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UNIFIED PERFORMANCE-RELIABILITY EVALUATION

J. F. Meyer

ABSTRACT

Unified performance-reliability (performability) evaluation is reviewed relative to
needs imposed by distributed real-time systems. Such systems typically exhibit proper-
ties of concurrency, timeliness, fault tolerance, and degradable performance, calling for
unification and generalization of modeling techniques employed in strict evaluations of
performance and reliability. An overview of our work in this area is presented, including
a discussion of directions currently being pursued.






1. INTRODUCTION

This paper concerns the development of modeling methods and tools for unified
performance-reliability evaluation of distributed real-time systems. The types of models
considered are principally stochastic models of an analytic nature. However, nonproba-
bilistic models can play a useful supporting role, as described in Section 3. The intent of
this presentation is to provide an overview of work in this area that has been underway
at The University of Michigan since 1976. Also discussed are directions we are taking in
our current research, both at The University of Michigan and at the Industrial Technol-
ogy Institute.

Generally, an evaluation of a system seeks to relate and quantify aspects of what
the system is and does with respect to what the system is required to be and do.
Accordingly, performance-reliability evaluation methods for distributed real-time systems
need to be responsive to the kinds of performance-reliability requirements that accom-
pany the use of such systems. Although these requirements differ in detail from applica-
tion to application, they have some typical properties which, in turn, impose special con-
ditions on system structure and behavior.

In particular, such requirements typically call for high performance when the sys-
tem is fault-free. This, coupled with the fact that resources are distributed, results in
systems which exploit concurrent (parallel) processing. Secondly, real-time aspects of
such requirements often impose conditions on the ‘‘timeliness” of processing activities,
e.g., requirements for maximum allowable (input-output) response times which impose
deadlines on the times that certain processes can be initiated or completed. Thirdly,
real-time applications are typified by requirements for high reliability as well as high per-
formance, resulting in fault-tolerant systems which employ added resources and
processes for the purpose of tolerating specified types of faults. Finally, due to a balance
of demands for both performance and reliability, such requirements typically call for sys-
tems which exhibit degradable performance in the presence of faults, i.e., between the
extremes of nondegraded performance (as would be exhibited if the system were fault-
free throughout utilization) and fully degraded performance (system failure), the system
is able to perform at intermediate levels which provide some benefit to the user.

Each of the properties identified above, i.e., 1) concurrency, 2) timeliness, 3) fault
tolerance, and 4) degradable performance, can influence a system’s ability to perform
and, hence, each property should be considered in the modeling process. As surveyed in
the section that follows, most of the work to date on unified performance-reliability
modeling has focused on properties of fault tolerance and degradable performance.
Recently, however, efforts are being made to develop models which can accommodate all
four properties. This work is discussed in Section 3.

2. PERFORMABILITY MODELING

Traditionally, issues of computing system performance and reliabiiity have been
distinguished by regarding ‘‘performance” as “‘how well the system performs, provided it
is correct” [1-4] and regarding ‘‘reliability” as ‘‘the probability of performing success-
fully” [5-8]. However, if performance is degradable (in which case we say the system
itself is degradable) then a performance evaluation (of the correct or fault-free system)
will generally not suffice since structural changes, due to faults, may be the cause of
degraded performance. By the same token, an evaluation of reliability (or of reliability
related measures such as availability and maintainability) will generally not suffice since



“success’’ can take on various meanings and, in particular, it need not be identified with
“absence of system failure.”

What is called for instead are evaluations with respect to unified performance-
reliability measures which, in our terminology [9,10], quantify a system’s performability.
Such measures, in turn, call for appropriate generalizations of the types of models and
solution methods employed in strict evaluations of either performance or reliability.

To accommodate these needs, a general modeling framework was introduced in [9)
(and subsequently refined in [10]) for evaluating the performability of a system S. (Gen-
erally, S is interpreted as including not only a system, per se, but also relevant aspects of
its environment that impact its ability to perform.) In this framework, the performance
of S over a specified wtilization period T is a random variable Y taking values in a set A.
Elements of A are the accomplishment levels (performance outcomes) to be distinguished
in the evaluation process. The performability of S is the probability measure Perf
(denoted ps in [9,10]) induced by Y where, for any measurable set B of accomplishment
levels (B C A), Perf(B) is the probability that S performs at a level in B. Solution of
performability is based on an underlying stochastic process X, called a base model of S,
which represents the dynamics of the system’s structure, internal state, and environment
during utilization. A base model X together with a performance variable Y is an ana-
lytic performability model of S. (We are omitting some details here regarding how Y
must relate to X, resulting in a slight departure from the definition given in [10].) Perfor-
mability model construction is the process of identifying a performance variable ¥ and
determining a base model stochastic process X that permits a solution of performability.
Performability model solution is the process of obtaining performability values Perf(B)
for accomplishment sets B that are of interest to the user. Generally, knowledge of the
probability distribution function (PDF) of Y suffices to determine such values. Accord-
ingly, we regard an analytic performability model as ‘“‘solved” once the PDF of Y is
obtained. Solution of a PDF can be either a closed-form solution (expressed as a func-
tion of base model and performance variable parameters) or a numerical solution.

The concept of performability is thus quite general and, depending on the choice of
base model X and performance variable Y, can be specialized to usual notions of (strict)
performance, reliability, and reliability related concepts such as availability and maintai-
nability. For example, if the structure of a computing system S is presumed to be fixed
and correct (i.e., X represents changes only in S's internal state and environment) and,
for a designated utilization period T = [0,¢], we let Y be the average throughput rate
during [0,¢], 1.e.,

y = RO of jobs processed during|0, ¢}
4

then (X,Y) is a (strict) performance model. At the other extreme, if the states of X can
be classified as either operational (corresponding to a working system) or nonoperational
(a failed system) and we let

1if X is in an operational
state throughout [0,¢] ,

0 else

then (X,Y) is a reliability model. Generally, however, a performability model is neither a



performance model nor a reliability model. Moreover, experience has shown that such
models are sufficiently general to quantify a degradable system’s ability to perform in
the presence of faults.

At The University of Michigan, our work on the formulation, development, and
application of (model-based) performability evaluation methods began in 1976 under a
grant (NSG 1306) from the NASA Langley Research Center. The application focus of
this research was the type of ultrareliable aircraft control computers being developed for
Langley by both Stanford Research Institute Int’l (SIFT; [11]) and the C.S. Draper
Laboratory (FTMP; [12]). This grant continued for a period of six years, resulting in
definition of the basic modeling framework [9,10] and a variety of studies concerning per-
formability evaluation methods, tools, and applications [13-20]. (Also see the doctoral
theses of Wu [21] and Furchtgott [22] for more detailed descriptions of much of this
work.) Since 1982, our work has been aimed at the development of more generally appli-
cable solution methods [23,24] and more refined methods of model construction that can
capture (in a single model) properties of concurrency, timeliness, fault tolerance, and
degradable performance [25]. (The latter effort is reviewed in Section 3.)

The need for unified performance-reliability evaluation methods has likewise been
recognized by others who, with various approaches, have contributed to the basic litera-
ture on this emerging discipline. This includes studies by Beaudry ([26,27];
performance-related reliability measures), Losq ([28]; degradable systems composed of
degradable resources), Troy ([29]; efficiency evaluation), Gay and Ketelsen ([30]; perfor-
mance evaluation of degradable systems), Mine and Hatayama ([31]; job-related reliabil-
ity), De Souza ([32]; benefit analysis of fault tolerance), Castillo and Siewiorek ([33,34];
performance-reliability models for computing systems), Chou and Abraham ([35};
performance-availability models of shared resource multiprocessors). Osaki and Nishio
([36]; reliability of information), Beyaert, Florin, Lonc, and Natkin ([37]; dependability
evaluation using stochastic Petri nets), Huslende ([38,39]; combined performance-
reliability evaluation for degradable systems), Arlat and Laprie ({40]; performance-related
dependability evaluation), Munarin ([41]; performance/reliability analysis of gracefully
degrading systems), and Krishna and Shin ([42]; performance measures for multiproces-
sor controllers).

Our work in this area can be broadly classified according to the type of performa-
bility model employed. A basic distinction in this regard is whether the performance
variable Y is discrete (its range is finite or denumerable) or continuous. In the case of a
discrete performance variable (DPV) and, more specifically, when Y is finite-valued, the
performability model construction and solution methods we've developed can be viewed,
for the most part, as generalizations of reliability modeling techniques. In the case of a
continuous performance variable (CPV), on the other hand, most of the methods we've
developed or are currently investigating derive from an appropriate blend of both relia-
bility modeling and (strict) performance modeling techniques. In the discussion that fol-
lows, methods and tools for the construction and solution of DPV models are referred to
simply as DPV methods and tools. Similar terminology applies in the case of CPV
models.

2.1. DPV Methods and Tools

Much of the work under the above referenced NASA grant was concerned with the
development of DPV methods and tools. This was motivated by NASA’s interest in
user-oriented performability evaluations of fault-tolerant digital control computers for



(next generation) commercial aircraft. The user in this case is assumed to be an airline
that owns the aircraft and performance (as modeled by Y) is taken to be the quality of
an aircraft flight controlled by the computer. With this view of performance, a rela-
tively small number of accomplishment levels (possible values of Y) will suffice, resulting
in a DPV model of the system. More generally, user-oriented (sometimes referred to as
“mission-oriented”) evaluation problems of this type are naturally suited to DPV’s and,
indeed, to finite-valued performance variables where the number of accomplishment lev-
els is at least 3 but typically no more than 10. (In the case of only 2 accomplishment
levels, interpreted as ‘‘success” and ‘‘failure’’, performance is no longer degradable and
performability reduces to reliability.)

Construction and solution of DPV performability models exploit a well known pro-
perty of discrete random variables which, in the terminology of the modeling framework,
says the following. Since Y is a DPV, the set A of possible accomplishment levels is
countable and, hence, the probability distribution

{PY = d]|a € A}

suffices to determine the performability of S. Accordingly, in the case of a DPV model,

the performability of S can be alternatively defined as the function Perf: A—[0,1] where,
fora € A,

Perf(a) = P|Y = d] .

If we assume further that A is finite then performability is likewise finite, i.e., the values
of Perf can be tabulated.

The base model part (the stochastic process X) of a DPV model represents a suffi-
ciently detailed probabilistic description of changes in a system’s structure (due to faults
and fault recovery), internal state, and environment to permit solution of the performa-
bility values Perf(a). Generally, a base model (for DPV's) is a continuous-time, finite-
state stochastic process which is constructed by first decomposing the utilization period
[0,¢] into a finite number of consecutive time periods called phases. For each phase, a
system'’s intraphase behavior is represented by a (continuous-time, finite-state) stochastic
process which is typically a time-homogeneous Markov process. Different phases, how-
ever, may be modeled by different processes, subject to constraints which permit the
determination of (conditional) interphase transition probabilities. Combination of these
processes results in a phased model [15] which serves as the base model X. Relative to a
specified performance variable Y, X is required to ‘‘support” Y in the sense that the
end-of-phase samples of X uniquely determine the value of Y.

DPV performability evaluation can thus be viewed as a generalization of ‘‘phased
mission’’ reliability evaluation (see [43-45], for example). Techniques used to construct
and solve DPV models are likewise more general and complex, due in part to the less res-
tricted nature of phased base models. A more challenging property of DPV models,
however, is due to the general manner in which the base model X relates to the perfor-
mance variable Y, via a function referred to as the capability function [9,10]. Relative to
a given level of accomplishment, the end-of-phase samples of X can be functionally
dependent [13], e.g., knowing that Y = a, knowledge of the state of X at the end of
phase i can contribute to knowledge of the state of X at the end of some other phase j.
In contrast, assumptions made in the construction of phased mission reliability models
(see [45], for example) are such that, with respect to the accomplishment level *success,”
the phases must be functionally independent (as established in [13], Theorem 6).



Given a DPV model (X,Y) and an accomplishment level 4, solution of the performa-
bility value Perf(a) is, conceptually, a two-step procedure:

1) Determine the set U, of all base model state trajectories (as characterized by their
end-of-phase samples) that correspond, via the capability function, to ¥ = a.

2) Using knowledge of X, determine the probability of the trajectory set U,. This
probability is the value of Perf(a).

Execution of step 1) exploits a hierarchical elaboration of the base model and, using
matrix representations of trajectory sets and an accompanying matrix calculus, proceeds,
in a top-down manner, to determine a suitable representation of U, (see [10,22]). An
important feature of this method is the ability to account for functional dependencies in
the process of determining U,. As a consequence, U, is ultimately represented as a
union of disjoint ‘‘Cartesian” trajectory sets. Other approaches require such dependen-
cies to be recognized, manually, during the process of model construction (see [46] for a
detailed assessment of these differences).

Step 2) is performed by first calculating the probability of each of the Cartesian
subsets determined in step 1), using formulas described in [15,21] and developed for this
purpose. Since these subsets are disjoint, the sum of these probabilities yields the
desired solution.

Each of these steps can involve a considerable amount of symbol manipulation and
numerical computation, particularly in the case of a relatively complex degradable sys-
tem. This, together with problems encountered in model construction, calls for pro-
grammed performability evaluation tools that can aid both the construction and solution
phases of the evaluation process. Over the past several years, considerable effort has
been devoted to the development of such tools which, collectively, reside in a software
package called METAPHOR (Michigan EvaluaTion Aid for PerpHORmability). (In
addition to DPV tools, METAPHOR also houses tools for the construction and solution
of CPV models). The current version of METAPHOR is written in C and runs under
UNIX. The portion devoted to DPV methods, called ‘“‘meta_discrete’ , contains approxi-
mately 8,000 lines of source code and has approximately 256 Kbytes of executable code.
Descriptions of various parts of METAPHOR (to the extent that they are currently
documented) can be found in [22].

Applications of DPV methods and tools are reported in a number of papers and
technical reports [14,16-18,21,22,46]. These include a relatively comprehensive performa-
bility evaluation of the SIFT computer [16,17] where SIFT’s computational environment
is a transoceanic flight of an advanced commercial aircraft. Performability, in this case,
is quantified in terms of 5 accomplishment levels, ranging from a “‘perfect’ flight to loss
of the aircraft. Details concerning the use of METAPHOR in this and other applications
appear in [22].

Generally, DPV models are best suited to performability evaluations where the user
(of the evaluation results) is interested in whether a system satisfies certain ‘‘bottom
line” performability requirements. However, if the evaluation results disclose that the
system is deficient, these results may not be refined enough to indicate how the system
design should be modified. Design-oriented performability evaluation thus calls for lower
level, more detailed views of a system’s productivity, responsiveness, etc. which are more
naturally represented by continuous performance variables (CPV’s).



2.2. CPV Methods and Tools

When system performance ranges over a continuum of accomplishment levels, the
construction and solution of performability models is complicated by the need to deal
with a much greater amount of information. In constructing the base model, a more
detailed representation of the system's internal state and environment is typically
required so that the base model can support the performance variable. On the solution
side, performability is determined by the probability distribution function (PDF) of the
performance variable (conceptually an uncountable set) as opposed to the kind of
discrete distributions associated with DPV’s.

Generally, the types of CPV models we've investigated derive from concepts and
constructs used in both performance modeling and reliability modeling. Accordingly, a
base model will typically represent activities relating to performance (e.g., job arrivals,
job processing) as well as activities relating to reliability (e.g., fault arrivals). However, a
fundamental difficulty encountered in solving CPV performability models is due to the
fact that performance related activities usually occur at much higher rates than do relia-
bility related activities. Hence, in the case of a Markovian base model, the ratio between
the highest and lowest state transition-rate can be many orders of magnitude. In other
words, the differential equations describing the model’s state behavior (i.e., those deter-
mined by the generator matrix of the Markov model) are ‘‘stiff’ (see [47], for example)
and, when solved numerically, require special treatment to avoid excessive errors.

Various approaches can be used to deal with this stiffness property and all deserve
more extensive investigation. One approach is to exploit numerical solution methods
developed specifically for stiff equations, e.g., Gear's methods [47]. A second approach is
to find alternative formulations of the state occupancy probabilities such that solutions
are less subject to numerical errors. An example of this approach are formulas obtained
via ‘“selective randomization” [48] where the Markov model is ‘“randomized” with
respect to states having high transition rates.

A third approach, and one that we have exploited [19,20], is to lump states with
high transition rates such that the lumped model is no longer stiff. Performance rates in
the lumped states are determined via steady-state solution techniques, under the
assumption that the consequences of high rate activities approach equilibrium conditions
between the completions of low rate activities. (As a result of this assumption, the solu-
tion obtained is approximate; it appears to be a good approximation, however, particu-
larly in the case of very stiff base models). Once these performance rates are deter-
mined, performability is solved in terms of the lumped model. The latter step is far
from trivial (see [20], Section III) but is capable of producing closed-form solutions as
well as numerical solutions.

Since the lumped model referred to above represents changes in the system’s struc-
ture (due to faults), an equivalent approach is to regard the lumped model as the base
model X. States of X are interpreted as ‘‘structure states’ of S and hence X is a finite-
state stochastic process. With this approach, however, we do not require that X be Mar-
kovian or even semi-Markovian. Performance aspects are then accounted for by associ-
ating a performance rate with each structure state. The stochastic process X together
with the performance rates can thus be viewed as a reward model (see [49], for example)
where the performance rates become reward rates. Accordingly, the performance vari-
able Y is taken to be the total reward accrued during a specified utilization period [0,¢].



CPV models of this type constitute a broad class of performability models with
widespread applicability. Of particular interest is their use in modeling systems which,
during [0,¢], are assumed to be ‘“‘nonrepairable” (e.g., ¢ is the period between successive
instances of scheduled periodic maintenance). In this case the base model process X is
acyclic, i.e., the probability of entering the same (structure) state more than once is 0. If
we assume further that the reward rates are such that the reward model is
nonrecoverable [21], i.e., reward rates experienced cannot increase with time, such
models admit to a general solution method described in [23,24]. Specifically, if (X,Y) is a
performability model satisfying the above conditions, this method determines the PDF
Fy(y) of Y and, hence, the performability of the modeled system. The method involves
expression of Fy(y) as a sum of definite integrals which, if solved symbolically, yields a
closed-form solution. Alternatively, for a given assignment of model parameter values,
this integral expression can be solved numerically for various values of y, resulting in a
numerical solution of Fy(y). Details concerning development and justification of the
method can be found in (22, Chap.5].

Due to the inherent complexity of most CPV models, implementation of this tech-
nique for either closed-form or numerical solutions requires the support of programmed
evaluation tools. This is particularly so in the case of numerical solutions, since these
are sought when the model is too complex to admit a meaningful closed-form solution.
Development of a computer program for this purpose has recently been completed and
incorporated in the CPV portion of METAPHOR, referred to as ‘““meta_continuous” [22].
Meta_continuous contains approximately 4,000 lines of C code, including menu and pro-
ject management functions.

Applications of CPV methods and tools have been demonstrated for various types
of degradable, nonrepairable systems, beginning with the dual-processor example con-
sidered in [19,20]. In this example, performance is taken to be the system’s (normalized)
average throughput rate; degradable performance results from the system’s ability to
recover (with a specified ‘‘coverage’”) from a processor fault. Using the lumping tech-
nique outlined above, the base model is simple enough to permit manual derivation of a
closed-form solution of performability. More complex systems involving multiple (more
than 2) processors have been evaluated [22,23] using the methods and tools described in
the preceding three paragraphs. These include a multiprocessor/air conditioner example
where effects of a faulty air conditioner are such that processor failure rates start to
vary as a function of time. The base model, in this case, is not semi-Markov and yet a
performability solution using meta_continuous can still be obtained.

3. CURRENT RESEARCH

Most of the work to date on unified performance-reliability evaluation has focused
on accommodating properties of fault tolerance and degradable performance. However,
in the case of distributed real-time systems, properties of concurrency and timeliness can
likewise influence a system'’s ability to perform. Accordingly, when such evaluations are
model-based (on either analytic models or simulation models), all four properties need to
be dealt with effectively in the modeling process.

During the past 20 years, considerable effort has been devoted to the modeling of
concurrent systems for the purpose of behavior analysis and, to a lesser extent, perfor-
mance evaluation. Much of this activity has been directed toward behavior analysis in a
nonprobabilistic setting through the use of Petri nets, derivatives thereof, and other
model types which are behaviorally equivalent to Petri nets (see [50] for a comprehensive



discussion of such models). Efforts have also been made to extend Petri-type nets, via
the introduction of timing, to obtain models that are better suited to performance
cevaluation [51-56). Regarding probabilistic models that deal with concurrency, one
might legitimately include queueing networks (as surveyed, for example, in [57]) but,
typically, such models treat concurrency at much higher (less detailed) levels than do
Petri-type models. Of greater relevance are probabilistic network models that capture
concurrency at lower levels. The latter include GERT Networks [58] and General
Activity Networks [59] that date back to 1964, along with more recent models which are
direct probabilistic extensions of Petri nets [37,60,61,62].

Most of the models referred to in the previous paragraph presume a fixed system
structure, thus excluding considerations of fault tolerance and degradable performance.
A notable exception is the work of Beyaert, Florin, Lonc, and Natkin {37} on stochastic
Petri nets wherein the occurrence of a fault is represented by the firing of a Petri net
transition. To the extent that queueing models are able to represent concurrency, other
exceptions are the work of Gay and Ketelsen [30], Huslende [38,39] and ourselves [19,20].

Accordingly, a natural direction to pursue is the development of new model classes
that incorporate features of both queueing networks and stochastic Petri nets. More-
over, when defining such models, we believe it is helpful to first define a class of models
which are nondeterministic (in their state behavior) but are not probabilistic. Via a
specified interpretation of how states change with time, each nondeterministic model,
when augmented by a designated set of probability distributions, yields a corresponding
probabilistic model. Although model-based evaluations of performability call for proba-
bilistic models, the formulation of such models can thus employ nonprobabilistic models
of the type described above. Moreover, these nonprobabilistic “‘skeletons” might also be
used directly to verify certain model properties. One advantage of this two-step defini-
tion method is that it decomposes a relatively complex concept into simpler, more under-
standable parts. A much more important advantage, however, is that it facilitates the
establishment of explicit connections between the structure/behavior of nondeterministic
models and that of their corresponding probabilistic extensions.

Work in this direction has been undertaken at The University of Michigan (Com-
puting Research Laboratory) and the Industrial Technology Institute (Communications
and Network Laboratory) with the following consequences. As the first step in a two-
step definition (see above) and at the network level of abstraction, we have defined a
class of nondeterministic models called activsty networks. These networks are more gen-
eral than Petri nets, where the need to generalize is due to the following important
observation. Petri nets (and most other nonprobabilistic models of concurrent systems)
exhibit nondeterministic behavior as the consequence of temporal uncertainty, i.e., among
a set of concurrent activities, there is uncertainty as to which activity will be completed
first. In other words (in Petri net terms), among a set of enabled transitions, therz is
uncertainty as to which transition will fire. Moreover, this is the only source of non-
determinism since enabled transitions are uniquely determined by the state (marking) of
a Petri net and the next state is uniquely determined by the present state and the tran-
sition that fires.

However, when modeling the structure and behavior of complex systems, one wants
to represent spatial uncertainty as well as temporal uncertainty, e.g., uncertainty about
which activities are initiated in a given state or, on the completion of an activity, uncer-
tainty about the next state of the system. Such uncertainty is often related to faults,
e.g., if the activity in question is a fault recovery process, completion of this activity may



result in one of several states, including a state that represents system failure. Spatial
uncertainty also occurs in representations of fault-free behavior. In a queueing network,
for example, when service of a customer is completed (in some node of the network) the
customer may leave the system or proceed to one of several nodes specified by the inter-
connections of the network. In a queueing network model, this uncertainty is quantified
by an assignment of branching probabilities to the output connections of each node.

In our formal definition of an activity network, the structural primitives are places
(as in Petri nets), activities (which are similar to Petri net transitions, but are aug-
mented by cases ), and gates. Activities are of two kinds: timed activities and
tnstantancous activities. Timed activities represent activities of the modeled system
whose durations impact the system's ability to perform. Instantaneous activities, on the
other hand, represent system activities which, relative to the performance variable in
question, are completed in a negligible amount of time. Cases associated with activities
permit the realization of two types of spatial uncertainty. Uncertainty about which
activities are enabled in a certain state is realized by cases associated with intervening
instantaneous activities. Uncertainty about the next state assumed upon completion of
a timed activity is realized by cases associated with that activity. Gates are introduced
to permit greater flexibility in defining enabling and completion rules.

To obtain a corresponding class of probabilistic models (the second step of the
two-step definition process), we extend the definition of an activity network to that of
stochastic activity network. This is done by quantifying spatial nondeterminism with
probabilities and by quantifying temporal uncertainty with probability distribution func-
tions for a subclass of activity networks that are well behaved. More specifically, to a
given well behaved activity network N with some specified initial marking we adjoin
functions € and F, where C specifies the probability distributions of case selections and
F specifies the probability distribution functions of activity times. These distributions
generally depend on the marking of the network as well as its structure, affording us a
great deal of flexibility in the model construction process.

To assist the process of describing activity network and stochastic activity network
behavior, two additional model classes are distinguished at the state-transition level:
aclivity systems and stochastic activity systems. Activity systems are not new (see the
“named transition systems” of [83,64], for example) and are abstract enough to represent
a large variety of nonprobabilistic systems. In particular, they provide a natural, higher
level representation of activity networks. The most detailed description of activity sys-
tem behavior are its state-activity sequences, i.e., for a given initial state, the possible
sequences of alternating states and activities that can result from a finite number of
applications of the transition relation. Thus, when an activity system represents an
activity network, the source of spatial uncertainty (completion vs. enabling) is no longer
distinguished.

Stochastic activity systems are probabilistic extensions of activity systems where
the extension is similar to that made at the network level. Moreover, in the manner
that activity systems represent activity networks, stochastic activity systems are higher
level representations of stochastic activity networks. The state behavior of a stochastic
activity system is a stochastic process which can serve as the base model of a performa-
bility model. More precisely, suppose S is a system modeled by a stochastic activity net-
work N. If M is the stochastic activity system corresponding to N then the state
behavior of M is a base model X of S. X together with a designated performance vari-
able Y comprise a performability model of S.
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We are currently investigating properties of stochastic activity networks (SAN’s)
and their corresponding stochastic activity systems (SAS's), where this effort has two
purposes. One purpose is to determine the general capabilities and limitations of these
models so as to compare them with queueing networks and stochastic Petri nets. The
second purpose is to obtain a clear understanding of structure-behavior relations for par-
ticular model types, providing knowledge that can facilitate the construction and solu-
tion of specific performability models. For example, if the model is a SAN we would like
to know conditions under which its corresponding SAS has some specified property, e.g.,
its state behavior is a finite-state process, a Markov process, a semi-Markov process, etc.

We are also pursuing the development of performability model construction
methods that incorporate these model classes. Model construction, in this context, is
generally viewed as follows. Given a system S and a designated performance variable Y,
the first step is to construct an activity network model of S which is refined enough to
support an eventual solution of the system's performability (with respect to Y). Also,
this network should be sufficiently detailed to permit specification of the probability dis-
tributions that convert it to a stochastic activity network (SAN). Since a model at this
level may be too complex to admit a solution, there is a need for aggregation methods
that can produce simpler SAN models. At some appropriate level of detail, one deter-
mines the SAN's corresponding SAS and attempts to characterize its state behavior.
The latter may call for additional simplification methods applicable to SAS’s. The con-
struction procedure terminates with a stochastic process that can serve as a base model
for the subsequent solution phase.

Implementation of this procedure is currently underway at the Industrial Technol-
ogy Institute. In particular, we have initiated work on a computer program (to be incor-
porated in METAPHOR) which, when provided with a structural description of a SAN,
will automatically derive its corresponding SAS and, specifically, the stochastic process
identified with its state behavior.
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