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CHAPTER I

INTRODUCTION

Statement of the Problem

The determination of wave resistance of ship hulls is one of
the most important and interesting subjects in ship theory. Model
testing facilities were primarily built for the purpose of investigations
of this part of ship resistance. Since Froude's time, an immense amount
of experimehtal results have been published. It can, however, be safely
stated that the aim to represent the resistance of a ship in terms of its
form has not been solved by experimental methods in a general manner, The
appreciable differences in resistance observed at times between ship models
of seemingly insignificant variations of shape can, for example, not be
satisfactorily explained on the basis of our experimental experience.

Considering the complexity of even the simpler cases of wave
phenomena, such as a sphere moving at constant speed and fully submerged,
this state of affairs is not surprising. To predict ship wave resistance
phenomena. in & rational manner, an analytic formulation; shouid become
available, and this fofﬁulation should preferably be simple enough sO
that basic deductions can easily be made from it.

This investigation has primarily concerned itself with the
problem of providing a simple. method for the evaluation of the ship

wave resistance. In doing so, it is believed that further insight into



the more general problem of interpretation of results has been achieved.

Michell's paper

(1)

on the wave resistance of ships moving at

constant speed in smooth water of infinite depth was the first attempt

to treat the wave resistance analytically. The-basic -assumptions mede

by Michell in his investigation were as follows:

l.

3.

The wave heights are small compared to wave lengths. Thus
particle velocities due to wave motion are soO small compared
to the ship's speed that second orbier terms in velocities
can be neglected.

The effects of trim and sinkage &are not sufficient to affect
the wave motion appreciably.

The angles made by the hull surface with the center line
plane (longitudinal plane of symmetry) are everywhere small,
The motion has persisted long enough so that a steady state
has been reached.

The fluid is non-viscous and the motion has started from
rest., Thus the flow is considered irrotational.

The free surface conditions are to be satisfied &t the
undisturbed water level (& = 0).

The boundary conditions to be satisfied on the hull surface
are assumed to hold at the center line plane, and only the

velocity component perpendicular to this plane is accounted
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for. The vertical slope of the hull surface is neglected,

To this list, one should add that it is explicitly assumed that
the total resistance can be broken down into three major components:

(i) Wave resistance

(ii) Frictional resistance due to viscosity of the water

(iii) Eddy-making or viscous form resistance
and that there are no interaction effects between these components. It is
thus clear that Michell's theory of wave resistance is a linear theory and
is theoretically valid only for an infinitesimally thin ship.

During the past thirty years, much effort has been exerted in
determining the applicability of Michell's integral expression for wave
resistance of ships. In principle, two major questions have been asked:

(a) Does the Michell Integral represent the wave resistance

of common ship forms with reasonable accuracy?

(b) Can the integral be evaluated for real hull forms in a

reasonable time?

Question (a) can be said to have been answered in the
affirmative by several investigators such as Havelock(5’4’5’8’9),
Wigley(lo’ll)lg’lh)l6), Weinblum(zo), Lunde (18,24)’ Shearer<51). It may
be argued that quantitatively the theory does not give sufficiently
accurate results. A great part of the discrepancies between theory and

experimental results has been shown to be due to neglect of viscous effects,
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The effects of viscosity may be summarized into the following two

items:

1. In a viscous fluld the wave amplitudes decrease as the waves
propogate,

2. Due to the presence of the boundary layer the effective wave
making form differs from the actual form of the ship. Further-
more, behind a ship, a portion of the regular free waves
propogate in the ship's wake, and their speed of advance is
slowed as much as the wake's speed, Their wave lengths, are
consequently shortened to some degree,

 (43)

Inui has pointed out that if the Michell theory is extended

to ships of finite beam, the slape of the hull in the integrand of the

Michell Integral and the limits of integration must be chariged or the

integral will represent the wave resistance of a somewhat different hull form,

Having obtained several such modified forms, he performed g series of tests

and compared resulss with predictions from theory. The correlation between

theory and experiments was extremely good., In his calculations he included

corrections for viscous, finite wave amplitude and hull interference effects,
Inui's results show that the mathematical theory is far better than

had been anticipated on the basis of works by previous investigators., They

also emphasize the shortcomings of the standard methods used in obtaining the

wave resistance from experimental measurementk, i.e., deducting the frictional



-5-

resistance of an equivalent flat plate from the total resistance of the
model, To obtain a more realistic value of the frictional resistance
Inui used data from submerged double model tests.

As previously stated, the present work is concerned with the
answers to question (b). It is safe to say that the complexity of the
evaluation of Michell's Integral has been the main obstacle to the
application of this theory to practical ship design problems., In making
actual computations, investigators have in most cases been forced to
consider simple mathematical shapes which often bear only a vague resemblance
to usual ship forms. Even so, calculations have been lengthy, involving
numerical integration.

As soon as numerical calculations are initiated, further analytic
evaluation of wave resistance is only possible through systematic variations
of parameters and plots of numerical results. It should therefore be the
aim of the theory to obtain expressions for the wave-resistance of a ship
in terms of its hull form and known mathematical functions. As far as
this author has been able to establish, the present work presents for the
first time such functional relationships for the wave resistance coeffi-
cient for any ship form whose surface can be represented by a polynomial

of integral powers of coordinates in the longitudinal plane of symmetry.
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For each term of such a polynomial, these expressions could be evaluated by
high speed computers and tabulated. The calculation of wave resistance has
thus, once such tables become available, been reduced to a minimum of labor,
involving only a few multiplications and additions. Indeed, the mathematical
wave theory could become a powerful tool in ship design.

The assumption that the ship's surface be represented in a
polynomial form is not a serious restrictioh. In fact, several researchers
in the field are strong advocates of such a representation which dates back
to D. W. Taylor's work on his famous Standard Series Ships. The many
problems in connection with the layout of ship dimensions in the yards also

seem to favor the polynomial representation.

Historical Background

Seversl excellent reviews of the development of the mathematical

theory of wave resistance can be found in the literature, some of which

26)

include extensive lists of references, Lunde( s

for instance, gives a
total of 185 references published before and including 1953. The Trans-
actions of the Institution of Naval Architects, vol. 100, 1958, gives a
complete list of -papers published by T. H. Havelock on hydrodynamics during
the years 1908-1958.

A detailed account of the development of the wave resistance

theory is beyond the scope of this work. If some investigators are not
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mentioned here, it is not because their contributions are considered less
important but rather that their works have no direct bearing on the results
of this thesis,

Lord KelYin in 1887 was probably the first physicist to investigate
three-dimensional waves, His picture of the pattern generated by a moving
pressure point, revealing the existence of diverging and transverse waves,
is well known. In presenting his classical paper, however, he made it a
condition to the Council that no practical results were to be expected from
it.

Thus Michell's paper, published in 1898, marks the beginning of
the theory of wave resistance of floating bodies. For many years, this
peper was unfortunately overlooked and forgotten, In 1923, Havelock
rediscovered Michell's work, and a few years later Wigley put the theory to
test by initiating his series of papers on the comparison between theoretical
and experimental results. Weinblum, in Germany, started his work on the
Michell wave theory around 1930. His first concern was the determination
of ship forms of minimum wave resistance. It may be of interest to mention
that von Karman also has contributed to our knowledge on this facet of
wave resistance theory. In 193%6 Dr. Weinblum published a paper on the
theory of bulbous bows and later became interested in the systematic

evaluation of the Michell Integral. During his stay at the David Taylor
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Model Basin from 1948 to 1952, a partial computation program was sponsored
under his supervision. This program has later been continued in Germany.

In 1939 Guilloton published his thesis on wave resistance in France.
Guilloton used the Michell potential to calculate the pressure disturbance
of a simplified geometric body and by adding these disturbances was able to
obtain the wave resistance of actual ship forms, and in addition he was able
to trace the streamlines of fine hulls.

After having published many papers on wave profiles and wave
resistances for pressure points, sphere, etc., Havelock developed a wave
resistance theory from a somewhat different approach. By considering a
distribution of singularities (sources or doublets), he was able to simulate
the presence of the ship, presenting formulae for the velocity potential
and the wave resistance, In principle, Havelock's theory is capable of
satisfying the boundary conditions on the surface of the ship exactly. In
practice, however, the same assumption about form has been made as in

Michell's theory, placing the singularities on the center line plane of

(13)

symmetry., Wigley demonstrated that, under these conditions, Havelock's

and Michell's formulae for the wave resistance are identical when applied to

(33)

the same hull form. In 1953, Timman and Vossers were able to demon-
strate the complete agreement between the two theories by means of Fourier

Transform techniques, and a source of argument was removed,

Birkhoff, Korvin-Kroukovsky, and Kotik presented an excellent
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(34) in 1954,

study of the significance of the wave resistance theory
In it, they also proposed two new transformations of the Michell Integral,
The first of these transformations form the basis for this thesis.

A number of authors have extensively exploited the linearized
theory of wave resistance during the last 35 years, notable Wigley,
Weinblum, Lunde, and Guilloton. A considerable amount of work has also

(32,43, 44) (44)

been done in Japan, notably by Inui Reference lists over
seventy papers on the subject, many of which are unfortunately not trans-
lated from Japanese., No real basic modification of Michell's theory has

been made, however, and our efforts are even today directed toward the

application of his analysis.



CHAPTER II

THE MICHELL INTEGRAL

Boundary Conditions

As a ship moves with constant velocity on the surface of an
infinitely deep, incompressible, and inviscous fluid, it gives rise to a
perturbation velocity field., If the fluid is assumed initially at rest,
this field will be irrotational and it follows that a velocity potential
® exists, Using a rectangular coordinate system with the XY-plane located
in the undisturbed water surface and Z-axis vertically downward, the
velocity components E; V, W, which satisfy the equation of continuity

ol OV oW

3x Yavy*taz = °

are given by

- _ob . - .
“Ix o Y Toy

Q
§|
vy

Here ¢i is a solution of Laplace's equation

o op . JB
o sh -0

The Bernoulli's equation for unsteady irrotational flow is

- ‘a@?* F(A+ V% w?)+ £ -92 = {(¥)

D

=] Om
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To reduce the fluid flow to a steady state case, a coordinate
system fixed with respect to the ship is introduced. The origin is located
amidships in the center line plane and the positive x-axis is in the
direction of motion (Fig. 1). Furthermore, the ship is assumed stationary
and a uniform flow of velocity c equal to that of the ship is superimposed,

in the negative x-direction. It follows then that

where u, v and w are the components of the perturbation velocity caused
by the presence of the ship in the uniform flow. These components are
assumed small - i,e,,

ut<<Lce;, vK<e;, we

Introducing the perturbation potential ¢ defined by

one has that ¢l =cs + ¢

and Vé=0 (2.1)
2
where V 1is the Laplace operator,
Neglecting small quantities of second order, the Bernoulli's

equation now becomes

—,§-+ z(ci+ 2c§—f)—92 = C,

(2.2)



Figure 1. Coordinate System Fixed In
Stationary Ship In A Uniform Flow
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The constant Cl can be determined from the condition that far upstream the

surface elevation must be equal to zero, Thus

Q

]
|-

Q

+
S|

where P, is the atmospheric pressure., Letting the free surface be defined

by

4 = - E(x)y)

the condition of constant pressure on the surface becomes

C-aégé*ﬁ =0 (2.3)

The kinematical boundary condition to be satisfied by an inviscous fluid
is that the velocity of a particle on a bounding surface must be tangential

tO it - i.e.,

DF OF OF oF OF
— = — = L — = 2.k
e a“:+uax-|—va‘:'1-wat_5 O (2.4)

where F(x,y,z,t) = 0 is the equation of the surface. For the free surface

F(x,y,z) =2 + Z(x,y) =0

Applying Equation (2.4), the kinematical free surface condition becomes

- 9Z oZ -
(C+u)ax+vag+w o



=1 h-

Neglecting terms of higher order, this expression reduces to

02 9% _ o5 . z-_-%F (2.5)

(2.6)

Since perturbation velocities are small, Equation (2.6) is assumed to hold
at 2 = 0.
The kinematical boundary condition of (2.4) must also hold at
the surface of the ship. If that surface is represented by
y = &(x,2) (2.7)

the boundary condition then is, by (2.4)

—(- % -2 o
( ctu) ==+ v -wsZ o

If one introduces the restriction that the tangent plane of the ship

surface makes a small angle with the xz-plane, i.e,,

29 . 99
3x < I >z < |

then the boundary conditions on the surface of the ship simplifies to

g—fj =c§§ = cf(xz) ; y= 92

or

d :
a—; = cf(xz) ; y=o (2.8)
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The boundary conditions given by (2.6) and (2.8) are necessary but not
sufficient, To make the solution unique additional restrictions must be
introduced. Since the ship is assumed to advance into still water it will
be required that the waves are trailing aft, Furthermore, the perturba-
tion velocities are zero at infinite depth. The velocity potential ¢
must therefore satisfy the following requirements:

2
1. Vp=0; ~0o<x<ow; 0<y<o; 0<z<

2
2. _a;_(ég-%alﬁzcn 7z =0; ~o<x<ow; 0<y<ow
ox cs dz

The Wave Resistance Integral

The derivation of the wave resistance integral which follows
is due to Michell(l). It is included in this thesis for the sake of
continuity and completemess.

It is at first assumed that depth of water is finite and

equal to h. Hence the velocity potential ¢ must satisfy

=0; z =h (2.9)
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A typical term of the solution to Laplace's equation, satisfying (2.9) is

I n(z - h) cos(mx + @) cos(py + B)

2 2 2

where m“ + n“ + p~ = 0, and m must be taken real since -o < x < «,

n and p may be either real or imaginary, but if p is imaginary,e.g. p=ip’,
-t
the last term must take the form e ¥ y} since due to symmetry it is

sufficient to consider positive values of y only.

The free surface conditions (2.6) will be satisfied if

n tan nh = - . (2.10)

For each value of m, this equation has an infinite number of real rocots

and one pure imaginary root given by

2 D
n' tanh n'h = ——; (n = in').

It will be shown that the imaginary root alone is responsible for the
wave resistance., As for p, it is always imaginary for the real roots
of n and so for the one imaginary root of n if m > n'. In order to

satisfy Equation (2.8), let f(x,z) be expanded in terms of a Fourier

series,

f(x,z) =2 a cos n(z - h) cos(mx + @).

m,n mn
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If it is supposed that f(x,z) is periodic,
f(x+1L', z) =f(x - L', z)

then f(x,z) can be written

]((X,Z) = rz nZ {Amcos “L—*’S + By, sin T"Elx }(c.osn(z -h/) (2.11)

The orthogonality properties of the trigonometric functions now imply

that

Ll
J f(x,2) cos T g, L‘ZAM cosn(z-h)
n
-L

L\
L
j {(x,2) sin -T%‘ dx = L‘Z Byn o5 n(z-h)
-L
and alsO that
h L ,
JJ f(X,Z) cos T%’SCOSW(z-h)dxdz = L‘Am fcos?m (z-h)dz
o -L o

(2.12)

\

= LAy, 2= (20h+ sin Znh)

\

h L h
J[ ]((X,Z) sin l‘f—’-‘ cosn(z-h)dxdz = L Brn {wszn(z-h)dz
o -L °©

|

- Z‘; (2nh + sin 2nh)
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When.n = in', Equation (2.12) becomes

h !

ff -f(x Z) cos —2 cosh w'(z-h) dx dz

= LA, ﬁ(zn'h + Sinh 2n'h)
- (2.13)
L
j[ )((x, Z) sin % cosh n'(2-h) dxdz
O'L‘ \ |
= LB, 27 (2v'h + sinh 2n'h)

Substituting Equations (2.12) and (2.13) into Equation (2,11) one has

L h
_ (T 4ncsn(Z-h) A A T A A A
f(x;Z) ’z L‘(?nh"' sin Znh) fjf(x' Z)Cob L\ (X‘X) cos W(Z'h)dZdQ
Y n A
L\ h

4n'cosh n'(z-h) A A ‘ .
¥ — L(2n'h+sinh Zn'h)J J §(X,2)cas E,_-LW-X) cosh n'(2-h)dF df

-l'o
If now L' - o with
-.U:_(-—-— » ——Tr_—
T m - = dw

the infinite summation on r is transformed into an integral of the form

oooo h
.4 A a., ncesnz-h)cosn(2-n)
fx® “ZJI[ F(R2) B e e
" owo A A
cos m (X-x) dZdRdw (2.1h4)
co oo h
\ 1 1, A\
a A h v(2-h)cosh n(Z-h)
+ n cos .
J[I {-(XIZ) 2n'h + sinh 2n'h
O -c0 O

cos m (R-x) d2dR dwm
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Iff furthermore, the depth of water is allowed to become infinite, the

following relationships are obtained:

nh = alT+e ;dm‘*E‘

tan nh = tan €
cos v(z-h) = (-\)ﬁws(mz-e)

lim (Zn+ iﬂ%"—h‘)

W —e 00

2n

CZ

hton € = - km? - L<=7"“

)

lim tanh n'h =1

V\‘—.w

| A
-n(z+2)
e

i cosh n'(2-h)cosh n'(E-h) =
w 2n'h + sinh 2n'h 2

h—s»eco

Substituting these relationships into Equation (2.14), one finally has

OO o0 e 6O
‘S‘(X.E) = % I f J J' '}(Q.i) cos(nz-€)cos(ng-€) x
© 00o-%  osm(X-x)dR dmdFdm (2.15)
©0 oo @ Cz 2 .
_g__ A A 2 -9—M (2+7%2)
t 11‘9 I f(x;Z) m & x
0o0-®  cosm(R-x)dRd2dm
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The velocity potential satisfying all boundary conditions is therefore

O 00 00 0O
¢ =_Z_C_(§[ (2 2 cos(NZ-€)cos5(nZ- ~€)

2
Vm?z+ n?
0 0o
-y/m?%% n?
Cos m(K-x) € dRdZdmdn

$? 00 00 m7c7(2+§g
263{ wm € -

v —9— )((X'?) v mic¥ _ | *
g0 7 (2.16)
sin {m(x—?ﬂm/ﬂgg - ':j}ob?dﬁdm
9

f(x,z) Vs oS m (X~ x) x

"y V1 T e 2 am

2
The term sin {m(x-x)+m/ 3-2- - 1 y} was introduced by Michell to mske, in
g

(33)

his words, the waves trail aft. Timmon and Vossers have obtained
Equation (2.16) by means of a Fourier Transform technique and have shown
that the velocity potential is uniquely determined by the boundary condi-
tions given on page 15. If one lets ®p be the hydrodynamic pressure due to
the wave disturbance, the wave resistance will be given by

R, = - L[[Sp f(x,z)dxdz

where the integral is taken over the center line plane of the ship. Neglect-

ing terms of higher order in the Bernouilli's equation the hydrodynamic



pressure due to waves becomes

dp = -PC Sx*

Thus one has that
RV = gpﬂl f(x,z)dxdz.
a ( 2 )

The first and third integrels of Equation (2.16) make no contribution to the

wave resistance since
fﬁf(i,'z‘)f(x,z)sin m(R-x)d%dZdxdz = 0.

Hence it follows that

. @0 00 6o oo oo _m%(ar3)
7
rrg / mct -/
| 0920 e 97 (2.17)
c
s m(x-x)dxdadRdZdm
e
_ 4-£C4 =2 =2 m?dm
“Trg ), (1470 7
ez 9
let A = —, s0 that the wave resistance is given by
i 2
Ci 2) Ada 2.18
R, = (L% 7% == (2.28)

s ) A‘gz
I= [[ f(x.2) &€ €% cos %dedz
=]
o0 oo A

2
I-‘J f(x,2) e 'E%_sm icgzidxdz
(o]

2
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Equation (2,18) is called the Michell Wave Resistance Integral,
It is observed that for a ship symmetrically fore and aft I = O, Further-
more theory predicts the wave resistance to be the same for motion in
either direction along the x-axis.

For real ships, f(x,z) is defined as non-zero only on a domain
Sz~ Xs—7 O<Z< D

Length of ship

where L

D.= Draft of ship

n

It will be found convenient to express the multiple integral of
Equation (2.17) in a non-dimensional form. For this reason, the following
variables are introduced at this point:
A
X . Nae X . = 2. . N

Furthermore, it is convenient to let 5%.= F = f-2 where f is the Froude
c

Number. Then from (2.17)

2 A 22 _AF (w4 w)
Rw = ——f-i—-f ]{ f[ jg(Lu,Lw)f(Lu,Lw) -—g\/—z—_——l—— e
\ Si 5|

xcos [AF(u-Q)] deudwdad\}\\/ A

s's {-;ﬁ_—éus_% i 0$Wwg —E—}
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Defining the maximum ship beam by 2B, the hull surface may be

.g. . c< x, %> - &y, ) (2.19)

From the dimensionless slope function defined by

described by

h(u, w) = & (2.20)
du
one has that Bh(u,w) = Lf(x,z).
Thus, if follows that
2,2 2 A F(wrw)
= 4p9°L 2 A A A
Rw = 77 B hluw)h(i,w) Y e
Y

x cos [AF(u-0)] dudwdddWda

The wave resistance coefficient defined by

is therefore given by
©4qP

L VA )
Cw 5“-‘: ([[[[h(uw)h(aw)vj?_'_e
\"4-go00

x o5 [AF(u+d)ldudidwd¥ dn

(2.21)



CHAPTER III

SOLUTION OF MICHELL INTEGRAL FOR POLYNOMIAL SHIP FORMS

Introduction

The transformation of the Michell Integral proposed by G, Birkhoff
and J. Kotik in l954<5u’55) led to a separation of the parameters contri-
buting to the wave resistance of ships. By introducing auxiliary functions,
they were able to divide the integrand in the Michell Integral into one part
containing all the properties of the ship form and another describing the
influence of ship speed.

In making actual use of the method, it was suggested that numeri-
cal integration be employed. This led to two basic difficulties. First,
the integrand possessed an irregular singularity on the boundary of the
domein over which it had to be integrated. Second, the part of the inte-
grand which is a function of ship speed was given in an integral form only.
This integral, called the Michell Function, has been investigated in parts
by Birkhoff, Kotik and Parikh(30»37:38)

This thesis presents for the first time a series solution of
the Michell Function. A solution of the Michell Integral for wave resist-
ance has also been obtained under the sole assumption that the function

containing the properties of the ship's surface is of & polynomial form.

-2k
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A Transformation of Michell's Integral

The following transformation is the first of two proposed by

(34)

Birkhoff

In Equation (2.21), two new variables ¢ and { are introduced by

A A
E=u=-u; =w+w,
For u and w constant, it follows that
A

de = au; df = dw

and (2.21) becomes

P oo % u \v+E
Cw = ——Jdufdw \n(qudAJdEId} l’t(§+u ;—w)

o \ -..L -U w

-X'F *
x € - cos (AF§)

Vaz-i

If the order of integration is interchanged, C, can be written

- 2
[
BF" d dw b
Cw = = & d; du w h(uw) h(§+ru, 5-w)
+1 (o]
_A°F §
{fe ;Cc,s(arg) ;:_, d/\}

|
or in a more compact form

2D

Cu= B fd;/d; H(E,5) C(FE,F5)

o

(3.1)

(3.2)
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where i s
R, 5) = Jdu dw hluw) h(E+ru,5-w) (3.3)
Ft 5
Cist) = /we-t cos (S _Xda (5.4)
Vat-1

/
Here H(&,t) is called the Hull Function and C(s,t) the Michell Function,

In order to show that Equations (2.21) and (3.2) are equivalent,
it is necessary to prove the following:
Theorem I.

~3
Suppose f |h(u,w)|du < M for some finite M.
\ 1

Then (2.21) is an absolutely convergent multiple integral.
Proof.

Since the integrand of
13 o
1 2 ATF(WHW)
- = € Ih(u.w)l"
VA% -1
|4-4 00
A A A A
| W(QwW)|dWdwdiduaa
is positive, measurable, and larger in absolute value than the original
o s (k1) s
integrand, it is, by the Fubini theorem , sufficient to show that one

iterated integral is finite. By hypothesis, one has

2
AdA —AFW X EW
1= V—;—,—Jf e " Vdwd®

7 (%® 2
: le 22 B <2 ; F#o

< o z P
FE M RTT T F

The equivalence of (2.21) and (3.2) is now a corollary to Theorem I.

<



The Hull Function

From the form of Equation (2.12), it follows that
H(-¢,8) = H(g,¢)
Obviously, the Michell Function is symmetric with respect to s.
It suffices therefore to consider positive values of ¢ only. Thus (3.2)

can be replaced by 2p

- '@szd; fd; H(E,5) C(FE, Fs) (5.5)

Since h(u,w) = 0 everywhere outside the region S', the limits of integration
of Equation (3.3) can be reduced somewhat. If ¢ 2 0, then h(u,w) =0
for u < -3, and the lower limit on u in (3.3) becomes (-3). In regard
to the limits on w, two cases must be considered.
(1) ¢t =%ﬁ the 1limit ¢ - % can be replaced by zero, since

h(u,w) =0, w<O0.

(1) %~§ ¢S %?; the upper limit on w can be replaced by
w =2, since h(u,w) =0, w> 2,
The Hull Function may therefore be defined as follows:
-3
H(%,s5) = [H(3, })] Jd jo\w hlww) W(E+u, 5-w)
-zL o
f20 ; os3< P (3.6)
-5 B
(5,3)= [H(},g)]ﬂ = du}dw hiuw) [4(§+u,>-w)
SRS

520 ; %s;s%’
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These expression show immediately that
H(g,t) = O along the boundaries of S".
Furthermore, it is noted that for small velues of {, H(t,{) can be

approximated by
1-3
H(g,5) = ;J h(u.o) h(3+u,0) du

Thus H(&,t) vanishes at least as fast as a linear function of ¢ on ¢ = O.
By means of similar approximations, it can be shown that the Hull Function
venishes like a linear function (or faster) on the complete boundary of
the region S". s's {"’5§ <1, osps zx.‘D}

Now by Leibniz rule

e [y [usongmm s

1-}
/dw é‘,;-w)h(i"}, jlf] uw)a; (EHA ;—w)du]

Also since

5?‘ h(bt'*?, >-w) -;% h(u+§,;-w)

it follows that

}sO’. (]

9H<§- >| =fdw[-h(4z,;-w)l«(i,w)+ fh(u.w);a;h(u,g-w)du] (3.7)

If one lets w' = ¢ - w, (3.7) may be written

3, 1
a&gs ; =FW'E‘14("2‘.,W')M‘E,?'W')’rjh(ul}-w')ja;h(u.w')du] (3.8)

f'o* °

-
4
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Dropping the prime, one obtains from (3.7) and (3.8)

t >
+J lq(u,} a‘h(uw)du+fln uw);;l«\(u duj

= fdw {-Z[h('z,w) hi%,5-w)+ f;% Thiu,w) h(u,f-W)]du}

>
jdw [t k(s 3-wiv b4, Wik, 5w

o

If the waterline angles at the bow and stern are zero, then

However if the slope is different from zero, the slope of the Hull
Function has & Jjump'  along the line ¢ = O since
H(E,t) = H(-¢,¢).
The Hull Function for a simple mathematical ship surface is
derived in Appendix I.
To gain insight into the behavior of the Hull Function, it
is useful to consider the effects of variation in h(u,w) doe to changes
in the ship's form. Let
h(u,w) = h(u,w) + 8h(u,w) (3.9)
be the new slope function after alterations. The corresponding Hull

Function then becomes
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H(E,t) =\/g%/gw[h(u,w)+6h(u,w)][h(§+u,§-w)+8h(§+u,§-w)]

Defining the change in the Hull Function by ®H(g,t), it follows that

BH(E,¢) = H(E,¢) - H(E,E)

=\/pdu\jpdw [h(u,w)dh(e+u, t-w) + h(g+u,t-w)dh(u,w) (3.10)

+k/pdu\/Pdw [5h(u,w)sh(g+u, -w) ]

The first integral of (5.10) represents interaction effects
between original hull form and the change dh(u,w), whereas the second
integral represents the Hull Function due to Bh(u,w) when this is
derived from the change as a separate body. The latter integral will
always lead to a positive contribution to the wave resistance. Thus,
for a change in hull form to be beneficial, the contribution of the
first integral must be negative and of greater magnitude than that of
the second integral. Equation (3.10) should prove to be valusble in
the analysis of bulbous bow designs.

So far, the general functional behavior of the Hull Function
has been studied., To get the physical significance of the function,
however, it is necessary to proceed in a somewhat different manner.

Consider two elementary areas A and A, (& = &5 = )
located on the hull surface at (uj,w;) and (up,wp) respectively, and

let

h(uy,wy) = by, h(up,wp) = ho.
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Since H(e,t) =\/pdukjpdw h(u,w)h(g+u,t-w)
the Hull Function will be different from zero only for specific values
of ¢ and (. For example,
H(0, W) = A b2
H(0, wp) = A hy?
H(uj-up, wy+wo) = A hohy
H(up-up, wi+ws) = A hyhy
From these expressions, one concludes that H(0,{) represent
the wave resistance of all the elements of area considered separately
and that H(E,t), & > 0, represents interaction effects.
The contribution to wave resistance by the two elementary
areas, considering interference effect only, is given by (3.2). Thus

it follows that

oo
8r? 2 - X F (Wt W)
8Cu= = a'hh, {c " Leos AF(u-u,) +cos A F (uy-u )] >
|

Alda
Vaz-1

oo

2
6 z 5 -2 F(W,+W,) L
= .“F A hh, Je Z@saF(u,-uz) 7‘??

\

This expression is the same as that obtained by Michell from

the original form of the Michell Integral.
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If the two elementary areas are located on the same vertical

line, uj =us Oor £ =0, the interference effect becomes

oo
G F? A F(W AW, *
é.Cwl N \“_F Azl"-\"zfe " )—gﬁ
$=0 ‘ A=
Now Michell(l) has shown that
0

_ahz ﬂzda _ *_a_
fe T ze [K($)+K(2)] (3.11)

\

a
where Ko(}E‘) and Kl(}%%) are the modified Bessel functions of the

second kind. From this it follows that

2 -F W we
é‘cwl§=o= At 2 (KolF ) ek, (F )]

Now if h; and h, have the same sign, 8; C,(¢ =0) is always

positive, The favorable effect of a bulbous bow in the area immedi-

ately above the bulb is therefore due, to a large extent, to the

reduction of hull slope over the portion where the bulb is located.
The contribution to wave resistance by the two elementary areas

considered separately is given by

oo

2 -2 w atda ~2AFW, _3da
§,Cu= EE Az[h.zfe et th e e ]
\ |
-FW,
=-21r—‘:- {k e [Ko(Fw)+ K (Fw)]

?

shie” T [Ko(Fw,) + K, (Fw,)] }
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This expression shows that 82CW is always positive, and its
magnitude depends upon how far the elementary areas are located below the
undisturbed surface and upon the absolute value of the hull slopes.

From what has been sald, it becomes apparent that the wave resist-
ance of a ship is made up of two parts, namely:

a) The sum of the effects of all elementary areas taken separately;

and

b) The sum of interference effects between any two elementary areas

taken in pairs.

It has been shown that the interference effects depend upon the
horizontal distance between the areas and the sum of vertical distances to
the undisturbed surface, The horizontal distance is represented by the
variable ¢ and the sum of vertical distances by the variable f{. It follows
then that for a given value of ¢ and {, the Hull Function H(t,{) represents
the total interference effects of all areas, taken in pairs, having a
horizontal spacing equal to ¢ and for which the sum of vertical coordinsates
is equal to ¢§.

The wave resistance is determined by the products of the functions
H(t,t) and C(Fg, Ft). Over any region in the (&, {)-plane where these
functions are of equal sign, one may say that interaction effects are

detrimental, whereas opposite signs indicate favorable conditions, Since
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C(Fg, F{) is completely determined for a specified F (a given Froude number),
the Hull Function represents all the wave resistance characteristics of the
ship at any given speed of advance., This function should therefore prove,
within the limits of the theory, to be an invaluable analytic tool in

determining ship forms of minimum wave resistance,

The Michell Function

The Michell Function is defined by (3.4) as

oo _fal
Cls.t) = je cos SA

|

At
2% -

Differentiating under the integral sign, one observes that C(s,t) satisfies

the homogeneous heat equation:

—aﬁ:éli;t>oo (3.12)

ds2 ot

It is known, by reference 40 that

oo

dx  _

JCO5 XKW

\

- 2 Y. (x) (3.13)

where Yo(x) is the Bessel function of the seccnd kind., Furthermore, it can

be verified that

[ ]

T
-2t dx da
li f C.ossh——=jCos SH e
ilﬁo* \ © A= \ a1
Hence it follows that
T 2°
lim  Cle4) = 2 33 Yo () (3.14)

t-—a-0+
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An expression for C(0, t) is obtained by making use of the

relationship (3.11), namely

L
2
(0, +) = & [k, + 5, )] (3.15)

An asymptotic expression for large values of s and fixed t, obtained by

J. Kotic and rederived in reference 37, is given by

Cst) = I s 5o ) 2(F-t)sintsr ) (5.16)
- L (3% Ly L) cos (s+ I, 0(5'3)}
It follows from this formula that C(s, t) tends to zero for large values
of s and t.

Birkhoff(37) outlines methods and procedures for obtaining
numerical values of the Michell Function. If a formal integration of the
product of Hull Function and Michell Function over the region S" is
contemplated, however, where S"{O s £ s 1; 0<¢ s %?}, numerical values
are not sufficient. A general expression of the Michell Function must be

found. One method of obtaining such an expression is as follows:

In Equation (3.4) let

_ e 9E
ATANL S TR

so that the Michell Function becomes
00

N VETT
C(st) = {j cos SVX+| AH ax (3.17)
(o]
VA +1 }

5t

-%e I__{COss A+
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where I{ } is the Laplace Transform operator., By reference 42, the trans-
form of (3.17) exists.
From the well known relationship
2 1
I, (@ = (757) cosz
one has that

Cos sVx+1 = (32-5V7T+1)4[ J4 (VX4 )

Furthermore, it can be shown that (see Appendix II)

oo _57I "
Y, ) =2 =SA
(%) (%5V7T+| ) S“m}xﬁ):i Tuen () 2)

n!
Thus n=o
_ s 35 (D) Tpen® (3R)° (5.18)
Cos DVA+I =(7{ﬂ 21_ 2" nl 3.
n=o

Substituting into Equation (3.17)

co oo
TS 2 2N () ' Togrn (95" Ao n-t
Cat) = (TS DETETET I i)t )
n=o

©

By reference 39, p. 269

C H_ud, s s
[P0 AR = T(ned)Plned mez; t)

(2]

(3.,20)

where Y(n+%, n+2; t) is the Confluent Hypergeometric Function. Since
(n+2) is always a positive integer, ¥(n+3, n+2; t) is logarithmic
near origin. (See Appendix III.)

Using the relationship

M(n+d) =vn (3)

n
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where

(

), = 2@+ 1)(G+2)eeee(z+n-1)

j—

and substituting (3.20) in (3.19), the expression for the Michell Function

becomes
\ ¥ -t S ("2”(%)5 57 -T . -
Cist) = _\ZI<'2§) e Z 27 n! [J_.%_,.m(s) :L"\i)(m-%_- 'm-Q;T_{ (3.21)
n=o i

Wave Resistance

The wave resistance of a surface ship moving at constant speed
on a straight course in water of infinite depth is given by Equation (3.5)
with the Hull Function as defined by (3.6) and the Michell Function by
(3.21)

It will now be assumed that the Hull Function can in general

be expressed as polynomials--i.e.,

M. N 1
\ «

[H(E )], ZA""F 1
5 (3.22)
MAE ‘<?F
2 Axp ? 2

I i <F

where A and A are constants and o and B are non-negative integers.

op op

Since H(E, {) vanishes at least as fast as a linear function as { =0,

W

[HEE. 5],

nv

one concludes that in [H(E, C)JIB 1.
In the following, expressions for the contribution to wave

resistance due to a general term of the polynomials of (3.22) will be

presented. Depending upon whether the term belongs to the first or
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second polynomial, this contribution will be defined by MPBCW]I and

[A%c,]

1T respectively.

From Equations (3.5), (3.21) and (3.22), it follows that

[A Cw] -———Jdgjd;A*p E;Pl(g—)%e -FF

(3.23)
(- (")ﬂ F)
> L ( [3epy, (ERITPCm4, w2 P35
Introducing new variables defined by
F¢ =T and F¢ = T,
Equation (3.23) becomes
«p . 4V—A=< { /
LaTeu)e” Teep |45 d3§ ; o) (3.24)

(- (2)n (3) -
(5 LoD 3, (E[T e sz 5]
e <
Since the logarithmic case of the Confluent Hypergeometric Function has

a singularity at E,: 0, consider

Eb
L

I= lm /e-;—}_ﬁ}z(wv},mz;})df (3.25)

€—ot €

Now from reference 39

d -5 - -F }

cle Pnrt v 8)] = -€ }Tf(w+%,m+2)';) (3.26)
If (3.25) is integrated by parts, one has

[ = lim [( ;?(mﬁ el })

e =07

*Pf _;'&Z’(m%)ml;g)d; F

£p
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So that by iteration,

ED
N
1= lim f-c;L(/s)(/); ’sz(m nel-k 2)' (3.27)
€

€ —=of

Substituting (3.27) in (3.2L), it follows that

[a%e.), = 47 fep § de ;T ZM"IJ_M;)J J

‘d'\'ﬁ 2” V)_/

f(/ﬁ)(ip) P, n+l-k; t_ i

k=0

Jd; {E +£Z(-I),2n(i)_7 (5)‘4[ 3_?”(;)]} (3.28)

é -—ubo"'

@—ekf(‘ﬁ)k (€) -k}p(VHé/ nil-k;e) S ]
=0

If the integral representation of the Confluent Hypergeometric Function
and relationship (a) of Appendix II is used, the second integral in

(3.28) becomes

L=lm (8 Jdg ;e i(/s) -1y P X,

E—o7t

fe ws?ﬁw%

In the limit as € -0, 12 reduces to

I, - rr)F Ed?JCOSEVA*'\ ;L}c(‘—;':)‘}sﬂri
j; MP5rds

(3.29)
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where the M(B)(E) depends upon the value of . Now from (3.13),

Y. (¥)= -7 f‘-os?V y —-r(;m

so that
28
g (P) - _ + _
d;'zP[M (3] = P F!\)zv Yo (%) (3.50)

Moreover, from (3.29) one has
[~

() o 2t | _dx
Mo = (£)°B! | FE P
[
This may be transformed by
» = tan e ; di = 2 tane secode
so that

I
o zm-
WP = (2)F p'fm "5 de

i fe /)( -1)!
(2 C & (/)/< (fo-1)
- (2P Il (p-1-k)] (Zke1)

Also from (3.29) it follow that

d
Prg) - -2 5! js\n;m AZMF,

d;*M 5= - Brp [cosFimeT rt

Also, by iteration it can be shown that the derivatives of M(B)(g)

at £ =0 are

),"‘O ; m=1,35--(2p-1)

W (0 (p-1-¥)!
(-1) ( )Pi(ﬂﬁ-l)k’(/s -8k

m= 0,724 - (’ZP-z)

(3.32)
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Now the Bessel Function of the second kind and of zero order is given by

T
;‘i X
-%2_‘%7()‘:1 {”%*ﬁ*“‘*‘m"}

J,(%) = Z(—u”ﬁ;’j—ﬁ

so that integrating YO(E) repeatedly and using (3.32) and (3.31), it can be

where

shown that
2n 2")*2

e s i SOV

(Zm/) (n)? 2?;42/5

) y z;,,—ZVH-Z/_:
—Z(-I)”(—Z)__Z—Z ( |+_2,L+ I
nei

. |
(Zw/)?/e () T4t ] (5.33)

- 4 k
- (/) (/8-1-h)! —2n
+ i ( I) (2 )! 77') /3 (Z (7/<+/)7<-/(/5-/—V)-[<)./ );

h=o

If this is substituted into (3.29), then

F'\/-—[Z n(z) 'F

(Zns2prtl) (ztrm)/5 (ni)*

oy 2,3 A+l

I =

2

=||N

1 \ ] | . | }
{% * loﬁ 2 F (?n +2/5+oc+l +'2y1+| + Zn+2 * ¥ 2n+2p
, (é)zn ?n+2,s+.(+/

(3.34)
N Z( )(2nf-7p +o<+//(2n+/)2/5(n/) G A n/J

-
¥ L Z_l) ([3 -1-1)) )F__’Zmo(-i-l

2
%( ) 2n+o<+l)(2r;)/ (Tr) F ( (Zk-u}k’(/b I-n-k)!
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Returning to Equation (3.28), one observes that the first integral is of
the type
Foatden )
I, = j 3 Josen (E)dE (3.35)
)
Let L« Ll
w=3% ; du=x% d§
—3+n - -
dv::} S'E?V\(E)dg

=++n -
V=g -)gm (%)

(Ref. 40, p. 192)

so that integrating by parts gives

_otgen _ F F_“‘z
-3 ‘SJZ-M(E)L met lg

Continuing by iteration, one obtains

ol
4 -+f -k

I.=> 2 3), T Jyomsr (F) (5.36)
k=0

This Equation is valid, however, only for o an even integer.
For o an odd integer the last integral of (3.35), after integration by
parts [ﬁi] times, is of the form
«

2
S
- E-H’b

2“¢4), | Ta., (9 3E7ds

where k, = [g%l} --the greatest integer in le.

Thus by reference 40, p. 194, for o an odd integer, Iy must be replaced by
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137
k oL+ +n-k
13= 2 (‘g)kF' Si+h+k (F)

k=0

+»‘2k'("'°i() 2“” | *T‘( N+ E ) =
(3.37)
F Tguny (A Hgy, (F) - Ja,, (F) H«MH(F)E
K, F§+n+|
e (-?)“"2(%:4)“ Si‘ww (%)

where Hv(x), the Struve Function, is defined by
V420t

zx)
Hy (x) = Z(— T(n +%)T‘(~d+w+%)

w=o
From Equation (3,23), (3.34), (3.36) or (3.37), one finally obtains

I (=)
ol - 4\7 Ab(p ﬁjl:igéj
A PCW]I =TT { I,- < 2" n! "Ly (3.38)
=0 ’

-EP -k
e © f(-p)k(-f)“( ) WPntd neimk ?’)J}
ko

By inspection, the corresponding expression for [APBCW]II becomes

o 4‘f_A = (-0'(%)
£fey]p = I F“*r; ﬁ I3

(16 S m 0 B P nrs o £2)]

”"0 (3.39)

QFD 2FD
“[e L( /s)k(") ) "P(mz nel-k QFD)]}

k=o
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The total wave resistance coefficient is obtained by adding the contri-

butions from the individual terms of the Hull Function polynomials as

given by (3.38) and (3.39)--i.e.,

M.N M.N
Cw= D &P 1L+ D> [a%Pe, 1, (5.40)
°Q‘5 C!.F

The expressions for the wave resistance as given by (3.38) and (3.39) are
convergent. (See Appendix IV,.) It should be emphasized that Equation (3.40)
is not restricted to ship forms symmetrical fore and aft. The expression is
however, only valid for ships with rectangular longitudinal plane of

symmetry.



CHAPTER IV

CONCLUSION

A general formula for the wave resistance of polynomial ship
forms has been obtained. The result is based on the Michell Integral, and
all assumptions made in the linearized wave resistance theory of thin ships
apply.

The series form solution is not too complicated in form. It
does, however, involve several transcendental functions, some of which are
not readily available, Also, one notes that even for the simplest ship
form, at least about 20 series expressions will have to be evaluated at
each Froude number investigated, a prohibitively long task if it was to
be repeated for each individual design.

The real significance of the results obtained lies in the fact
that a systematic program of evaluations of the formula can be undertaken
with the aid of high speed digital computers., The functions so computed
depend upon the Froude Number and the power of the term of the hull
polynomial, but not on the individual ship form directly. For each value
of o and B of the Hull Function the wave resistance can therefore be
tabulated for various values of the Froude Number, Once such tables
become available, the wave resistance calculation will have been reduced

to a few elementary operations. Model experiments, in conjunction with
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theoretical calculations, have repeatedly shown that the linearized wave
resistance theory is capable of predicting effects of even small variations
in hull form. Indeed, it i1s the opinion Of several researchers in the
field that the linear theory will determine hull forms of minimum wave
resistance with sufficient accuracy. As a result of the formula

presented, it should become possible to investigate families of ship forms
systematically and to determine such forms. This has always been a
principle aim of the ship hydrodynamicist.

The complexity of the formulae given makes it difficult to
study the behavior of the functions involved analytically at this time.
This task must be left to the computer,

As an extension to the present work, it is hoped that it will
become possible to obtain expressions for the complete velocity potential
in terms of ship form and speed. It would also be interesting to consider
perturbdtion potentials in order to improve the assumption made on both the
ship surface and the free surface of the waves, These are but two of the

problems of ship wave resistance still left open.



APPENDIX I

THE HULL FUNCTION FOR A SIMPLE SHIP FORM

The term Simple Ship Forms refers to ships' surfaces whose
equations are given by
g(x,z) = g, (x)g,(z).
For these shapes, the Hull Functions can be written
H(E,£) = By(&)Hx(L).

Consider the particular case

8(x,2) = B(1 - (1 -4 Z5)

which implies that
Glu,w) = (1 - %w)(l - @)
and h(u,w) =% -8u(l - %w ).

By Equation (3.6)
3 |
ey 5], = J J 5(u+5)8u[i-§(§-w)][_\-%w]dudw
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Q
_ L L2 oL3
OB A IR VIR

rlo

_47_



L8

Similarly
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[H(E, 3] = M
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A plot of Hl(g) and H2(§) is shown in figure 2.
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Figure 2. The Hull Function For G(u.w.) = (1-Iw)(1-u®)
D



APPENDIX IT

A BESSEL FUNCTION RELATIONSHIP

Consider the generalized hypergeometric function

1 o n 2n n

— xRy (-0)"x """ (¢+1)

oFl [ s T 4 J —Z (1+v),, 227 n!
n=o

J

f A (xR
(1+v), 229! (n-ke)!

n=0 k=o

where the last step follows from the Binomial Theorem, It can be shown

that
0o h oo co
D D Alnk) =) > Alnk k)
h=o k=o n=o ko

from which
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It is also known that

N S € (v+9)
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s0 that from these two relationships, one obtains
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APPENDIX III

NOTES ON THE CONFLUENT HYPERGEOMETRIC FUNCTIONS

In the notation of reference 39, the Confluent Hypergeometric

Function is defined by

(a) x”
gb—(a Cox) = (c):n’ (II1.1)

In the notation of generalized hypergeometric series, this is
1F1(as 5 x).

Now @(a, c, x) is a solution of the differential equation

dy dy
X e +(c-—x)dx -ay =0 (I11.2)

and a second solution of (III.2) is given by

) - T(\-¢)
P (a,c; %) Staer ® (a,c
(I11.2)

T(c-1)
T(a)

for ¢ not an integer,

i=C
+ X @(G-CH,Z—C;X)

For ¢ an integer ¥(a, c; x) becomes
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(1) P!
o) {6 pri;x) logx

Y (a,p+i;x) =

*Z(/o(—*/)ﬁ [Wb(a,«-?)—w#(wg) -Y( '+/0+2)] _;‘/a

7-p (II1.3)
(oo & (a-pig XFP
Pl g, OFR 4T 0 prote

where y(z) is the logarithmic derivation of I'(z).

With a = n + %; p =n - k, this becomes
N-k-=|

_ (=N ’
/ip (mz‘/ n+/—l<)‘ Z)= (h-/c).’?"(%—-k) {gs(m%, ml—k) z) logz

Z (nr4 4
+Z(€:~ng [‘W(n+/+g)—30(/+g)-\/)(lrn-k»‘g)] ;'T

(III.4)
g-n+k

, (n=ke-)! 5 ($+k)g X
T"(n+%) Z(I V)+l<)$ q!

Equation (III.3) is valid for k Shn. Wien k > n--i.e.,
p < 0, an expression for ¥(a, pt+l; z) is obtained by (III.3) from the

transformation

l-c

¥Y(a,c;z) = z= ¥Y(a-ct+l, 2-c; z) (I1I.5)
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APPENDIX IV
CONVERGENCE OF SCOLUTION

From the definition of M(ﬁ)(E) by Equation (§l5o) it is readily
shown that @ > O and B > 0 is a sufficient condition for I, given by
Equation (3.29) to be finite, This condition on o and B is satisfied by
polynomial ship forms. One need therefore consider only the infinite
summation on n., Equations (3,36) and (3.,37) define I; for o an even and
Q@ an odd integer respectively., It can be argued that for given values of
a and B

[605Bcy 1 < [00F1,Bey ] < [a%2,Bey ]t

or

[AO"BCW]I > [20+L,Bey ]y > [A0%2,Bey 1.

Hence only the cases where ¢ 1s an even integer need be considqred. Further-
more, to prove convertence of Equation (3.38), it is sufficient to consider
the terms in the summation on n obtained from the product of a general term
of the finite summation of Equation (3.36) and a general term of the finite

summation on k of Equation (3.38). The resulting infinite series on n

becomes
-2 (05, =" 5
S=¢ L h A Ig»fmk(*’)?(‘m‘i, nrl-k o =) (IT1I.1)
h=o
ezl 2R R %C-’(s)w (R
Since »\? {0\\(‘; Z) = T"’_(a) jwa-?fﬁ o-l(“t)c-a-/df

it follows that

=) o i 3
'\P(VH'%' W+,-k} EL—D)= T-\(IW%)JFJ - tn *(H't)k ?QH:
0
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and then
I - ~ -El_l?—'t -3, k< L)(Fy”
S= V——'f-'r——cfe t  (+¢) [“[T_ ——L-L?.., Py L_nlam(:)]d't (III.2)
) o

But from Appendix II

o w]. o (F " \ el
Zix) ;;kngr‘) (Fe)" _ (%)JL k(&r—‘ oot ) It*k("—m) (111.3)

n=0

This relationship was obtained by a rearrangement of the terms of a
oF1(-;a;x). The infinite series is therefore uniformly convergent and it
follows that Equations (III.1) and (III.2) are identical,

Substituting Equation (III.3) into Equation (III.2)

s-—ﬁ‘?é (e TSI o Teee (FVEFT ) dt

Because \T-Hk (r\fu—n)l sl k>0 ; FVs+\ 20
o Py (III.4)
*(Ht)z zd

‘ﬁ Z /
4]
The upper bound for S given by (III.4) is finite by the convergence

(42)

theorem for the Laplace Transform
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