporary file named -B. The contents of SFNAME are
unaffected. To runthe assembler use the command

RUN *ASM SFNAME

Often it is necessary to partition a program into several segments
because it cannot be contained within a single editor text buffer; in fact,
a good rule of thumb is to allot one page of code per editor buffer.

The individual segments can effectively be combined into one large file
through the use of the concatenation feature of 4K-CPS. The use of
concatenation will allow up to 16 symbolic files to be assembled together
as if they were one large file. For example, if four files were to be
combined in this manner the resulting command would take the form

RUN *ASM FN1+FN2+FN3+FN4

Control automatically returns to the file system upon completion of
assembly with the resulting binary output stored in the temporary file
-B. The contents of -B should be saved in a permanent file through the
use of the command

SAVE -B BFNAME
The operation of the above command is the same as in Part 3 above.

An assembly listing will be provided if the parameter string con-
struction P=L is used. For example,

RUN *ASM SFNAME P=L
See Section 2.3 for further details.

(5) Once the binaries required for a particular program have
been generated it is necessary to put them into the form required by the
4K-CPS RUN command. The program *LOAD is used for this purpose.
To invoke *LOAD use the command

RUN *LOAD

*LOAD is very similar to the file system in its operation and uses the
""" as its command line prefix character. Using this program is analo-
gous to loading paper tapes into core using DEC's binary loader.
However, instead of loading programs directly into core, *LOAD loads
them into an image of core, which it maintains on magnetic tape. When
the loading procedure is completed, this core image is compressed into
the format required by the file system RUN command loader. The core
images formed in this manner end up in -B and can be saved in perma-
nent files for later use.

The loader GET command is used to load binary files and core
image files into the working core image. For example, suppose that in
addition to the main program, the floating point package (FPPVB) and a
tape routine (RWTAPE) are required to complete a program. These can
be loaded using the single command

GET MAIN+FPPVB+RWTAPE

Up to eight files can be loaded with a single GET command. Several
GET commands can be used in the course of building up a program using
various standard subroutines which have been assembled at some earlier
time.

When all of the needed subroutines and subprograms have been
loaded, the core image must be compressed and placed into the form
required by the RUN command. This involves removing all empty pages
and placing a core image descriptor block at the beginning of the com-
pressed core image to form a core image module. A starting address
is also supplied at this time. These operations are invoked through the
use of the simple command

BUILD SA=XXXXX

XXXXX is a starting address furnished by the user; if it is missing,
7777, the address of a HALT command, is used. When the BUILD
command is given, the contents of -B are replaced (and not before this
time) by the new core image module, and control of the computer is
returned to the file system.

(6) The resulting core image module is in -B and can be saved
through the use of the command

SAVE -B CFNAME
See part 3 above for an explanation of the SAVE command.

(7) The newly-produced core image module can now be loaded
into core and started through the use of the command

RUN CFNAME

or

RUN -B

2. BASIC 4K-CPS

This section is devoted to describing the use of the file system,
text editor, assembler and loader.

2.1 File System

The file system is responsible for all file management and is
the portion of 4K-CPS with which the user most often '""converses. "

The file system accepts command lines typed by the user as its
input and prefixes each new command line with a # . The user responds
by typing a command. Line and character editing facilities are pro-
vided in order to allow the user to correct typing errors before he
terminates the command line with a carriage return (CR).

2.1.1 Getting Into the File System. The following procedure is
used to load and start 4K-CPS:

(1) Mount the two 4K-CPS tapes on units 0 (left) and 1 (right) as
marked on the tapes. Spool 10 to 15 feet of tape onto the takeup reels.

(2) Lift the LINC LOAD switch that is on the left side of the
machine. This causes the system to be loaded.

(3) 4K-CPS informs the user when it is ready to accept input
by prefixing a line with a "#".

(4) 4K-CPS can be restarted at any time through the following
procedure:

Press the PDP-8 STOP

Place 7600 in the right switches
Press the PDP-8 LOAD ADDRESS
Press the PDP-8 START

The system will reload if the bootstrap program is present. If it
does not, lift the LOAD switch.

4K-CPS should never be manually restarted during a ""SAVE" or
"DESTROY" operation. This can cause the index to differ from the
actual tape content.

2.1.2 Input Line Editing. Commands are entered into 4K-CPS
by typing on the Teletype keyboard. A command line is not accepted
until it is terminated by a carriage return. In order to aid the user in
recovering from typing errors the following special editing characters
are provided.

RUBOUT Deletes the last character (if any)
from the current line and types a
back slash (\) to record this action.

BACKARROW Deletes the entire line and starts a
new one.

LINEFEED Echos the current line. The echo
uses an ""=" for its prefix. This

feature is useful if a number of
rubouts have been made. Additional
input may still be appended.

(CTRL-P) Causes the line editor to accept the
next character (except for leader-
trailer). This is useful for placing
a BACKARROW in a parameter string.

CARRIAGE RETURN Terminates the current line.

MINUS When immediately followed by a
carriage return causes the current
command line to be extended to the
next line. The - is not inserted in
the buffer in this case.

A single command entry cannot contain more than 127 characters
and spaces although it may extend over many typed lines. Also, when a
command is echoed through the use of the LINEFEED, up to 64 charac-
ters are typed on the first line with the remainder being placed on the

next line.

2.1.3 Prefix Characters. In 4K-CPS extensive use is made of
prefix characters typed at the start of every line. The characters used
by the file system are:

start of a command line
= start of a command line echo
? request for information
2.1.4 Commands. Commands are entered using one of the fol-
lowing structures. (Other structures are available and are described in

detail in Section 3. 4; the structures presented below represent the
standard ones.)

(1) COMMAND

(2) COMMAND FNAME

(3) COMMAND FNAME1+FNAME2+. ..+FNAMEN

(4) COMMAND FNAME FNAMEL1

(55 COMMAND FNAME FNAMEIl-+...+FNAMEN P-...

Spaces in front of a file name are ignored but extraneous spaces
after a file name and in front of a '"+'" change the character of the
command.

The 11 commands implemented in 4K-CPS are described below.
Only the first two letters are used by the system to determine the
requested command. File names may be any length, however, only the
first eight letters are used and retained in the index. File names are
terminated by pluses (within a string) or by blanks (at the end of a string).
Files are automatically generated through the use of the "SAVE"
command.

The following characters should not be used in making up file
names:

CR (carriage return)
LF (line feed)
leader-trailer

@

+

non-printing characters

10

The file system recognizes the following commands:

COMMENT

This command line is ignored.

SAVE FROMFILE TOFILE [!]

The contents of FROMFILE are copied into TOFILE. If TOFILE
does not exist, then the required file is created on the appropriate tape
(binary and core images on unit 1, symbolic on unit 0). The proper
index entry is also made.

If TOFILE exists and the ! is supplied, the copy operation will
proceed. If TOFILE is too small or on the wrong unit, it will automati-
cally be destroyed and a new file with the same name will be created.
The only exceptions to this are -S and -B. These cannot be destroyed
but may be enlarged through the use of the JSET command. If TOFILE
exists and is larger than necessary, the extra space will not be returned
to the system. o

If TOFILE exists and the ! is not given, the queétion

#REPLACE
?

will be typed. The only affirmative response is !(CR). All other
responses are negative. Responses other than !(CR) or just (CR) cause
the comment "ILLEGAL COMMAND'" to be typed. The command is then

ignored.

DESTROY FILE1+FILE2+...+FILES

The files FILE1 through FILE8 will be destroyed. A maximum
of eight files can be destroyed with a single command. It is not possible
to destroy the file names -B and -S. File names starting with an *
cannot be directly destroyed. (These are system files and so are pro-
tected.) Such files must be renamed before they can be destroyed.

Destruction is most rapid if the list starts at the end of the index
list and works its way upward. This is not a necessity.

11

INDEX [A] [B] [8] [D] [0] [1]

This command types out the index information specified by the
trailing parameters. The parameter list should be separated from the
command by one blank and is terminated by a blank or carriage return.
If no parameter string is present, BS is assumed.

Option
A List all files including those starting with an *
B List binary (non-system) files; i.e., unit 1
S List symbolic (non-system) files, i.e., unit 0
D Type the associated tape location data
0 same as S
1 same as B

Typing (CTRL-C) will terminate an index listing if the user
becomes impatient.

FIND FILEl+...+FILE17

This command is used to verify the presence of a file name in
an index without having to type out the entire index. The detailed index
parameters are typed out. If a file name is not present, a line is not
typed for it.

RENAME OLDNAME NEWNAME

All files except -B and -S can be renamed through the use of this
command. Files starting with an * can be destroyed if they are
renamed.
RUN COREIMAGE FNAMELl+...+FNAME16 P=...

This is the standard construct for the RUN command. Advanced
users should see Section 3.4 for an explanation of other possible

constructs. The RUN command is used to load user and system pro-
grams into core and to start them.

12

This command loads the specified core image and provides it
with access to the designated files. The P= construct allows the user to
transmit to the core image the characters immediately following the
equal sign. The maximum number of characters which can be supplied
is 10 + 32 - 2* (# file names present). This provides for a minimum
of ten characters. Additional characters are ignored.

SIGNOFF

This command shuts 4K-CPS down gracefully and in the process
rewinds the tapes and copies the indexes into ''safe'' areas at the front
of the tapes. (This is useful in restoring wiped out tapes.)

The]SET]IDENTIFY and |NUMBER commands are for use
by the experienced user and are described in Section 3. 6.

2.2 Symbolic Text Editor

The file named *ED contains a modified version of the symbolic
editor (Digital-8-1-S, also called DEC-08-ESAA) as supplied by DEC.
This program allows the user to type symbolic text into the PDP-8 and
to perform line editing operations. This section contains a brief sum-
mary of the available commands and indicates their affect on the stored
text. For further information consult the appropriate DEC manual.

The editor is invoked from 4K-CPS by the command
RUN *ED [FNAME]

where FNAME consists of a concatenated string of file names which
have been assigned to files containing symbolic text.

2.2.1 Operating Modes. Two modes of operation are available,
the command mode and the text mode.

Command Mode:

In this mode all characters typed on the keyboard are interpreted
as commands to the editor. When the editor is in the command mode,
it prefixes all lines with a '":" . The editor is started in the command

mode.

Commands must be entered in one of the following forms:

13

X
NX
N, MX

where "X'" represents a general command; N and M represent decimal
numbers specifying lines in the editor text buffer. All commands are
terminated by a carriage return (CR).

Text Mode:

This mode can only be entered by an appropriate command.
When in the text mode, the editor prefixes lines with a "%'" . In this
mode, the editor accepts all characters [except for (CTRL-C),
LINEFEED, LEADERTRAILER, BACKARROW and RUBOUT] and
places them into the text buffer in accord with the immediately pre-
ceding command. When the *ED text buffer becomes full, the control
mode is immediately (and automatically) re-entered.

2.2.2 Commands. The commands marked with an asterisk (*)
leave the editor in the text mode. To return to the command mode the
user must type a (CTRL-C) (no CR required). Commands without an
"*" remain in the command mode. The prefix character typed by the
editor is a ready guide in determining the editor mode. All commands
should be terminated by a CR.

Input:

R * Read incoming text from the reader. Append
to the text buffer. When a (CTRL-C) is
encountered, operation is resumed in the
command mode.

Ax Append the incoming text to the text buffer.
(CTRL-C) immediately returns the editor to
the command mode.

Editing:

L List the entire text buffer.

NL List line N.

N, ML List lines N through M.

14

NC * Change line N (decimal). (CTRL-C) returns
the editor back to the command mode. This
instruction is equivalent to deleting line N and
inserting in its place the lines of text which
follow until a (CTRL-C) is entered.

N, MC * Change lines N through M. It is not necessary
to furnish the same number of lines to the
editor as were changed.

NI * Insert the following lines in front of line N.

ND Delete line N.

N, MD Delete lines N through M.

Output:

P Punch the entire buffer. This command halts
the machine first to allow the user to turn on
the paper tape punch. Press "CONT'" to start
the punching.

NP Punch line N.

N, MP Punch lines N through M.

F Punch LEADERTRAILER code and a (CTRL-C).
This command halts the machine before and
after operation. Pressing "CONT'" restarts
the machine.

Special:

E Exit immediately to CPS without modifying -S.

S Store the current text buffer in the temporary
file -S and return to 4K-CPS

T Compress the text buffer and type out the approxi-

mate number of decimal locations available for
storing text. Text is stored 2 characters to a
location.

15

2.2.3 Special Features.

Special Characters:

BACKARROW Cancel the present line. (BACKARROW=
SHIFT-0)

CTRL-TAB Tab six spaces. This is suppressed on input
and output if right switch 1 is up.

/ Decimal value of the last line present.
Decimal value of the current line.
= Type decimal value of preceding symbol.

and + Allow line specification relative to line (.) or (/).

Errors:

If illegal commands or meaningless arguments are entered, the
editor responds witha ? .

The editor may be halted at any time during a listing by pressing

the PDP-8 "STOP" switch. Restarting the editor at location 177 will
preserve the text in the buffer.

Line Editing:
The following capabilities are available in the text mode only:

(1) Typing RUBOUT deletes the last character on a line and
echoes a back slash (\) for each deletion. When all of the characters
on a line have been deleted, back slashes are no longer echoed.

(2) Typing a line feed echoes the current line. Text may be
appended.

(3) The read option (R) does not halt the machine when a
(CTRL-C) is entered. However the command mode is re-entered.

(4) A (CTRL-P) serves as a literal next character. This may

be used to enter the back-arrow (-) into editor text. Avoid using it for
anything else!

16

(5) The back-arrow still restarts the current line when it does
not follow a (CTRL-P).

(6) A (CTRL-C) will return the user to the command mode when-
ever it is typed.

2.3 Assembler

The assembler supplied in the file *ASM is a cut-down version of
DEC's MACRO-8 assembler. *ASM is used to convert symbolic text
stored in 4K-CPS files into the binary form acceptable to the loader
program *LOAD. The binary output of *ASM is placed in the temporary
file named -B.

* ASM differs from MACRO-8 in that the following operations
have been removed:

(1) FLTG pseudo-op

(2) DUBL pseudo-op

(3) PAUSE pseudo-op

(4) The MACRO processor

These operations were removed in order to allow room for the
support routines required to interface *ASM with 4K-CPS. The symbol
table capability of *ASM is the same as for MACRO-8 with all of the

above features present. The symbol table supplied with *ASM is found
in Appendix B.

2.3.1 Running *ASM. The assembler is invoked by giving the
following command to the file system:

RUN *ASM Fl+...+F16 P=...

It is assumed that the files F1 through F16 contain a symbolic
program written using the standard MACRO-8 conventions. A maximum
of 16 files can be assembled as one program (a restriction imposed by
the file system--however, this many files usually causes the symbol
table to overflow anyway). The last file must contain a § in order to
terminate the assembly.

If the P= construct is not used, passes 1 and 2 of the assembler
will automatically be provided. The temporary file -B will contain the
resulting binary output. If no error messages are typed out, then the

17

binary can be assumed to be '"good." Error messages should be taken
as being fatal.

Pass and listing control can be exercised by the user through
the parameter string. *ASM recognizes the following control characters
in the parameter string (all others are ignored):

B Generate a binary and place it in -B, i.e., pass 2.
NB Skip pass 2.

L Generate a listing on the Teletype, i.e., pass 3.

S List the symbol table.

NS Do not list the symbol table.

Not typing P=... is equivalent to typing P=BNLNS. Pass 1 is
always provided.

Errors encountered in the assembly do not terminate the
assembly and all passes requested are supplied. Exceptions to this
consist of internal table overflows which immediately return the user
to 4K-CPS.

2.3.2 Listing Control. Listing control for assembly listings
has been incorporated in the I/0O support code for *ASM. Pagination
and print control are exercised through the inclusion of listing control
lines within the input text stream.

Listing control lines are defined as lines whose first character
is either an (ALT-MODE) or (CTRL-H). The remaining characters are
used to determine the desired control action. Listing control lines are
not passed to the assemblers. The valid control characters are:

E Start the next line on a new page.
P Turn the print operation on (normally on).
NP Turn the print off.

The following structure has been found to provide ''nice-looking"
listings.

18

*XXX / the first line starts on a new sheet

/
text
PAGE / dumps the literal pool on the current sheet
(ALT-MODE)E
*Xy2Z / now on a new sheet
text
PAGE / dump literal pool

(ALT-MODE)E

2.3.3 Reference Material. The following information has been
taken from DEC's "Introduction to Programming.'" For further informa-
tion on the MACRO-8 language consult the DEC MACRQO-8 manual.

*ASM SYMBOLIC ASSEMBLER

The *ASM Symbolic Assembler is a service program
used to translate symbolic programs that are written in
the MACRO-8 symbolic language into binary programs.
The MACRO-8 Language as found in 4K-CPS can be gen-
erally considered as PAL III with the following additional
features:

Operators--Symbols and integers may be combined
with a number of operators.

Literals--Symbolic or integer literals (constants) are
automatically assigned.

Text Facility--There are text facilities for single
characters and blocks of text.

Link Generation--Links are automatically generated
for off-page references.
19

LITERALS. Since the symbolic expressions which appear

in the address part of an instruction usually refer to the
address of locations containing the quantities being operated
upon, the programmer must explicitly reserve the locations
holding his constants. The MACRO-8 programming language
provides a means for using a constant directly. Suppose,

for example, that the programmer has an index which is
incremented by two. One way of coding this operation

would be as follows.

CLA

TAD INDEX
TAD C2
DCA INDEX

C2, 2

Using a literal, this would become

CLA

TAD INDEX
TAD (2)
DCA INDEX

The left parenthesis is a signal to the assembler that the
expression following is to be evaluated and assigned a
location in the constants table of the current page. This
is the same table in which the indirect address linkages
are stored. In the above example, the quantity 2 is
stored in a location in a list beginning at the top of the
memory page (page address 177), and the instruction in
which it appears in encoded with an address referring to
that location. A literal is assigned to storage the first
time it is encountered, and subsequent references will be
to the same location.

If the programmer wishes to assign literals to page 0
rather than the current page, he may use square brackets,
[and], inplace of the parentheses. However, in both
cases, the right or closing member may be omitted, as
in the example below.

20

Literals may be nested. For example:

will generate

*200
TAD (TAD (30

0200 1376
0376 1377
0377 0030

This type of nesting may be carried to as many levels as

desired.

PSEUDO-OPS.

*ASM has available a number of useful

pseudo-ops, which are listed and briefly explained below:

PAGE

DECIMAL

OCTAL

EXPUNGE

FIXTAB

When used without an argument, the current
location counter is reset to the first location
on the next succeeding page. With an argu-
ment (PAGE n), the current location counter
is reset to the first location on the specified

page, page n.

When this pseudo-op occurs, all integers
encountered in subsequent coding will be

taken as decimal until the occurrence of

OCTAL,

which will reset the radix to its original base.

When used, the entire permanent symbol
table (excluding pseudo-ops) is erased. This
pseudo-op is used when the programmer
wishes to provide more core for the user pro-
gram symbols. Then, with FIXTAB,

the programmer can build a customized perma-
nent symbol table, containing only those per-
manent symbols required for his user program.

The preceding pseudo-ops and a few others are described in
detail in the MACRO-8 Assembler manual.

21

OFF-PAGE REFERENCING. During assembly, the page bits
of the address field are compared with the page bits of the
current location counter. If the page bits of the address field
are nonzero and do not equal the page bits of the current loca-
tion counter, an off-page reference is being attempted. If the
reference is to an address not on the page where the instruction
will be located, the assembler will set the indirect bit (bit 3)
and an indirect address linkage will be automatically generated
on the current memory page.

Although the assembler will recognize and automatically
generate an indirect address linkage when necessary, the
programmer may still indicate an explicit indirect address
using the special symbol '"I'" between the operation code and
the address field.

ERROR MESSAGES. The assembler is constantly checking for
assembly errors, and when one is detected, an error message
is printed on the teleprinter. Error messages are printed in
the following format.

XX YYyyyy

where xx is a two-letter code which specifies one of the type
of errors listed below, and yyyyyy is either the absolute
octal address where the error occurred or the address of

the error relative to the last symbolic tag (if there was one)
on the current page.

Following is a descriptive list of the error messages,
some are printed out during Pass 1, others during Pass 2,
and some of which are printed out during both passes.

Error Code Meaning
BE MACRO-8 internal tables have overlapped
IC Illegal character
ID Illegal redefinition of a symbol
IE Illegal equal sign
II Illegal indirect address
ND No §
PE Current, nonzero page exceeded
SE Symbol table exceeded
US Undefined symbol
ZE Page zero exceeded

For a thorough description of MACRO-8, see MACRO-8
Assembler, Order No. DEC-08-CMAA-D.
22

2.4 Loader

Tl}e loader stored in the file *LOAD is used to combine binary
and core image files into new core image files which can be loaded into
core and started by the file system RUN command.

Instead of loading into core as does the paper tape binary loader
*LOAD places the contents of designated files into an image of core ’
which it maintains on magnetic tape. Inthis core image one tape block
(128 words long) corresponds to one page of memory and 32 (decimal)
tape blocks correspond to one memory field. Capacity for up through
four memory fields is provided.

When loading *ASM output (absolute binary files), the loader
addresses the core image in the same manner as the paper tape binary
loader addresses memory. (In fact, it is essentially the same loader.)
Each computer word content is placed into the specified location of the
core image without disturbing the contents of any other location.

However, when loading a core image file the data transfer consists of
copying entire pages from the designated file directly into the core image;
the previous contents of the corresponding pages in the core image are
lost.

It is possible to patch existing programs by loading their core
images first and then overlaying them with the desired patches which are
stored in files produced by *ASM.

When a value is stored in any location of a particular memory
page, this page is said to be "referenced.' Referenced pages contain a
core constant in all locations not stored into. This core constant is
7402 (PDP-8 halt).

When all of the desired binary and core image files have been
loaded, the loading procedure is terminated and the core image module
is produced by the use of the BUILD command.

The desired core image module is formed by deleting all unref-
erenced pages from the core image and placing a core image descriptor
block at the front of the resultant compressed core image. The core
image descriptor block provides the file system RUN loader with
sufficient information to allow reconstruction of the original uncom-
pressed core image. Inno case will a core image module contain the top
page in memory field 0. The system boot and system communications
area reside in this page and the loader protects it.

The final core image module is left in -B (-B is not altered until
the BUILD command is given) and may be saved in a permanent file.

23

The 4K-CPS loader is designed to load into as much as 16-K of
memory. It is up to the user to insure that all addresses and origins
are within the capacity of his own particular machine.

2.4.1 Running *LOAD. The loader is loaded into core and
started by the following file system command

RUN *LOAD

2.4.2 Operation. The operation of *LOAD is very similar to
that of the file system. The input to *LOAD consists of command lines
typed by the user. The same line editing facilities are available in
*LOAD as are available in the file system (Section 2.1.2). The loader
uses the ".""as its prefix character.

2.4.3 Commands. The loader recognizes the following commands
(these may be abbreviated to two characters):

GET FILEl+...+FILES

The contents of files FILE1 through FILES8 are placed into the
core image. A maximum of eight files can be loaded with a single GET
command. Files are loaded in the order in which they are named.
Several GET commands can be used during the formation of a core image
module. Only valid core images or *ASM produced files resident on tape
unit 1 can be loaded.

In many cases the user may have page relocatable subroutines
which he may wish to load into a page other than that for which the sub-
routine was originally assembled. This type of relocation can be accom-
plished using the construct, e.g.,

GET TAPEROUT@7000

This command causes TAPEROUT to be loaded into the core
image starting at location 7000. All origins contained in the file
TAPEROUT (assuming it to an absolute binary file) are taken modulo-200
and are added to the relocation constant, in this case 7000. When core
images are relocated this way, each segment is relocated starting at
location 7000, thus only single segment core images should be relocated
using this facility. Any number of files named in a GET command may
be relocated in this fashion.

24

REPLACE LOCN CONT CONT CONT ...

This command is used to modify the contents of individual loca-
tions in the core image from the keyboard.

LOCN is the first location in the core image to be
modified.
CONT means the octal numbers to be placed in successive

locations starting with location LOCN.

Replacement proceeds until all values have been placed or until an invalid
value is encountered.

LOCN
DUMP { START END}

This command causes the contents of LOCN, or the contents of
locations START through END (inclusive), to be typed out on the
Teletype. Typing a (CTRL-C) will terminate a dump for the impatient
user.

INDEX

This command causes a list of all loadable files contained on tape
unit 1 to be typed out. Each name is followed either by an Aor a C
depending upon whether the file contains absolute binary (*ASM output)
or a core image (*LOAD output). Typing (CTRL-C) causes the typing
to be terminated.
UNREFERENCE LOC1 LOC2 LOC3...

This command causes the pages containing the designated locations

to be erased from the core image under construction.

EXIT

This command causes the 4K-CPS file system to be restarted with
the contents of -B unaltered.

25

MAP

The referenced sections of PDP-8 memory are listed on the
Teletype. Each line represents a segment in the present core image.
A maximum of 42 (decimal) segments can be incorporated into one core
image module.

BUILD [[SA=] LOCN]

This command causes the loader to form a core image module
from the current core image and place it into -B. LOCN is an optionally
specified starting address supplied by the user. If no starting address
is specified, value of 7777 (which is a HLT in the system boot) is used.
The resulting core image module is placed in -B and is in the proper
format for being loaded directly into core using the file system RUN
command.

26

3. ADVANCED 4K-CPS

This section is intended for the programmer who wants to inter-
face additional system program modules to the 4K-CPS file system. It
is not the intention of this section to provide detailed documentation of
the internal structure of 4K-CPS. The program listings and Appendix C
should be consulted for this purpose.

3.1 Tape Organization

The LINC tapes used for 4K-CPS are marked using 128 (decimal)
word blocks and are written using a checksum which is the arithmetic
sum of the words in the blocks. Each tape contains 1024 (decimal)
blocks.

Unit 0 Structure

Block Numbers Contents
(octal)
0 cold start loader
1-6 "safe'" index copy for unit 0
7 spare
10-307 scratch area
310 system boot
311 system loader
312-333 file system
334-341 unit 0 index
342-31717 reserved for system expansion
400-1777 file storage

Unit 1 Structure

0 load error routine

1-6 ""'safe'" index copy for unit 1
7 spare

10-217 scratch area

220-225 unit 1 index

226 RUN command loader
227-246 *LOAD

247-266 *ED

267-326 *ASM

327-1777 file storage

27

3.2 Structure of 4K-CPS File Indexes

INDEX HEADER

The first six words of each index describe the current state of the
index and the file tape.

Word # Contents
0 2's complement of the number of index entries
1 next free block on file tape
2 space remaining on tape (in blocks)
3 tape identification number
4 unused
5 unused

INDEX ENTRIES

The total index size is six pages giving room for 127 entries.
The first file entry in each index is protected and cannot be renamed or
destroyed. Each index entry is structured in the following manner:

first word first two characters in file name, packed using
stripped ASCII

second word third and fourth characters in name

third word fifth and sixth characters of name

fourth word seventh and eighth characters of name

fifth word 4000*unit file is on + starting block number
sixth word 1000*file descriptor + file size in blocks

For file names shorter than eight characters in length, trailing
blanks are supplied by the file system.

File descriptors currently used are:

0 packed ASCII - using *ED packing conventions
1 absolute assembler output - *ASM output packed
3 paper tape frames per two 12 bit words
2 reserved for SABR output if ever placed in 4K-CPS

28

core image loadable by the RUN command loader
straight ASCII packed 3 frames per two 12 bit
words

unassigned

unassigned

unassigned

> W

-3 o Ul

3.3 Key for Updating the Free Names, -S and -B

In order to alter the attributes of -S and -B the following procedure
is used:

A "key'" word whose structure is described below must be placed
in location 7715 and its 1's complement must be placed in location 7724
before reloading the system. This informs the 4K-CPS file system that
an update is desired. The file system then takes the new attributes for
-S (if it is to be updated) from locations 7725 and 7726 and the new attri-
butes for -B (if it is to be updated) from locations 7727 and 7730 and
places them in the appropriate indexes without modification.

The contents of the attribute words are precisely those parameters
used in the actual index, 4000*UNIT+BLN and 1000*FILE DESCRIPTOR+
SIZE IN BLOCKS.

The 'key'" constant is

+1 if the 4K-CPS identification header is to be typed
0250 +4000 if -S is to be updated
+2000 if -B is to be updated

or any combination.

3.4 File System Command Line Structure

In its most general form, the 4K-CPS input command line con-
sists of a command verb followed by three groups or strings of file
names. These groups are ordered by the numbers 0, 1 and 2. These
numbers may in fact explicitly appear before the file name groups:

COMMAND 0=NAMESTRINGO 1=NAMESTRING1 2=NAMESTRING2 P-=...

For example

RUN *ASM F1+F2 P=L

29

is equivalent to
RUN 0=*ASM 1=F1+F2 P=L
and
DES QA+DE
is equivalent to
DES 0=QA+DE

The only restriction in this scheme is that the groups must be
assigned in order; i.e., 0 must precede 1, etc.

The meaning and utilization of the various file strings are depend-
ent upon the specified command. From the command descriptions given
in Section 2.4.1, it should be apparent which commands use which group
numbers.

Further exposition on the structure of the RUN command is in
order at this point. The action of the RUN command is to put into execu-
tion the program stored in the file assigned to group 0. This command
also passes to the program a string of file addresses corresponding to
the file names specified in groups 1 and 2. (This is done via the commu-
nication area, Section 3.5.) Routines in the specified program can then
access these user specified files. Thus specifying file names in groups
1 and 2 in a RUN command, in a sense, sets up a logical I/0O interface
between the program and the file system. It is for this reason that it is
often said that the files in group 1 are "attached to Logical I/O Device 1, "
etc.

At the present time no program uses a device number greater
than 1. However, at some future time it may become necessary to use
device 2 for assigning output files or for establishing explicit program
overlays.

3.5 Communication Area Structure

When a core image module is loaded into core and started by the
file system RUN command, the following information is available:

30

Name

STRBLN

BLN

NUMD1

NUMD2

FILEADR

PARLIST

Location

7723

7711

1721

7722

1725

Function

The location of the descriptor block for
the current core image in core. This is
in the form 4000*UNIT+BLOCK NUMBER.

The location of the next tape block imme-
diately after the last one loaded. This is
in the form 0*UNIT+BLOCK NUMBER.

The number of files assigned to device 1.
The number of files assigned to device 2.

The start of the file address chain. The
following information is stored sequent-
ially in the same order as named in the
invoking RUN command. The device 1
assignments are immediately followed by
the device 2 assignments. The file
pointers are in the form

4000*UNIT+BLOCK NUMBER

1000*ATTRIBUTE+SIZE

A combined total of 16 (decimal) files
can be assigned to devices 1 and 2.

The parameter list starts immediately
after the file string. Thus PARLIST
starts at location
FILEADR+2*NUMD1+2*NUMD2.
A minimum of ten locations is available
if all 16 available file pointers are used.

The system boot tape routine shares the top page of memory of
field 0 with the communication area.

It should be pointed out that the updating of -S and -B alters. the
contents of the input file string starting in location FILEADR. This can
cause problems in multi-pass programs such as *ASM

31

3.6 Special Commands

The following commands have been included in 4K-CPS in order
to aid in the system development and maintenance.

]SET FNAME

The next two lines are input using a 4-digit octal input routine
(NOT the normal input line editor). The first line contains
4000*UNIT+BLOCK NUMBER and the second line 1000*ATTRIBUTE+SIZE.
NO editing is available on these numbers other than the back-arrow (~)
which deletes the entry (setting it to 0) and allows input of another number.
Any other non-octal character terminates the line.

This command replaces the descriptors of the designated file
with those entered from the keyboard. This command is primarily
intended to allow changing the attributes of -B and -S from the keyboard.
Do not attempt to use this command to alter the location of the last used
block on either tape. Use at your own risk.

]IDENTIFY
This command causes the first six 'ocations in each index to be
typed. See Section 3.2 for a description of these locations.

| NUMBER

The next line is read in using the 4-digit octal input routine
described along with the | SET command. This value is placed in the
tape user identification number location of both indexes. CEL uses
4000+TAPE NUMBER to identify its 4K-CPS tapes.

3.7 4K-CPS Data Structures

This section describes the data structures used in symbolic text
files, absolute binary files and core image files.

3.7.1 Symbolic Text Files. Symbolic text files are line oriented
and use the 6-bit compressed format followed in DEC's symbolic text
editor. Each ASCII character is coded into either one or two groups of
6 bits. Each 6-bit group is put into the file immediately after the last
group, and groups are packed two per computer word. The only excep-
tion is the line terminator, the carriage return. By convention each line
starts at the left-end of a computer word.

32

The following encoding scheme is used:

ASCII 6-BIT

240-2176 o
300-337 the lower 6 bits in the ASCII representation

200-237
340-376
277

The RUBOUT character is not included in the above scheme.

a 77 group followed by the lower 6 bits in
the ASCII representation

For example, the two lines I(CR) DO(CR) would be encoded as

1177
1500
0417
7715

Symbolic text files are terminated by the occurrence of the
(CTRL-C) character. (*ED automatically provides this character on its
own line.)

3.7.2 Absolute Binary Files. Absolute binary files contain
binary paper tape frames packed three 8-bit frames per two computer
words.

LOC frame 1 top 4 bits frm 2

LOC+1 bot 4 bits frm 2 frame 3

Absolute binary files start with a 200 frame (leader-trailer) and
terminate with a 200 frame.

3.7.3 Core Image Files. Core image files must be structured
in the following manner in order to be properly loaded by the file system
RUN command.

The first block of the core image contains a set of descriptors
which describe the following core image segments. Three words are
used to describe each segment except for the last segment which is
described by five words. The regular 3-word descriptor is structured

as follows:

33

word 1

word 2

word 3

The number of tape blocks contained in the seg-
ment. This number should be less than or equal
to 40 (octal) except for field 0 where it must be
less than or equal to 37 (octal). Bit 0 of this
word is set equal to 1 to indicate when the last
segment in the current core image module is
being described.

Bits 6 through 8 of this word contain the memory
field into which the segment being described is

to be loaded. All other bits in the word must be
zero since this entry is added to a CDF instruction.

The full 12-bit address within the designated field
where the described segment is to be placed.

The fourth word in the descriptor for the last segment contains
the field in which the program is to be started. The format of word two
is used. The fifth and final word contains the full 12-bit starting address

in the designated field.

Memory fields can be loaded in any order with the exception of
field 0 which must be the last field loaded. Loading should proceed from
the bottom of a memory field to the top. (This is a must for field 0.)

34

4. SYSTEM DOCUMENTATION

The Master System Development tapes contain the symbolics for
the entire 4K-CPS system. Instructions are given below for assembling
and updating the system. Appending a P=L to the assembler commands
will provide the user with a complete set of listings. Appendix C con-
tains additional details on the internal structure of the file system,
*LOAD, *ASM and *ED.

4.1 Bootstraps

There are four programs which are termed bootstraps. The
symbolic versions are found in files:

SCLD
SBOOT
SBOOT?2
TAPEMIX

4.1.1 SCLD. SCLD is the cold start boot routine located in block
0 of unit 0. This routine is loaded by lifting the LINC LOAD switch, and
reads in the system boot SBOOT.

RUN *ASM SCLD

RUN *LOAD

GET -B

BUILD

RUN *TCOPY (copy 1 block from block 11 of
unit 1 to block 0 of unit 0)

4.1.2 SBOOT. This boot is the resident system boot and is
located in the top page of memory field 0. Its starting address is 7600
and its purpose is to read in the main system loading routine SBOOT2.
SBOOT does not provide checksum protection and is only used to read
in the SBOOT2 or the page starting at 7400 in memory field 0, if required,
during a RUN command. The SBOOT tape search and wait routines are
used by *ED and *ASM in their tape operations. This routine is stored
in block 310 of unit 0.

RUN *ASM SBOOT

RUN *LOAD

GET -B

BUILD

RUN *TCOPY (copy 1 block from block 11 of
unit 1 to block 310 of unit 0)

39

4.1.3 SBOOT2. This boot loads in the file system and the unit

0 index. It is stored in block 311 of unit 0 and is read into the page
starting at location 7200 by SBOOT.

It should be noted that the tape routines in these boots are
arranged so that the tape operation involved in loading the system into
core, started by lifting the LOAD switch, is one smooth continuous for-

ward motion.

The unit 1 index is loaded by the system and overlays SBOOT2.

RUN *ASM SBOOT?2

RUN *LOAD

GET -B

BUILD

RUN *TCOPY (copy 1 block from block 11 of
unit 1 to block 311 of unit 0)

4.1.4 TAPEMIX. This routine is not really a boot but an anti-

boot. It is called into action only if the tapes are mounted on the wrong
units. This fact is pointed out to the user by TAPEMIX.

4.2 The File System

RUN *ASM TAPEMIX

RUN *LOAD

GET -B

BUILD

RUN *TCOPY (copy 1 block from block 11 of
unit 1 to block 0 of unit 1)

The file system is assembled in four separate parts. These parts
are later combined using the loader *LOAD.

10C

SPART1

SPART2

RUNLDR

RUN *ASM SIOC1+SIOC2+$
SAVE -B 1I0C

RUN *ASM S00A+S06+S10+S12+S14+$
SAVE -B SPART1

RUN *ASM S00B+S16+S20+S22+S24+S26+S30+
S32+534+536+540+$
SAVE -B SPART2

RUN *ASM S74+$
SAVE -B RUNLDR

36

RUN *LOAD

GET IOC+SPART1+SPART2+RUNLDR
BUILD

To update the main body of the system use *TCOPY to copy 22
(octal) blocks from block 11 of unit 1 to block 312 of unit 0.

To generate a "clean'" index on unit 0 (rarely done), copy 6 blocks
from block 33 of unit 1 to block 334 of unit 0.

To generate a "clean' index on unit 1 (rarely done), copy 6 blocks
from block 41 of unit 1 to block 220 of unit 1.

To update the RUN loader, copy 1 block from block 47 of unit 1
to block 226 of unit 1.

4.3 The Loader

The loader is an overlay onto the file system and uses many of
its routines.

RUN *ASM L00+L06+L20+L22+L24+L26+L30+L32+L34+L36+
L40+L74+$

RUN *LOAD

GET -B

UNREF 100

BUILD SA=4000

SAVE -B *LOAD

4.4 The Editor

The editor aﬁd its support package are assembled separately.

RUN *ASM EO+E1+E2+E3+E4+E5+§
SAVE -B BINED

RUN *ASM EDMA+EDMB+EDMC+$
RUN *LOAD

GET BINED+-B

BUILD SA=2000

SAVE -B *ED

37

4.5 The Assembler

The assembler and its support package are assembled separately.

RUN *ASM A0+Al1+A2+A3+A4+A5+A6+AT+A8+A9+AEND
SAVE -B BINASM

RUN *ASM AS0+AS1+AS2+AS3+AS4+AS5+AS6+$

RUN *LOAD

GET BINASM+-B

BUILD SA=4600

SAVE -B *ASM

38

5. CONCLUSION

This report and the symbolics contained on the 4K-CPS Master
System Development tapes are intended to serve as the total 4K-CPS
system documentation, although this is admittedly incomplete.

The following procedure is recommended in generating and main-
taining 4K-CPS tapes:

(1) Upon receipt of a set of 4K-CPS Master tapes make two
copies using *MARKPS8 and *TCOPY.

(2) Keep one copy as a backup to the Master set and update this
copy each time the system is modified.

(3) On the other copy delete all files which are only relevent to
the system. This would include all the files named in Section 4 with the
possible exceptions of the files SIOC1, SIOC2, and $. Add any useful
"standard'" routines. Use this set of tapes as the Distribution and
Library Master tapes. (It may be desirable to have a backup copy of this
set also.)

(4) Using the | NUMBER command it should be possible to keep
track of the various sets of tapes and their owners.

At present there is no convenient way to transfer files between
sets of 4K-CPS tapes. One approach to this problem is to use the pro-
gram *ED to transfer symbolic files by loading a symbolic file into *ED
from one set of tapes and then writing it out onto another set of tapes
using the '"S" command. Another approach is to use *TCOPY to copy the
desired programs into the scratch areas of the new tapes, use the | SET
command to make -S or -B correspond to the data being transferred and
then save -S or -B in the normal manner. Using this method it is pos-
sible to transfer several files at one time. A general file transfer pro-
gram is in development.

In addition to the material presented in the preceding sections,
Appendix D contains the operating instructions for three additional utility
programs and Appendix E describes the 4K-CPS I/0 controller.

It is hoped that DEC's 4K-FORTRAN-D will eventually be incor-
porated into 4K-CPS.

39

APPENDIX A

The Cooley Electronics Laboratory LINC-8 computer has been
modified in order to allow proper I/O processing when reading paper
tapes under interrupts. This minor modification permits clearing the -
reader flag without advancing the reader. IOT device code 13 (which
conflicts with DEC's real-time clock) is used for this purpose. The
operation of the device 13 op-codes is identical to that of the standard
device 03 codes except that the reader is not advanced when the reader
flag is cleared.

This modification is reflected in 4K-CPS by the occurrence of a
6132 instruction in the I/0 controller, IOC. A device 35 op-code (6354)
is also used in IOC.

If the hardware modification described below is found to be
impractical, the following procedure can be used to remove these two
instructions from 4K-CPS.

(1) Mount the 4K-CPS tapes on the proper units
(2) Lift the LINC LOAD switch

(3) After 4K-CPS identifies itself and the tapes stop moving,
press the PDP-8 STOP switch

(4) Toggle in and verify the following small program

LOC CONT

0212 7200 was 6354
0224 6032 was 6132

4200 4431 reset I10C

4201 4427 write tape

4202 0313 unit 0 block 313

4203 0001 one block

4204 0200 starting at loc 200

4205 4430 wait for tape to finish

4206 6002 IOF

4207 5610 JMP I+1

4210 7600 reload the modified system

(5) Place 4200 in the right switches

40

(6) Press the PDP-8 LOAD ADDRESS

(7) Press the PDP-8 START

(8) The system will be modified and reloaded.

This fix takes care of all system programs using the I/0
controller, IOC. No further modification (except to the IOC symbolics)
should be necessary.

Modification to LINC-8

MB5(0) is disconnected from the keyboard select AND gate (tele-
printer drawing, location ME17, Pin D). This enables the use of both
a 603X and 613X since the AND gate would see a 13 code as an 03 code.

The ground is then disconnected from the DCD gate on the
"READER RUN" flip flop (teleprinter drawing, location ME 21, Pin V).

MB5(1) is then connected to this point. This will not allow the flip flop
to be set on a 613X code.

41

APPENDIX B

This appendix contains the symbol table used in the CEL version
of *ASM. This symbol table can be tailored to any installation's needs
by making the desired modifications in the assembler symbolics and
re-assembling the assembler (see Section 4.5). There is room for 246
user defined symbols in the CEL version of *ASM.

Assembler Symbol Table

AND=0000 ION=6001 TIACA=6167
TAD=1000 IOF=6002 ISSP=6165
1SZ=2000 KSF=6031 TACS=6163
DCA=3000 KCC=6032 TACB=6161
JMS=4000 KRS=6034 IMBS=6155
JMP=5000 KRB=6036 I1CS2=6153
I0T=6000 TSF=6041 ICS1=6151
OPR=7000 TCF=6042 INTS=6147
NOP=7000 TPC=6044 ILES=6145
CLA=7200 TLS=6046 IBAC=6143
CLL=7100 FEXT=0000 ICON=6141
CMA=7040 FADD-=1000 SQROOT=0002
CML=7020 FSUB=2000 SQUARE=0001
RAR=7010 FMPY=3000 RRB=6136
RTR=7012 FDIV=4000 RRS=6134
RAL=7004 FGET=5000 RCC=6132
RTL=7006 FPUT=6000 RSF=6131
IAC=7001 FNOR=7000 EXIT=5400
SMA=7500 RDF=6214 CALL=4400
SZA="7440 RIF=6224

SPA=7510 RMF=6244

SNA=T450 RIB=6234

SNL=7420 CDF=6201

SZ1=T7430 CIF=6202

SKP=7410 EQF=6354

OSR=7404 EON=6352

HLT=7402 ECF=6352

CIA=T7041 ESF=6351

LAS=7604 ITAC=61717

STA=7240 IACF=6175

STL="7120 1ZSA=6173

GLK=7204 IAAC=61T71

42

APPENDIX C

This appendix contains material descriptive of the internal
structure of the 4K-CPS system.

Detailed 4K-CPS File System Core Map

Page Location Tape Location Contents

0000-0177 0312 Constants, variables and pointers

0200-0377 0313 I/ 0 controller

0400-0577 0314 I/0 controller

0600-0777 0315 TCOPY, CALCPY

1000-1177 0316 PLIB, DPOSIT, CRLF, RDRIN, PREF

1200-1377 0317 OBI, EXCHR, GWFLB, SPRSPA,
TABTST

1400-1577 0320 MESAGE, OCTIN, OCTOUT

1600-1777 0321 ISRCH, GETW, PUTW, SYSTST, SVS,
FIND command

2000-2177 0322 WVTOC, SIGN command, CCOMAR

2200-2377 0323 Messages

2400-2577 0324 DESTROY command, DELETE

2600-2777 0325 SAVE command

3000-3177 0326 SAVE command, RENAME command,
TSTCTC

3200-3377 0327 INDEX command, INTYP

3400-3577 0330 RUN command, SEEK

3600-3777 0331 Main entry point (internal), TERMTST

4000-4177 0332]SET command, | NUMBER command,
| IDENTIFY command, DO1CHK

4200-4377 0333 System start (from boot)..Command
line buffer

4400-45717 0334 Start of unit 0 index

4600-4777 0335 .

5000-5177 0336

5200-5377 0337

5400-55T717 0340 .

5600-5T7717 0341 End of unit 0 index

6000-6177 4220 Start of unit 1 index

6200-6377 4221 .

6400-6577 4222

6600-6777 4223

7000-7177 4224 .

7200-7377 4225 End of unit 1 index

7400-7577 4226 RUN command loader

7600-7777 0310 System boot

(4000=Tape unit 1) 43

A brief description of each routine used in the 4K-CPS file system
is given below.

CALCPY

Makes calls to TCOPY using a list of copy operations previously
set up by the DESTROY and SAVE commands. When the list has been
exhausted, CALCPY restores the system (TCOPY reads over most of the
system) and returns to the caller.

CCOMAR

Zeros the communication area and places a HLT in location 7777.
Also clears the write VTOC (index, if you prefer) switches.

CRLF

Uses I0C to type out a carriage return followed by a line feed.

DELETE

Deletes the file specified in locations W1-W4 from the appropriate
index, determines the required tape operation and sets the appropriate
write VTOC switch. If the specified name is not present (i.e., appears
twice in a destroy string), the system is reloaded thus restoring the
indexes to their original state.

DESTROY Command

Destroys up through 8 file names assigned to logical device 0
(all files must be on device 0). Absence of input file names causes the
ILLEGAL COMMAND comment to be typed. DESTROQY uses the
DELETE routine and sets up CALCPY for the actual tape operations.
Files are destroyed in the specified order as if each had been named in
a separate DESTROY command (lack of room necessitated a dumb com-
mand).

DPOSIT

Places the contents of the AC into the command line input buffer.
If the buffer overflows, an error message is typed and the current line is
lost. This routine must be initialized.

44

DOCHK

Checks to see if all assigned file names are present, the
ILLEGAL COMMAND comment is typed and the current command is
ignored.

DO1CHK

Checks to see if precisely 1 file name has been specified on
logical device 0 and precisely 1 file name has been specified on logical
device 1. If not, the ILLEGAL COMMAND comment is typed. Device 2
is not checked.

EXCHR

Extracts characters from the input command line buffer. This
routine is initialized by OBI. Separate return points are provided for a
normal return with a character in the AC and for an end of buffer return.

FIND Command

Searches the indexes (VTOCs) for the file names attached to
device 0. If an entry is located, the name along with the index para-
meters are typed. If a name is not located, it is ignored. All file
names must be attached to device 0.

GETW

Transfers the contents of W1-W4 to the four locations starting at
the contents+1 of auto-index register 10.

GWFLB

Gets the first eight characters of the next word in the command
line buffer. Separate return points are used for a normal return and for
an end of command line return. GWFLB recognizes (space), + and =
as break characters. The eight text characters are left in locations
W1-W4. Trailing blanks are provided if necessary.

45

INDEX Command

Types out the indexes as requested by the specified parameters.

INTYP

Does the typing for the INDEX command.

ISRCH

Searches the index specified by the contents of the AC for the
name contained in W1-W4. Separate return points are used depending
on whether or not the specified file name is found in the specified index.
ISRCH also sets up various pointers if a file name is located.

IOC..1/0 Controller

See Appendix E for a description of the 4K-CPS I1/0 controller.

Main Entry Point (internal)

This is the point to which all commands (except RUN) and errors
eventually return. A new command line is read in, decoded, checked
for gross errors and the command dispatched.

MESAGE

This is a modified version of DIGITAL 8-18-U. 1t is used to type
messages produced using the MACRO-8 TEXT command.
OBI

Initializes the EXCHR routine.

OCTIN

Accepts a four digit octal number typed from the keyboard. Used
in the |SET and] NUMBER commands. Any non-octal input except for
the back-arrow terminates the input number. Back arrow restarts
OCTIN.

46

OCTOUT

Used to type four-digit octal numbers.

PLIB

Used to input a line into the command line input buffer. Also
contains the line editing support code.

PREF

Types a carriage return-line feed followed by the current prefix
character.
PUTW

Transfers the contents of the four locations starting at the
contents+1 of auto-index register 11 into locations W1-W4. If the first
word in this string is zero, a special return is made to the caller.
Otherwise the return is normal.
RENAME Command

This command allows the user to rename the file whose name is
assigned to device 0 using the name assigned to device 1.

RDRIN

Used by PLIB to read characters.

RUN Command

Used to load programs. Sets up the file and parameter strings in
the communication area, reads in the core image descriptor block of the
specified program file and exits to the RUN Command Loader with the
tapes moving forward.

4'7

RUN Command Loader

Performs the actual booting in of core image modules. Uses the
system boot search and wait routines. If the last page to be loaded over-
lays this loader, it sets the system boot to read in this page and goes to
the boot. When started, it assumes the proper core image descriptor
is in core and the tapes are moving forward.

SAVE Command

Copies the file designated on device 0 into the file designated on
device 1. Creates new files and allocates storage on tapes as required.
Performs the actual copying through the CALCPY-TCOPY routines.
SEEK

Searches both indexes for the file name contained in W1-W4.
Two return options are possible. If SEEKSW=0 and file name cannot be
located, a replacement or carriage return is requested. If SEEKSW
has been set to -1, then a special return is made. SEEK always resets
SEEKSW to 0 upon exiting.
SIGN Command

Causes the current indexes to be copied to the front of the tapes
and types out BYE. This is done in order to rewind the tapes for the
user and to provide a backup copy of his indexes in case the primary
versions are accidentally destroyed.
SPRSPA

Places four words containing 4040 starting at a specified location.
This is a relatively worthless routine.

SVS

Used to set the write VTOC switches.

48

System Bootstrap

Loads in the system load tape routine from block 311 of unit 0
and starts it.

System Start (external)
The point at which the file system is started after being loaded.
This code updates the index entries for -S and -B as needed and types

the 4K-CPS identification. This code resides in the command line buffer
and is lost after start-up.

SYSTST

Tests file names for * as the first character. This routine is
invoked when it is not desired to alter files whose names start with an * .

TABTST

This is a routine which checks the value of the AC against the
values stored in a specified table. The specified return point is deter-
mined by where the match (if any) occurs.
TCOPY

Performs a tape copy operation determined by the parameters
stored in locations immediately following the call to TCOPY. Uses
locations 1000 through 7577 as a buffer.
TERMTST

Used to check the word terminator encountered by GWFLB.
TSTCTC

Checks to see if a (CTRL-C) has been typed. Used to terminate
various operations at the users '"request. "

49

WVTOC

Checks the write VTOC switches and writes out the current
specified VTOCs (indexes) onto tape.

] IDENTIFY Command

Types out the first six locations in each index.

] NUMBER Command

Used to number each set of 4K-CPS tapes. Intended for use in
keeping records of who has what set of tapes.

]SET Command

Used to change the index parameters for the file specified on
device 0. Primarily intended to be used on -S and -B.

4K-CPS Loader

The loader, *LOAD, is an overlay onto the file system and uses
several of the file system utilities.

Detailed *LOAD Core Map

Page Location Contents
0000-0177 file system. . pointers
0200-0377 file system. .IOC
0400-057"7 file system..IOC
0600-0777 TCOPY, PUTSEG
1000-11717 file system
1200-1377 file system
1400-15717 file system
1600-1777 file system
2000-2177 BUILD command, BLDFLD
2200-2377 GET command, BINARY
2400-2577 COREIM, READIN
2600-2777 GETFRM, GNXLOC, REFTST
3000-3177 TSTCOR, WBUF, DPIPT, OCTTST, REFER
3200-3377 INDEX command, LOCDTA, REPLACE command

UNREFERENCE command, UNRF, DPOSIT
50

Page Location Contents

3400-3577 DUMP command, LHEAD, TSTCTC, EXIT command

3600-3777 LDRSTR, LDR

4000-4177 Loader system entry

4200-4377

4400-4577

4600-4777

5000-5177

5200-5377

5400-557"7

5600-57717

6000-6177 Start of unit 1 index

6200-6377 .

6400-65717

6600-6777

7000-7177 .

7200-7377 End of unit 1 index

7400-7577 SETLOC, SETFLD, MAP command, LOCATE,
PRNTADR

7600-7777 System boot

Buffers

4K-CPS Assembler

The assembler furnished with 4K-CPS is a modified version of
DEC's MACRO-8 assembler. The following operations have been
removed:

PAUSE

FLTG

DUBL

The MACRO processor

The core is used as follows:

51

Page Locations

0000-35717
3600-3777
4000-41717

Pass 1
4200-4771

Pass 2 (overlay)
4200-4377

4400-457"7
4600-

Pass 3 (overlay)

4200-4377
4400-4777

All Passes

5000-7577
7600-7777

Contents

MACRO-8 + some interface routines
Input routines
Pass control and tape routine

Symbolic input buffer

Binary output routines

Binary output buffer

Symbolic input buffer. . max of 4 pages..min of 1
page. Checks bottom of symbol table

Listing control routines
Symbolic input buffer

Available for symbol table
System boot

The assembler buffer management is a little sloppy in that *ASM
always completely fills its symbolic input buffers. This can cause prob-
lems only if the unit 0 tape does not have the correct checksum in each
block (*MARKPS8 does not provide the proper checksum). Since the maxi-
mum buffer size is 4 blocks and blocks 2000 through 2007 really do exist,
no problems would be encountered at the end of a tape.

4K-CPS Symbolic Text Editor

The editor supplied with 4K-CPS is an extensively modified ver-
sion of DEC's editor DIGITAL 8-1-8.

The available core is used as follows:

Page Locations

0000-1377
1400-1777
2000-7577
7600-7777

Contents

Modified editor

Input-output tape routine

Text buffer + starter (used once at start-up)
System boot + tape rewinder

52

A special tape routine is used to load and write out the editor's
text buffer. When loading the buffer, the placement of lines and line
pointers is automatically done by the tape routine. Similarly, when
writing the buffer back out onto tape, the tape routine traces out the
scrambled line sequence, deletes the line pointers, writes tape, and
provides the terminating 7703 character.

The ""T'" command uses the section of tape starting at block 0200
on unit 0 as a temporary buffer. This command is used to return all
unused buffer space to the user (the *ED internal line management leaves
something to be desired).

The "S" command writes the text buffer starting in block 0240 of

unit 0 and returns to the file system with the -S update switches set
properly.

53

APPENDIX D

This appendix contains descriptions of three 4K-CPS utility
programs.

*PBIN

This program reads binary paper tapes into 4K-CPS from either
the LINC ASR-33 or from any remote 8-level Teletype through the data
phone. The binary paper tape is read into the binary working area and
can be saved in a file by 4K-CPS.

Instructions

To load and start *PBIN use the command
RUN *PBIN
The program is self-starting and will type out
4K-CPS PAPER BINARY INPUT PROGRAM

When *PBIN is ready to start reading in the binary paper tape,
the message

START READER

will be typed. This is the time to turn on the paper tape reader, not
before!

The program ignores leader code (200 octal) and also throws
away the first character read in. Always start reading the paper tape
in the leader section.

The program terminates when 1 trailer (also 200 octal) code frame
has been read. The binary working area then contains a copy of the

information on the paper tape, properly formatted for the 4K-CPS loader.
4K-CPS is automatically reloaded after the comment

DONE!

is typed. Turn off the paper tape reader when this message appears.

o4

Once back in 4K-CPS the binary can be saved using the command
SAVE -B FNAME

where FNAME is a file name chosen by the user.

*TCOPY

*TCOPY is a general purpose magnetic tape copying utility pro-
gram. It can be used to copy blocks of PDP-8 formatted LINC magnetic
tapes onto another or the same tape.

Instructions

The program *TCOPY is loaded and started by the command
RUN *TCOPY
The following heading is typed

4K-CPS TAPE COPY
CTRL-C EXITS
RUBOUT RESTARTS

The following control options are provided to the user on the
input lines.

A (CTRL-C) on any line will immediately terminate program
execution and will automatically return control of the computer to
4K-CPS (provided the proper 4K-CPS tapes are mounted at the time).

A RUBOUT on any line will immediately delete all previously
entered data and will cause a return to the first input request.

A back-arrow (shift-0) deletes the information entered on the
current line. The request is not retyped.

Lines should be terminated by a carriage return or a (CTRL-C)
or a RUBOUT.

The following is a description of the input requests on a line by
line basis. These requests are typed by the program and the user must
type the appropriate responses. Minimal error checking is done by this
program. Be careful! All numbers used below are octal.

55

Request 1 FROM BLOCK =

The user should type in the tape block number on the source tape
at which the transfer is to start. Inputs on this line must be less than
or equal to 3777.

Request 2 FROM UNIT =
Type in the tape unit upon which the source tape is mounted.
Only units 0 and 1 are valid inputs.

Request 3 AMOUNT =

Type in the octal number of blocks to be transferred. Values of
1 through 7777 are acceptable. (PDP-8 format tapes contain 2000 blocks.)

Request 4 TO BLOCK =

Type the starting block number of the sink tape to which the trans-
fer is to be made. This number must be less than or equal to 3777.

Request 5 TO UNIT =

Type the unit number upon which the sink tape is mounted. Only
units 0 and 1 are valid inputs.

At this point the program types
CR STARTS COPY

This is the last chance to back out.

*MARKPS

*MARKPS is a tape marking program which was generated by
overlaying the program MARKLS with a program called XMARK, avail-
able from DECUS as DECUS number L-32. XMARK was itself modified
so that *MARKPS8 will mark tapes with 20008 blocks of 2008 words apiece.

*MARKPS is interactive and is run using the LINC display and the
33ASR keyboard. It may be invoked from 4K-CPS by the command

RUN *MARKP8
56

To return to 4K-CPS after marking a tape, be certain that both
4K-CPS system tapes are mounted, and then load address 7600 into the
program counter and press START.

Note that 4K-CPS tapes must be marked using *MARKPS.

The tapes generated by *MARKP8 do NOT have the proper check
sum. This can, and has, caused problems. To correct this, use the
program *TCOPY (supplied with 4K-CPS) to either copy a good tape onto
the one just marked or to copy the tape onto itself. The latter approach
is somewhat slower since *TCOPY tries two times to get a good check-
sum before giving up.

It is strongly urged that all newly marked tapes contain the proper
checksum.

57

APPENDIX E

Introduction

This appendix describes the small general purpose 1/O control
package (IOC) used in 4K-CPS. This package is intended for use on
the basic 4-K LINC-8 computer and permits operation of the low-speed
reader-printer and magnetic tapes under interrupts. Although this
package is a part of the 4K-CPS system, it can also be used for general
programming applications. The symbolics for IOC can be found on the
4K-CPS Master Development Tapes stored in the files SIOC1 and SIOC2.

Requirements

IOC occupies locations (-2, 20-77, and 200-577.

The CEL LINC-8 computer has been modified to allow the
clearing of the reader flag without advancing the reader. This was done
in order to allow the proper handling of paper tapes when running under
interrupts. The required modification can be found in DECUSCOPE,
Vol.6, Nos. 5 and 6 (also Appendix A). This modification is relatively
minor and results in the use of device code 13 to clear the reader flag
without advancing the reader.

This modification is reflected in IOC by the use of a RCC (6132)
instruction at location 0224. If it is not possible to make the required
hardware modification, then location 0224 may be changed to a KCC
(6032). The 6354 instruction at location 0212 can also be removed or
NOP'ed (this is a special code used at CEL).

Non-Magnetic Tape Operation

IOC should be reset before any I/ O operations are attempted.
This procedure assures the user that all of the internal IOC flags and
switches are in their proper state when I/0 operations begin. It also
causes the PDP-8 interrupt system to be enabled.
Resetting is done through a subroutine call
JMS I 31 (RESET=JMS I 31)

IOC only needs to be reset once at program start-up.

o8

The teleprinter I/O routines are not buffered and are divided into
two parts, interrupt time and task time. The interrupt time portions are
invoked when an interrupt occurs. The proper hardware flag is cleared
and the corresponding software flag is set. Control is then returned to
the user at the point at which he was interrupted. The task time routines
are called by the user to either fetch or type a character. The task time
routines are coded the same as "normal" Teletype routines except that
software flags are used in place of hardware flags.

The subroutine names used in the following illustrative program
do not necessarily correspond to those used within I0C.

To read a character
JMS I 25 (RDRGET=JMS I 25)

The associated routine is equivalent to

RGET, 0
KSF
JMP . -1
KRB
JMP I RGET

To type a character (PDP-8 AC not cleared)
JMS I 23 (PTRPAS=JMS 1 23)
The associated routine is equivalent to
PPAS, 0
TSF
JMP . -1

TLS
JMP I PPAS

To type a character (PDP-8 AC cleared)
JMS 1 24 (PTRPUT=JMS I 24)
The associated routine is equivalent to
PPUT, 0O
JMS PPAS

CLA CLL
JMP I PPUT

59

Magnetic Tape Operation

The magnetic tape routines in IOC operate under interrupts and
use LINC tapes marked with 128 word blocks (plus 1 word for checksum).
I0C allows overlapping magnetic tape operations with normal Teletype
I/ 0O operations. This feature is used in 4K-CPS to allow the user to
enter command lines while the unit 1 index is being read in. If swing
buffers are used, it is possible to accept data continuously from the
reader while writing processed input out on magnetic tape. (This is done
in the program *PBIN.) This mode of operation is particularly important
when input is being accepted from a Data-Phone since, in this case, the
computer cannot exert reader start-stop control.

The following calling sequences are used in I0C magnetic tape
operation:

To read tape

JMS I 26 (TREAD=JMS 1 26)
4000*UNIT+BLN UNIT=1 or 0
AMOUNT

LOCATION

To write tape

JMS T 27 (TWRITE=JMS I 27)
4000*UNIT+BLN UNIT=0 or 1
AMOUNT

LOCATION

To wait for the previous tape operation to be completed
JMS I 32 (TCLOSE=JMS 1 32)
If no tape operation is in progress, the return is immediate.

The IOC tape routines automatically wait for any previous tape
operation to be completed before attempting to start a new operation.

Control is returned to the user immediately after the tape rou-
tines have been set up to perform the requested operation. The specified
operation will not have been completed at this time but will take place
behind the user's program. The status of the current tape operation can
be checked by the user in two ways. Location 22 (TFLAG) is 0 if the cur-
rent tape operation has been completed and -1 if it is still in execution.
The TCLOSE operation may be performed to cause a wait-state to be

60

entered ut}til the current operation is ended. (This amounts to going into
a loop until TFLAG is 0, then exiting.) The following code could be used
to return to 4K-CPS from a user program.

TCLOSE
IOF
JMP 7600

Unless otherwise specified by the user, IOC clears the tape
motion bits (M0 and M1) at the end of each read-write operation. Because
of timing restrictions in the LINC tape hardware, if the IOC tape routines
are called and the motion bits are zero, then a 0.05 second delay is pro-
vided in order to allow the tape units to settle.

This delay can be avoided in two ways. The user can select and
start the appropriate tape unit before entering IOC, or he can leave the
tapes moving after each tape operation.

To select and start the desired tape unit (assuming it is not moving)

CLA CLL

TAD 4000*UNIT+0002 UNIT=0 or 1

ICON

CLA

TAD 4000*DIR+0001 DIR=0=FWD, DIR=1=REV

To leave the tapes running after an operation make location 44
(TMOTION) nonzero. This location is not reset by IOC. The user may
reset location 44 to zero at any time. Once location 44 is reset to 0 the
tapes will be properly stopped.

The IOC tape routine is moderately "intelligent.'" It remembers
the last used tape block number and starts the specified tape unit moving
in the direction required by the current call. However, because of space
limitations, the tape routines do not remember which tape unit was used
last. It is felt that the resulting occasional wrong start is better than
the tapes always starting in either the forward or reverse direction.

If a checksum error is encountered in reading in a tape block,
one additional attempt is made to read it properly. (This retry can
cause the tapes to ""hang up' searching for the block.) If the second
attempt is not successful, the results of this try are left in core and the
contents of location 34 (ERRCNT) are incremented by 1. (ERRCNT is
cleared by IOC whenever a read or write tape operation is started.)

61

The following symbol definitions have been found to be useful:

TREAD=4426
TWRITE=4427
TCLOSE=4430
RESET=4431
RDRGET=4425
PTRPUT=4424
PTRPAS=4423
RFLAG=21
PFLAG=20
TFLAG=22
ERRCNT=34
TMOTION=44

62

DISTRIBUTION LIST

Office of Naval Research (Code 468)
Navy Department
Washington, D.C. 20360

Defense Documentation Center
Cameron Station
Alexandria, Virginia

Dr. John Steinberg
Institute of Marine Science
The University of Miami
Miami, Florida 33149

Dr. L. W. Nolte

Department of Electrical Engineering
Duke University

Durham, North Carolina

Cooley Electronics Laboratory

The University of Michigan
Ann Arbor, Michigan

63

No. of

Copies

39

Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classificetion of title, body of abstract and Indexing annotation must be entered when the cverall report ie claseified)

1. ORIGINATING ACTIVITY_(CorporCto author)
Cooley Electronics Laboratory

The University of Michigan

2a4. REPORY SECURITY C LASSIFICATION

UNCLASSIFIED

2b Gmoupr

Ann Arbor, Michigan

3. REPORT TITLE

4K-CPS: A Programming System for the PDP-8 Side of the
DEC Linc-8 Computer

4. DESCRIPTIVE NOTES (Type of report and inciusive dates)

Technical Memorandum No. 101 - 03674-21-M November 1969

S. AUTHOR(S) (Last name, lirst name, initial)

Cederquist, Gerald
Metzger, Kurt

6. REPORT DATE 7a4. TOTAL NO. OF PAGES 7b. NO. OF REFS
November 1969
8a CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)
Nonr-1224(36)
b. PROJECT NO. TM101
NR187-200
c. . gLN:;J:JPQﬂT NO(S) (Any other numbers thet may be assigned
d 03674-21-M

10. AVA ILABILITY/LIMITATION NOTICES

Reproduction in whole or in part is permitted for any purpose of the
U.S. Government.

11. SUPPLEMENTARY NOTES 12. OPON§ORING MILITARY ACTIVITY
Office of Naval Research

Department of the Navy
Washington, D.C. 20360

13. ABSTRACT

The 4K-Cooley Programming System (4K-CPS) is a collection of
programs designed to aid in programming the PDP-8 side of Digital Equipment
Corporation's LINC-8 computer. This collection of programs consists of a
file system, a loader, a symbolic text editor, and an assembler. These
programs are structured so that a user can enter, edit, assemble, load and
execute programs entirely from the Teletype keyboard. The system archi-
tecture is modular, and future components are easily "plugged-in'' as needed.

DD .f2*. 1473

Security Classification

—_—
_

N

1a. 3 9015 03483 5259..mn A LINK B LINK C

KEY WORDS
ROLE wY ROLE wTY ROLE wT

Digital Computer
Programming System
PDP-8

LINC-8

INSTRUCTIONS
1, ORIGINATING ACTIVITY: Enter the name and address imposed by security classification, using standard statements
of the contractor, subcontractor, grantee, Department of De- such as:
fense activity or other organization (corporate author) issuing (1) “*Qualified requesters may obtain copies of this
the report. report from DDC.’’
2a. REPORT SECURITY CLASSIFICATION: Enter the over- (2) “Foreign announcement and dissemination of this

all security classification of the report, Indicate whether
“‘Restricted Data’’ is included. Marking is to be in accord-
ance with appropriate security regulations. (3) “‘U. S. Government agencies may obtain copies of

2b. GROUP: Automatic downgrading is specified in DoD Di- :‘l‘;lesrsre::;}ld:;egtel:t f::::ubgc' Other qualified DDC
rective 5200, 10 and Armed Forces Industrial Manual, Enter q g

the group number. Also, when applicable, show that optional .
markings have been used for Group 3 and Group 4 as author- (4) ‘'U. S. military agencies may obtain copies of this
ized. report directly from DDC. Other qualified users

3. REPORT TITLE: Enter the complete report title in all shall request through

capital letters, Titles in all cases should be unclassified. "
If a meaningful title cannot be selected without classifica- :

report by DDC is not authorized.'’

1y

tion, show title classification in all capitals in parenthesis 5) “All distribution of this report is controlled Qual-

immediately following the title. ified DDC users shall request through

4., DESCRIPTIVE NOTES: If appropriate, enter the type of O

re_port, eg, intgnm, progress, summary, annualz or fmgl. . If the report has been furnished to the Office of Technical

Give the inclusive dates when a specific reporting period is Seryvices, Department of Commerce, for sale to the public, indi-

covered. cate this fact and enter the price, if known.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on 11. SUPPLEMENTARY NOTES: Use for additional explana-

or in the report. Enter last name, first name, middle initial. tory notes.

If military, show rank and branch of service. The name of

the principal author is an absolute minimum requirement. 12. SPONSORING MILITARY ACTIVITY: Enter the name of
_ the departmental project office or laboratory sponsoring (pay

6. REPORT DATZ: Enter the date of the report as day, ing for) the research and development. Include address.

month, year; or month, year. If more than one date appears o .

on the report, use date of publication. 13. ABST;QAhC’I(‘; Enter an :.bstr.act gflv;ng a brief and factual

. summary of the document indicative of the report, even though

7a. TOTAL NUMBER Ol',‘ P‘;‘GES' The tota! page count it may also appear elsewhere in the body of the technical re-

should follow normal pagination procedures, i.e., enter the port. If additional space is required, a continuation sheet shall

number of pages containing information. . be attached.

7b. NUMB-EB OF REFERENCES: Enter the total number of It is highly desirable that the abstract of classified reports

references cited in the. report. be unclassified. Each paragraph of the abstract shall end with

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter an ind_icat?on of the military security classification of the in-

the applicable number of the contract or grant under which formation in the paragraph, represented as (TS), (S). (C). or (U)

the report was written. There is no limitation on the length of the abstract. How-

8b, 8, & 8d. PROJECT NUMBER: Enter the appropriate ever, the suggested length is from 150 to 225 words.

military department identification, such as project number,

subproject number, system numbers, task number, etc. 14. KEY WORDS: Key words are technically meaningful terms

or short phrases that characterize a report and may be used as

9a. ORIGINATOR’S REPORT NUMBER(S): Enter the offi- index entries for cataloging the report. Key words must be

cial report number by which the document will be identified selected so that no security classification is required. Identi-
and controlled by the originating activity, This number must fiers, such as equipment model designation, trade name, military
be unique to this report. project code name, geographic location, may be used as key

words but will be followed by an indication of technical con-

9b. OTHER REPORT NUMBER(S): If the report has been text. The assignment of links, rules, and weights 1s optional.

assigned any other repcrt numbers (either by the originatar

or by the sponsor), also enter this number(s).

10, AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

Security Classification

