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SUMMARY.

Due to the advent of high-throughput microarray technology, it has become possible to develop

molecular classification systems for various types of cancer. In this article, we propose a methodology using
regularized regression models for the classification of tumors in microarray experiments. The performances
of principal components, partial least squares, and ridge regression models are studied; these regression
procedures are adapted to the classification setting using the optimal scoring algorithm. We also develop a
procedure for ranking genes based on the fitted regression models. The proposed methodologies are applied

to two microarray studies in cancer.
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1. Introduction

With the development of large-scale, high-throughput gene
expression technology, it has become possible to diagnose and
classify disease, particularly cancer, based on these assays
(Alizadeh et al., 2001). This has been termed “class predic-
tion” in the microarray literature (Golub et al., 1999).

An example of a microarray experiment in cancer is given
by Khan et al. (2001). The goal of this study was to develop a
method of classifying childhood cancers to certain diagnostic
groupings utilizing the gene expression profiles. For the ex-
periment, 63 training samples, representing various types of
small, round blue cell tumors (SRBCTSs), were collected; the
gene expression profile was analyzed using ¢cDNA microar-
rays. The authors then used artificial neural networks (ANN)
for training and generating a classification model for classi-
fication of cancer based on the gene expression profiles. The
authors then applied their ANN to a collection of 25 test sam-
ples and found that the neural network model correctly clas-
sified all 25 of the test cases (although five cases represented
non-SRBCTs).

In addition to the example, there have been several investi-
gations utilizing supervised learning methods for the classifi-
cation of tumors based on microarray data. Golub et al. (1999)
utilized a nearest-neighbor classifier method for the classifica-
tion of acute myeloid lymphoma (AML) and acute leukemia
lymphoma (ALL) in children. Dudoit, Fridlyand, and Speed
(2002) performed a systematic comparison of several discrim-
ination methods for classification of tumors based on microar-
ray experiments. While they found linear discriminant anal-
ysis to perform the best, in order to utilize the method, the
number of genes selected had to be drastically reduced from
thousands to tens using a univariate filtering criterion. A more
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recent technique that is popular in computer science, namely,
support vector machines, has also been applied to the classi-
fication of tumors using microarray data (Yeang et al., 2001).
There has also been some work on utilizing latent-factor
models for classification (Li and Hong, 2001; West et al.,
2001).

One feature of microarray studies is the fact that the num-
ber of tumor samples collected tends to be much smaller than
the number of genes per chip. The former number tends to
be on the order of tens or hundreds, while microarrays typ-
ically contain thousands of genes on each chip. In statistical
terms, the number of predictor variables is much larger than
the number of independent samples. If the scientific question
is to see whether or not gene expression profiles can predict
tumor type, then from a regression point of view, it makes
sense to think of the gene expression profile as the covari-
ates. For these types of problems, it should be obvious that
some type of regularization or variable reduction is needed. In
most of the previous work described, the authors have used
univariate methods for reducing the number of genes under
consideration before applying the classification methods. An
alternative approach was taken in Khan et al. (2001), where
the authors applied principal components analysis to the gene
expression data before training the ANN models.

Another field in which the “large p, small n” (West, 2003, to
appear) problem exists is chemometrics. Frank and Friedman
(1993) proposed using regularized regression models for ana-
lyzing chemometric data. However, in these settings, the re-
sponse of interest is continuous, while for classification prob-
lems, the label is a categorical variable.

In this article, we present a methodology that extends the
regularized regression models of chemometrics to classification
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problems in gene expression studies. This is done using the
optimal scoring algorithm of Hastie, Tibshirani, and Buja
(1994). This approach seems attractive for a variety of rea-
sons. First, regularized regression models can handle large
numbers of correlated predictor variables. Second, we can de-
velop predictive models for classifying tumors, based on the
entire gene expression profile, without filtering out any of the
genes. Third, this algorithm is quite computationally efficient.
Finally, based on the regression output, we can rank the genes
for potential follow-up experiments; this constitutes a form of
“learning“ about the individual genes on the microarray. The
format of the article is as follows. In Section 2, we review
the methods for regularized regression modelling and opti-
mal scoring. The algorithm for classification of tumors based
on gene expression profiles and subsequent ranking of genes
is presented in Section 3. We then apply our technique to
data from two cancer studies in Section 4. Some concluding
remarks are made in Section 5.

2. Methods
2.1 Notation and Preliminaries

Let a” denote the transpose of the vector a. For the ith sam-
ple (i =1,...,n), we let X; = [X;;---X,,] denote the p x 1
gene expression profile vector (i.e., X;; is the gene expression
measurement of the jth gene, j = 1,...,p). We suppose that
the data have already been preprocessed and normalized. In
addition, it is assumed that the gene expression data are stan-
dardized so that for each chip, the expression profile has mean
zero and standard deviation one. Let g; denote the tumor class
for the #th sample (i = 1,...,n); we assume that there are G
tumor classes so that g; takes values {1, ..., G}. In Section 2.2,
we assume the existence of a continuous response variable Y;
for the ith sample (i = 1,...,n).

2.2 Penalized Regression Models

We focus here on three types of regularized regression mod-
els: ridge regression, principal components regression and
partial least squares regression. We now briefly outline the
model and estimation algorithm associated with each of these
procedures.

2.2.1 Ridge regression. Suppose we wish to fit the following
regression model:

B(Y;|X;) = X{ By, (2.1)

where B is a p x 1 vector of unknown regression parameters.
Because n is smaller than p, the usual ordinary least squares
(OLS) estimator will not be well-defined. An alternative is to
use the ridge regression estimator of 8y in (2.1):

B=(XTX + \,)"'X"TY,

where X is the n X p matrix whose ith row is X;(: =1,...,n),
I, is the p x p identity matrix, A is a constant, and Y =
[Yi--- V,]T is an x 1 vector. The ridge regression approach
can also be motivated from a Bayesian viewpoint (Lindley
and Smith, 1972).

The parameter A controls the amount of shrinkage in the
data. Setting A = 0 yields the ordinary least squares solution,
while setting A > 0 increases the bias in the estimate of 3y, but
decreases the variance of the parameter estimators. Setting
A = oo yields the parameter estimate 3 = 0. One issue in-
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volves the choice of A. A very common approach is to use
cross-validation (Stone, 1974).

2.2.2 Principal components regression. The method of prin-
cipal components regression can be traced back to Massy
(1965). In this method, we first perform a singular value de-
composition of the p x n matrix X7

X7 = UDV,

where U is p X n matrix, and D and V are n X n matri-
ces. The columns of U are orthonormal, i.e., UTU = I,,, the
p X p identity matrix. The diagonal matrix D contains the
ordered eigenvalues of X on the diagonal elements, so that
D = diag(dy,...,d,), where d; > dy > d3 >---> d, > 0. We
will assume, without loss of generality, that d; > 0 for ¢ =
1,...,n. Finally, V is the n x n singular value decomposition
factor matrix and has both orthonormal rows and columns.
Plugging this decomposition into (2.1), we have

E(Y; |W;) = Wi, (22)
where W is the ith row of W = DV and v, = U7 3;. We can
fit the model in (2.2) using ordinary least squares. We can get
an estimate of B3, by multiplying U7 with the least squares
estimator of v, in (2.2).

A major issue in principal components regression modelling
is determining the number of components (i.e., number of
columns of W) to use. There are several possible model se-
lection criteria; the criteria in this article will focus on using
methods based on cross-validation (Stone, 1974).

2.2.3 Partial least squares regression. A popular regression
method in chemometrics is partial least squares (Wold, 1975;
Naes and Martens, 1985; Helland, 1988). The partial least
squares algorithms attempt to simultaneously find linear com-
binations of the predictors whose correlation is maximized
with the response and which are uncorrelated over the sam-
ple. There are several algorithms available for numerical es-
timation using partial least squares; a nice overview of these
methods can be found in Denham (1994).

The model that underlies partial least squares is that X;
and Y;(i = 1,...,n) are both linear functions of a set of com-
mon latent factors, say, a;, as,...,ax, where k is assumed to
be less than or equal to the rank of the matrix X. Most partial
least squares algorithms involve estimation of both the latent
factors and their associated effects on Y;(i = 1,...,n). For
example, here is the pseudocode for one algorithm discussed
by Helland (1988):

1. Compute a; = XTy;
2. Compute t; = Xay;

3. Compute r =y — t;(t7t;) t]y;
4. for iteration [ = 2,...,m, compute
a; = XTr;

t = Xay;

-1
r=y-T,(T{T) T{y;

5. compute q = (T T,,) T y;

6. compute 3 = A,,.q,

where T; = [t;---t;] and A,,, = [a; - - a,,].
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While we have also implemented the proposed methodol-
ogy using the two other algorithms from Martens and Naes
(1989), in this article, we focus on using Helland’s method
for estimation in partial least squares regression models. We
can derive an estimator for B in (2.1) using the partial least
squares estimators using a back-transformation similar to that
described in 2.2.2.

In contrast to ridge and principal components regression es-
timation procedures, partial least squares algorithms are non-
linear in the response values. Frank and Friedman (1993) men-
tion that, in practice, partial least squares regression models
tend to have good predictive properties.

In practice, the number of latent factors to include in the
model must be chosen. The method most often used for choos-
ing this quantity is cross-validation (Stone, 1974).

2.3 Optimal Scoring

In the previous section, we have described various penalized
regression models that have been used successfully in chemo-
metric applications. However, one aspect that separates those
situations from the current one is the fact that the outcome of
interest is categorical, and our goal is classification. Thus, one
way of applying the regularized regression models of Section
2.2 to classification problems is to re-express the classifica-
tion problem as a regression problem. This is done using the
optimal scoring algorithm, which we describe here; readers
who are interested in more details are referred to Hastie et al.
(1994) and Hastie, Buja, and Tibshirani (1995). The idea is
based on a regression formulation for linear discriminant anal-
ysis. We first convert g = [g; - - - g,]T into an n x G matrix Z =
[Z;], where Z; = 1 if the class of the ith sample is g; = j, and
0 otherwise.

The point of optimal scoring is to turn the categori-
cal class labels into quantitative variables. Let O4(g) =
[0x(g1), - --,0k(gn)]T be the n x 1 vector of quantitative scores
assigned to g for the kth class. The optimal scoring prob-
lem involves finding the coefficients B, (k = 1,...,G) and the
scoring maps 60;, that minimize the following average squared
residual:

G n
ASR=n"3 "% {bu(e) - XIB, )

k=1 =1

(2.3)

Let ©® be a G x J matrix, where J < G — 1, whose kth
row are the scores 0 (-) for the kth class, k = 1,...,G. The
parameter J can be chosen by the user; we take J = G — 1,
to maintain the most flexibility in discrimination boundaries
between the three groups. These scores are assumed to be
mutually orthogonal and normalized with respect to an inner
product; this leads to the constraint on J. Thus, the mini-
mization of (2.3) is subject to the constraint N7!||ZO|?> =
1. As mentioned by Hastie et al. (1994), the minimization of
this constrained optimization problem leads to estimates of
B that are proportional to the discriminant variables in lin-
ear discriminant analysis (LDA). Hastie et al. (1994) suggest
replacing the linear predictor in (2.3) with a more general
f(X;); they propose the following algorithm for flexible dis-
criminant analysis:

1. Choose an initial score matrix @y satisfying @1 D, 0, =
I, where D, = ZTZ/n. Let ®} = ZO,.
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2. Fit a multivariate nonparametric regression model of @
on X, yielding fitted values ©. Let jf\(X) be the vector of
fitted regression functions. R

3. Obtain the eigenvector matrix ® of ®;7@®; the optimal
scores are then @+ = ©(P.

4. Define f,,(x) = tI>T?(x).

In their discussion of the flexible discriminant analysis algo-
rithm, Hastie et al. (1994) focus on using MARS (Friedman,
1991) and BRUTO as possible nonparametric regression al-
gorithms in step 3. They then show through a variety of ex-
amples that these procedures tend to have good predictive
performance.

3. Algorithms and Comparisons

So far, we have outlined the components necessary for imple-
mentation of our procedure. In this section, we develop our
algorithm for classification of tumor samples using microar-
ray data. We also discuss associated issues, such as determin-
ing the optimal amount of regularization and ranking genes
based on the fitted models. In addition, we discuss some an-
alytical comparisons between the three regularized classifica-
tion approaches as well as comparisons with logistic regression
modelling.

3.1 Penalized Optimal Scoring for Classification

We propose to use a penalized optimal scoring procedure for
classification using regularized regression models. Here is the
outline for our method:

1. Choose an initial score matrix © satisfying @7D,0 =
I, and let ®; = ZO.

2. Fit a multivariate penalized regression model of ®; on
X, yielding fitted values ©j. Let £(X) be the vector of
fitted regression functions.

3. Obtain the eigenvector matrix ® of @+I ©y; the optimal
scores are @ = ©(P.

4. Define f,(x) = tI>T?(x).

Our algorithm is similar to that proposed by Hastie et al.
(1994), except that we replace a multivariate nonparametric
regression model in step 3 with a multivariate penalized re-
gression model. This is equivalent to fitting univariate penal-
ized regression models to each of the columns in ®,. One point
to note is that when fitting these separate penalized regres-
sions, we use the same amount of shrinkage for each column
of ®y. We will be focusing on the penalized regression models
discussed in Section 2.2.

For a simple situation, let us consider the of G = 3 classes.
Then O is a 3 x 2 matrix, and the algorithm proceeds in the
following manner. We first find a 3 x 2 matrix © such that
OTD;® = I,. Then ®; = ZO is a n x 2 matrix of initial
optimal scores. We next fit two penalized regression models
with the first and second columns of @ as the responses and
X as the predictor. Based on the estimates, we then have a
n x 2 matrix of fitted values ®; and an p x 2 matrix of
regression coefficients ,@ At the next step, we eigenanalyze
the 2 x 2 matrix (©;)7 @, to obtain the eigenvector matrix
®. Then the 3 x 2 matrix of optimal scores are given by ®,®,
and the regression coefficients are updated as the p x 2 matrix
B = Ziq?. The fitted values are then n = X3* with ith row

n:(i=1,...,n).
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Once the algorithm has been run, we now have a discrimi-
nant rule for classifying future observations. The form of the
rule is that of a nearest centroid rule; in particular, we assign
a gene expression profile X, to the class j that minimizes

8(X,5) = DX —77)|,
where
Z m;
"_]j _ 49, =] )
> g =)
19 =]
D is a matrix with diagonal element
1/2

v
M=) f

with Ap(k = 1,...,G — 1) being the kth largest eigenvalue
calculated in step 3 of the algorithm.

To better understand the algorithm, it is useful to see the
criterion function, analogous to (2.3), that we are minimizing.
For the ridge regression—based optimal scoring method, we are
optimizing the following objective function:

G n G
ASR™ =0 >N " {0(9:) - XTB Y 1D BB
k=1

k=1 i=1 =

Dkk =

subject to N~!|Z©||?> = 1. A variant of the penalized optimal
scoring algorithm using ridge regression was studied by Hastie
et al. (1995). For the principal components regression-based
optimal scoring method, it involves minimizing the following
objective function:

G n
ASRPT — n71 Z Z {ek(gi) - WZT’Y;C}Q,

k=1 i=1

where N71||ZO|| = 1 and ~;, = U7 3;.

Finally, it is algebraically more complicated to write the
objective function minimization problem for the partial least
squares, but conceptually, the model involves formulating
both the class scores and the covariates as linear functions
of underlying latent variables. In terms of the algorithmic de-
tails, however, the partial least squares algorithm is imple-
mented in the same way as the ridge and principal compo-
nents regression classification procedures.

If the number of samples in each group is the same, then us-
ing the algorithm described above with principal components
regression is equivalent to employing principal components
analysis followed linear discriminant analysis on the individ-
ual components. However, the approach proposed here is more
general and can allow for other types of penalized regression
models. No clear relationship exists if the number of samples
in the various groups is different.

In terms of assessing performance between the methods
(ridge regression, principal components regression, and par-
tial least squares regression) from an analytical point, sup-
pose that © is known and there are only K = 2 classes. Thus,
J =1 and ® maps to two points. We can then consider the
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following class of objective functions, similar to that consid-
ered by Stone and Brooks (1990):

Var(X” 3)*Cov(©(g), X7 @)>/0-)-1, (3.1)
where Var and Cov and shorthand notation for variance and
covariance, and « is a number between 0 and 1. In this frame-
work, values of @« = 1/2 and a = 1 correspond to the objective
functions maximized by partial least squares (PLS) and prin-
cipal components regression (PCR), respectively. The value
a = 0 corresponds to the problem solved by ordinary least
squares; because of the “large p, small n” problem, we use
ridge regression (RR) instead. In the framework presented
here, we can think of PCR, PLS, and RR as corresponding to
canonical variance, canonical covariance, and canonical corre-
lation analyses, respectively. Since the classification procedure
in the latter two methods involves the correlation between
predictor (gene expression profile) and response (tissue/tumor
type), one might expect that they would give better classifiers
than PCR.

3.2 Choosing the Optimal Amount of Regularization

Ridge regression, principal components regression and partial
least squares regression models all involve a regularization pa-
rameter that must be selected somehow. In ridge regression,
the regularization parameter is A, while for principal compo-
nents and partial least squares regression, the parameter that
needs to be chosen is the number of components to include
in the model. This issue is similar to choosing the bandwidth
for a kernel in nonparametric regression estimation.

In general, the strategy for choosing the amount of regular-
ization depends on a combination of the size of the study and
the amount of computation time required. In the examples
presented in Section 4, we use leave-one-out cross validation
in the test datasets to determine the optimal shrinkage param-
eter or the number of components to include in the model.

One other point to note is that the cross-validation proce-
dure for the principal components regression approach leads
to selection of those components corresponding to the largest
eigenvalues. The discussion at the end of the previous section
suggests that the PCR-based classifier will work well if vari-
ation in the gene expression explains the difference in class
groupings. The principal components in this setting have also
been called eigengenes; a biological motivation for these quan-
tities has been given by Alter, Brown, and Botstein (2000).

3.3 Comparison with Logistic Regression Approaches

An alternative approach to multigroup classification problems
is logistic regression techniques. Methods have been recently
developed for logistic regression classification of microarray
data (Eilers et al., 2001). In addition, principal components
regression (Marx and Smith, 1990) and partial least squares
estimation (Marx, 1996) approaches exist for binary data.
There is an issue involved in combining the classifiers with
multigroup data.

There were a few reasons we chose to pursue the dis-
criminant analysis approach. The first is the superiority of
the method in the study of Dudoit et al. (2002). However,
while it seemed plausible that differences between tumor types
could be characterized in terms of tens of genes, there are
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other tumor-differentiation problems that would require more
information than is available in tens of genes. This type of dis-
crimination might require on the order of hundreds or thou-
sands of genes. For this technique, regularization of the linear
discriminant approach is needed.

In addition, researchers have demonstrated the increase in
efficiency of linear discriminant analysis to logistic regression
in two-group and multigroup classification problems (Efron,
1975; Bull and Donner, 1987). For example, let us consider
the use of PCR for classification. Because we reduce the di-
mensionality of the predictor space by principal components,
the standard results apply, which suggest that use of linear
discriminant analysis leads to gains in classification efficiency
relative to logistic regression.

3.4 Gene Selection

One important scientific goal in microarray studies is to deter-
mine what genes are potential candidates for follow-up stud-
ies, using validation methods such as quantitative polymerase
chain reaction or immunohistochemical techniques. Based on
the classification approach we have described in Section 3.1,
conditional on the optimal amount of regularization, we can
determine a ranking of the most “interesting” genes based on
the estimated regression coefficients from step 3 of our algo-
rithm. A similar approach was taken by West et al. (2001).

One point to note about ranking the coefficients is that we
will have G — 1 sets of estimates of the regression parameters.
Thus, the choice of ranking the regression coefficients will de-
pend on which pairwise tumor comparison we are interested
in.

It should also be noted that the gene selection process is
variable. To assess the stability of the observed rankings, the
bootstrap is used. We first fix the regularization parameter
and select a prespecified number k. We then sample the chips
and rerun the regression procedures, ranking the top k genes.
For each of the top genes in the original dataset, we determine
the percentage of times they appear in the top k gene list for
the bootstrapped datasets. This gives a measure as to the
reliability of the selected genes.

3.5 Software Implementation

We are in the process of currently developing some software
implementing the proposed classification methodology. The
suite of functions has been written in R, a freely downloadable
statistical software (http://www.r-project.org/). The soft-
ware will be available at the following website: http://wuw.
sph.umich.edu/~ghoshd/COMPBIO/POPTSCORE/.

The algorithms are fairly fast, primarily due to the use of
the singular value decomposition in fitting the various types
of regularized regression models. This technique avoids the
need to have to invert large matrices for the gene expres-
sion profiles. The interested reader is referred to Friedman,
Hastie, and Tibshirani (2001, Section 3.4.3), Massy (1965),
and Denham (1994) for the technical details on applying sin-
gular value decomposition to ridge regression, principal com-
ponents, and partial least squares regression models.

The partial least squares classification methodology has
been implemented using the Helland (1988) algorithm de-
scribed in Section 2.2.3, as well as two algorithms from
Martens and Naes (1989). However, in the article, we focus
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on the Helland approach for performing classification using
partial least squares.

4. Numerical Examples

We now illustrate the use of the proposed methodology using
two case studies from microarray experiments in the cancer
setting. The studies described here use the spotted cDNA
technology, which involves measuring gene expression levels
on red and green channels.

4.1 Childhood Cancer Data

We consider the data from the Khan et al. (2001) study. The
goal of this study was to develop a system for classifying four
categories of small round blue cell tumors: neuroblastomas
(NB), rhabdomyosarcomas (RMS), non-Hodgkin lymphomas
(NHL), and Ewing sarcomas (EWS). Their microarrays had
spots representing 6567 genes; using a filter based on the red
channel intensity, this was reduced down to 2308 genes. For
these data, there was a training sample of 63 SRBCTs and
a test set of 25 tumors. The test set included five tumors
that were non-SRBCTSs; we excluded these tumors from the
analysis. Because we had a training set available, we built
the classification models using the training sample of 63 tu-
mors and estimated classification error rates using the test
set.

Using the proposed regression methods, we found that we
achieved 100% classification accuracy using ridge regression.
This error rate was not sensitive to the choice of A used. Based
on the principal components and partial least squares regres-
sion procedures, the optimal classification accuracies we could
achieve with either method was 100%. For the principal com-
ponents regression, this involved including ten components in
the model. Using the partial least squares approach, a classifi-
cation accuracy of 100% was obtained with six components in
the model. For comparison, we tried three other approaches.
First, we attempted to fit a linear discriminant analysis using
the entire gene expression profile and no dimension reduc-
tion. Because of instability in the estimated linear discrim-
inant function, the estimated classification probabilities did
not converge. Second, we selected the top 40 genes based on
the discrimination criterion mentioned in Dudoit et al. (2002)
and performed a linear discriminant analysis. This yielded a
classification accuracy of 85%. The second method we tried
was to utilize principal components analysis, followed by a lin-
ear discriminant analysis. Using the test set, we achieved an
optimal classification rate of 95%, using 11 principal compo-
nents. Given our discussion in Section 3.1, it is not surprising
that this approach gives similar classification accuracies to
those from the proposed method. In addition, we analyzed
the data using the random forests method (Breiman, 2001).
We grew 100 trees, where at each node, two variables were
tried for further splitting. This yielded an out-of-bag error es-
timate of 0%, corresponding to perfect classification.

Based on the statistical models proposed in the article, we
can then generate lists of genes that discriminate between
the various classes of SRBCTs. In Tables 1-3 , we summarize
the top 20 genes in terms of discrimination between EWS
and the other three classes of tumors. The list was gener-
ated using the ridge regression method with A = 1. We then
used the bootstrap to determine the number of times these
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Table 1
List of ranked genes for discriminating BL from EWS in childhood cancer data
Confidence Confidence
Clone ID Gene score 1* score 2P
296448°  insulin-like growth factor 2 (somatomedin A) 0.99 0.98
207274°  human DNA for insulin-like growth factor II (IGF-2) exon 7 and additional ORF 1.00 0.99
784224°  fibroblast growth factor receptor 4 1.00 0.98
745343¢  regenerating islet-derived 1 alpha (pancreatic stone protein, pancreatic thread protein) 0.91 0.71
868304°¢ actin, alpha 2, smooth muscle, aorta 0.95 0.75
244618  ESTs 0.97 0.55
882522 argininosuccinate synthetase 0.92 0.76
812965 v-myc avian myelocytomatosis viral oncogene homolog 0.99 0.89
840942°  major histocompatibility complex, class II, DP beta 1 0.94 0.74
233721¢  insulin-like growth factor binding protein 2 (36kD) 0.49 0.09
755145 villin 2 (ezrin) 0.92 0.57
839552 nuclear receptor coactivator 1 0.93 0.24
842806 cyclin-dependent kinase 4 0.70 0.10
298062°  troponin T2, cardiac 0.73 0.04
45544 transgelin 2 0.85 0.59
878798 beta-2-microglobulin 1.00 0.89
47475 Homo sapiens inducible protein mRNA, complete cds 0.75 0.42
236034 uncoupling protein 2 (mitochondrial, proton carrier) 0.69 0.05
782811 high-mobility group (nonhistone chromosomal) protein isoforms I and Y 0.65 0.20
809603 ESTs, weakly similar to cDNA EST EMBL:M89154 comes from this gene [C.elegans] 0.73 0.05

# Proportion of 100 jittered datasets in which gene or EST was one of top 100 ranking genes.
b Proportion of 100 jittered datasets in which gene or EST was one of top 20 ranking genes.

¢ Gene selected based on selection criteria in Figure 3(b) of Khan et al.

genes appeared in the top 100 of ranked genes. This yields
the confidence score in the third column on each of the ta-
bles. If we were to employ a more strict criteria and determine
the number of times the listed genes appeared in the top 20
discriminating genes for the bootstrap samples, then the re-

(2001).

sulting confidence scores are given in the fourth column of the
tables. The confidence scores were computed using 100 boot-
strap samples. Based on these tables, there are two points
to note. First, variable selection using this method can be
quite sensitive to the number of ranked genes one uses. For

Table 2
List of ranked genes for discriminating NB from EWS in childhood cancer data

Confidence Confidence

Clone ID Gene score 1* score 2"
1435862° antigen identified by monoclonal antibodies 12E7, F21 and O13 0.99 0.96
377461¢  caveolin 1, caveolae protein, 22kD 0.98 0.93
770394  Fc fragment of IgG, receptor, transporter, alpha 0.98 0.91
814260° follicular lymphoma variant translocation 1 0.98 0.93
208718° annexin Al 0.97 0.75
302933  nucleolin 0.49 0.11
34357 actin, beta 0.87 0.31
811000¢  lectin, galactoside-binding, soluble, 33 binding protein (galectin 6 binding protein) 0.90 0.15
866702  protein tyrosine phosphatase, non-receptor type 13 (APO-1/CD95 (Fas)-associated 0.95 0.79
phosphatase)
52076 olfactomedinrelated ER, localized protein 0.81 0.43
781097  neurotrophic tyrosine kinase, receptor-related 1 0.90 0.24
491565  Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2 0.94 0.66
878833  ubiquitin carboxyl-terminal esterase L1 (ubiquitin thiolesterase) 0.87 0.13
627939  cysteine and glycine-rich protein 3 (cardiac LIM protein) 0.88 0.27
241412°  ET4-like factor 1 (ets domain transcription factor) 0.82 0.35
47475 Homo sapiens inducible protein mRNA, complete cds 0.76 0.44
868304¢  actin, alpha 2, smooth muscle, aorta 0.76 0.63
379708  no label 0.95 0.19
842784  phosphate carrier, mitochondrial 0.45 0.05
50117 glyceraldehyde-3-phosphate dehydrogenase 0.42 0.02

ab,¢ See Table 1.
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Table 3
List of ranked genes for discriminating RMS from EWS in childhood cancer data
Confidence Confidence

Clone ID Gene score 1% score 2"
629896°¢ microtubule-associated protein 1B 1.00 1.00
812105°¢ transmembrane protein 1.00 1.00
810057 cold shock domain protein A 1.00 0.99
878652 postmeiotic segregation increased 2-like 12 1.00 1.00
784224° fibroblast growth factor receptor 4 1.00 0.98
755239 methyltransferase-like 1 0.98 0.65
82225°¢ secreted frizzled-related protein 1 0.97 0.79
135688 GATA-binding protein 2 1.00 0.77
383188 recoverin 1.00 0.61
325182 cadherin 2, N-cadherin (neuronal) 1.00 0.69
855786 tryptophanyl-tRNA synthetase 0.99 0.57
884719 heat shock 70kD protein 10 (HSCT71) 0.73 0.12
486110°¢ profilin 2 1.00 0.38
878280° collapsin response mediator protein 1 0.99 0.38
840788 Thymosin, beta 10 0.75 0.06
756405 inhibitor of DNA binding 3, dominant negative helix-loop-helix protein 0.80 0.04
44563°¢ growth associated protein 43 1.00 0.81
1474174  matrix metalloproteinase 2 (gelatinase A, 72kD gelatinase, 72kD type IV collagenase) 0.99 0.78
882522 argininosuccinate synthetase 0.91 0.49
768299 butyrate response factor 1 (EGF-response factor 1) 0.96 0.04

ab,¢ Gee Table 1.

example, there are several genes that have a high confidence
score when the top 100 ranked genes are used, but which are
low when only the top 20 genes are considered. However, if
we use the more stringent criteria of confidence score based
on top 20 genes, then we find that there are several candidate
genes that are worthy of followup studies.

We also compared the rankings in Tables 1-3 with the selec-
tion criteria used by Khan et al. for selecting “discriminator”
genes. We find that while there is some overlap between the
two ranking schemes, there are several genes with high confi-
dence scores that were not found using the Khan et al. (2001)
scheme. In addition, several of the discriminator genes found
in that article have relatively low confidence scores.

4.2 Prostate Cancer Data

We now apply the methodology to data from a prostate can-
cer study; a subset of the data was analyzed in Dhanasekaran
et al. (2001). The goal of the study was to determine if gene
expression profiles can be used to classify various types of
prostate cancer. While the focus in the article was primar-
ily on the prostate cancer (both local and metastatic) versus
the non-prostate-cancer comparison, we will consider three
classes: benign prostate hyperplasia (BPH), local prostate
cancer (PCA) and metastatic prostate cancer (MET). There
are 58 samples: 21 are BPH, 17 represent local prostate can-
cer, and 20 are metastatic prostate cancer samples. We di-
vided the chips into a training set and a test set: the former
consisted of 37 samples, while the remaining samples made up
the test set. We estimated the optimal amount of smoothing
for the penalized regression approaches using the training set.

The tissue samples were profiled using a spotted microar-
ray chip with 9984 elements. We only considered genes that
passed the filtering procedures of Dhanasekaran et al. (2001)

for at least all but one of the experiments. The remaining
data were imputed using within-gene median imputation.
This left a total of 3495 genes as predictors. Applying the
proposed methodology yields an optimal classification accu-
racy of 81.0% using the ridge regression methods. The prin-
cipal components regression-based classification scheme gives
an optimal classification accuracy of 95.2%, where two prin-
cipal components were used in the model. The partial least
squares classification method gives an optimal accuracy of
95.2%, based on 7 components in the model. For the purposes
of comparison, we fit a linear discriminant analysis using the
entire gene expression profile; because of the collinearities in
the predictors, the estimated class probabilities for the test
data failed to converge. A procedure of principal components
analysis, followed by linear discriminant analysis, yielded an
optimal classification accuracy of 95.2%, based on two com-
ponents. Because the number of samples in the three tissue
classes are almost equal (14 BPH, 11 PCA, and 12 MET), this
approach will be similar to the proposed principal components
regression-based classification procedure. Applying the cri-
terion of Dudoit et al. (2002), followed by linear discrimi-
nant analysis, yielded a classification accuracy of 85.7%. The
random-forests method yielded a classification accuracy of
90.5%.

We can now perform a similar analysis for gene selection
as was done in Tables 1-3 . Due to space limitations, we have
decided to have the gene selection results at our web page,
the URL for which was given in Section 3.5.

5. Discussion

There is a great need to adapt classical methods of regres-
sion modelling and discriminant analysis to microarray data.
In this article, we have presented a general methodology for
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classifying tumors based on data from such experiments. The
method is fairly simple to implement and utilizes existing pe-
nalized regression models that have been used in other ap-
plications. Two advantages of this method is that it can in-
corporate correlations between genes into the analysis and
that it can handle the situation where the number of predic-
tors is larger than the number of samples. This method does
not require any univariate filtering of predictors to fit the
model.

The regression approach proposed in the article gives a di-
rect method for ranking the individual predictor variables. We
have also implemented a bootstrap method for assessing the
reliability of these rankings. This is scientifically important,
as it provides investigators a list of genes that could be stud-
ied for followup experiments. It can also be used as a guide
in generating hypotheses regarding the biological pathways
in cancer. Another use of the ranked gene list, mentioned in
Khan et al. (2001), is for designing diagnostic arrays. One
point to note is that in the examples presented in Section 4,
the ranking of genes is performed conditional on selecting an
optimal regularization parameter (i.e., optimal choice of A or
for number of components in model). In practice, it is impor-
tant to select several values of the regularization parameter
to see that the ranking of genes does not change very much.

We found in the numerical examples that we could gen-
erally achieve 80-100% classification accuracy based on the
methods we have constructed. It might be possible in cer-
tain instances to improve this predictive performance using
bagging methods (Breiman, 1996). This technique tends to
reduce the prediction error for procedures that are inherently
unstable. While ridge regression is stable, selecting the num-
ber of components for principal components and partial least
squares regression is unstable, so bagging might be a useful
method for improving the performance of those methods.

In terms of comparisons between ridge regression, PCR,
and PLS, our analytical discussion in Section 3.1 suggests
that better classifiers would be constructed by PLS, because
it is equivalent to a “canonical covariance” analysis. In our
experience with real datasets, the PLS-based method tends to
work the best as well. However, one computational advantage
of ridge regression is that leave-one-out cross-validation can
be performed quickly, because the diagonal of the hat matrix
can be calculated quickly.
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RESUME

En raison de l'avancée des technologies de micropuces haut
débit, il est devenu possible de développer des systémes de
classifications moléculaires pour différents types de cancer.
Dans cet article, nous proposons une méthode fondée sur
les modeles de régression régularisée pour la classification
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des tumeurs dans les expériences de micropuces. Les perfor-
mances des modeles en composantes principales, des moin-
dres carrés partiels et de la ridge régression sont étudiées;
Ces procédures de régression sont adaptées aux techniques
de classification utilisant ’algorithme de score optimal. Nous
développons également une méthode de classement des genes
fondée sur les modeles de régression ajustée. Les méthodes
proposées sont appliquées a deux études de cancérologie util-
isant les micropuces.
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