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SUMMARY. In many scientific problems involving high-throughput technology, inference must be made
involving several hundreds or thousands of hypotheses. Recent attention has focused on how to address
the multiple testing issue; much focus has been devoted toward the use of the false discovery rate. In this
article, we consider an alternative estimation procedure titled shrunken p-values for assessing differential
expression (SPADE). The estimators are motivated by risk considerations from decision theory and lead to
a completely new method for adjustment in the multiple testing problem. In addition, the decision-theoretic
framework can be used to derive a decision rule for controlling the number of false positive results. Some
theoretical results are outlined. The proposed methodology is illustrated using simulation studies and with
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application to data from a prostate cancer gene expression profiling study.
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1. Introduction

Because of technological developments in scientific fields such
as genomics, it has become possible to simultaneously assay
the biological activities of thousands of genes in parallel.
Similarly, in neuroimaging, there is consideration of thou-
sands of voxels as a global map of the human brain. A com-
mon problem in this setting is to determine which objects
are differentially expressed between two conditions (genes in
the microarray setting, voxels in the neuroimaging example).
Consideration of all the hypotheses leads to a multiple com-
parisons problem.

Our work is motivated by a collaborative gene expres-
sion profiling study in prostate cancer (Dhanasekaran et al.,
2001). The investigators have profiled tissue samples from
various stages of prostate cancer (normal adjacent prostate,
benign prostatic hyperplasia, localized prostate cancer, and
advanced metastatic prostate cancer) using microarrays. In
addition to the gene expression profiles for a sample, the in-
vestigators have access to several other clinical parameters.
A key hypothesis made by investigators is that there exists a
set of genes that distinguish aggressive prostate cancer from
nonlethal prostate cancer. To begin with, a fairly standard
analysis would be to determine which genes are differentially
expressed between aggressive prostate cancer and nonaggres-
sive prostate cancer. Here, we will focus on finding genes that
are differentially expressed between metastatic prostate can-
cer (i.e., cancer that has spread to other organ sites) versus
localized prostate cancer.

Methods for dealing with differential expression in the
multiple testing setting have been the subject of much
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research interest in the recent statistical literature. Meth-
ods for controlling the familywise error rate (FWER) and re-
lated quantities have been proposed by Ge, Dudoit, and Speed
(2003) and by van der Laan, Dudoit, and Pollard (2004). Sev-
eral authors have argued that control of the FWER is too
stringent and have advocated the use of the false discovery
rate (FDR), proposed by Benjamini and Hochberg (1995).
Methods for both controlling the FDR as well as estimat-
ing it directly have appeared in the recent statistical litera-
ture (e.g., Benjamini and Yekutieli, 2001; Efron et al., 2001;
Sarkar, 2002; Storey, 2002).

As noted by Storey (2002), there is an explicit mixture
model for the distribution of marginal test statistics from
which the positive FDR (Storey, 2003) and the FDR can be
estimated. In this article, we consider an alternative statistical
method that can be motivated from the same mixture model
for dealing with multiple testing. The procedures proposed
in this article, termed shrunken p-values for assessing differ-
ential expression (SPADE), have links to decision-theoretic
considerations (Berger, 1985). In particular, we study shrink-
age estimators for the p-value under both L; and L, loss
functions. In addition, the decision-theoretic framework al-
lows us to construct an optimal decision rule for the selec-
tion of differentially expressed genes that controls the num-
ber of false positives under L; loss, which we provide in
Section 4.3.

The structure of the article is as follows. A definition of
FDR in the multiple testing situation, along with previous
work, is reviewed in Section 2. In Section 3, we describe some
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Table 1
Outcomes of n tests of hypotheses
Accept Reject Total
True null 18] Vv g
True alternative T S ny
W% Q m

@ is the number of rejected hypotheses, and W=m — Q. U and
V are the number of true null hypotheses that are not rejected and
rejected, respectively. T and S are the number of true alternative
hypotheses that are not rejected, respectively.

decision-theoretic results in the case of single and multiple
hypotheses. In Section 4, we outline the SPADE method. A
key notion here is shrinkage toward the two components of
the mixture model. While such an idea has been pursued by
George (1986) for data from a normal mixture model, he did
not consider the case of a mixture model for p-values, nor did
he give approaches for estimation with observed data. Prac-
tical implementation of the SPADE methodology is discussed
and numerical comparisons with simulated and real data are
made in Section 5. We conclude with a brief discussion in
Section 6.

2. False Discovery Rate: Background
Our setup is that we have test statistics T, ..., T, for testing
hypotheses Hy;, i = 1,...,n. Of the n hypotheses, suppose
that for ny of them, the null is true. Using the following 2 x 2
contingency table, we can categorize hypotheses by whether
they are true or not and whether or not we reject or fail to
reject them. This is shown in Table 1.

Benjamini and Hochberg (1995) propose a method for con-
trolling the so-called FDR, defined as

FDREE[%’Q>O:| P(Q > 0).

The conditioning on the event [@ > 0] is needed because the
fraction V' /@ is not well defined when @ = 0. Several authors
have developed single-step methods for controlling the FDR
(Benjamini and Hochberg, 1995; Benjamini and Liu, 1999;
Benjamini and Yekutieli, 2001; Sarkar, 2002).

An alternative approach that has been taken in the recent
statistical literature is to fix a rejection region and to esti-
mate FDR. Storey (2002, 2003) considers a mixture model for
motivating the FDR. Define indicator variables Hy,..., H,,
corresponding to Ty, ..., T,, where H; = 0 if the ith null hy-
pothesis is true and H; = 1 if the ith alternative hypothesis is
true (¢ = 1,...,n). Hy,..., H, are a random sample from a
Bernoulli distribution where P(H; =0) =7y, i =1,...,n. If f;
and f; correspond to the densities to T; | H; =0 and T; | H; =
1(i=1,...,n), respectively, the density corresponding to the
marginal distribution of test statistics T4,..., T, is

) = mofo(t) + (1 —mo) fa(t)- (1)

Methods for FDR estimation based on (1) have been devel-
oped by several authors (Efron et al., 2001; Storey, 2002;
Pounds and Cheng, 2004; Dalmasso, Broét, and Moreau,
2005). While we assume here that the test statistics are
independent, several authors (Genovese and Wasserman,

Biometrics, December 2006

2004; Storey, Taylor, and Seigmund, 2004) have shown that
estimates of FDR are fairly robust to various forms of
dependence.

A related quantity to FDR is the positive false discovery
rate (pFDR) (Storey, 2003), defined as pFDR = E[% |Q > 0].
For the multiple testing context, an analogous quantity to p-
values based on pFDR, proposed by Storey (2002), is the ¢-
value. When inference is performed using p-values, rejection
regions for the null hypothesis are intervals of the form [0, ],
where 0 < ¢ < 1. The ¢-value corresponding to a given p-value
p is defined as

. . une
q(p) = inf pFDR(c) = inf { () } ; 2
where Fp is the distribution function for the p-value. This
corresponds to equation (21) in Storey (2002). ¢-values are
tailored to the multiple comparisons problem, and their use
is much like that of the p-value. Smaller ¢-values correspond
to greater evidence against a null hypothesis.

3. Hypothesis Testing in the Decision-Theoretic
Framework

We first start by considering the case of n = 1 hypothesis. In a

decision theory framework, we use the following loss functions:

for k =1, 2,

Ly (u, d) = |p = d(T)[*, ®3)

where p is the population quantity to be estimated and d is an
estimator or more generally, an element of the action space.
Note that if 4 and d can only take values 0 and 1, then for
k =1, (3) reduces to misclassification error.

For hypothesis testing, it is not clear what the parameter
being estimated is in a loss-based framework. We follow the
approach of Hwang et al. (1990) and take i to be an indicator
that the null hypothesis is true, that is, u = I(H = 0) using
the notation of Section 2. Thus, p takes only two values, 0
and 1. Note that the Bayes rules for L; and L, loss functions
are given by

dP(T) =I1{P(H=0|T) > 1/2}
and
dP(T)=P(H =0|T).

Note that both procedures are based on the posterior prob-
ability P(H = 0|T) but that for L, loss, the probability is
thresholded at 1/2 while it is unthresholded for L, loss. Thus,
the Bayes rule for L, loss takes two values, 0 and 1, while that
for L loss, its range is [0, 1].

We now go from one hypothesis to multiple hypotheses. In
terms of a loss function, we now consider

L(H,d) =Y |I(H; = 0) — di(T3)[", (4)

where H = (Hy,...,H,), k = 1, 2, and d; corresponds to d
in (3). The individual component Bayes rules from (4) for
k=1 and k = 2 are given by d™(T}) and d;*(T}), i =
1,...,n. The idea behind SPADE is that by pooling infor-
mation across genes, we can construct shrinkage estimators

of P(H; = 0|T;) or equivalently, P(H, = 0|T;), that will
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lead to reductions in risk behavior. This is known as the Stein
phenomenon (Berger, 1985, p. 360). The target estimand is
P(H; = 0|T;); this is the quantity that we will be construct-
ing shrinkage estimators for in Section 4. We note in passing
that shrinkage estimators of I{P(H,; = 0|7;) > 1/2} will not
lead to risk reductions because of the fact that only two values
can be obtained.

4. SPADE: Proposed Methodology
4.1 Shrinkage Estimation

The starting point for our methodology is (1). Observe that
(1) specifies a model for the test statistics, which we are
assuming to be independent. In the original article by Storey
(2002), the test statistics used for testing the hypotheses
H,,...,H, were the p-values. The FDR was estimated on
the basis of the p-values and estimating g, the proportion of
true null hypotheses, using a permutation scheme.

If we let pi,...,p, denote the p-values for testing
Hy,. .., Hy,, then the model induced by (1) is

iid
pl;---:pnNWOFU"_(l*WO)FVv (5)

where Fy is the cumulative distribution function (c.d.f.) of
U = Uniform(0,1) random variable and Fy is the cumula-
tive distribution function of the p-values under the alternative
hypothesis.

Our tack is to assume that each component of (5) specifies
a value for the probability of the null being true. Following
the arguments of George (1986), a James—Stein approach to
constructing shrinkage estimators for P(H; = 0]p;) is to cal-
culate for i = 1,...,n,

pl® = m(pi)pi; + {1 — m(ps) o, (6)
where
i —1
y 1A n(n )
Poi = Pi — 122(@71/2)2 (pi —1/2),
L i=1
[y (=)ot
JS = DPi — T ) 7
pi; =P Z(pi ) (pi — 1) (7)
L i=1
m oy
mo(p) = - - (8)

mp+ (L —m)Fv(p)  Fp(p)’

where p; and o? are the mean and variance corresponding to
Fy. Note that the 1/2 and 1/12 refer to the mean and vari-
ance of a Uniform(0,1) distribution. These adjusted p-values
are shrunken p-values that account for the multiple testing
problem. This describes the essence of the SPADE method-
ology. Note that the mixture distribution of the p-values is
providing two targets for shrinkage.

In fact, there are many choices for the definition of (8). We
have defined it in terms of the c.d.f.’s for the two components
of the mixture model. Suppose we consider an alternative def-
inition for (8):

0

mo + (L —m0) fv(p)’

7o(p) = 9)
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where fy is the density function for V. Then (9) is precisely
the local FDR (Efron et al., 2001) based on the p-value. We
prefer the use of (8)—(9) because of variance issues. In partic-
ular (9) will have greater variance than (8) because density
estimates tend to be much more variable than those based on
the c.d.f.

The SPADE methodology adjusts the univariate p-values
for the multiple testing problem by shrinkage in which the
shrinkage weights (8) or (9) are data adaptive. Here and in
the sequel, we consider (8). Suppose that a large fraction of
null hypotheses are true, that is, myp ~ 1. Then based on (8)
and (6), the p-value will be shrunk toward 1/2. By contrast, if
a majority of the null hypotheses are false, then the shrunken
p-value that adjusts for multiple testing will be weighted more
toward the mean of the p-values under the alternative hy-
pothesis. This shows how the SPADE methodology is data
adaptive. In addition, one can view the adjusted p-values as
empirical Bayes estimators of P(H;, = 0|p;), ¢ = 1,...,n,
similar to what has been done with the location parameter in
normal probability models (Berger, 1985, Section 4.5). Note
that the shrinkage factor presented here is an affine trans-
formation of the original p-values so that the ranking of the
original p-values is maintained.

It is interesting to note the relationship of the g¢value
method of Storey (2002) within this shrinkage framework.
If we shrink the p-value to 1 under the null hypothesis and
0 under the alternative, then using (6), we get that p;°
(i = 1,...,n) equals my(p;), which is bounded from below
by ¢(p;) from (2). Thus, there is a shrinkage aspect to the
g-value methods, albeit much more extreme than that being
proposed here. The shrinkage occurs because we are pooling
information across genes.

Another interpretation of (6) is as a doubly shrunken
p-value, shrunk toward each component of the mixture. This
idea was originally proposed by George (1986) in the context
of a normal probability model. There are several differences
between his work and ours. First, we are considering a mix-
ture model for the p-values, which is fundamentally different
from the normal model considered by George (1986). In ad-
dition, note that there are unknown population quantities in
(7) and (8) that need to be estimated. George (1986) pro-
vides no estimation procedure from observed data. Estimation
methodologies will be dealt with in Section 4.2.

4.2 Practical Implementation

The major issues in implementing SPADE are twofold. First,
7o needs to be estimated. This is the proportion of hypotheses
estimated to be truly null. Second, the c.d.f. for the p-values
under the alternative hypothesis also needs to be calculated.
This will then provide estimates of u; and o2 in (7). Observe
that (5) implies the following result for the cumulative distri-
bution of the p-values:

Fp(p) = mp+ (1 —m) Fy (p).

Simple algebraic manipulation of (10) yields

(10)

F — T
Fy(p) = —Pipz - op.

(11)

We can estimate Fp in (11) using the empirical distribu-
tion function of the observed p-values. Provided we have an
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estimator of m), we can then estimate F'y and subsequently
the mean and variance in (7). We use the empirical c.d.f. of Fp
in (8). Thus, the outstanding issue becomes one of estimating
mo. We consider three approaches to do this.

The first is the algorithm by Storey and Tibshirani (2003),
which has proven quite popular in the analysis of microarray
data. It is summarized as follows. First, we order the n p-
values as p1) < pe) < - < pm). Then, we construct a grid
of LA values, Ai,..., A and calculate

) #{p;, > A}

) =Ta

l=1,...,L. A cubic smoothing spline is then fit to the values
{A\, mo(N)},1=1,..., L. Consequently, 7 is estimated by the
interpolated value at A = 1.

The second is the spacings loess histogram (SPLOSH) algo-
rithm of Pounds and Cheng (2004). Their algorithm proceeds
by ordering the p-values and computing a local regression,
where the response variable is a transformed slope of the em-
pirical distribution function of the p-values and the indepen-
dent variable is a midpoint of the distribution function. Based
on the nonparametric regression fit, we get an estimator of
mo. Pounds and Cheng (2004) argue that their method is bet-
ter than the ¢g-value method of Storey and Tibshirani (2003)
because while the estimator of m; from the latter method
uses information to the left of A, SPLOSH uses information
from both directions. This implies that the SPLOSH estima-
tor should be more stable than the ¢-value estimator.

The last method for 7 is based on the location-based es-
timator (LBE) algorithm of Dalmasso et al. (2005). The mo-
tivation of this method is based on the asymptotic normality
of estimators of 7y using the central limit theorem. Dalmasso
et al. (2005) consider an approach in which the p-values are
transformed, and an estimator of 7, is calculated as a back-
transformation from the empirical distribution of the trans-
formed p-values. There are many potential transformations
that satisfy the necessary technical conditions in Dalmasso et
al. (2005); they consider the following estimator of my:

n Y [ log(1 - pi))™

m!

; (12)

where m is an integer that needs to be estimated. The role of
m is similar to that of a bandwidth in nonparametric regres-
sion. Larger values of m correspond to decreasing bias in the
estimate of my, while smaller values of m lead to decreased
variance in the estimate of my. Thus, we see a bias-variance
tradeoff based on the choice of m. Dalmasso et al. (2005) sug-
gest the following rule for the choice of m:

(2m>1
m )
-7 <]

n =

Ty =

m = max | 1, max

m

where [is a postulated value for the variance of 7. The perfor-
mance of SPADE with 7y estimated from the three algorithms
is assessed in a simulation study in Section 5.1.

4.3 Misclassification Error and Terminal Stopping Rules

So far we have focused on estimation of strength of evidence
measures in the multiple testing context. The class of esti-
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mators has been motivated by decision-theoretic ideas. While
not the focus of the article, the decision theory framework can
be used to find classes of procedures that appropriately con-
trol the number of false positives in the multiple comparisons
setting.

We consider the case where the loss function corresponds to
misclassification error. Thus, for n hypotheses, either the null
or alternative is true, and we decide in favor of one of them.
Thus, for a single hypothesis, the decision is d = 1 (reject
the null) or d = 0 (fail to reject the null). For an individual
hypothesis, the loss is given by

0, reject Hy; when H; = 1 or fail to reject
Hy; when H; = 0;

Li(H;,di) =
( ) 1, reject Hy; when H; = 1;

cg, fail to reject Hy; when H; = 1. (13)
Note that in (13), ¢ can be viewed as the relative cost of a
type II error relative to a type I error for a single hypothesis.
Over the n hypotheses, the loss function is given by L(6,d) =
E?:lL’i(H’i7 dz)

Based on this loss function, the number of false discover-
ies is given by FD = 3" L;(0,1), while the number of false
nondiscoveries equals FN = """ L;(1,0). The FDR and false
nondiscovery rates (FNR) are given by

FD
FDR = —;
S
i=1
and
FNR— — N

n

andi—Fa

i=1

where a is a constant. Note that we have included a in the
definition of FDR and FNR to allow for the situation where
0 or n hypotheses are rejected.

In multiple testing situations, we desire to control the ex-
pected proportion of false discoveries. This can be through
control of either FDR or FD. Suppose we consider the follow-
ing two-dimensional criterion functions:

Ll(H, d) = {E(FD),E(FN)}
and
LQ(H7 d) = {E(FDR), E(FNR)}.

When dealing with multidimensional optimization criterion
functions to minimize, a standard approach is to minimize
one component subject to constraints on the others (Keeney,
Raiffa, and Meyer, 1976). Thus, we may either find a decision
rule that minimizes E(FN) subject to E(FD) < a;y or that
minimizes E(FNR) subject to E(FDR) < a,. Interestingly,
under the misclassification loss function, the optimal rules
have very similar forms. The following result can be derived
using arguments similar to those in the proof of Theorem 1
of Miiller et al. (2004):
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LEMMA 1: Under loss functions L' and L?, the optimal de-
cision takes the following forms, respectively:

d;)pt,l :I{P(H: 1|Tl) > ti}:

where t} = min{s: E(FD) < oy} and
dP? =I{P(H =1|T)) > t;},
where t5 = min{s: E(FDR) < ax}, i =1,...,n.

Based on Lemma 1, we have a simple algorithm for selecting
hypotheses in a way that controls false positives. We will not
discuss implementation of the procedure here and will leave
it as a topic for future research.

5. Numerical Examples
5.1 Simulation Studies

To evaluate the proposed procedures, we performed several
simulation studies. In these numerical experiments, p-values
were generated from model (5) with Fy being the c.d.f. for
a uniform[0,1] distribution and Fy being the c.d.f. for a beta
distribution under three scenarios, which we refer to as small,
medium, and large. The adjectives refer to the discrepancy of
the p-value from the null hypothesis:

(1) Small: beta distribution with parameters o = 3 and
B = 4. This choice of parameters gives a mean of 3/7
and a variance of 3/98 for the distribution of p-values
under the alternative hypothesis.

Medium: beta distribution with parameters o = 3 and
B = 12. This choice of parameters gives a mean of 3/15
and a variance of 1/100 for the distribution of p-values
under the alternative hypothesis.

Large: beta distribution with parameters a = 3 and 8 =
50. This choice of parameters gives a mean of 3/53 and
a variance of approximately 0.001 for the distribution of
p-values under the alternative hypothesis.
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For each simulation setting, we generated 1000 data sets.
We considered sample sizes n = 10,000 and 7, values of
0.2, 0.5, and 0.8. Our results did not change substantially
with sample sizes n = 2000 and n = 5000; we do not re-
port those results here. The ¢value estimation procedures
proposed by Storey (2002), Pounds and Cheng (2004), and
Dalmasso et al. (2005) were used; we refer to them as
Q-valuel, Q-value2, and @-value3. The shrunken p-value pro-
cedures based on the three algorithms described in Section 4.2
were also studied. The algorithm of Pounds and Cheng (2004)
uses a local regression; the span used is the default value of
0.75. For the Dalmasso et al. (2005) method, we chose the
default value of m = 1. The results using mean square error
and Ly =n~'Y " |I(H; = 0) — d;| are presented in Table 2.
We also studied performance using a misclassification error
criterion; for this situation, we thresholded the ¢-value or the
shrunken p-value at 1/2; the results are provided in Table 3.
Because the methods are virtually indistinguishable in Ta-
ble 2, we focus our attention on Table 2.

The simulation sheds light as to the decision-theoretic
performance of the ¢-value methods as well as the proposed
methods. In Table 2, we see that the L; error for the ¢-value
methods is lower than for the other three methods; this is
based on the fact that the shrinkage of the ¢-values is toward
0 and 1 in the double shrinkage framework outlined earlier.
In Table 2, this is not always the case. In particular, when
7o is small, then the proposed methods are quite competitive
with the ¢-value. In fact, for smaller values of 7, the ¢-value
estimator of my becomes quite unstable. The instability in the
g-value-based estimator of 7y has also been noticed by Pounds
and Cheng (2004). If the groups being compared in the dif-
ferential expression analysis represent grossly different pheno-
types, then we would expect my to be small. For more subtle
phenotypes, the value of 7 is larger; this is precisely where the
g-value method will perform at its best. In addition, we find

Table 2
Estimated risk from simulation studies
Loss Effect 0 Q-valuel Q-value2 Q-value3 SPADE1 SPADE2 SPADE3
Lo Small 0.2 0.179 0.171 0.200 0.181 0.174 0.1582
0.5 0.264 0.290 0.340 0.333 0.358 0.302
0.8 0.165 0.190 0.240 0.333 0.380 0.31
Medium 0.2 0.161 0.170 0.200 0.176 0.182 0.176
0.5 0.251 0.212 0.500 0.348 0.326 0.348
0.8 0.162 0.143 0.230 0.385 0.384 0.386
Large 0.2 0.161 0.170 0.200 0.177 0.182 0.176
0.5 0.252 0.212 0.500 0.348 0.330 0.348
0.8 0.161 0.143 0.210 0.385 0.384 0.386
Ly Small 0.2 0.235 0.253 0.200 0.223 0.235 0.282
0.5 0.391 0.382 0.491 0.433 0.424 0.433
0.8 0.365 0.424 0.535 0.564 0.596 0.549
Medium 0.2 0.240 0.198 0.200 0.195 0.196 0.195
0.5 0.391 0.373 0.495 0.429 0.428 0.430
0.8 0.370 0.354 0.602 0.572 0.571 0.573
Large 0.2 0.198 0.196 0.200 0.195 0.196 0.195
0.5 0.391 0.375 0.500 0.433 0.424 0.433
0.8 0.370 0.353 0.620 0.573 0.571 0.573

Q-valuel, @Q-value2, and @-value3 refer to the methods of Storey and Tibshirani (2003), Pounds and Cheng (2004),
and Dalmasso et al. (2005). SPADEL1 is the SPADE methodology, where 7 is estimated using the algorithm of Storey
and Tibshirani (2003); SPADE2 is based on the Pounds and Cheng (2004) method for estimation of mp; SPADE3 is
based on the Dalmasso et al. (2005) method for estimation of .
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Table 3
Estimated misclassification errors from simulation studies
Effect o Q-valuel Q-value2 Q-value3 SPADE1 SPADE2 SPADE3
Small 0.2 0.200 0.201 0.201 0.200 0.200 0.196
0.5 0.500 0.498 0.499 0.500 0.499 0.500
0.8 0.201 0.200 0.200 0.199 0.201 0.202
Medium 0.2 0.202 0.197 0.198 0.201 0.198 0.201
0.5 0.497 0.502 0.499 0.498 0.499 0.497
0.8 0.201 0.200 0.196 0.201 0.202 0.200
Large 0.2 0.198 0.202 0.200 0.201 0.199 0.198
0.5 0.499 0.497 0.499 0.501 0.500 0.499
0.8 0.202 0.201 0.200 0.199 0.198 0.201

See the footnote in Table 2.

that the difference between the SPADE procedures with the ¢-
value method diminishes for larger numbers of tests. This also
suggests that shrinkage will be powerful in high-dimensional
situations. We also note that collectively, the SPADE esti-
mators tend to have more stable behavior than the ¢-value
methods. This suggests that the SPADE methods are not as
sensitive to the m, estimator as are the ¢-value methods.

One point of note is that (6) is constructed using squared
error loss, which might not be the most appropriate scale for
p-values. We also studied a modification of the procedure in
Sections 3 and 4.2 in which transformed p-values based on
twice the negative log p-values were calculated, and double
shrinkage estimators were calculated on the transformed scale
and backtransformed. In simulation experiments not reported
here, this approach tended to have much worse performance
than the procedure described here.

5.2 Microarray Example

We now return to the microarray data described in the In-
troduction. Measurements were made on n = 9984 genes for
79 individuals. There are 59 localized prostate cancer samples
and 20 metastatic prostate cancer samples. Before analyzing
the data, we took the following preprocessing steps:

(1) Genes that were reported as missing in more than 10%
of samples were filtered out; and

(2) Genes that had a sample variation greater than 0.15
across all samples were retained.

This left a total of n = 5241 genes available for analysis.

We first calculated ¢-tests comparing gene expression in lo-
calized versus metastatic prostate cancer samples; we assumed
unequal variances between the two groups. For the purposes of
illustration, we used a normal approximation to calculate the
p-values. The estimated fraction of null hypotheses using the
Q@-value, SPLOSH, and LBE methods are 0.308, 0.460, and
0.331, respectively. The corresponding values of (p;, o) from
the method of moments procedure are (0.04, 0.15), (0.018,
0.21), and (0.024, 0.15), respectively. The SPLOSH method
gives a larger value for the proportion of nondifferentially ex-
pressed genes. However, the mean and variance for the distri-
bution of p-values under the alternative hypothesis appear to
be fairly concordant between the three methods.

We compared the adjustment in p-values using SPADE to
the ¢-value estimates provided by other procedures (@-value,
SPLOSH, LBE). These are given in Figures 1-3; each ¢-value

and corresponding SPADE method are plotted. Based on the
plots, we find that there is high shrinkage of p-values using
SPADE relative to all three methods. With the method of
Storey (2002) and SPLOSH, the relationship between the
shrunken p-values and ¢-values is monotone but nonlinear.
With the LBE-estimated ¢-values, the shrunken p-values tend
to show a more linear relationship.

6. Discussion

In this article, we have argued for a reinterpretation of the
mixture model for multiple testing that allows for the con-
sideration of shrinkage procedures. The work of Efron et al.
(2001) and Storey (2002) for the estimation of FDRs repre-
sents one method of pooling information across test statis-
tics. We have constructed an alternative procedure based
on a James—Stein construction for the p-values. The re-
sulting adjusted p-values from the SPADE procedure rep-
resent another method for addressing the multiple testing
issue. Our framework is quite general and, in fact, the ¢
value methods proposed in the literature fit into it quite
nicely.

While we have proposed new methods for multiple testing,
the simulation studies also showed the situations in which the
g-value (Storey and Tibshirani, 2003) performs relatively well.
Namely, if the proportion of true null hypotheses is large, then
the g-value will perform well. If the proportion is small, then
the estimate of my will be unstable, which will lead to poor
performance of the ¢-value.

The multiple testing procedure proposed in the article is
based on shrinkage estimation. This is also a common ele-
ment in Bayesian testing procedures. It has been noted that
Bayesian adjustment to the multiple testing problem leads
to well-calibrated and more conservative inference procedures
than non-Bayesian methods (Gelman and Tuerlinckx, 2000).
Based on the results in the real data example, that appears
to be the case here as well.

The decision-theoretic framework in which the FDR pro-
cedures have been studied complements the work of Storey
(2003), Miiller et al. (2004), and Bickel (2004). While we
have assumed here that the test statistics are independent,
we expect that the risk behavior of the estimated shrunken
p-values will be robust to dependence such as exchangeable
correlation due to the empirical Bayes construction. We are
also currently studying estimators for the decision rules in
Section 4.3.
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Figure 1. Plot of ¢values using Storey (2002) method

(horizontal axis) versus shrunken p-values from SPADE,
where 7, is estimated using the method of Storey and
Tibshirani (2003).
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Figure 2. Plot of g¢-values using Pounds and Cheng
(2004) method (horizontal axis) versus shrunken p-values
from SPADE, where 7 is estimated using the method of
Pounds and Cheng (2004).

Because of the availability of software for FDR estimation
procedures (Storey, 2002; Pounds and Cheng, 2004; Dalmasso
et al., 2005), implementation of the SPADE methodology is
very straightforward. R functions implementing the proposed
procedures can be obtained from the author.
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Figure 3. Plot of ¢values using Dalmasso et al. (2005)
method (horizontal axis) versus shrunken p-values from
SPADE, where 7 is estimated using the method of Dalmasso
et al. (2005).
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