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SUMMARY. In this article, we consider the setting where the event of interest can occur repeatedly for the same subject (i.e.,
a recurrent event; e.g., hospitalization) and may be stopped permanently by a terminating event (e.g., death). Among the
different ways to model recurrent/terminal event data, the marginal mean (i.e., averaging over the survival distribution) is
of primary interest from a public health or health economics perspective. Often, the difference between treatment-specific
recurrent event means will not be constant over time, particularly when treatment-specific differences in survival exist. In
such cases, it makes more sense to quantify treatment effect based on the cumulative difference in the recurrent event means,
as opposed to the instantaneous difference in the rates. We propose a method that compares treatments by separately
estimating the survival probabilities and recurrent event rates given survival, then integrating to get the mean number of
events. The proposed method combines an additive model for the conditional recurrent event rate and a proportional hazards
model for the terminating event hazard. The treatment effects on survival and on recurrent event rate among survivors are
estimated in constructing our measure and explain the mechanism generating the difference under study. The example that
motivates this research is the repeated occurrence of hospitalization among kidney transplant recipients, where the effect of
expanded criteria donor (ECD) compared to non-ECD kidney transplantation on the mean number of hospitalizations is of
interest.
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parametric model.

1. Introduction

Recurrent events are frequently of interest in clinical and
epidemiologic studies. Examples include repeated infections
among HIV patients and multiple hospitalizations in a health
services utilization study. A large variety of semiparametric
recurrent event models exist in the literature. These methods
can generally be classified as intensity models or mean/rate
models. Intensity models consider the instantaneous proba-
bility of event occurrence conditional on the event history
(e.g., Prentice, Williams, and Peterson, 1981; Andersen and
Gill, 1982), while mean/rate (the rate being the derivative of
mean) models consider the marginal mean number of events
(e.g., Pepe and Cai, 1993; Lawless and Nadeau, 1995; Lin
et al., 2000). Depending on the assumed form of the covariate
effects, recurrent event models can be classified as multiplica-
tive or additive. Proportional means/rates models assume co-
variate effects on a multiplicative scale, while additive models
assume them on an additive scale.

Often in biomedical applications, the recurrent event se-
quence can be stopped permanently by a terminating event
(e.g., death). Various approaches have been proposed for mod-
eling recurrent events in the presence of a terminating event
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(e.g., Cook and Lawless, 1997; Li and Lagakos, 1997; Ghosh
and Lin, 2000, 2002), and this area has attracted much atten-
tion recently (e.g., Huang and Wang, 2004; Liu, Wolfe, and
Huang, 2004; Ye, Kalbfleisch, and Schaubel, 2007). The ex-
isting approaches generally fall into one of three categories.
First, there are methods for modeling the marginal mean
number of events (e.g., Ghosh and Lin, 2000, 2002). In this
case, the mean averages over surviving and deceased subjects.
In the second category of methods, one models the condi-
tional recurrent event rate given survival. This is among the
approaches suggested by Cook and Lawless (1997), and was
mentioned by Lin et al. (2000). This method has been applied
quite frequently (e.g., Schaubel and Cai, 2005). A variation
of this approach employs a latent (frailty) variable (e.g., Liu
et al., 2004; Ye et al., 2007), conditional on which the re-
current and terminal events are assumed independent. The
marginal and conditional methods explicitly acknowledge the
fact that subjects no longer experience recurrent events after
death and that time to death may differ among the groups
being compared. The third approach considers death to be a
censoring event, with the recurrent events essentially being a
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latent process unobservable after death (e.g., Ghosh and Lin,
2003).

The example motivating our method is to compare the
mean number of hospitalizations for transplant recipients with
an expanded criteria donor (ECD) kidney and patients trans-
planted with a non-ECD kidney. An ECD is defined (Port
et al.,, 2002) as a deceased donor either (i) age >60, or
(ii) age 50-59 and with at least two of the following three
characteristics: hypertensive, serum creatinine concentration
>1.5mg/dl, or death due to stroke. The ECD (0, 1) classifi-
cation is a well-accepted quality index for donated kidneys in
the nephrology community. In fact, wait-listed patients will-
ing to accept an ECD kidney are essentially listed separately
and generally have reduced waiting time until transplant. The
relative frequency of ECD transplantation has increased over
time, and several authors have examined the impact of an
ECD on the posttransplant death hazard. Our analysis tar-
gets the impact of ECD transplantation on the mean number
of posttransplant hospitalizations. Hospitalization frequency
is a composite index of a patient’s health status and resource
utilization, and therefore serves as a concrete and objective
measure of posttransplant performance. Among transplant re-
cipients, hospitalizations can occur repeatedly for the same
patient and are often terminated by death.

Ghosh and Lin (2000) proposed nonparametric tests for
treatment-specific differences with respect to the marginal
mean number of recurrent events. The Kaplan—Meier estima-
tor for survival probabilities and a Nelson—Aalen estimator of
the conditional recurrent event rate function given survival
are integrated to calculate the recurrent event means. Ghosh
and Lin (2002) later proposed a semiparametric proportional
means model. The recurrent event rate after death was still
taken to be zero, and the marginal rates in the outcome are
implicitly averaged over the recurrent event rates of living and
deceased subjects.

Often investigators are more interested in the absolute dif-
ference between recurrent event means (as opposed to their
ratio), which suggests using an additive (as opposed to multi-
plicative) model. Schaubel, Zeng, and Cai (2006) extended the
method of Lin and Ying (1994) to develop an additive rates
model, but it was not designed to handle terminating events.
One could develop an extension of Schaubel et al. (2006) to ac-
commodate terminating events. However, treatment-specific
differences in mean number of events are often not constant
over time, particularly when the treatment-specific survival
functions differ. That is, as follow-up time, ¢, increases, due to
subjects dying, the composition of the study population will
shift and the pattern of the shift will be treatment-specific if
treatment affects survival. Therefore, treatment effects on the
recurrent event mean would not be expected to be constant
over time in the presence of treatment effects on survival. In
cases where the treatment effect depends on follow-up time,
the cumulative effect is of much greater interest for patient
decision making (at time ¢ = 0) than the instantaneous effect.

In this article, we propose a novel semiparametric method
for comparing treatment-specific recurrent event mean func-
tions in the presence of a terminating event. The proposed
method estimates the treatment effect as a process over time,
without forcing the effect to be a constant difference or ratio.
The method combines a proportional hazards model for the
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terminating event and an additive model for the conditional
recurrent event rate given survival, with the treatment effects
measured by differences in treatment-specific recurrent event
means.

In comparing treatments, investigators are often interested
in differences between treatment-specific means, which moti-
vates our measure. However, under this method, an increase
in the event mean could be due to patients surviving longer, or
could be due to patients experiencing events at an increased
rate while they survive, and the proposed estimator alone can-
not distinguish between these two phenomena. Researchers
wanting to further examine the nature of the treatment effect
on the event mean would examine separately the treatment
effects on the terminating event hazard and the conditional
event rates given survival. This additional step is always nec-
essary even when the proposed measure turns out to be non-
significant because a lower survival probability can serve to
offset higher event rate among survivors, and hence cancel out
the treatment effect on the mean.

The remainder of this article is organized as follows.
Section 2 describes the proposed treatment effect measure
and methods of estimation. Asymptotic properties of the es-
timator are listed in Section 3, with proofs provided in Web
Appendices A and B. Section 4 evaluates the performance of
the asymptotic results in moderate size samples. We compare
mean numbers of hospitalizations among kidney transplant
recipients using the proposed methods in Section 5. A discus-
sion and some concluding remarks are contained in Section 6.

2. Proposed Methods

In this section, we describe the proposed methods, after estab-
lishing notation and explaining the data structure of interest.

2.1 Notation and Setup

We begin by setting up the necessary notation. We use D;
for the time of the terminating event (e.g., death), and C;
for the censoring time. The observed counting process for the
terminating event is represented by NP(t) = I(D; < t, D;
< C;). We let Y, (t) = I(C; AN D; > t) be the at risk indi-
cator for subject i at time ¢, and set 7(t) =n"'> " Yi(t).
The number of recurrent events as of time ¢ is represented by
NP(t) = [; dNF*(s), where dNT*(s) = N*(s) — NI*(s").
In the data structure under consideration, N¥*(t) = NE*(¢
A D;); that is, recurrent events cannot occur after death.
What we observe is a quantity subject to right censoring,
NE(t) = NE*(t A D; A C;). For the ith subject (i = 1,...,
n), we let Z; and X; denote the vector of covariates for the
terminating event model and recurrent event model, respec-
tively. We set Zz‘ = (Z“7 ZéZ)” Xz = (Xz'b X;2),7 where Z“,
X1 are (1/0) indicators for the treatment/placebo and Z;,
and X ;» represent adjustment covariates. Correspondingly,
we let By = (Bo1, Bie)'s and 0y = (001, 0;,)" represent the
regression coefficients for Z; and X;. In addition, for con-
venience we denote the covariate vectors for a treated sub-
ject by Z! = (1, Z.,) and X! = (1, X},)’. Similarly, for a
placebo subject, Z9 = (0, Z!,)" and X? = (0, X/,)". The ob-
jective is to compare the treatment and placebo with respect
to the marginal mean number of recurrent events. That is,
the outcome being modeled is the mean number of recurrent
events E{NT*(t)| Z,}, which is the integral of recurrent event
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rate function over time E{NF*(¢)|Z;} = fot E{dNE*(s)| Z;}.
It should be mentioned that we are not modeling the re-
current event intensity function, E{dNF*(t)|Z;,NF*(t7)},
where NF*(t) = {NF*(s);s € (0,t]}, representing the event
history up to time ¢, an approach considered for example by
Andersen and Gill (1982).

As described in Section 1, in the presence of a terminating
event, the recurrent event mean is a function of survival prob-
ability and the conditional recurrent event rate given survival.
In estimating the mean function, it is natural to model these
two entities separately. We denote the conditional recurrent

event rate given survival by
dR;(t) = E{dN/"(t)|D; > t},

with the recurrent event mean function then given by

t
(o) = [ 5 wariw),
0
where S;(t) = Pr(D; > t). We assume that the terminating
event hazard function follows a proportional hazards model,
dA; (t) = dA(t] Z;) = dAo(t)e? o7 (1)

where dA(t) is the unspecified baseline hazard function and
the vector 3y represents the true value of the regression coef-
ficients. The parameter (3, is estimated by 5 the solution to
the partial likelihood score function, U” (3) = 0, where

02 ) =Y [ 17 -Zwman

2 g _ SUEA)
Z(B;t) = :
(540 = 50(3:p)
B:0) =0t Y Vie# 27k,
i=1
with Z80 =1, Z%' = Z,, and Z? = Z;Z!. The Breslow—Aalen

baseline hazard estimator, Ao(t7 ﬁ), is employed, where

n t
Ao(t;5)=n—12/ SO(s
i=1 70

The subject- spemﬁc survival function is then estimated by
S.(t) = exp{—Ao(t)e” % }.

Both multiplicative and additive models have been used
in modeling the recurrent event mean. For certain outcomes
such as costs or number of hospitalizations, investigators are
typically more interested in the absolute (as opposed to rela-
tive) dollar amount or hospital admission numbers. As such,
we use an additive model to estimate the recurrent event rates
among surviving subjects,

) HAND (s).

dR;(t) = dR(t| X;) = dRy(t) + 0, X dt, (2)

where dRy(t) is the baseline recurrent event rate function
and the vector 6 represents the true additive effects of the
corresponding covariate vector X ;. Usually, there are com-
mon covariates affecting both the terminating event hazard
and recurrent event rates. As such, the covariate vectors Z;
and X; usually overlap and will often be identical. Adapting
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the model of Schaubel et al. (2006) to the recurrent/terminal
event setting, we estimate 6, as follows:

/\

— IUR

-3

(9 = 760 Y V)X

UR = Z: /0 ' {X; — X(t)}NF ().

Models for the conditional event rate, dR;(t), and the ter-
minating event hazard, dA;(t), assume covariate effects which
are constant over time, t. Two points are important in this re-
gard. First, unlike y;(t), covariate effects on both dR;(t) and
dA;(t) will often be constant over time in practice. In a sense,
the recurrent event rate conditional on survival, dR;(¢), is an
easier measure to model directly, compared to the marginal re-
current event mean, because the survival population is more
homogeneous than the combined population of both living
and deceased subjects. The model dA;(¢) is a standard Cox
model frequently employed in biomedical studies, while the
quantity dR;(¢) is analogous to the cause-specific hazard in
competing risk studies. Second, models (1) and (2) could al-
ways be extended to allow for time-varying effects, and the
procedures proposed in this article would still be applicable.

(X, — X(s))ds

=

2.2 Proposed Measure and its Estimator

We propose a treatment effect measure, which is the differ-
ence in treatment-specific marginal recurrent event means.
The means are given by

p(t) = E [Nf(
po(t) = E [

We model dR;(t) and dA;(t) separately, compute fitted
means, then average over the observed adjustment covariates.
From this perspective, it is useful to write the treatment-
specific marginal means as

w(t) = E[E[NF
5 U S(r|2!)ar(r |x7)

for j = 0, 1. For the iterated expectations above, the inner
one is the expected value of NF(t) conditional on a specific
set of Z/, X/ values and the outer marginal expectation is
taken with respect to the marginal distribution of adjust-
ment covariates (Z},, X!,)". By substituting in survival and
conditional rate function estimators, we obtain the proposed
treatment-specific mean estimators:

) = n Z/
Ao(t) = n” Z/

(t) |Z~1:1]
t)|Zin =

t)|zl, x71]

ZN{dRy(r) + (61 + X[y0)dr}

r|2°) {dRy(r ) + X,0s dr},
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where the baseline rate estimator is given by ﬁo(t) =
nty fot 7(s)"'Yi(s){dNE (s) —0'X;ds}. The treatment
effect on the recurrent event mean can be measured by

Y(t) = pa(t) — po(t),

which can be estimated as

~

e(t) = 1 (t) = ho(t)

for ¢t € (0, 7] using S(¢|Z;) from the proportional hazards
model and dR(t),0; and 6, from the additive conditional
rates model.

2.3 Analyzing Treatment Effects

Based on the proposed measure alone, it is not clear if an esti-
mated treatment effect is the result of treatment-specific dif-
ferences in survival and/or from treatment-specific differences
in the conditional event rate given survival. For example, the
marginal recurrent event mean could be greater for treated
patients than placebo patients because either (i) conditional
on survival the event rates are equal, but treated subjects
live longer; or (ii) treated and placebo subjects have approxi-
mately equal survival, but dR(t| X}) > dR(t| X?). Therefore,
the hazard ratio for the terminating event (e’1) and the rate
difference for recurrent events among survivors (6;) provide
important supplerEental information. Collectively, the three
estimators J(t),eﬁl and @\1 describe treatment effects from
each of these angles.

3. Asymptotic Properties

In this section, we describe the essential asymptotic properties
of the proposed estimators. We begin by listing the assumed
regularity conditions, fori = 1,..., n.

(a) {NE*()), Dy, C;, Z;, X;} are independent and iden-
tically distributed.

(b) E[dNE*(t)|D; > t, C; > t, X;] = E[dNF*(t)|D; >

(C) llm(s‘)()&lp']"{thl<t+6|Dl>t7Cl>t7ZZ}:

) Pr(Y,(r)=1)>0.

(e) fUT dAy(t) < oo7fOT dRy(t) < oo and NP (1) < oo.

(f) Elements of Z;, and X ;2 are bounded almost surely.
) Positive-definiteness of the matrices, A(3) and B,

where

Ap)=E |:/T{Zi —Z(t: )} Vi (1) 7 dAo(t)}

0

Z(t;B) =5 2(t: 3)
/ Y. ()X, - x(s)}mds]

B:E[
0

X(t) &5 z(t).

Condition (a) is the basis for the central limit theorem and
is usually satisfied; an exception would be clustered data.
Conditions (b) and (c¢) correspond to independent censor-
ing assumptions for the recurrent and terminating event pro-
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cesses, respectively. Condition (d) is a standard identifiability
condition.

It should be noted that our methods also assume that there
are no unmeasured factors which predict both dR;(¢) and
dA;(t). The potential impact resulting from violations of the
no-unmeasured-predictors assumption is discussed and evalu-
ated empirically in Section 4.

We now describe the essential asymptotic results for the
proposed estimators, with proofs outlined in Web Appendices
A and B.

THEOREM 1. Under conditions (a) to (g), b is a uniformly
consistent estimator of ¢; that is, {p\(t) L5 9(t) for t € (0, 7).

The proof of Theorem 1 proceeds through a Taylor series
expansion, followed by repeated application of the uniform
strong law of large numbers.

THEOREM 2. Under conditions (a) to (g), n%{{/;(t) —(t)}
converges weakly to a zero-mean Gaussian process with covari-
ance function E[{&:1.(s;B0, 00) — &io.(s:80, 00)} {&i1.(t:80, o)
— &io.(t;80, 60)}], where

§ij (¢:8,0) = &in(t;8,0)
+&ija(t; 5, 0) + Eijs(t; 3,0) + &u(t; 8,0)

t
§ii(t:0.6) = ~E [e‘”? / S(u]2)
0

x/ {z,gz(r;ﬁ)}’dAo(r)dR(quz)}
x A(B)'UP (8)
Ea(t:6,6) = E { / S(u”[22){x; m(u)}/du] B'U(9)

&ijs(t; 8,0) :/ E{S(u|Z]) }r(u)"dM[ (u;0)
0

onts0) = = [ B (0| 2.X0) (e 21 X0))]
0
dMP (r; 3)

sO(r;3)

where k indexes a subject, with subject-specific asymptotic
score contributions given by

UL (8) = / (2, — 5(t: 8)}dMP (t: B)

dM (t; 8) = ANP (t) = Yi(t)e” 7 dAy (t)
UR(9) = / (X, — ()b (u:0)

ME(30) = A0 - [ Vit aRo) + 0 du)

s(t;8) = lim S (t; ), (3)
for d = 0, 1, 2. Because n%({b\f Y) = n%(ﬁl — ) — n%(ﬁo -
1io), we work on n? ([ — pu1) and n? (M — po) separately as
follows:
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n2 {7, (8,0) — i ()}
= nt {7, (t; 3,0) -

1

+n2 {1, (t; Bo, 0) —

oty [
et Z/ (SG=5m|20) = s(r120)}

X {dRo

1 (t; 5o, 0)}
ﬁf (t ﬁOv 90)}

| 27){dRo(r;05) — dRo(r)}

)+ 0, X] dr}

for 7 = 0, 1. Taylor series expansions are applied, along with
several applications of the strong law of large numbers (Sen
and Singer, 1993). Results from each of the four parts are
combined to show that n%{ﬁ] (t) — p;(t)} is asymptotically
equivalent to n-? ZLI & j.(t; Bo, 0p). After taking the differ-
ence of n? ({1 — pur) and n? ([ — o), n=2 S {&n.(4; Bo, o) —
&io-(t; Bo, 80) } can be shown to converge to a zero-mean normal
distribution for fixed ¢ by the central limit theorem. A demon-
stration of tightness completes the proof of weak convergence
using results from empirical process theory (Pollard, 1990;
van der Vaart and Wellner, 1996). The &;;.(s;80, 6y) quan-
tities can be consistently estimated by replacing all limiting
values by their empirical counterparts, then averaging across
i=1,...,n

4. Simulation Study

For each data configuration, we generated n = 200 indepen-
dent and identically distributed subjects with both terminat-
ing and recurrent events. The terminating event hazard fol-
lows the following proportional hazards model,

dA(t] Z;) = dAy(t)eP1Zin+027iz

where Z;; (treatment) is distributed as Bernoulli (0.5), the
adjustment covariate Z ;5 follows a uniform (0, 10) distribution
and dAy(t) = 0.04. We set the coefficient 3; at 0.5 and 1, to
examine scenarios of low or high treatment effect on survival.
Censoring is uniformly distributed on (0, 20), which leads to
an average censoring percentage of approximately 42%. The
recurrent events follow a Poisson process, with rate function

dR(t| X;,Q;) = dRy(t) + Q;dt + 0'X; dt, (4)

where Q; follows a gamma distribution with mean 0.25 and
variance V(Q;), and V(Q;) = 0.5 or 1. The @, variate repre-
sents a frailty term shared by all the recurrent event times for
the same subject and may be thought of as an unmeasured
predictor. Note that the frailty term Q; does not affect dA(¢ |
Z ;) and the assumptions of our proposed methods hold under
this setup. The above model was simulated by generating gap
times between successive events as:

—log(U;; ){dRo(t) + Q: + 0'X;} 71,

forj=0,...,50, where U;; ~ Unif (0,1), X; = Z;;and T; o =
0. We varied the baseline recurrent event rate from 0.125 to
0.25. The covariate X; is the same as Z;; in the proportional
hazards model for the terminating event, both representing
the treatment or exposure of interest. The regression coeffi-
cient for X, is set at 6 = 0.5.

T'z',j+1 =T Jj
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Simulation results: performance of proposed estimator
81 V(Q:) dRo(t) t () Bias ESD ASE CP
1 0.5 0.25 5 1.16 0.02 0.34 0.34 0.95
10 1.01 0.05 0.57 0.56 0.95
15 0.53 0.06 0.74 0.74 0.95
0.125 5 1.28 0.01 0.34 0.33 0.95
10 1.34 0.02 0.54 0.54 0.95
15 1.05 0.04 0.70 0.71 0.95
1 0.25 5 1.16 —-0.01 0.45 0.43 0.95
10 1.01 0.00 0.74 0.71 0.94
15 0.53 0.03 0.96 0.91 0.94
0.125 5 1.28 0.00 0.44 0.43 0.96
10 1.34 0.02 0.71 0.69 0.95
15 1.05 0.05 0.89 0.89 0.95
0.5 0.5 0.25 5 1.71 —-0.02 0.36 0.35 0.96
10 242 —-0.03 0.62 0.61 0.96
15 2.65 —0.03 0.83 0.84 0.97
0.125 5 1.76 —-0.02 033 0.34 0.96
10 2.58 —0.04 0.58 0.59 0.96
15 291 -0.03 0.77 0.80 0.97
1 0.25 5 1.71 0.02 0.47 0.45 0.95
10 2.42 0.03 0.80 0.77 0.95
15 2.65 0.05 1.04 1.02 0.95
0.125 5 1.76 —-0.03 047 044 0.95
10 258 —0.05 080 0.75 0.95
15 291 -0.04 1.05 0.99 0.95

ESD = empirical standard deviation.
ASE = average asymptotic standard error.
CP = coverage probability.

__Table 1 lists the performance of our proposed estimator
(t) in eight scenarios of different (;, V(Q;), and dRo(t)
combinations. The average observed number of recurrent
events per subject ranges from 3.0 to 4.4. Three evenly spaced
time points 5, 10, and 15 are picked to examine the perfor-
mance of the estimators at early, middle, and late follow-up
times. For all configurations examined, ¥(t) is very close to
their true values (obtained by numerical integration), and
average asymptotic standard errors (ASEs) agree well with
empirical standard deviations (ESDs). Correspondingly, em-
pirical coverage probabilities (CPs) are close to the nominal
value of 0.95. Overall, the asymptotic properties appear to be
applicable to moderate size samples based on the simulation
results.

Next, we evaluated the sensitivity of our proposed methods
to the no-unmeasured-predictors assumption. Specifically, we
set up a model with the gamma frailty, @Q;, affecting both
dA;(t) and dR;(t), in violation of our underlying assumptions.
The simulated proportional hazards model (1) changes to

dA(t] Z;) = Qie” %1 dA(t), (5)

such that @; represents an unmeasured covariate affecting,
now, both the death hazard and conditional event rate given
survival. In this setup, parameters in the conditional recur-
rent event rate model are no longer estimated consistently
under the proposed approach. The estimators 6 and Ry(¢)
are roots of the estimating functions " fuT X;dMFE (t) and

S dME (s

), respectively, where ME(t) is as defined in
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Table 2
Simulation results: robustness of proposed estimator under a
misspecified model

V(Qz) 51 dRo(t) 1/)(25) Bias ESD ASE Ccp

2 1 0.25 4.18 0.01 0.39 0.38 0.95

0.125 4.22 0.01 0.33 0.33 0.94

0.5 0.25 4.30 0.00 0.37 0.38 0.94

0.125 4.31 0.01 0.33 0.32 0.94

1 1 0.25 3.65 0.04 0.43 0.41 0.94

0.125 3.71 0.03 0.35 0.34 0.95

0.5 0.25 3.86 0.03 0.41 0.40 0.95

0.125 3.88 0.05 0.34 0.34 0.96

0.5 1 0.25 2.91 0.01 0.44 0.43 0.94

0.125 3.01 0.04 0.37 0.36 0.94

0.5 0.25 3.25 0.01 0.43 0.42 0.94

0.125 3.30 —0.01 0.35 0.35 0.96

Estimators are evaluated at ¢ = 10, the mean of the censoring
distribution.

equation (3). These estimating functions are unbiased and
lead to consistent estimation when E[dMF(t)| X;, D; > t] =
0. However, under models (4) and (5), E[dME(t) | X;, D; > t]
= P(C; > t|X,)E|Q;| X, D; > t]dt, which need not equal
0, hence leading to inconsistent estimation.

The impact of such violations is evaluated through simula-
tion. In addition to the scenarios examined in the simulation
study of the correct model, an extreme case where V(Q;) =
2, which is eight times E(Q);), was also examined to assess the
impact of highly variable frailty terms on the performance of
¥ (t). Table 2 demonstrates the robustness of ¢ (¢) under this
misspecified model. The estimator is biased, although the bias
is not large, particularly in relative terms. The proposed stan-
dard error estimators remain close to the ESDs and hence
CPs are still close to 0.95. Generally, the proposed meth-
ods appear fairly robust to the no-unmeasured-predictors
assumption.

5. Application

We applied our proposed method to the study of renal trans-
plant patients. Patients began follow-up (¢ = 0) at the time
of kidney transplantation. Some patients received an ECD
transplant, while others got a non-ECD kidney. Patients who
receive a kidney transplant are suspected of being subject to
an increased mortality hazard and hospitalization rate in the
weeks immediately following the transplant, due to the risk of
surgical complications, which are suspected to be more serious
in ECD recipients. From a public health perspective, it is of
interest to compare ECD and non-ECD transplanted patients
with respect to mean number of hospitalizations. Due to the
strong time dependence in the effect of ECD kidney transplan-
tation, the instantaneous effect on the hospitalization rate is
generally of less interest than the cumulative effect. Moreover,
survival probabilities are known to be reduced for ECD rel-
ative to non-ECD recipients (Port et al., 2002). Given these
facts, the ECD effect on the mean number of hospitalizations
would not be expected to be constant over time.

We combine demographic, clinical, and mortality data from
the Scientific Registry of Transplant Recipients (SRTR) and
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Table 3
Analysis of kidney transplant data: estimated regression
parameters from proportional hazards and additive rates

models
Covariate, N R L
Zik = XM« e’k P 0k SE(Gk) P
ECD 1.28  0.002 84.4 294 0.004
Female 1.00 0.951 —6.6 19.2 0.732
Age 18-24 0.34 0.003 —80.7 41.1 0.045
Age 25-34 0.55 0.0001 —87.6 29.0 0.003
Age 35-44 0.83  0.092 —56.2 26.4 0.033
Age 45-54 1 - 0 - -
Age 55-64 1.62 <0.0001 50.3 28.9 0.082
Age 65-70 2.12 <0.0001 109.5 40.9 0.007
Age > 70 2.88 <0.0001 146.5 47.8 0.002
African American 0.99 0.908 5.7 24.3 0.813
COPD 1.25  0.457 7.1 136.5 0.960
Angina 1.40  0.0002 71.1 395 0.072
Pretransplant 2.67 0.092 750.7 517.9 0.147
malignancy
Cerebral vascular 1.19 0.323 95.4 715 0.182
disease
Peripheral vascular  1.03  0.848 31.7 56.1 0.571
disease
Polycystic kidneys 0.56 0.0006 —138.7 22.7 <0.001
Diabetes 1.59 <0.0001 123.3 32.2 <0.001
Hypertension 1.19  0.067 16.5 243 0.500
Years on dialysis 1.04 0.002 -0.3 3.0 0.932
Functional status: 0.31 <0.0001 —114.2 106.3 0.282
minor disability
Intensive care unit 1.24  0.631 —220.1 136.2 0.106

0: additional hospitalizations per 1000 per year survived.

hospitalization history information from Centers for Medicare
and Medicaid Services. The study population is restricted to
patients whose primary payer was Medicare. To increase ho-
mogeneity, we also exclude from our target population repeat
and multiorgan transplant recipients. All Medicare patients
aged >18 who received a kidney transplant from a deceased
donor in year 2000 were included in our study sample. In total,
3816 recipients with follow-up and complete covariate infor-
mation were included and tracked from the time of transplant
until death, loss to follow-up, or at the end of the observation
period (December 31, 2005). Among the 3816 patients, 970
(25.42%) were observed to die during the 6-year follow-up pe-
riod, with the remaining 2846 (74.58%) recipients censored,
either due to loss to follow-up or administratively at the date
December 31, 2005. Among the 3816 patients in our analysis,
3213 have no hospitalization in the follow-up period. Among
the 603 hospitalized patients, 255 had one to three hospi-
talizations, and 279 had four to ten hospitalizations. There
were three patients with more than 30 hospitalizations, with
the maximum number of hospitalizations being 34. On aver-
age, each recipient experienced 0.85 hospitalizations during
the follow-up period.

As stated, the treatment of interest is deceased donor
source: ECD (Z;; = 1) or non-ECD (Z;; = 0). We adjusted
for the same set of covariates in the proportional hazards
and additive rates models: candidate demographics (gender,
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Table 4
Analysis of kidney transplant data (ECD versus non-ECD):
difference in mean numbers of hospitalizations

t ¥ (t) SE{y(t)} p

1 year 79 28 0.005
2 year 153 54 0.005
3 year 217 79 0.006
4 year 270 104 0.010
5 year 318 128 0.014

9. differences in hospitalization means per 1000 patients between
ECD and non-ECD recipients at the end of 1 to 5 years.

age, race), pretransplant years on dialysis, various comor-
bid conditions (drug-treated chronic obstructive pulmonary
disease [COPD], angina, symptomatic cerebral vascular dis-
ease, symptomatic peripheral vascular disease, pretransplant
malignancy), primary diagnosis (polycystic kidney disease,
diabetes, hypertension), functional status (fully active to
severely disabled), and stay in the intensive care unit.

Hazard ratios and conditional recurrent event rate differ-
ences for each covariate are listed in Table 3, as well as their
corresponding p-values. Recipients of an ECD kidney have
a 1.3 times higher hazard of death compared to non-ECD
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recipients. At the same time, ECD kidney recipients expe-
rienced 84.4 more hospital admissions per 1000 patients per
year survived. Lower survival probabilities for ECD patients
could lead to a reduced mean number of hospitalizations,
because hospitalizations are terminated by death. However,
ECD patients also experience a significantly elevated condi-
tional hospitalization rate given survival. The combination of
these two effects results in the marginal effect of ECD on mean
hospitalizations. R

Based the proposed estimator ¢ (¢), ECD recipients on aver-
age experience 79 more hospital admissions per 1000 persons
compared to non-ECD recipients at the end of one year. This
difference increases with time posttransplant and reaches 318
per 1000 patients at ¢ = 5 years, as shown in Table 4. At
each time point, the difference between ECD transplant pa-
tients and non-ECD transplant patients is highly significant.
In summary, receiving an ECD kidney leads to a significantly
greater number of hospitalizations posttransplant.

The difference in mean number of hospitalizations (averag-
ing over the observed adjustment covariate pattern) for ECD
and non-ECD transplant recipients is plotted in Figure 1. We
can see that ECD recipients have more hospitalizations imme-
diately after transplant. The difference keeps increasing with
time and reaches 318 hospital admissions per 1000 patients
at the end of the 5-year follow-up period. The increase in
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Figure 1. ECD effect on mean number of hospitalizations.
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The two outside lines represent 95% pointwise confidence intervals for the year 0-5 interval.
Figure 2. 95% pointwise confidence intervals for the difference between ECD and non-ECD mean number of hospitalizations.

hospitalization rate due to ECD dominates the decrease in
survival probability for ECD recipients and leads to positive
ECD effects on_the marginal event mean.

We present ¢(t) and pointwise 95% confidence intervals in
Figure 2. It is clear that the increase in mean number of hos-
pitalizations associated with ECD transplantation is highly
significant.

6. Discussion

We propose semiparametric methods to compare marginal
treatment-specific mean numbers of recurrent events in the
presence of a terminating event. The proposed methods in-
volve modeling the terminating event hazard and the con-
ditional recurrent event rate given survival separately, then
integrating to estimate treatment-specific marginal recurrent
event means. A measure of the combined effects is proposed,
with its asymptotic properties derived and evaluated in mod-
erate size samples. We demonstrate that the estimator works
reasonably well under misspecified models; that is, models
failing to incorporate unmeasured predictors of both the ter-
minating event hazard function and conditional recurrent
event rate. The proposed estimator is applied to national kid-
ney transplant data to study the effect of ECD transplan-
tation on posttransplant hospitalization admission numbers.
ECD recipients are found to have significantly more hospital-

izations during the whole follow-up period, with the difference
between ECD and non-ECD recipients increasing with time.

The proposed method estimates the difference in
treatment-specific marginal means, while incorporating
treatment-specific differences in survival. Thus, ¥(t) combines
the actual survival probabilities and recurrent event rates for
the treatment and placebo, respectively, and reflects the dif-
ference in marginal recurrent event numbers which would be
observed between treatment and placebo patients with the
same adjustment covariates. At the same time, researchers
may also be interested in contrasts between treatment-specific
survival and/or recurrent event rates among survivors. For a
complete interpretation of their findings, researchers should
carefully consider all three estimators, ¥ (t), 51, and 6.

Our strongest assumption is that there are no unmea-
sured predictors of both the terminating event hazard and
conditional event rate and this assumption will fail fre-
quently, particularly in observational studies. Several issues
are important in this regard. First, the unmeasured pre-
dictor must be a risk factor for both the terminating and
recurrent event conditional on all measured covariates. If
the most important predictors are included in the adjust-
ment covariate vector, bias may be minimized and the es-
timated treatment effect may be a fairly accurate approxi-
mation to the reality. Second, the most popular alternative
to a no-unmeasured-predictor assumption is to incorporate
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a frailty. However, most frailty approaches for recurrent
event data assume that the events follow a Poisson pro-
cess, which is restrictive in its own right. To the best of our
knowledge, there is only one method (Ye et al., 2007) that
employs a frailty in the absence of the Poisson-process as-
sumption, and this method does not propose cumulative ef-
fect measures. Third, our sensitivity analysis reveals that if an
unmeasured frailty affects both the terminating event hazard
and conditional rate, bias is relatively small.

7. Supplementary Materials

Web Appendices A and B, referenced in Section 3, are avail-
able under the Paper Information link at the Biometrics web-
site http://wuw.biometrics.tibs.org.
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