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Summary. In clinical and observational studies, recurrent event data (e.g., hospitalization) with a terminal
event (e.g., death) are often encountered. In many instances, the terminal event is strongly correlated with
the recurrent event process. In this article, we propose a semiparametric method to jointly model the
recurrent and terminal event processes. The dependence is modeled by a shared gamma frailty that is
included in both the recurrent event rate and terminal event hazard function. Marginal models are used
to estimate the regression effects on the terminal and recurrent event processes, and a Poisson model is
used to estimate the dispersion of the frailty variable. A sandwich estimator is used to achieve additional
robustness. An analysis of hospitalization data for patients in the peritoneal dialysis study is presented to
illustrate the proposed method.
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1. Introduction
Data on recurrent events frequently arise in clinical and obser-
vational studies. Examples include repeated hospitalizations,
the occurrence of new tumors in patients with superficial blad-
der cancer, and the occurrences of opportunistic infections in
HIV-infected subjects. Various methods have been considered
for the analysis of recurrent events. These methods include
the complete intensity approach (e.g., Prentice, Williams, and
Peterson, 1981) and the marginal rate approach (e.g., Pepe
and Cai, 1993; Lawless and Nadeau, 1995; Lin et al., 2000).
In these approaches, it is assumed that, conditional on the
covariates in the model, the censoring is independent of the
recurrent events. In many instances, however, there exists a
terminal event, death for example, which precludes the occur-
rence of further events. Further, it is often the case that the
terminal event is strongly correlated with the recurrent event
process. More explicitly, if the rate of the recurrent event is
unusually high (low) in an individual, that individual is also
subject to increased (decreased) rate of death.

Methods of analysis of repeated events in the presence of a
terminal event can also be classified into two categories. There
are analyses that focus on the marginal rates of the recur-
rent and terminal events and complete intensity approaches
in which frailties are used to account for the correlation be-
tween the rates of recurrent and terminal events.

Marginal models have been considered by several authors.
In these, the rate functions are not taken to be complete in-
tensity functions but rather correspond to average rates that
would arise across the population (e.g., Ghosh and Lin, 2002).

The correlation between the recurrent event process and the

terminal event is left unspecified in these models. Frailty mod-
els or shared random effects models specify the dependence
between the recurrent events and the terminal event by allow-
ing a common frailty variable to have a multiplicative effect
on their respective rates. Thus, they assume that the complete
intensity of the recurrent events and the terminal event is fully
specified by the observed covariates and the unobserved frailty
(e.g., Wang, Qin, and Chiang, 2001; Huang and Wang, 2004;
Liu, Wolfe, and Huang, 2004). In all of the frailty models, it
is assumed that given the frailty, the recurrent event process
is a nonhomogeneous Poisson process and this plays a cen-
tral role in all aspects of the estimation. It is to be expected,
therefore, that the estimation procedures will be sensitive to
deviations from the Poisson assumption.

We propose a joint semiparametric model in which the cor-
relation between the terminal event and the recurrent event
is incorporated through the frailty. Our model for the event
rates has the spirit of a marginal model, however, in that it
is conditional only on the covariates (and the frailty) and not
on the previous history of the process. The estimation of the
regression coefficients is based on the estimating functions
for marginal rate models. Different from the marginal rate
model proposed previously, the proposed method provides a
way to estimate the degree of dependence between the two
processes.

The remainder of the article is organized as follows. In
Section 2, the model is specified. A series of estimating equa-
tions are specified to estimate the parameters in the models
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and numerical methods are described. In Section 3, the pro-
posed approach is compared with the method of Huang and
Wang (2004). Section 4 gives results of some simulation stud-
ies and the method is applied to the data from a prospective
study of peritoneal dialysis patients in Section 5. This article
concludes with some discussion in Section 6.

2. Model
Let Ci and Di be the censoring and death (or terminal event)
time and T ik be the kth recurrent event time for the ith sub-
ject, i = 1, 2, . . . ,n; k = 1, . . . ,mi. Let NR∗

i (t) =
∫ t

0 dNR∗
i (u)

be the actual number of recurrent events in the time in-
terval (0, t] for the ith subject and ND∗

i (t) = I(Di ≤ t) =∫ t

0 dND∗
i (u). Let Xi = min(Ci, Di, τ) and let Y i(t) = I(Xi

≥ t) be the at-risk indicator, where τ is the study end-
ing time. Two processes are observed during the time in-
terval [0, min(Xi, τ)], namely NR

i (t) =
∫ t

0 Yi(u) dNR∗
i (u) and

ND
i (t) =

∫ t

0 Yi(u) dND∗
i (u), where N R

i (t) and N D
i (t) are the

observed numbers of recurrent events and deaths, respec-
tively. The observed data for subject i at time t are de-
noted by Oi(t) = {Y i(u), NRi (u), NDi (u), 0 ≤ u ≤ t}. Let
Z̃(t) = {Z̃(u), 0 ≤ u < t} be the covariate history for an indi-
vidual and Z(t)T = {Z1(t), Z2(t), · · · } comprise functions of
Z̃(t). For simplicity, we consider that Z is time independent,
but the proposed joint model can easily incorporate time-
dependent covariates.

We consider a (partial) marginal rate of the recurrent
event given D = s and γ, which is defined as dΛR(t | γ) =
E[dNR∗ (t) | Z, D = s, γ], s ≥ t. It is the average rate of the
recurrent events at time t associated with Z for those individ-
uals with frailty γ and whose survival time is s, where s ≥
t. Note that dΛR(t) may depend on Z and the frailty γ, but
does not depend on death time s. This in effect assumes that
γ accounts for the correlation between the recurrent events
and death. Our method explicitly acknowledges the fact that
death stops further recurrent events in that, given t > D,
dNR∗(t) takes the value 0.

The joint semiparametric model that we consider can be
expressed as

dΛR(t | γ) = γ exp(βTZ) dΛ0R(t), (1)

dΛD(t | γ) = γ exp(αTZ) dΛ0D(t), (2)

where dΛD(t | γ) = P (dND∗(t) = 1 |D ≥ t, γ, Z) is the hazard
function for D, and dΛ0D(t) and dΛ0R(t) are the unspecified
baseline hazard function for death and the baseline recurrent
event rate, respectively. For convenience, we assume that the
frailty γ has a gamma distribution with mean 1, variance θ,
and density fθ(γ) = 1

Γ(1/θ)θ1/θ exp(−γ/θ)γ1/θ. As is the usual

convention for frailty models, the mean E[γ] = 1 is fixed for
identifiability and the distribution of γ is assumed to be in-
dependent of Z. It should be noted that the joint model can
handle different covariate vectors in the recurrent event and
death rate model by fixing the appropriate elements of α and
β to 0. The above model can also be generalized to allow
different effects of frailty on the recurrent event process and
death as in Liu et al. (2004).

The following additional assumptions are made for the joint
model:

1. Censoring is independent. Thus the distribution of cen-
soring time C may depend on Z but not on γ, NR∗(.), or
ND∗(.), i.e.,

lim
h→0

1

h
P (t ≤ C < t + h |Z,NR∗(u), ND∗(u), γ, 0 < u < t)

= lim
h→0

1

h
P (t ≤ C < t + h |Z).

2. The recurrent event process and death process are con-
tinuous. As such, the recurrent event and death cannot
happen at the same time.

3. For the purpose of estimating the distribution of γ, we
assume that given Z and γ, the recurrent event process
NR∗(·) before death follows a nonstationary Poisson pro-
cess with intensity function γ exp(βTZ) dΛ0R(t).

If the frailty, γ, is known, the estimating equations for α
and β are as discussed in Lin et al. (2000) and are identical
to those that arise from the usual partial likelihood (Cox,
1972). However, γi is not observed. Therefore, we consider an
induced marginal model for α and β,

dΛR(t) = E[dNR∗(t) |Z,D ≥ t],

dΛD(t) = E[dND∗(t) |Z,D ≥ t].

Taking the conditional expectation of (1) and (2) given Z and
D ≥ t, we obtain

dΛR(t) = w(t) exp(βTZ) dΛ0R(t), (3)

dΛD(t) = w(t) exp(αTZ) dΛ0D(t), (4)

where w(t) = E[γ | D ≥ t, Z] = {1 + Λ0D(u)exp(αTZ)θ}−1

under the assumed gamma distribution for γ. Given w(t), the
models (3) and (4) have a standard proportional rate/hazard
form. Estimating equations for α and β can be obtained by
taking the first derivatives of the pseudo-partial likelihood
arising from (3) and (4), treating w(t) as a known function.
To estimate Λ0D and Λ0R, we use the Nelson–Aalen type esti-
mators. In order to estimate θ, we use likelihood methods and
introduce the assumption that conditional on γ, the recurrent
event process follows a nonhomogeneous Poisson process with
intensity dΛR(t | γ). Let δik be the indicator of the recurrent
event at time tik. The likelihood based on γi and the observed
data Oi(τ) is

L(Oi(τ), γi)

=
{
γi exp

(
αTZi

)
dΛ0D(Xi)

}∆i × exp{−γidi}

× exp{−γiri} ×
mi∏
k=1

{
γi exp

(
βTZi

)
dΛ0R(tik)

}
fθ(γi),

where ∆i = I(Di ≤ min(Ci, τ)), ri =
∫ ∞

0 Yi(u) exp(βTZi) ×
dΛ0R(u), di =

∫ ∞
0 Yi(u) exp(αTZi) dΛ0D(u), and mi is the

number of recurrent events experienced by the ith subject.
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Integrating over γi and taking a product over i give the
likelihood

L(θ) =

n∏
i=1

L(Oi(τ)) ∝
n∏
i=1

Γ(mi + ∆i + 1/θ)

Γ(1/θ)θ1/θ(ri + di + 1/θ)(ci+1/θ) .

(5)

Differentiating the logarithm of (5) with respect to θ gives
the estimating equation for θ. As noted earlier, the Poisson
assumption is only utilized in the estimating equation for θ
but not directly in the estimation of α and β.

Let η = (β, α, θ, dΛ0D, dΛ0R) and for a parameter φ (e.g.,
φ = α) define

S
(k)
1 (φ, t) = n−1

n∑
i=1

Yi(t)wi(t)Z
⊗k
i exp

(
φTZi

)
,

(k = 0, 1, 2), where a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT . Fur-
ther, let tR1, . . . , tRm be the ordered distinct recurrent event
times and tD1, . . . , tDf the ordered failure times. Estimates of
the intensities are discrete with jumps at the distinct event
times. We let λ0R = (λ0R1, λ0R2, . . . ,λ0Rm)T and λ0D = (λ0D1,
λ0D2, . . . ,λ0Df )

T , where λ0Rj = dΛ0R(tRj ), j = 1, . . . ,m, and
λ0Dj = dΛ0D(tDj ), j = 1, . . . , f . Define dRj and dDj as the num-
ber of recurrent events at tRj and the number of deaths at tDj ,
respectively. Note that the ties are being handled using the
Breslow approximation (Kalbfleisch and Prentice, 2002, Sec-
tion 4.2.3). The unbiased estimating equations are U(η) =
(UT

1 , UT
2 , U 3, UT

4 , UT
5 )T = 0, where the components of U,

respectively, correspond to β, α, θ, λ0D, and λ0R. We have

U1 =

n∑
i=1

∫ ∞

0

{
Zi −

S
(1)
1 (β, u)

S
(0)
1 (β, u)

}
dNR

i (u)

U2 =

n∑
i=1

∫ ∞

0

{
Zi −

S
(1)
1 (α, u)

S
(0)
1 (α, u)

}
dND

i (u)

U3 =
∂ logL(θ)

∂θ
.

Finally, the jth elements of U4 and U5 are

U4j = dDj − nS (0)
1 (α, tDj )λ0Dj , j = 1, . . . f (6)

U5j = dRj − nS (0)
1 (β, tRj )λ0Rj , j = 1, . . .m. (7)

Our numerical approach to solve U(η) = 0 converges
quickly and can be summarized as follows:

1. Let θ(0), α(0), and Λ
(0)
0D(u) be initial estimates. Typically,

we can set θ(0) = 1, α(0) = 0, and let Λ
(0)
0D(u) be the

Nelson–Aalen type estimate of the cumulative death haz-
ard for the sample.

2. Let w
(0)
i (u) = wi(u; Λ

(0)
0D, α(0), θ(0)).

3. Replace wi(u) with w
(0)
i (u) in U 1, U 2, U 4, and U5 and

solve the resulting equations U 1 = 0, U 2 = 0, U 4 = 0,
and U 5 = 0, respectively, for updated estimates β(1), α(1),
λ

(1)
0D, and λ

(1)
0R.

4. Given α(1), β(1), λ
(1)
0D, and λ

(1)
0R, update estimate of θ to

θ(1) from U 3(θ).

5. Replace θ(0), α(0), Λ
(0)
0D(u) with θ(1), α(1), and Λ

(1)
0D(u). Re-

peat Steps (2)–(4) until the estimates of θ, α, and β
converge.

In order to establish the asymptotic results for this ap-
proach, it seems that we will need at a minimum the following
four conditions for i = 1, . . . ,n:

� {N R
i (.), N D

i (.), Zi(.), γi} are independently and identi-
cally distributed.

� Pr(Ci ≥ τ) > 0.
� N R

i (τ) is bounded by a constant.
� A = −n−1∂U(η)/∂ηT is positive definite with probability

1.

These regularity conditions are similar to those of Lin
et al. (2000). Under these conditions, the proposed procedure
should lead to consistent estimation of all parameters (α, β,
θ, Λ0D(u), Λ0R(u), u < τ) and the profiled scores for α, β,
θ should be asymptotically normal. Following the approach
of Lin et al. (2000), it can be seen that the components of
U 1, U 2, and U3 are asymptotically uncorrelated random vari-
ables, and by arguments developed there, a central limit the-
orem would apply. These estimating equations, however, also
contain the functions Λ0D and Λ0R which are estimated using
the Nelson–Aalen type estimators as in equations (7) and (6).
Uncertainty in these estimates would need to be accounted
for in the asymptotic results for β̂, α̂, and θ̂.

Following Murphy (1995), we consider a discrete version
of the baseline hazard and rate functions with jumps only at
the distinct event times. Let A(η) be defined as above and
let Σ(η) = n−1

∑n

i=1 Ui(η)
⊗2. The partial derivatives of the

U(η) are listed in the Appendix. Let η̂ be the estimate of
η and let Â = A(η̂) and Σ̂ = Σ(η̂). Analogous to the results of
Murphy (1995) and Parner (1998), we expect that the asymp-
totic distribution of α̂, β̂, and θ̂ should be asymptotically nor-
mal with covariance estimated by the appropriate submatrix
of Â−1Σ̂(Â−1)T . By using the sandwich estimator, our estima-
tion should be robust to deviations from the Poisson process
assumption and should also account for possible correlations
induced by only making marginal assumptions on the death
and recurrent event rates. Additional work is needed in de-
veloping a full asymptotic treatment of this approach.

The dimension of A will increase as the sample size in-
creases, which might lead to calculation difficulties for large
samples. However, it is possible to simplify the calculation so
that we need only numerically invert a matrix of smaller di-
mension. Let ηT

1 = (βT , αT , θ, λT
0D), η2 = λ0R, U (1)(η) = (UT

1 ,
UT

2 , U 3, UT
4 )T , and U (2)(η) = U 5, and write

A =

(
A11 A12

A21 A22

)
= n−1

−∂U (1)(η)

∂ηT
1

−∂U (1)(η)

∂ηT
2

−∂U (2)(η)

∂ηT
1

−∂U (2)(η)

∂ηT
2

 .

The dimension of A is 2p + 1 + f + m, which may be large
as the sample size increases. The direct numerical inversion
may be time consuming. Because A22 is a diagonal (m × m)
matrix, however, calculation is simplified by noting that

A−1 =

(
A11 A12

A21 A22

)−1

=

(
J−1 −J−1F2

−F1J
−1 A−1

22 + F1J
−1F2

)
,

where F 1 = A−1
22 A21, F 2 = A12A

−1
22 , and J = A11 − A12F 1.

It follows that only a matrix of dimension 2p + 1 + f need
be inverted directly. One could also let η1 = (β, α, θ) and
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η2 = (λ0D, λ0R). In this case, a matrix of dimension 2p +
1 needs to be inverted directly in addition to the relatively
straightforward inversion of an upper triangular matrix of
dimension m + f corresponding to the partial derivatives
−∂U (2)(η)/∂ηT

2 . Another possible approach is to use boot-
strapping methods to estimate the standard errors of the es-
timators so that no matrix inversion is needed. Finally, in
very large samples, a piecewise constant model for the base-
line hazard and rate functions with a fixed number of jump
points could be fitted to avoid computational difficulties.

3. Comparison
Wang et al. (2001) considered the analysis of recurrent events
in a case where the censoring may be dependent. Let Cdi be
the dependent censoring time for subject i (i = 1, 2, . . . ,n)
and let γ† be a nonnegative latent frailty type variable with
mean µ. No parametric assumption is made on the distri-
bution of γ†. Conditional on γ† and Z, it is assumed that
NR∗(t) is a nonhomogeneous Poisson process with intensity,

dΛR(t) = γ† dΛ†
0R(t) exp(βTZ), (8)

where dΛ†
0R(t) is the continuous baseline intensity function

with
∫ τ

0 dΛ†
0R(u) = 1 and β measures the covariate effect on

the average rate of the recurrent event. Their crucial assump-
tion is that conditional on γ†, Cd is independent of NR∗(t).

The estimation procedure of Wang et al. (2001) relies on
the Poisson assumption. Specifically, it is noted that given
(γ†

i, Cdi, Zi, mi), the observed times (T i1,T i2, . . . ,T imi
) are

the order statistics of a set of independent and identically
distributed random variables with density function πi(t) =
λ†

0R(t)/Λ†
0R(Xi), 0 ≤ t ≤ Xi. Here, mi is the number of events

occurring before Xi = min(Cdi, τ).
Note that the conditional density πi(t) does not depend on

γ†
i or zi and πi(t) is a truncated density function of λ†

0R(t).

The cumulative distribution of λ†
0R(t), Λ†

0R(t), can be esti-
mated by a nonparametric maximum likelihood estimator,
which has a simple product-limit form,

Λ̂†
0R(t) =

∏
tRj>t

(
1 −

d(Rj)

R(j)

)
, (9)

where R(j) is the total number of events with event time and
observed terminating time satisfying {tik ≤ tRj ≤ Xi}, k =
1, . . . ,mi, and j = 1, . . . ,m. Therefore, the estimating equa-
tion of β can be formed by applying the information obtained
from Λ†

0R(t). The class of estimating equation is defined as

n−1
n∑
i=1

Z̄T
i

{
miΛ

†
0R(Xi)

−1 − exp
(
βT
a Z̄i

)}
= 0,

where Z̄i = (1, Zi)
T and the augmented βT

a = {ln (µ), βT }.
Huang and Wang (2004) extended the method to incorpo-

rate situations where one aspect of informative censoring is
associated with a terminal event (e.g., death). By adding a

model for the intensity of the death process to (8), their joint
complete intensity model can be expressed as

dΛR(t) = γ† dΛ†
0R(t) exp(βTZ),

dΛD(t) = γ† dΛ†
0D(t) exp(αTZ), (10)

where Λ†
0D is the baseline cumulative hazard. Thus, they as-

sume that conditional on Z and γ†, (NR∗(t), Cd, D) are mu-
tually independent and NR∗(t) is a nonhomogeneous Poisson
process. Note that this model is based on an assumed latent
process of recurrent events that continue past the death time
D so that the methods of Wang et al. (2001) can be directly
applied to obtain an estimate of β. It is then proposed to
estimate γ†

i by

γ̂†
i =

mi

Λ̂†
0R(Xi) exp β̂TZi

,

and plugging γ̂†
i into the score function from (10), α can be

estimated. Empirical process theory was used to study the
large-sample properties of α̂ and Λ̂†

0D(t).
The differences from our suggested model (MR model) and

this nonparametric frailty approach (NPF model) proposed
by Huang and Wang (2004) can be summarized as follows:

1. The NPF model assumes that conditional on the frailty
variable γ†, the recurrent event process is independent of
the death process. In the MR model, we recognize the
fact that death stops further recurrent events, and the
marginal rate is defined as dΛR(t) = E[dNR∗(t) | Z, D =
s, γ], for s ≥ t, which incorporates a kind of conditional
independence. This gives the rate of recurrent events
among individuals who are alive at time t. The recurrent
event process is not independent of the death process
even conditional on the frailty. The NPF model could
be redefined in a similar manner to avoid the need for
assuming a latent recurrent event process.

2. The independent censoring assumption is relaxed via the
use of frailty in the NPF model. The assumption, how-
ever, is required for the MR model. It can be relaxed,
but it requires modeling of the censoring distribution or
the use of an inverse weighting method to adjust for the
dependence.

3. For both models, the frailty is assumed to act as a multi-
plicative factor on both the hazard and the rate functions
and thus induces the dependence between the recurrent
event process and the death process. The frailty distri-
bution is left nonparametric in the NPF model whereas
it is modeled in the MR model. As a consequence,

• Direct inferences about the relationship between the
recurrent event process and the death process are not
made in the NPF model. In the MR model, the cor-
relation is modeled by the parameters of the frailty
distribution, for example, the variance θ in the gamma
frailty model. Let r1(t) = E[NR∗

i (t) | Y i(t) = 1, Zi,
dND∗

i (t) = 1] and r2(t) = E[NR∗
i (t) | Y i(t) = 1, Zi,

dND∗
i (t) = 0]. Then r1(t)

r2(t) = θ + 1. For instance, if θ =

1, the expected number of recurrent events in (0, t]
for individuals who die at time t is twice the expected
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number for individuals with identical covariates who
are known to survive until time t. On the other hand,
if θ = 0, the expected number of recurrent events would
be the same no matter whether the individual is known
to die at time t or survive until time t. In this way, θ =
0 indicates the independence of the two processes.

• The parametric assumption made in the MR model
may not be robust to the misspecification of the frailty
distribution though the efficiency should be increased.
We performed some simulations in Section 5 to assess
the performance of the proposed estimators when the
gamma distribution is correct and when it is misspec-
ified.

4. Time-dependent covariates are not allowed in the NPF
model, but can be easily handled by the MR model.

5. Though the correlation between the recurrent event and
death processes is modeled by the frailty, the NPF ap-
proach uses separate procedures for the estimation. In-
formation from the death process is not used in the es-
timation of β, and extra variation is brought to the es-
timation of α by γ̂†. The MR model takes advantage
of the assumed correlation and more efficiency should
be expected. On the other hand, because the estimat-
ing equations in the MR model are more complicated in
the way that the nonparametric and parametric compo-
nents interact, asymptotic properties are more difficult
to establish.

6. The Poisson assumption is made in both models for the
recurrent event process. It is the key to estimation of
the baseline rate in the NPF model, whereas in the MR
model, the assumption is only applied for updating θ.
Thus, it is expected that the MR model could be more
robust to the departures from the Poisson assumption.

7. The nonparametric estimator of the baseline rate func-
tion in the NPF model (9) does not use the assumption
that ΛR(t) = γ dΛ0R(t) exp (βTZ) as the Nelson–Aalen
estimator does in the MR model. As a consequence, we
expect the NPF model to be less efficient than the MR
model.

4. Simulation Study
Simulations were carried out to evaluate our proposed method
and to compare the MR model to the NPF model. One sin-
gle binary covariate, Z, was generated taking values 1 or 0
with probability 0.5. The censoring time was taken to follow
a continuous uniform distribution on [1,10]. Given the frailty
γ and the covariate Z, a subject’s recurrent event process was
a nonhomogeneous Poisson process with the corresponding
intensity function dΛR(t) = γ exp (βZ)dt. Similarly, the ter-
minal event time was generated from an exponential distribu-
tion with hazard dΛD(t) = 0.2γ exp (αZ) dt. Thus Λ0R(t) = t
and Λ0D(t) = 0.2t.

Simulations were carried out for the settings described in
Table 1. In all settings, except Ie and If , γ follows a gamma
distribution with unit mean and variance θ. In setting Ie, γ
follows a log-normal distribution with unit mean and variance
0.65; in setting If , γ is generated as one tenth of a Poisson
variable with mean 10. This has a variance of 0.10, which is
close to independence. It is the same as one of the settings

in the simulation study of Huang and Wang (2004). We in-
creased the variance of the Poisson frailty on the suggestion of
a reviewer, and obtained similar results with respect to bias
(simulation not shown).

Table 2 presents results from the MR model and the NPF
model for settings Ia, Ib, Ie, and If . In the first two set-
tings, the frailty distribution is correctly specified for the MR
model. In settings Ie and If , the gamma frailty distribution
is misspecified and the goal is to compare the results from
the two models when the parametric assumption for γ is vi-
olated in the MR model. The empirical bias and the empiri-
cal standard deviation of the estimators for the four settings
are shown. The simulation study is based on 1000 simulated
samples. Also in settings Ia and Ib, the estimators of α and
β from both the MR and NPF models perform well in that
the empirical bias is small for both models. There seems to
be some small bias in the estimation of θ in the MR model.
The empirical standard errors for the estimates from the MR
model are smaller than those from the NPF model suggesting
that the MR model is a more efficient approach as expected.
There is no evidence of bias in the estimation of α and β for
either model in any of the cases considered and, in particular,
for the MR model when γ does not follow a gamma distribu-
tion. This lack of sensitivity to misspecification of the frailty
model is consistent with the simulation studies carried out by
Glidden and Vittinghoff (2004) for frailty models for clustered
survival data.

We also carried out a number of simulations to assess the
performance of the proposed sandwich estimators. In this
case, we considered different sample sizes (n = 100 and 200),
different coefficient values, and different distributions for γ.
The results are shown in Tables 3 and 4. It can be seen that
the variance estimates are accurate and the associated cov-
erage probabilities are close to the nominal level of 0.95 for
α and β. The coverage probabilities for θ seem to be slightly
lower than the nominal level. When the frailty does not follow
a gamma distribution as in Ie and If , the variance estimators
are very close to the empirical ones and the coverage probabil-
ities of the intervals for α and β are still close to the nominal
level.

5. Application
We now fit the proposed MR model to the CANUSA study
(Canada–U.S.A. Peritoneal Dialysis Study Group, 1998), a
prospective cohort study of end-stage renal disease patients
receiving peritoneal dialysis in Canada and the United States.
Patients were enrolled and followed between September 1,
1990 and December 31, 1992. The recurrent event of inter-
est is hospitalization and the terminal event is the failure of
peritoneal dialysis, which occurs at the minimum of the time
until death, technique failure, or withdrawal from peritoneal
dialysis.

A total of 680 patients were enrolled in this study; 42% were
female, 82% were Caucasian, and the average age was 54. The
number of hospitalizations per patient ranged from 0 to 23
with an average of about 1.7. About two thirds of the patients
were hospitalized at least once. Kidney transplantation was
performed on 19.1% of the patients and was considered as
random censoring. It is probably reasonable to treat kidney
transplantation as random censoring since patients are not



Correlated Recurrent and Terminal Events 83

Table 1
Settings for the simulation study

Setting I (n = 200) Setting II (n = 100)

Settings Ia Ib Ic Id Ie If IIa IIb IIc IId

α 0.5 0.5 0 0 0.5 0.5 0.5 0.5 0 0
β 0.5 0.5 0 0 0.5 0.5 0.5 0.5 0 0
θ 0.5 1 0.5 1 NA NA 0.5 1 0.5 1
E[mi] 3.05 2.73 2.72 2.45 3.05 3.38 3.06 2.75 2.73 2.47
E[∆i] 61.2% 54.5% 54.3% 49% 61.1% 67.4% 61.2% 54.8% 54.3% 49%

E[mi]: average number of recurrent events per subject.
E[∆i]: average percentage of subjects who experience the terminal event.
NA: not applicable.

Table 2
Comparison of MR model with NPF model based on 1000 simulated samples

Setting Ia: γ ∼ Γ, θ = 0.5 Setting Ib: γ ∼ Γ, θ = 1

MR model H&W model MR model H&W model

Parameter Bias ESE Bias ESE Bias ESE Bias ESE

β = 0.5 −0.003 0.152 0.0052 0.201 −0.005 0.213 0.0037 0.249
α = 0.5 0.011 0.232 0.014 0.262 0.002 0.278 0.006 0.293

θ −0.022 0.087 NA NA −0.031 0.147 NA NA

Setting Ie: γ ∼ log-Normal Setting If : γ ∼ Poisson

MR model H&W model MR model H&W model

Parameter Bias ESE Bias ESE Bias ESE Bias ESE

β = 0.5 −0.010 0.145 0.003 0.248 0.005 0.103 0.003 0.173
α = 0.5 −0.002 0.213 0.008 0.275 0.002 0.189 −0.000 0.225

Bias: empirical bias; ESE: empirical standard error; NA: not applicable.

Table 3
Simulation results for the MR model under settings Ia to If based on 1000 simulated samples

Setting I (n= 200)

Setting Ia Setting Ib

MR model Bias CSE ESE 95% C.P. Bias CSE ESE 95% C.P.

β̂ −0.004 0.154 0.149 0.956 0.004 0.209 0.220 0.937
α̂ 0.002 0.227 0.229 0.943 0.012 0.275 0.275 0.948

θ̂ −0.01 0.085 0.091 0.916 −0.022 0.145 0.154 0.925

Setting Ic Setting Id

MR model Bias CSE ESE 95% C.P. Bias CSE ESE 95% C.P.

β̂ −0.004 0.152 0.160 0.935 −0.013 0.204 0.206 0.946
α̂ −0.011 0.231 0.242 0.94 −0.007 0.274 0.277 0.95

θ̂ −0.012 0.088 0.091 0.934 −0.022 0.148 0.154 0.919

Setting Ie Setting If

MR model Bias ESE CSE 95% CI Bias ESE CSE 95% CI

β = 0.5 −0.010 0.145 0.147 0.954 0.005 0.103 0.098 0.936
α = 0.5 −0.002 0.213 0.222 0.959 0.002 0.189 0.185 0.943

CSE: mean of calculated standard error; ESE: empirical standard error; 95% C.P.: 95% confidence interval
coverage probability.
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Table 4
Simulation results for the MR model under settings IIa to IId based on 1000 simulated samples

Setting II (n = 100)

Setting IIa Setting IIb

MR model Bias CSE ESE 95% C.P. Bias CSE ESE 95% C.P.

β̂ −0.006 0.214 0.224 0.946 0.019 0.291 0.304 0.94
α̂ 0.015 0.321 0.333 0.936 0.034 0.390 0.400 0.958

θ̂ −0.026 0.117 0.121 0.890 −0.046 0.202 0.207 0.902

Setting IIc Setting IId

MR model Bias CSE ESE 95% C.P. Bias CSE ESE 95% C.P.

β̂ −0.011 0.212 0.220 0.939 −0.015 0.281 0.275 0.953
α̂ −0.007 0.327 0.353 0.935 −0.005 0.387 0.385 0.955

θ̂ −0.020 0.123 0.127 0.903 −0.06 0.204 0.216 0.891

CSE: mean of calculated standard error; ESE: empirical standard error; 95% C.P.: 95% confidence interval
coverage probability.

prioritized on the transplantation waiting list according to
their disease severity. By the end of the study, 50% of the
patients experienced a terminal event.

The covariates of interest include country (U.S.A. or
Canada), age, gender, race, causes of renal failure (polycys-
tic kidney disease, diabetes, renal vascular, glomerulonephri-
tis, and other causes), baseline renal clearance measure, non-
protein catabolic rate, percent lean body mass, serum albu-

Table 5
Analysis of CANUSA study

Peritoneal dialysis failure Hospitalization

Covariate α̂ ŜE P β̂ ŜE P

Country
U.S.A. 0.316 0.233 0.175 0.33 0.168 0.0499
Canada 0 . . 0 . .

Gender
Female −0.454 0.173 0.009 −0.097 0.13 0.456
Male 0 . . 0 . .

Race
Non-Caucasian −0.365 0.225 0.104 −0.261 0.153 0.089
Caucasian 0 . . 0 . .

Causes of renal failure
Polycystic kidney disease 0.330 0.352 0.349 0.199 0.270 0.463
Diabetes 0.160 0.248 0.518 0.818 0.198 <0.001
Vascular 0.388 0.358 0.278 0.803 0.283 0.005
Other 0.226 0.242 0.350 0.543 0.193 0.005
Glomerulonephritis 0 . . 0 . .

Age (per year) −0.006 0.006 0.365 −0.007 0.005 0.166
Nonprotein catabolic rate 0.096 0.367 0.794 0.382 0.269 0.155
Percentage of lean body mass −0.026 0.008 0.001 −0.014 0.005 0.010
Subjective global assessment −0.058 0.056 0.297 −0.066 0.041 0.107
Cardiovascular disease 0.141 0.169 0.402 0.162 0.130 0.213
Karnofsky score −0.081 0.069 0.242 −0.114 0.053 0.031
Baseline renal clearance measure 0.122 1.081 0.910 −0.143 0.861 0.868

(per 10 units)
Serum albumin −0.311 0.174 0.073 −0.238 0.122 0.051

(per 10 grams per liter)

min, subjective global assessment, cardiovascular disease, and
Karnofsky score.

The results of the analysis are summarized in Table 5. The
frailty parameter was estimated to be θ̂ = 0.990 with an es-
timated standard error 0.12 (P < 0.001). According to this
estimate, a patient who is known to fail from peritoneal dial-
ysis at time t is expected to have almost twice as many hos-
pitalizations as a patient who has not failed by time t. As one
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might expect, therefore, the rate of hospitalization is highly
associated with the rate of failure from peritoneal dialysis.
That is, patients with a high (low) hospitalization rate tend
to have a larger (smaller) chance of failure from peritoneal
dialysis.

After adjusting for the other covariates, the U.S. patients
tend to have a higher rate of hospitalization than the Cana-
dian patients (P < 0.05). However, no difference is found with
respect to the failure rate. The percentage of lean body mass
has a significant effect on both the failure rate and hospi-
talization rate; the higher the percentage of a patient’s lean
body mass, the lower the failure rate and hospitalization rate.
Female patients have a lower failure rate, but gender is not
found to be related to the hospitalization rate. In addition, pa-
tients whose renal failure is caused by diabetes, renal vascular
disease, or other reasons have a higher rate of hospitalization
than patients whose renal failure is from glomerulonephritis;
the cause of renal failure, however, does not seem to affect
the failure rate. Having a high Karnofsky score decreases the
estimated hospitalization rate but surprisingly not the failure
rate.

We also carried out a naive analysis of the hospitalization
rates, treating failure from peritoneal dialysis as a form of in-
dependent censoring. We fitted a marginal rate model and
obtained robust sandwich type estimators as in Lin et al.
(2000). The failure process was treated independently and an-
alyzed using an ordinary Cox model. The results are shown in
Table 6. Compared to the results in Table 5, and the coeffi-
cient, the parameter estimates are smaller in magnitude under

Table 6
Analysis of CANUSA study (naive method)

Peritoneal dialysis failure Hospitalization

Covariate α̂ ŜE P β̂ ŜE P

Country
U.S.A. 0.225 0.158 0.160 0.254 0.127 0.045
Canada 0 . . 0 . .

Gender
Female −0.331 0.123 0.007 0.010 0.103 0.920
Male 0 . . 0 . .

Race
Non-Caucasian −0.258 0.159 0.110 −0.164 0.117 0.162
Caucasian 0 . . 0 . .

Causes of renal failure
Polycystic kidney disease 0.242 0.251 0.340 0.123 0.215 0.568
Diabetes 0.125 0.170 0.46 0.789 0.163 <0.001
Vascular 0.285 0.241 0.24 0.789 0.218 0.001
Other 0.174 0.168 0.300 0.499 0.160 0.002
Glomerulonephritis 0 . . 0 . .

Age (per year) −0.004 0.005 0.400 −0.006 0.004 0.192
Nonprotein catabolic rate 0.085 0.265 0.750 0.375 0.224 0.094
Percent lean body mass −0.019 0.006 <0.001 −0.007 0.005 0.100
Subjective global assessment −0.042 0.041 0.300 −0.052 0.032 0.111
Cardiovascular disease 0.092 0.121 0.450 0.116 0.101 0.251
Karnofsky score −0.056 0.047 0.230 −0.091 0.040 0.023
Baseline renal clearance measure 0.090 0.877 0.920 −0.168 0.782 0.830

(per 10 units)
Serum albumin −0.215 0.119 0.071 −0.155 0.096 0.107

(per 10 grams per liter)

the naive model, which does not account for the dependence
between the two processes. This attenuation seems to be the
result of a positive correlation between the processes and the
fact that the effect of each covariate on the death and hospi-
talization processes is in the same direction.

6. Discussion
In this article, we have developed and analyzed a shared frailty
model for recurrent events in the presence of a terminal event.
The model is similar to the nonparametric frailty model pro-
posed by Huang and Wang (2004) and the analysis leads to a
notable increase of efficiency. Though a parametric assump-
tion for the frailty is made in the MR model, simulation stud-
ies suggest that the model is robust to deviations from that as-
sumption, at least in those cases considered. Time-dependent
covariates can be easily handled in the model and the anal-
ysis we propose. Thus, departures from proportional hazards
could be incorporated by introducing interactions with time.
One advantage of our method is that the degree of associa-
tion between the recurrent and terminal event processes can
be estimated through the estimation of the variance of γ. The
empirical variance of the γ̂w in the NPF model would tend
to overestimate the frailty variance since it would incorpo-
rate both the frailty variance and the variation due to the
underlying recurrent event process.

Liu et al. (2004) carried out maximum likelihood estima-
tion in their frailty model by assuming that the recurrent
events follow a nonhomogeneous Poisson process condi-
tional on the frailty. A Monte Carlo EM algorithm with a
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Metropolis–Hastings sampler in the E-step is adapted to ob-
tain the maximum likelihood estimator. The frailty effect
is allowed to be different for the two processes and time-
dependent covariates can be incorporated. As is often the
case, however, the EM algorithm is slow to converge and
the method is computationally much more intensive than
the method proposed here. The estimation method of Liu
et al. (2004) is based on a complete intensity model for re-
current events, and may therefore be expected to be sensi-
tive to departures from this assumption. On the other hand,
the proposed estimating equations combined with the use of
the sandwich estimator should make our method more ro-
bust. Finally, the computational procedure converges rela-
tively fast with the MR method, which makes bootstrapping
a practical option for standard error estimation. Liu et al.
(2004) also allow for different but related frailty effects on the
recurrent and terminal event processes. Our methods could
be similarly generalized to fit their model, although some
numerical integration methods would likely be needed. Al-
ternative models that allow separate frailties could also be
investigated.

In this article, we have assumed nonparametric forms of
Λ0R and Λ0D. The large sample properties are therefore diffi-
cult to verify fully. Murphy (1995) and Parner (1998) studied
the asymptotic properties of the shared gamma frailty model.
They provide a general approach which could possibly es-
tablish the asymptotic properties of our proposed parameter
estimators, but detailed arguments are still to be given. Sim-
ulation results suggest, however, that the proposed variance
estimators are accurate and we expect the proposed method
to be valid in many practical settings.

The estimation of θ in the proposed method requires the
assumption that conditional on frailty, the recurrent event
follows a nonhomogeneous Poisson process. It would be desir-
able to develop an estimation procedure which can relax this
assumption.
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Appendix

The partial derivatives of the joint estimating equa-
tion U (η) are listed in this section. For a parameter φ

(e.g., φ = α), we define S
(k)
1 (φ, t) = n−1

∑n

i=1 Yi(t)wi(t)Z
⊗k
i ×

exp(φTZi) and S
(k)
2 (φ, t)=n−1

∑n

i=1Yi(t)wi(t)
2Z⊗k

i exp(φTZi).
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The partial derivatives of U 1(β) are
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The partial derivatives of U 2(α) are
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The partial derivatives of U 3(θ) are
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The partial derivatives of the jth element of U 4(λ0R), j =
1, . . . ,m and U 5(λ0D), j = 1, . . . , f are straightforward and
are not shown here.


