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SUMMARY.

It is of recent interest in reproductive health research to investigate the validity of a marker

event for the onset of menopausal transition and to estimate age at menopause using age at the marker event.
We propose a varying-coefficient Cox model to investigate the association between age at a marker event,
defined as a specific bleeding pattern change, and age at menopause, where both events are subject to
censoring and their association varies with age at the marker event. Estimation proceeds using the regression
spline method. The proposed method is applied to the Tremin Trust data to evaluate the association between
age at onset of the 60-day menstrual cycle and age at menopause. The performance of the proposed method

is evaluated using a simulation study.

KEY wWORDS: B-splines; Cox regression; Generalized cross-validation; Marker events; Nonparametric
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1. Introduction

It is of recent interest in female reproductive aging research
to identify marker events for the onset of the menopausal
transition, and to investigate their use for estimating age at
menopause. Menopause is defined as the final menstrual pe-
riod (FMP), with the FMP confirmed after at least 12 months
of amenorrhea. Although several marker events based on men-
strual bleeding criteria have been proposed (Mitchell, Woods,
and Mariella, 2000; Soules et al., 2001; Taffe and Dennerstein,
2001), there is a lack of appropriate statistical models to for-
mally evaluate their validity due to the complex nature of the
data.

This article is motivated by the analysis of the Tremin Trust
data. This data set provides a unique opportunity to evalu-
ate the association between age at menopause and ages at
onset of the marker events proposed by reproductive health
experts based on bleeding criteria (Treloar et al., 1967). The
study enrolled 1997 white college students at the University
of Minnesota between 1935 and 1939 and followed them up
to 40 years through their reproductive life. The study partic-
ipants were asked to use menstrual diary cards to record the
days when bleeding was experienced. Only limited covariate
information was available in the data.

Lisabeth et al. (2004) analyzed a subset of 562 women from
the original Tremin Trust cohort, who were age 25 or less at
enrollment and still participating in the study at age 35. A to-
tal of 282 women experienced the 60-day cycle marker event.
The median age at the 60-day cycle marker was 48.7 years. A
total of 193 women experienced natural menopause. The me-
dian age at menopause was 51.7 years. There were 9 women

who experienced menopause without having the 60-day cy-
cle marker, and 271 women who were censored for both the
60-day cycle and menopause events. Note that these 271
women who were censored for the marker event were part of
the 369 women who were censored for menopause and their
censoring times for those two events were the same. The me-
dian age at enrollment was 19 years, the median age at menar-
che was 12 years and ranged from 9 to 18 years, and the
length of follow-up ranged from 9 to 39 years with median
of 27 years. The descriptive analysis results of Lisabeth et al.
(2004) suggest that the 60-day cycle might be a useful marker
for predicting age at menopause.

To explore the relationship between age at the 60-day cycle
marker and age at menopause, we first restricted ourselves to
the 282 women who had an observed marker event and clas-
sified them into several groups based on their ages at onset
of the marker event as [35, 40), [40, 43), and so on, which is
similar to what Lisabeth et al. (2004) did. For each marker
age group, we calculated the quartiles of age at menopause
using the Kaplan—Meier method and displayed these esti-
mated quartiles using a boxplot. These boxplots are given
in Figure 1. The number of women in each marker age group
is given above the corresponding boxplot. Figure 1 shows that
the relationship between age at the 60-day cycle marker and
age at menopause is complicated and varies with age at the
60-day cycle marker. This relationship, however, is only ex-
plorative and may not be able to reflect the truth quanti-
tatively because women who were censored for the marker
event were excluded from the analysis. In other words, the
complete case analysis makes a strong assumption that the
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Figure 1. The boxplots for the estimated Kaplan—Meier

survival functions of age at menopause given different ages
at the 60-day cycle marker event among the subset of women
who had experienced the marker event. The number of women
in each marker event age group is given above the correspond-
ing boxplot.

marker event is missing completely at random (see e.g., Little
and Rubin, 2002). An appropriate statistical model is pro-
posed in this article which can easily handle censored markers
without making this strong assumption. For more discussions,
see Section 6.

The first scientific interest is to quantify the association be-
tween age at the 60-day marker and age at menopause using
a statistical model. The second scientific interest, especially
for clinicians and women themselves, is to estimate the distri-
bution of age at menopause given age at onset of the 60-day
cycle marker. For example, if a woman first experiences a
60-day cycle at age 40, she would like to know from her physi-
cian her expected median age of menopause. From a clinical
point of view, this would be a very useful piece of information
for helping determine a woman’s need for continued contra-
ception and the likelihood of initiating interventions such as
bone density screening.

Several approaches have been proposed for modeling inter-
mediate marker events. Crowley and Hu (1977) analyzed the
Stanford heart transplant data using the Cox partial likeli-
hood method by treating the transplant status, an intermedi-
ate marker event, as a time-dependent covariate. Lefkopoulou
and Zelen (1995) and Nam and Zelen (2001) studied the same
model from a different angle which leads to a contingency
table interpretation. For an overview of the existing meth-
ods handling intermediate marker events, see Kalbfleisch and
Prentice (2002, Section 6.4). All of these authors assumed a
constant regression coefficient for modeling the effect of the
intermediate marker event (see Figure 2a). The results in
Figure 1, however, suggest that this assumption is not ap-

577

(a)

Log Hazard Function

Time

Log Hazard Function

Time

Figure 2. An illustration of the log-hazard functions at two
marker event times under the constant coefficient Cox model
(1) (a) and the varying-coefficient Cox model (3) (b): ——

log-baseline hazard; - - - log hazard if the marker event occurs
at time 1; — — — log hazard if the marker event occurs at
time 2.

propriate for the Tremin Trust data. We need to allow the
regression coefficient of the onset of the 60-day marker event
to vary with age at the marker event. We hence consider a
varying-coefficient model.

Hastie and Tibshirani (1993) proposed general varying-
coefficient models. In the Cox model setting, it is commonly
assumed in such models that the regression coefficient 5(-) of
a time-dependent covariate is a function of the follow-up time;
e.g., see Murphy and Sen (1991), Marzec and Marzec (1997),
among others. Their model can be illustrated by replacing the
dot line (and dash line) in Figure 2a by an arbitrary curve that
may not be parallel to the log-baseline hazard function. The
interest of the Tremin Trust data, however, lies in evaluating
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the effect of age at the 60-day cycle marker event on age at
menopause as a function of age at the marker event, as demon-
strated in Figure 1. Hence, it is natural and biologically more
desirable to assume that the regression coefficient 3(-) of the
time-dependent covariate, which indicates the onset of the
marker event, be a function of age at the marker event, in-
stead of a function of the follow-up time. The resulting regres-
sion coefficients are biologically more interpretable to address
the scientific interest of the Tremin Trust data. The model
is illustrated in Figure 2b. Both of these two situations are
special cases of the general framework of varying-coefficient
models for survival data of Hastie and Tibshirani (1993). The
first situation has been investigated in detail, while limited at-
tention has been paid to the second situation. Parameters in
both models can be estimated by using the (penalized) partial
likelihood method.

The model discussed in this article can also be regarded
to fall into the general framework of the illness-death model
of Joly et al. (2002). However, the estimation procedure in
Joly et al. (2002) is only for the model where the effect of the
marker event varies with the follow-up time, not the time at
onset of the marker event which is our major interest.

The remainder of the article is organized as follows. We
introduce in Section 2 a varying-coefficient Cox model for age
at menopause, where the onset of the 60-day cycle marker is a
time-dependent binary covariate and its coefficient is assumed
to be a smooth function of the marker event age. We discuss
in Section 3 an estimation procedure using regression splines.
We analyze in Section 4 the Tremin Trust data, and conduct
a simulation study in Section 5 to evaluate the performance
of the proposed method, followed by concluding remarks in
Section 6.

2. The Varying-Coefficient Model

Suppose the data consist of n subjects. Let Y; be the observed
time to the event of interest, which is defined as the minimum
of the survival time T}, e.g., age at menopause, and the cen-
soring time C; for the ith subject (i = 1,...,n). We assume
independent censoring. Let A; be a censoring indicator, which
takes value 1 if a failure is observed and 0 otherwise. Let Z;(t)
be a time-dependent covariate.

Assume Ay(t) is the baseline hazard and \;{t| Z;(t)} is the
hazard rate of the survival time to the endpoint event at ¢
given Z;(t). A standard Cox model with a time-dependent
covariate has the following form:

Xi{t| Zi(t)} = Mo(t) exp{BZ;(t)}. (1)

It is common to use (1) to model the effect of an interme-
diate marker event (Crowley and Hu, 1977; Kalbfleisch and
Prentice, 2002).

In the Tremin Trust data, t is age, time to the endpoint
event is age at menopause, and time to the marker event is
age at the first occurrence of the 60-day cycle marker event.
Model (1) assumes log-relative risks of subjects who have ex-
perienced the marker event and who never experienced the
marker event differ by a constant 3, which is irrelevant to the
age at the marker event. However, discussions in Section 1
suggest that the association between age at menopause and
age at the marker event varies with age at the marker event
in the Tremin Trust data.
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Let S; be the age at the 60-day marker event for woman 1.
Define

Z8) 1 ift> S, -
0 ift< S
Equivalently, Z;(t) = I[t > S;], where I(-) is an indicator func-
tion. We extend model (1) to allow the association between
age at menopause and age at the marker event to depend on
age at the marker event S; = s as

Mt Zi(t)} = Ao(t) exp{B(s) Z:(t)}

_ {w) exp{5(s)}
Ao(t)

where 3(s) is an unknown smooth function.

The interpretations and difference between model (1) and
model (3) are clearly illustrated using Figure 2a and 2b on
the log-hazard scale by contrasting two subjects who have ex-
perienced the marker event at time 1 and time 2, respectively.
Under the constant coefficient Cox model (1), the first sub-
ject’s log hazard is the log-baseline hazard before time 1 (s)
and changes by an amount of  since time 1, while the sec-
ond subject’s log hazard is the log-baseline hazard before time
2 (s9) and changes since time 2 by the same amount 8. Un-
der the varying-coefficient Cox model (3), both women’s log
hazards also change at time 1 and time 2, respectively, but
by different constants 3(s;) and 3(s2), respectively. Note that
the lines are all parallel and reflect the proportional hazards
assumption. It should be noted that Z;(t) is always observ-
able in the analysis at any ¢ whenever subject i appears in
the risk set at time ¢ even if S; is not observed. Thus, §(s) is
estimable.

If baseline covariates X; are available, model (3) can be
easily extended to incorporating baseline covariates X ; as

Ai{t] Zi(t), X} = Mo(t) exp{B(s) Zi(t) + v'w:},  (4)

where X; is age at menarche in the Tremin Trust data. Be-
cause model (3) is a special case of model (4), we shall focus
on model (4) in this article.

if t<s,

3. The Estimation Procedure

3.1 Estimation Using B-Splines

We consider estimation of the nonparametric function §(s)
using the regression spline method by approximating 3(s) us-
ing the natural cubic B-spline basis. Let K be the number of
interior knots. Knot locations are usually chosen such that
there are roughly equal numbers of observed data points be-
tween any two adjacent knots. This can be done by placing
these knots using 1005 /(K + 1) (j = 1,..., K) percentiles
of observed marker event times. We discuss in Section 3.2
estimation of the number of knots K using generalized cross-
validation.

Because a natural spline is constrained to be linear beyond
two boundary knots, the function 3(s) can be parameterized
using K + 2 natural cubic B-spline basis functions B(s) (k =
1,...,K + 2) as

K+2

B(s) =Y OxBi(s). (5)
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Replacing 3(s) by its B-spline approximation in equation (5),
model (4) can be written as

Mt Zi(8), X} = Xo(t) exp{0' Z;(t) + v X}, (6)

where 0 = (01,...,0k.) and Z(t) = {Bi(s)Zi(t),...,
B 12(s)Zi(t)Y. Note that Z;(t) is always observable dur-
ing follow-up because Z;(t) is fully observed during follow-
up. Specifically, if the marker event is observed at S; for the
ith woman during follow-up, then Z;(t) =0 if ¢ < S; and
Z;(t) = {Bi(S,),..., Br2(S;)}Y if t > S,. If the marker event
is not observed, i.e., S; is censored, then Z;(t) =0 at any
observed follow-up time t.

Now model (6) becomes a standard Cox proportional haz-
ards model with the time-dependent covariate vector Z; (t)
and the baseline covariate vector X ;. Thus, the estimation
of parameters (8, v) can be obtained using partial likelihood
method. Denote the maximum partial likelihood estimators
of (6, v) by (8,%) and their covariance estimators by cov(8)
and cov( ). The nonparametric function 3(s) can then be es-
timated by

K+2

k=1

The pointwise confidence interval for B( ) can be estimated
using its variance estimator var{f3(s)} = B(s)'cov(8)B(s),
where B(s) = {Bi(s),...,Bki2(s)}.

As discussed in Section 1, it is of both clinical interest and
a woman’s own interest to estimate age at menopause if a
woman has experienced the 60-day marker event at a certain
age. We first estimate the baseline cumulative hazard function
Ay(t) using the Breslow estimator,

Ao(t) = / [Z I(Y; = u) exp{B(S:) Zi(u) + ’AY/Xi}]

x {Z dNi(u)} . (8)

Then, the survival function for menopause given both age
at the marker event S = s and covariates X = x can be
estimated by

F(t | s,x) = exp {—/ exp{B(s)z(u) +4'z} d/&g(U)} , (9)

where z(u) = I(u > s).

3.2 Estimation of the Number of Knots

An advantage of the use of a regression spline for estimating
the nonparametric function 3(s) is its computational simplic-
ity. However, this method requires estimation of the number
of knots. For uncensored data, cross-validation (CV) and gen-
eralized cross-validation (GCV) are commonly used; see, e.g.,
Hastie and Tibshirani (1990). For survival data, O’Sullivan
(1988) proposed CV and GCV for choosing the smoothing
parameter for the smoothing spline estimator assummg that
the baseline cumulative hazard function Ag(¢ fo Xo(u) du is
known. We extend O’Sullivan’s method to Choose the number
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of knots in the regression spline setting and account for the
fact that Ay(t) is unknown and is estimated.

We first consider the case when A((t) is known. Following
O’Sullivan (1988), under model (6), for a given number of
knots K, if A¢(t) is a known function, then the likelihood
function of (0, =) is available and can be maximized using an
iterated reweighted least square algorithm. If the estimators of
(6, v) at the lth iteration are (ém,’?(l)), the working weight
w; and the working dependent variable y; for subject ¢ can
then be written as

’AYEZ)XZ}v
i = 0 Z:(Ys) + A X + A/ (2w;) — 1.

One calculates (é(l+1) '7(l+1)) by minimizing Y 1w%{yZ -
0'Z,(Y;) —~v'X,;}>. Let ={Z,(v;), X!} and X=
(Xl, . .,X;)’. Denote the Workmg dependent variable, the
working weight matrix, and the predicted value vector at
convergence by g = (1,...,0n)’, W = diag (i1, ..., w,),
and f (fl, e fn) . Then, f can be calculated as
f = X(X'WX)'X'W§ = Hy, where H is the linearized hat
matrix. The GCV, which is a function of the number of knots
K, is given by

Zwi(gi - fz)z

=1
=

GCV(K =L

(10)

where h is the average of the diagonal elements of H, the
so-called mean leverage.

We now consider the case when the baseline hazard A(t)
is unknown and is estimated by the Breslow estimator (8).
O’Sullivan (1988) suggested to calculate the Breslow estima-
tor of Ag(+) for each K and plug it into (10) as if it were known.
However, this plug-in procedure ignores the fact that different
choices of K give different baseline hazard estimators of Ay(t),
but the above procedure assumes that the same true baseline
hazard is used for different K. We hence propose a modified
procedure to account for this.

First, a series of Cox models as in (6) are fitted for a range
of the number of interior knots K. We used 1-20 in the analysis
of the Tremin Trust data. For each choice of K, the cumulative
baseline hazard function estimator A, (t; K) and the B-spline
estimator B (s; K) are calculated. They are then plugged into
equation (10) to calculate GCV(K). Note that different base-
line hazard estimators are used for different K at this step. We
then select K that minimizes GCV(K), call it K, and obtain
the corresponding baseline hazard estimator f\l)(t; K.). At the
next step, we replace the true Ay(t) by this estimated Ay (¢; K,
and treat it as fixed and known. Then, recalculate the GCV
statistic (10) using the above least square procedure for each
of the possible values of K, 1-20 in our analysis, and select a
new K, the updated K., that minimizes GCV(K). Note here
a common Ay(t; K,) is used to calculate GCV for different
possible values of K. The procedure is repeated using a newly
updated common f\o(t; K,) until the chosen K, at the cur-
rent step is the same as the K, at the previous step. The CV
statistic can be calculated similarly.
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4. The Analysis of the Tremin Trust Data

We applied the proposed varying-coefficient Cox model to the
analysis of the Tremin Trust data. The goals of our study were
to investigate the relationship between age at menopause and
age at the 60-day cycle marker event, and to estimate the
distribution of age at menopause given any particular age
at onset of the 60-day cycle marker. The data used in our
analysis were the same as that used in Lisabeth et al. (2003),
which were described in detail in Section 1. We used age 35
as the time origin in our analysis.

For each woman, the data set contained the observed
menopause age which is the minimum of the age at menopause
and the censoring age; a censoring indicator for age at
menopause; a 60-day cycle marker event indicator; the age
at the marker event if it occurred during the follow-up time;
and age at menarche.

Let Z;(t) be a time-dependent binary indicator for the onset
of the 60-day cycle marker event and the baseline covariate
X; be age at menarche. We first fitted (4) by assuming sim-
ple parametric forms for G(s) as a cubic function. The linear,
quadratic, and cubic terms were all found to be highly sig-
nificant. This implies that a simple third-order polynomial
function does not seem to be adequate for describing the ef-
fect of age at marker event. We then fit the semiparametric
varying-coefficient Cox model (4) by estimating (3(s) nonpara-
metrically using the B-spline method via the Cox model (6).

The method of Therneau and Grambsch (2000) was used
to expand the data set for the time-dependent covariate
Z;(t). Observed marker times were used to determine knot
allocations and generate natural cubic B-spline basis func-
tions By(s) used for estimating 3(s). Two extreme values of
observed marker times were used as two boundary knots.
The optimal number of interior knots estimated using GCV
method described in Section 3.2 is K qpiimal = 8. The spline es-
timator of 3(s) and its 95% pointwise confidence interval are
plotted in Figure 3. For illustrative purpose, we also consid-
ered approximating ((s) using piecewise constants as [(s) =
ZkK;ll Brel[sg-1 < s < sg], where {so, s1,...,SKk+1} 1s the set of
knots including the boundary knots, and fit A{t| Z;(¢), X;} =
Xo(t) exp{Zf;ll Brl[sk-1 < S; < sk|Z;i(t) + vX;}. The piece-
wise constant estimator of ((s) using the age intervals [35,
38), [38, 40), etc., is superimposed in Figure 3. We can see
that the B-spline estimate and the piecewise constant esti-
mate of 3(s) agree well with each other.

The results in Figure 3 suggest that the 60-day cycle marker
is strongly associated with age at menopause, and its ef-
fect varies with age at the 60-day cycle marker event. But
when age at marker event is close to 35, the estimated (3(s)
does not significantly differ from zero which implies that hav-
ing a marker around age 35 is uninformative about age at
menopause. The curve is mainly positive and increases before
age 44 and then starts to decrease. This indicates that before
age 44, the association between age at menopause and age at
the 60-day cycle marker becomes stronger as age increases.
Among women who first experience the 60-day cycle before
44, as age at onset of the 60-day cycle increases, she is likely
to have menopause more quickly. For example, consider two
women: The first woman experiences the 60-day cycle at age
39 and the second woman experiences the 60-day cycle at age
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Figure 3. Estimates of 3(s) using the B-spline and the step

function for the Tremin Trust data: estimated (3(s) using
the B-spline basis; - - - 95% CI; — — — estimated [3(s) using
piecewise constants.

42. Then, relative risk of menopause at any age after age 42 for
the second woman is exp{3(42) — 5(39)} = exp(4.1 — 2.2) =
6.7 times higher than the first woman (p-value < 0.0001).

The estimated [((s) curve starts decreasing after age 44.
This indicates that after age 44, the association between age
at menopause and age at the 60-day cycle marker becomes
weaker as age increases. Among women who first experience
the 60-day cycle after 44, as age at onset of the 60-day cy-
cle increases, a woman is likely to have menopause at a later
age. For example, consider two women: The first woman ex-
periences the 60-day cycle at age 48 and the second woman
experiences the 60-day cycle at age 51. Then, relative risk of
menopause at any age after age 51 for the second woman is
exp{B(51) — 3(48)} = exp(1.9 — 3.2) = 0.27 times lower than
the first woman (p-value < 0.0001). In other words, the rel-
ative risk of menopause at any age after age 51 for the first
woman is 1/0.27 = 3.7 times higher than the second woman.
It is much higher during ages 48-51.

The estimated log relative risk for age at menarche was
—0.16 (RR = 0.85) for a l-year increment (p-value = 0.01).
This means that a younger age at menarche has a significant
effect on advancing the expected age at menopause. We also
found that the effect of age at the 60-day cycle marker was
independent of age at menarche. Particularly, the estimated
curves of 3(s) were almost identical with and without adjust-
ing for age at menarche.

Survival probabilities of age at menopause were calculated
using equation (9) for several selected ages at the 60-day cycle
marker event given age of menarche equaled to 12, which was
the median age of menarche. Estimated survival curves are
plotted in Figure 4a and estimated corresponding percentiles
are summarized in Table 1. These results are consistent with
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Figure 4. Estimated survival curves for age at menopause

(a) and for time from onset of the 60-day cycle marker to
menopause (b) given different ages at the 60-day cycle marker:
age 36; — — —age 39; - - - age 42; — - — age 45; — — age
48; — - — age 51.

the pattern of the estimated ((s) curve in Figure 3. For a
woman who experiences the 60-day cycle marker before age
44, the later she experiences the marker event, the earlier she
is likely to experience menopause. For a woman who expe-
riences the 60-day cycle marker after age 44, the later she
experiences the marker event, the later she is likely to expe-
rience menopause.

These results are biologically meaningful. Women who are
observed to have a 60-day cycle before age 40 may belong
to a subgroup of women who cycle infrequently, e.g., women
with polycystic ovarian disease, and for whom the pattern of
change in menstrual bleeding with age may differ from other
women. Additional research on this subgroup of women is
needed. To explore this, we conducted a subgroup analysis

581

Table 1
Estimated percentiles for the survival probabilities of age at
menopause given age at onset of the 60-day cycle marker. For
each marker event age, the upper entries are the estimated
percentiles of chronological age at menopause; the lower
entries are the estimated percentiles of the length in years
from the onset of marker event to menopause.

Age at the Estimated percentiles
marker event
(in years) 90% 75% 50% 25% 10%
36 50.6 52.5 54.4 55.3 56.2
14.6 16.5 18.4 19.3 20.2
39 47.5 49.8 51.9 53.1 54.3
8.5 10.8 12.9 14.1 15.3
42 43.3 45.2 47.5 49.2 50.3
1.3 3.2 5.5 7.2 8.3
45 46.3 47.6 49.3 50.6 51.7
1.3 2.6 4.3 5.6 6.7
48 48.6 49.3 50.6 51.7 52.4
0.6 1.3 2.6 3.7 4.4
51 51.5 52.2 53.1 54.4 54.9
0.5 1.2 2.1 3.4 3.9

restricted to women with age at marker event greater or equal
to 40. The estimated curve (with the same knots) matched
the curve in Figure 3 well except for the left end within the
first 2 or 3 years after age 40, where the curve was lower
but still within the pointwise confidence band of the previous
curve.

Another interesting and more intuitive piece of information
for both clinicians and midlife women is the number of years
from the onset of marker event to menopause. Percentiles of
this quantity can be easily calculated by subtracting age at
marker event from corresponding estimated percentiles for age
at menopause, which are also given in Table 1. Survival curves
for menopause after the onset of marker event are plotted in
Figure 4b.

5. The Simulation Study

We conducted a simulation study to evaluate the performance
of the natural cubic B-spline estimator for 3(s) in model (3).
The follow-up time was restricted from 0 to 1. To roughly
mimic the shape of the estimated ((s) for the 60-day cy-
cle marker event in Figure 3, we assumed that true 3(s) =
3sin(ws). The age at the marker event S was generated from
a Weibull distribution with shape parameter 2 and scale pa-
rameter 1. The age at menopause T was generated from
the model M{t|Z(t)} = Ao(t) exp{B(s)Z(t)}, where Z(t) =
I(t > S) and the baseline hazard X\o(t) = 0.5t2, which cor-
responds to the hazard of a Weibull distribution with shape
parameter 2 and scale parameter 4. The censoring time C
was generated by C = U - I(U < 1) + I(U > 1), where U ~
Uniform(0, 2). Thus, the observed time ¥ = min(7', C') was
within the interval [0, 1]. The censoring percentage was about
70%. We assumed a sample size of n = 500 in each simulated
data set.

To reduce the computational burden, we chose the optimal
number of interior knots in estimating 3(-) by minimizing the
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mean square error of 3(-) defined as MSE = Z;’:l{ﬁ(tj) -
B(t;)}*, where t;, j = 1,...,J, are equally spaced grid points
in (0, 1) with two boundary knots at 0 and 1. We used J =
1000. The MSE criterion suffices for our purpose.

We performed 100 simulations and analyzed each simu-
lated data set using the varying-coefficient model (3) using
B-splines by fitting the Cox model (6). Each data set was an-
alyzed by the proposed method using all the data and using
only the complete cases, i.e., those women who have experi-
enced the marker event or menopause, respectively. The esti-
mated optimal numbers of interior knots varied from 1 to 6
with the average number of estimated knots equal to 1.6. The
average of the 100 estimated (3(-) and the true curve 3(-) are
plotted in Figure 5. The 95% pointwise confidence intervals
for B() using empirical standard errors and the average of
the 100 estimated standard errors are also plotted. Figure 5
suggests that the pointwise biases of the B-spline estimator
B() are close to zero, and the pointwise model-based SEs of
ﬁ (-) agree well with their empirical counterparts, except for
boundaries. The average of the 100 estimated B() using com-
plete case analysis is also plotted, and the bias is obvious.

6. Discussion

We have proposed in this article a varying-coefficient Cox
model to investigate the association between time to an inter-
mediate marker event and time to a primary endpoint event,
where the coefficient of the time-dependent marker indica-
tor is assumed to be a nonparametric function of time at the
marker event, and baseline covariate effects are modeled para-
metrically. We estimate the nonparametric regression func-
tion using B-splines which can be easily formulated into a
standard Cox model and fitted using the standard partial
likelihood method. We estimate the number of knots using
a modification of O’Sullivan’s (1988) GCV method. Our sim-
ulation results suggest the proposed method works well in
finite samples.

The large sample theory for the partial likelihood-based re-
gression spline estimator B (s) is beyond the scope of this arti-
cle. For discussions of such spline estimators in linear regres-
sion settings, see e.g., Huang (2003). An extension to the Cox
model setting requires further research. Our simulation re-
sults provide empirical evidence that similar results are likely
to hold for Cox regression with varying coefficients.

We calculated the pointwise confidence intervals for the
nonparametric function B(s) in the analysis of the Tremin
Trust data. One could also calculate the global confidence
band. However, such a global confidence band is often found
to be too wide to be practically useful.

We used all the data in our analysis. Similar to Figure 1, one
might want to restrict analysis to the subset of women who
have experienced the marker event when fitting (3). However,
such analysis requires a strong assumption, i.e., the age at
marker is missing completely at random, which apparently
does not hold for right-censored marker events. The estima-
tors would be biased if this assumption is violated (Paik and
Tsai, 1997). Our analysis however does not require this strong
assumption and also does not add any major complexity in
computation compared to the complete case analysis. An in-
teresting phenomenon for the Tremin Trust data is that the
complete case analysis only shows small bias compared to the
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Figure 5. Average of the estimated nonparametric func-
tions (3(s) based on 100 simulations and its 95% pointwise
confidence intervals: —— true curve; — — — estimated curve;
-+ - 95% CI using the pointwise estimated SEs; — - — 95%

CI using the pointwise empirical SEs; — — estimated curve

using complete case analysis.

analysis using all the data. The bias is obvious in the simula-
tion study (see e.g., Figure 5).
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