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ABSTRACT

This survey/position paper concerns modeling concepts and techniques for the per-
formability (performance-reliability) evaluation of distributed real-time systems. Due to
the nature of application requirements, such systems typically exhibit properties of con-
currency, timeliness, fault tolerance, and degradable performance. Relevant prior
research is surveyed and classified according to these properties and, based on the posi-
tion that performability models should accommodate all four properties, directions for

future research are suggested.



1. INTRODUCTION

The inherent complexity of distributed real-time systems, coupled with rapidly
increasing demands for their application, have caused their investigation to become a sub-
ject of recognized importance. In this paper, we consider problems of modeling such sys-
tems for the purpose of evaluating their ability to perform, i.e., their performability (a uni-
fied performance-reliability concept which includes, as special cases, the usual notions of
performance and reliability). More specifically, we are concerned with the development of
mathematical models and model-based methodologies for evaluating the performability of
distributed systems designed for real-time applications, e.g., computer-communication
networks, vehicle control systems, industrial process-control systems, automated

manufacturing systems, etc.

The intent of this paper is to (i) identify properties of such systems that need to be
accounted for in the modeling process, (ii) survey and classify prior research according to
the identified properties, and (iii) suggest directions for future research based on existing

model deficiencies.

II. SYSTEM PROPERTIES

Performance-reliability requirements for distributed real-time systems, although
differing in detail from application to application, have some typical properties which, in
turn, impose special conditions on system structure and behavior. In particular, such
requirements typically call for high performance when the system is fault-free. This, cou-
pled with the fact that resources are distributed, results in systems which exploit con-
current (parallel) processing. Secondly, real-time aspects of such requirements often
impose conditions on the "timeliness"” of processing activities, e.g., requirements for max-
imum allowable (input-output) response times which impose deadlines on the times that
certain processes can be initiated or completed. Thirdly, real-time applications are typi-

fied by requirements for high reliability as well as high performance, resulting in fault-



tolerant systems which employ added resources and processes for the purpose of tolerat-
ing specified types of faults. Finally, due to a balance of demands for both performance
and reliability, such requirements typically call for systems which exhibit degradable per-
formance in the presence of faults, i.e.,, between the extremes of nondegraded perfor-
mance (as would be exhibited if the system were fault-free throughout utilization) and
fully degraded performance (system failure), the system is able to perform at intermedi-

ate levels which provide some benefit to the user.,

The properties identified above, namely

1) Concurrency
2) Timeliness
3) Fault tolerance

4) Degradable performance

distinguish a class of systems which deserves increased attention with respect to the
development of effective modeling methods. By their definitions, each property affects a
system's ability to perform and, hence, each property needs to be appropriately
represented in models for performability evaluation, However, a survey of prior work on
unified performance-reliability models (Section III) indicates that this work has been pri-
marily concerned with properties of fault tolerance and degradable performance. Con-
currency and timeliness (to a lesser extent) have been modeled in a (strict) performance
context but, until very recently, these properties have not been accounted for in the con-

struction of performability models.

In suggesting directions for future research (Section IV), we contend that all four of
these properties should be addressed in the modeling process. The types of models con-
sidered are mainly formal, probabilistic models, meaning (for our purposes) that the
model's state behavior is a stochastic process. Such a process, in turn, can serve as a

base model for evaluating performability with respect to a designated performance



variable.

In addition to a discussion of models, per se, we suggest that their nature and utility
be explored in several directions. These include the investigation of basic model proper-

ties and the development of techniques for both constructing and solving such models.

II. SURVEY OF PRIOR RESEARCH

Traditionally, evaluations of computing system performance and reliability have been
distinguished by regarding "performance” as "how well the system performs, provided it is
correct” (see [1] - [4], for example) and regarding "reliability” as "the probability of per-
forming successfully” (see [5] - [8], for example). In these terms, concurrency and timeli-
ness (properties 1) and 2); see above) are performance related properties and, as such;
have received considerable attention in the context of performance evaluation. Fault
tolerance (property 3)) is a reliability related property and, likewise, has been dealt with
extensively in reliability evaluation studies. On the other hand, degradablie performance
(property 4)) is a combined performance-reliability property which, as argued in [9], [10],

cannot be accommodated by traditional views of either performance or reliability.

Instead, property 4) calls for the type of unified performance-reliability measures
embodied by the general concept of performability, introduced in [9] and subsequently
refined and applied in a number of studies [10] - [17]. Here, the performance of a system
S over a specified time period T is represented by a random variable Yg taking values
inaset A. Elements of A are the accomplishment levels (performance outcomes) to be
distinguished in the evaluation process. The performability of S is the probability meas-
ure pg induced by Y5 where, for any measurable set B of accomplishment levels
(B <A), ps(B) is the probability that S performs at a level in B . Solution of perfor-
mability is based on an underlying stochastic process Xg, called the base madel of S,
which represents the dynamics of the system's structure, internal state, and environment

during utilization.



The need for unified measures in the evaluation of degradable systems (systems
which exhibit degradable performance) has likewise been recognized by others who, with
various approaches, have contributed to the basic literature on this relatively new topic.
This includes studies by Beaudry ([18], [19]; performance-related reliability measures),
Losq ([20]; degradable systems composed of degradable resources), Troy ([21]; efficiency
evaluation), Gay and Ketelsen ([22]; performance evaluation of degradable systems), Mine
and Hatayama ([23]; job-related reliability), De Souza ([24]; benefit analysis of fault toler-
ance), Castillo and Siewiorek ([25], [26]; performance-reliability models for computing sys-
tems), Chou and Abraham ([27]; performance-availability models of shared resource mul-
tiprocessors). Osaki and Nishio ([28]; reliability of information), Beyaert, Florin, Lone, and
Natkin ([29]; dependability evaluation using stochastic Petri nets), Huslende ([30]; com-
bined performance-reliability evaluation for degradable systems), and Krishna and Shin

([31]; performance measures for multiprocessor controllers).

If we adopt the term "performability” as the generic name for unified performance-
reliability measures,T performability evaluation studies (i.e., those cited in the previous
two paragraphs) have been concerned, for the most part, with fault-tolerant, degradable
systems. Accordingly, associated modeling efforts {in the case of model-based evalua-
tions) have focused on two of the four properties we seek to accommodate, i.e., fault toler-
ance and degradable performance (properties 3) and 4)). Models that account for con-
currency (property 1)) and/or timeliness (property 2)) have received considerable atten-
tion during the past 20 years, but, with a few recent exceptions discussed below, they have
been developed for the purpose of (strict) performance evaluation or behavior analysis
with respect to properties such as boundedness, liveness, determinancy, etc. Such models
presume a fixed system structure and thus are neither intended nor suited (without

extension) to deal with properties 3) and 4). However, by virtue of their concern for pro-

his is done for convenience in the discussion that follows; although this use is consistent with the general
definition of performability, there is no intent here to legislate terminology.



perties 1) and 2), they embody concepts and constructs that are relevant to future model

development.

Included here are Petri nets and their equivalents (see [32] for a recent and thorough
coverage of Petri net theory), aimed primarily at behavior analysis of concurrent systems
in a nonprobabilistic setting. At a higher level of abstraction, these network models can
be represented by "named transition systems" of the type introduced by Keller [33], [34].
Also relevant are efforts to extend Petri-type nets, e.g., via the introduction of timing, to
obtain models that are better suited to performance evaluation [35] - [41]. Regarding pro-
babilistic models that deal with concurrency, it is legitimate to include queueing network
models of the type that prevail in applications to performance evaluation (as surveyed, for
example, in [42]). Typically, such models treat concurrency at much higher (less
detailed) levels than do the models referred to above. Only recently have queueing net-
work models dealt with concurrency at somewhat lower levels, e.g., the work of Heidel-
berger and Trivedi [43], [44]. Of greater relevance are probabilistic network models that
capture concurrency at levels, similar to that of Petri nets. The latter include GERT Net-
works [45] and General Activity Networks [46] that date back to 1964, along with more

recent models which are direct probabilistic extensions of Petri nets [29], [47], [48].

As indicated earlier, most of the models referred to in the previous paragraph
presume a fixed system structure, thus excluding considerations of fault tolerance and
degradable performance. A notable exception is the work of Beyaert, Florin, Lone, and
Natkin [29] wherein the occurrence of a fault is represented by the firing of a Petri net
transition. To the extent that queueing models are able to represent concurrency, other
exceptions are the work of Gay and Ketelsen [22], Huslende [30] and ourselves [15], [17].
Here faults are accounted for by incorporating a representation of system structure as
part of the queueing model's state, thereby allowing structural change due to faults to be

reflected in the model’s state behavior.



IV. DIRECTIONS FOR FUTURE RESEARCH

The principal theme of this paper is that all four of the properties identified in Sec-

tion 11, that is,

1) Concurrency
2) Timeliness
3) Fault tolerance

4) Degradable performance

should be accounted for, collectively, in modeling the performability of distributed real-
time systems. The survey presented in the previous section reveals that existing models
are suited to systems exhibiting some of these properties (typically one or two) but not
all. Although individual contributions may well have been overlooked, we believe that the
survey is representative of the current state of the art in this area. If this is indeed the
case, there is a need for innovative extensions of existing modeling techniques in order to

deal effectively with all four of these properties.

In the discussion that follows, we suggest directions for future research in this regard.
Specific areas addressed are the development of new model types, the investigation of
their basic properties, and the development of techniques for constructing and solving

such models.

Models

To accommodate the properties in question, we recommend that features of both
queueing networks and stochastic Petri nets be extended and incorporated in new model
types. Moreover, when defining such models, we believe it is helpful to first define a class
of models which are nondeterministic (in their state behavior) but are not probabilistic.
Via a specified interpretation of how states change with time, each nondeterministic

model, when augmented by a designated set of probability distributions, yields a



corresponding probabilistic model. Although model-based evaluations of performability
call for probabilistic models, the formulation of such models can thus employ nonproba-
bilistic models of the type described above. Moreover, these nonprobabilistic "skeletons”
might also be used directly to verify certain model properties. One advantage of this two-
step definition method is that it decomposes a relatively complex concept into simpler,
more understandable parts. A much more important advantage, however, is that it facili-
tates the establishment of explicit connections between the structure/behavior of non-

deterministic models and that of their corresponding probabilistic extensions.

Some preliminary work in this direction has been undertaken at The University of
Michigan and, as a consequence, more extensive research is now in the proposal phase.
Although it is too early to supply technical details, an informal description of our approach

may help to clarify the types of models we think are necessary.

As the first step in a two-step definition (see above) and at the network level of
abstraction, we have defined a class of nondeterministic models called activity networks.
These networks are more general than Petri nets, where the need to generalize is due to
the following important observation. Petri nets (and most other nonprobabilistic models
of concurrent systems) exhibit nondeterministic behavior as the consequence of temporal
uncertainty, i.e., among a set of concurrent activities, there is uncertainty as to which
activity will be completed first. In other words {in Petri net terms), among a set of
enabled transitions, there is uncertainty as to which transition will fire. Moreover, this is
the only source of nondeterminism since enabled transitions are uniquely determined by
the state (marking) of a Petri net and the next state is uniquely determined by the

present state and the transition that fires.

However, when modeling the structure and behavior of complex systems, one wants to
represent spatial uncertainty as well as temporal uncertainty, e.g., uncertainty about

which activities are initiated in a given state or, on the completion of an activity, uncer-



tainty about the next state of the system. Such uncertainty is often related to faults, e.g.,
if the activity in question is a fault recovery process, completion of this activity may result
in one of several states, including a state that represents system failure. Spatial uncer-
tainty also occurs in representations of fault-free behavior. In a queueing network, for
example, when service of a customer is completed (in some node of the network) the cus-
tomer may leave the system or proceed to one of several nodes specified by the intercon-
nections of the network. In a queueing network model, this uncertainty is quantified by an

assignment of branching probabilities to the output connections of each node.

In our formal definition of an activity network, the structural primitives are places (as
in Petri nets), activities (which play the role of Petri net transitions), and cases (to be dis-
cussed momentarily). The definition incorporates two nondeterministic constructs to
represent each of two types of spatial uncertainty. Uncertainty about which activities are
enabled in a given state is represented by the introduction of cases which indicate alterna-
tive sets of potential enabled activities. A place which has at least one case associated
with it is a decision place. If a decision place has at least one token, a specific case and,
accordingly, a specific set of enabled transitions is then selected nondeterministically.
The second type of spatial uncertainty is uncertainty about the next state (according to
place markings) once an activity is completed. This is represented by associating a set of
sets of output places with each activity, rather than a single set as in Petri nets. When an
activity completes, the set of output places to receive tokens is selected nondeterministi-

cally from this designated set of sets.

To obtain a corresponding class of probabilistic models (the second step of the two-
step definition process), we extend the definition of an activity network to that of a sto-
chastic activity network. This is done by quantifying spatial nondeterminism with proba-
bilities and by quantifying temporal nondeterminism with probability distribution func-

tions. More specifically, to a given activity network N we adjoin functions f.,g , and F,



where f specifies the probabilities of output place selection, g specifies the probabili-
ties of case selection, and F specifies the probability distribution functions of the activa-
tion periods of enabled activities. In each case, these probabilities and distributions gen-
erally depend on the marking of the network as well as its structure, affording us a great

deal of flexibility in the model construction process.

To assist the process of describing activity network and stochastic activity network
behavior, two additional model classes are distinguished at the state-transition level:
activity systems and stochastic activity systems. Activity systems are not new (see the
"named transition systems" of [33], [34], for example) and are abstract enough to
represent a large variety of nonprobabilistic systems. In particular, they provide a
natural, higher level representation of activity networks. The most detailed description of
activity system behavior are its stafe-activity sequences, i.e., for a given initial state, the
possible sequences of alternating states and activities that can result from a finite number
of applications of the transition relation. Thus, when an activity system represents an
activity network, the source of spatial uncertainty (completion vs. enabling) is no longer

distinguished.

'Stochastic activity systems are probabilistic extensions of activity systems where the
extension is similar to that made ét the network level. Moreover, in the manner that
activity systems represent activity networks, stochastic activity systems are higher level
representations of stochastic activity networks. The state behavior of a stochastic activity
system is a stochastic process which can serve as the base model of a performability
model. More precisely, suppose S is a system modeled by a stochastic activity network
N . If M isthe stochastic activity system corresponding to N then the state behavior of
M is a base model Xg of S (see Section IlI). Xs together with a designated perfor-

mance variable Yg comprise a performability model of S .



Model Properties

Once a new class of models is established, there is a need to investigate basic model
properties for two purposes. One purpose is to compare the general capabilities and limi-
tations of models with those of other models used for performance-reliability evaluation
(e.g., queueing networks and stochastic Petri nets). The second purpose is to obtain a
clear understanding of structure-behavior relations for particular model types, providing
knowledge that can facilitate the construction and solution of specific performability

models.

With regard to both of these purposes, an important first step is to distinguish
appropriate notions of model behavior which can serve as the basis for investigating model
properties. These notions can differ among model types and, within a model type can be
defined at different levels of abstraction. Thus, for a given model type, there are likely to

be several notions of model behavior, each one serving a different specific purpose.

Relative to activity networks, for example, the lowest level descriptions of behavior
are marking diagrams similar to those employed in the analysis of Petri nets. When an
activity network is represented at the state-transition level by an activity system, the
state-activity behavior of the latter (see above) is the (stable) marking behavior of the
former. Accordingly, in discussing the behavior of activity networks, we need only refer to
their corresponding activity systems. Indeed, this is the principal reason for associating

activity systems with activity networks.

With respect to activity systems, the most detailed description of a model's behavior
is its state-activity behavior. Such descriptions, however, are typically infinite, calling for
simpler representations, e.g., something analogous to the "reachability trees' of Petri nets
(see [32], Chapter 4, for example). In addition, behavior descriptions at higher (more
abstract) levels are also needed. What we seek here are representations of behavior that

will enable us to compare the modeling power of activity networks (as represented by

10



activity systems) with that of Petri nets and other similar network models. One possibility
is a language of "activity sequences” defined in a manner analogous to that of a Petri net
language {see [32], Chapter 8). However, because activity networks generally exhibit spa-
tial nondeterminism (while Petri nets do not), the details of such definitions are yet to be

determined.

Regarding stochastic models such as stochastic activity networks and stochastic
activity systems, behavioral notions are complicated by the fact that time is an explicit
dimension of model behavior. On the other hand, due to the probabilistic representation
of uncertainty, behavior descriptions are more tractable and need not rely on the elabora-
tion of individual state-activity sequences. Moreover, for the purpose of performability
evaluation, knowledge of a model's state behavior (as opposed to state-activity behavior)
will suffice. Since this is a stochastic process, model behavior can be described in more

familiar terms.

Given that appropriate levels of behavior are distinguished, one can then establish
structure-behavior properties that serve the purposes cited at the outset of this subsec-
tion. Of particular interest, in the context of performability modeling, are conditions on a
model's structure that insure a certain type of stochastic behavior. For example, if the
model is a stochastic activity network, we would like to know conditions under- which its
associated stochastic process has some specified property, e.g., is a finite-state process, a

Markov process, a semi-Markov process, etc.

Model Construction and Solution

Directions suggested here concern the process of constructing performability models
of systems and subsequently solving the models to obtain solutions of system performabil-
ity. What we seek are techniques having relatively general applicability which, when
appropriately selected and integrated, provide methodologies for performability evalua-

tion.
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Regarding model construction, we are proponents of hierarchical model building
methods which, relative to a system S , facilitate the determination of a stochastic pro-
cess representation of S . This process must be able to support evaluations of performa-
bility relative to the performance variable(s) of interest. Hence, the best way to proceed
‘with model construction is to begin with a designation of the performance variable(s). In
discussing the steps that follow, we suppose that the model types at our disposal are those
described earlier, i.e., activity networks, stochastic activity networks, activity systems,
and stochastic activity systems. Similar comments would apply to other types of models

defined at the network and state-transition levels of abstraction.

The first step is to construct an activity network model of S which is refined enough
to support an eventual solution of the system's performability (with respect to the desig-
nated performance variable(s)). Also, this network should be sufficiently detailed to per-
mit the specification of the probability functions that convert it to a stochastic activity
network. Since a model at this level may be too complex to admit a tractable solution,
there is a need for methods of bottom-up hierarchical elaboration to obtain simpler,
higher level network models. At some appropriate level, one determines the network's
corresponding stochastic activity system and attempts to characterize its state behavior.
The latter may call for additional simplification methods applicable to activity systems or
their corresponding stochastic processes (state behaviors). The construction procedure
terminates with a stochastic process that can serve as a tractable base model for the sub-

sequent solution phase.

This procedure is obviously complex and can benefit considerably from computer pro-
grams which assist the model builder in making complicated decisions and constructions.
Existing programs that support performance-reliability modeling are mainly concerned
with model solution as opposed to model construction. Notable exceptions are the SURF

program [49] and programs currently being developed for stochastic Petri nets [29]. How-
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ever, a great deal more work needs to be done in this regard, particularly in the area of

hierarchical elaboration.

Given the performance variable(s) and base model obtained in the construction
phase, performability is determined by solving the probability distribution function(s) of
the performance variable(s) in terms of the base model stochastic process. Although, con-
ceptually, this is a classical problem, solutions are typically difficult to obtain for the
types of processes and variables associated with realistic performability models. This is
due, in part, to the fact that activities bearing on both performance and reliability are
being represented in the same base model. Typically, performance related activities (e.g.,
job processing) are completed at much higher rates than are reliability related activities
(e.g., fault arrivals). Hence, in the case of a Markovian base model, the ratio between the
highest and lowest state transition rate can be many orders of magnitude. In other words,
the differential equations describing the model's state behavior (i.e., those determined by
the generator matrix of the Markov model) are "stiff" (See [50], for example) and, when

solved numerically, require special treatment to avoid excessive errors.

Various approaches can be used to deal with this stiffness property and all deserve
more extensive investigation: One approach is to exploit numerical solution methods
developed specifically for stiff equations, e.g., Gear's methods [50]. A second approach is
to find .alternative formulations of the state occupancy probabilities such that solutions
are less subject to numerical errors. An example of this approach are formulas obtained
via "selective randomization” [51] where the Markov model is "randomized" with respect to

states having high transition rates.

A third approach, and one that we are actively pursuing (see [15], [17]), is to lump
states with high transition rates such that the lumped model is no longer stiff. Perfor-
mance rates in the lumped states are determined via steady-state solution techniques,

under the assumption that the consequences of high rate activities approach equilibrium

13



conditions between the completions of low rate activities. (As a result of this assumption,
the solution obtained is approximate; it appears to be a good approximation, however, par-
ticularly in the case of very stiff base models). Once these performance rates are deter-
mined, performability is solved in terms of the lumped model. The latter step is far from
~ trivial (see [17], Section III) but is capable of producing closed-form solutions as well as
numerical solutions. Work is progressing on the development of tractable solution algo-

rithms [52] and further research in this direction is recommended.

Additional difficulties are encountered when the base model is not a Markov process,
e.g., the model is semi-Markovian or perhaps even more general than a semi-Markov pro-
cess. Such processes also arise in (strict) performance and reliability evaluation but,
when they do, the measures considered are typically expected values under long-run or
steady-state conditions. Performability evaluation, on the other hand, requires solution of
the probability distribution function of the performance variable. Moreover, the perfor-
mance variable is usually defined with respect to a bounded utilization period, requiring
(in most cases) the use of transient solution methods. These factors complicate the solu-

tion procedure, particularly when the base model is non-Markovian.

Although Markovian performability models (those based on a Markov process) consti-
tute an important class, increased emphasis needs to be placed on methods for solving
non-Markovian performability models. Some progress is being made in this regard, e.g.,
the solution algorithm presented in [52] applies even when the base model is not a semi-
Markov process. The base model and performance variable are subject to other con-
straints, however, and hence the algorithm is not generally applicable. Much more work is
needed in this direction if the capabilities of new models discussed earlier are to be

exploited.
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