ABSTRACT

NEUTRON TIME-OF-FLIGHT DIFFRACTION
AND
STRUCTURAL ANALYSIS OF GLASSY CARBON

by
David Francis Raymond Mildner

Chairman: John M. Carpenter

A sample of glassy carbon prepared by Hucke from furfuryl alcohol
resin, heat treated at 2000°C, has been studied by neutron time-of-
flight diffraction techniques. A total diffraction pattern S(Q) has
been acquired for wave vector transfers Q = 4x/A sin /2 from 0.06R8-1 to
25 ﬁ—l. The data have been corrected for multiple scattering by Monte
Carlo techniques, by which the data are used to correct themselves.

The high value of the maximum wave vector transfer allows a spatial reso-
lution of 0.15 R in the radial distribution function. This should be
sufficient to resolve the first coordination peaks for trigonally bonded
atoms (at 1.42 A) and for tetrahedrally bonded atoms (at 1.54 R).

There was no evidence of any significant amount of tetrahedrally
bonded atoms. On the other hand, there is a correspondence with in-
plane correlations of graphite, though there is no definite ordering of
the graphitic planes. The widths of the first two diffraction peaks
have been Interpreted as corresponding to crystallite sizes with values
Lc ~ 31 R and L, ~ 50 A; these have also been confirmed by wide angle
X-ray diffraction. The spacing between the planes is 3.46 R, obtained
from the position of the first diffraction peak.

The radial distribution function shows peaks which correspond
closely to those of graphitic planes; but to explain the difference in
strength between glassy carbon and turbostratic graphite, an amorphous
two-dimensional quinoid model (distorted hexogonal layers) has been

proposed. A computer model has been built with randomly oriented layers



of 6-fold rings with randomly distributed double bonds. These arrays
have been allowed to relax, and an ensemble average has been used to
compute the radial distribution funetion.

The intense small angle scattering from this carbon has been mea-
sured, and for Q < 0.4 &1 the aata may be approximated by an exponen-
tial with a characterisitic void dimension of 13.6 A. A Guinier plot
for lamellar voids suggests a mean thickness of 11.8 K, and a mean
diameter of the order of L,. It is more likely that the voids are poly-
disperse and a Debye plot suggests characteristic length of 11.6 R in
the voids, and a length of the order of L, in the solid. The Porod plot
suggests that there are sharp density transitions from the volds to the
solid. It would seem therefore as though the disc-shaped voids act as
spacers between crystalline chinders of height L. and diameter Lg-

Also introduced into this particular carbon during its preparation
were large-scale pores with dimensions of the order of 250 8, as mea-
sured by mercury porosimetry. It is assumed that these large scale
volds are distributed randomly throughout the substance, with solid
regions comprising of crystallites and small scale voids. The scatter-
ing appears to be separable into three distinct regions; (1) very low
angle diffraction (Q < 0.025 ﬁ-l) characteristic of large-scale voids;
(2) small angle diffraction (0.025 871 < @ < 1. &71) characteristic of
small-scale voids; and (3) the extended diffraction (Q > 1 &§-1) charac-
teristic of interference between neighboring atoms. The transforms of
each diffraction region may be correlated with the macroscopic density

measurements.
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CHAPTER I. THE PROBLEM

1.1 INTRODUCTION

A large number of non-graphitizing carbons have been prepared pos=-
sessing great strength and hardness and low permeability to gaées. It
appears that the properties of these carbons may be varied by their
method of preparation and starting material, and that Jjudicious combina-
tions of their attributes might solve many technological problems. A
study of the structure of these carbons might yield information for the
understanding of their characteristics.

Originally they were called glassy, vitreous or glasslike, since
they had a shiny surface similar to glass. In addition, like glass it
seemed that their structures were amorphous or non;crystalline. Un-
fortunately there is no satisfactory set of criteria by which the
structure of glassy carbons may be characterized uniquely. In fact
it might be best to describe these materials as massive disordered
carbons to distinguish them from other non-graphitizing carbons such as
carbon black; for it was thought originally that these bulk carbons
possessed little graphitic structure. However we shall keep the earlier
name of glassy carbon.

Although these carbons are fundamentally similar in their proper-
ties, it is expected that the diversity in the density, strength, and

conductivity are due to different structures produced by the various



methods of preparation. Most of these carbons have been prepared by
the controlled thermal degradation of certain cross-linked polymers
including phenolic and furfuryl resins. The properties of resulting
material have been found to depend on the starting material and the
maximum heat treafment temperature. During the preparation, it is
probable that a cross-linked structure is formed which is related to the
particular polymer precursor. In addition there may be changes in the
structure during further treatment at higher temperatures. TFitzer
et al., (1969) has listed three processes that might be major contribu-
tors to the structure; viz.,

(1) polymerization,

(2) decomposition,

(») pyrolysis.

In fact it is difficult to characterize the structure of glassy carbons

in & unique way as for crystalline substances.



1.2 THE PROPERTIES OF GLASSY CARBON

Glassy carbon was originally developed as a cladding material for
fuel elements for high temperature gas-cooled nuclear reactors, for
glassy carbon is compatible with alkali metals and is impermeable to
gases. Since the atomic motions in glassy carbon are éimilar to those
in graphite (Carpenter, 1973), there is no great difference other than
density between glassy carbon and graphite from the point of view of
neutron thermalization which is insensitive to the small differences in
the total cross section and elastic scattering probabilities. Other
applications of glassy carbons are in the fields of electrical engi-
neering, metallurgy, and chemical engineering. These are mainly due
to their high stren th and low density, low permeability to all gases,
and their inertness to more enviromments than any other solid-.

The properties (and preparation) of various glassy carbons have
been reviewed by Yamada (1968). While glassy carbons héve been formed

with widely varying properties, the general trends are:

(1) Glassy carbon is much stronger and harder than graphite; and
it can scratch ordinary glass and cannot be machined easily,

(2) These carbons are generally stable up to at least 3000°C, and
at kbar pressures.

(3) The density is in the range of 1 4k - 1 55 ¢ — ( although
some carbons have deggities around 1.3 gm em , and others
as high as 1.9 gm cm ). This is about 2/% of the
crystallographic density of graphite.



(4) Glassy carbons possess extremely low permeability to gases
which is surprising in view of their low densities. Since the
densities in helium and krypton are similar to those measured
by mercury porosimetry, the materials must have a high degree
of inaccessible porosity.

3 D

(5) They have low electrical resistance of the order of 10 ~-10

ohm~-cm.

(6) They have excellent corrosion resistance and low oxidation
rate and are biologically inert.

(7) They have also a high resistance to attack from many
reagents- and acids.

A large number of disordered carbons have been prepared artifically
and it has been usual to compare their properties with the two naturally
occurring allotropes of cafbon; viz., diamond and graphite. The density
of diamond is 5.52 gm cm_5 and density of a single crystal of graphite
is 2.26 gnm cm—B. However, the density of a polycrystal of the latter
is usually about 1.6 gm cm_B, which is close to the density of most
glassy carbons. Graphites exhibit varying degrees of anisotropy
depending on the method of processing, whereas glassy carbon is believed
to be isotropic. Diamond is the hardest naturally occurring éubstance
and comes from the Greek AdQ ulds meaning 'invincible.' It has a hard-
ness value of 10 on the Moh's scale whereas graphite (which comes from
the Greek 7ypQciv meaning 'to write') is soft with a Moh's value of 1.
Glassy carbon has a value of 7 on the Moh's hardness scale. Addition-
ally, diamond is a poor conductor, whereas graphite is a good conductor,

with similar electrical resistivity to glassy carbon.



1.3 THE STRUCTURE OF CRYSTALLINE CARBONS

The carbon atom has four orbitals in the valence shell; cne Zs
orbital with a bdnd strength of unity, and three 2p orbitals with a bond
strength of 1.732. Pauling (1960) has shown that if the four bonds of
carbon are assumed to be equivalent and directed with equal strength
towards the corners of a tetrahedron, then the sp5 (tetrahedral) bonds
have a strength of 2. On the other hand, if we assume that each carbon
atom has three strong bonds at 120° to each other in a plane perpendic-
ular to the c-axis, Pauling has shown that the sp2 (trigonal) bonds have
a strength of 1.605. These are the covalent bondings in diamond and
graphite, respectively.

Glassy carbon has some properties similar to those of graphite,
but tetrahedral bonding is held responsible for high strength and hard-
ness, the low gas permeability and the low graphitization tendéncy of
glassy carbon. Consequently, it is natural to compare the atomic
structure of glassy carbon with those of diamond and graphite, since
the physical properties are dependent on the nature of the bonding
between the atoms of the substance.

The diamond lattice consists of carbon atoms located at the corners
of regular tetrahedra and linked together by covalent bonds with an
interatomic distance of 1.54 X (Bragg and Bragg, 1913). A summary of
the diamond structure which is cubic is found in Appendix A.1 together

with pertinent diffraction data. The high strength and melting point



of diamond is explalned by the high coordination number of covalently
bonded carbon atoms. This also explains the high density of diamond.

On the other hand, the carbon atom in graphite which is also bonded
covalently has only three other adjacent carbon atoms, with an inter-
atomic distance of 1.42 R (Bernal, 1924). These covalent bonds are
stronger, and the atoms form a linked hexagonal planar structure. The
hexagonal arrays form parallel sheets which are 3.35 R apart and are
linked by weaker Van der Waals forces. A summary of the 'hexagonal
graphite' structure is given in Appendix A.2, together with pertinent
diffraction data. Since the forces between the planes are relatively
weak, the strength of graphite is iess than that of diemond, and
graphite tends to shear rather easily along the planes Jraphite is
the stable allotrope, and the surfaces of diamond begin to transform
into graphite in an inert environment at high temperatures. Industrial
carbons are generally imperfect forms of graphite, and the diffraction
patterns of these carbons are very diffuée. They are usually described
in terms of a disordered (turbostratic) structure of graphite-like
hexagonal layers with no orientation between the adjacent layérs.

The layers in hexagonal graphiﬁe,however,are arranged such that one
half of the atoms in a given plane lie above and below the hexagon
centers of the planes on either side. This is called the 'ababab'’
arrangement Anomalous diffraction lines for graphite (Lipson and

Stokes, 1942) suggest that graphite may also be found in another



crystalline form which is similar to hexagonal graphite in dimensions,
but with a different arrangement of layers, viz, 'abcabc.' A sum- .
mary of the 'rhombohedral graphite' structure is given in Appendix
A.%3, together with pertinent diffraction data. Comparison is also
made with the hexagonal unit, and it will be seen that there are some
diffraction lines which are common to both, and others which are
peculiar to each.

Not only may graphite come in two crystalline forms, but the
suggestion has been made that diamond exists in two forms (Ergun
and Alexander, 19¢2) Tﬁe regular linking of tetrahedra yields
hexagonél close packed layers in which layers are spaced alternately
by one bond length, and by 1/5 bond length. The simple forms of
hexagonal close packed layered structures are the diamond-type lattices
and the hexagonal wurzite-type lattices. The layers are formed by the
(111) planes in the cubic lattice, and the (00.2) planes in the hex-
agonal lattice . AdJjacent layers separated by a bond-length have atom
positions which are identical; and the two strﬁctures differ in the
arrangement of the adjacent layers which are separated by a 1/3-bond
length. The cubic structure has an arrangement A-A-B-B-C-C-A-A, and
the hexagonal structure has A-A-B-B-A-A. The analogy may be made to
the graphite lattice in the rhombohedral and hexagonal forms.

The argument is made that, since other tehahedral structures such

as ZnS exist in both the cubic (sphalerite) and hexagonal (wurzite)



forms, perhaps diamond can exist in the two forms also. A summary of
the 'hexagonal diamond' structure is given in Appendix A.L4, together
with pertinent diffraction data. It will seem that most of the cubic
reflections have corresponding reflections in the hexagonal lattice,

which, having less symmetry, glves rise to many additional reflections.



1.4 THE STRUCTURE OF GLASSY CARBON

Since the density of glassy carbon is low, ahy proposed structure
which is based upon that of graphite must include a high degree of
porosity. These pores must be non-interconnecting since the material
is impermeable to gases. The high strength of glassy carbon makes the
existence of these voids very interesting. They may strongly influence
the local environment of many of the atoms of the material in such a
manner as to increase its strength. Hence itvwould seem reasonable to
compare the diffraction pattern of non-crystalline carbons with the
crystalline forms.

Crystals are described by lattice structures with various sym-
metries. Non-crystalline materials lack a high degree of symmetry, and
cannot be described by equilibrium atom positions within a unit cell.
Instead they are characterized by a 'radial distribution function' which
gives a time-averaged characterization of the atomic densities as a
function of the distances between the atoms in the substance. In a cry-
stal, such a function would be higﬁly peaked; but in a non-crystalline
material these peaks are broadened because of the lack of long range
order, and at large distances the effect would be such that the average
atomic density would approach a constant value.

To understand the features of the RDF, it is necessary to construct
a model of the bonding of the constituent atoms, and ﬁo consider the

average environment of the individual atoms. Consider that the valence
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of a given atom, i, is ni, and that each valence corresponds to a
covalent bond with ni other atoms. Then the contribution to the area
under the first peak in the RDF from this particular atom is propor-
tional to ni, since it has ni nearest neighbors. If the total number
of atoms in the sample is N, then the contribution to the area under t

the first peak is simply the sum of the individula contributions, i.e.,

N :
% ni. But since the RDF is an average function, the area under the
i .
' . . -1 N _
first peak is identically equal to ni =N X ni, the average coordi-
i

nation number for the bonding between neighboring atoms. Similar
further extensions may be made for the areas under subsequent peaks in
the RDF.

Since the areas are proportional to the averagé coordination num-
bers, analysis of the RDF should yield information regarding the bonding
between neighboring atoms. Consequently the relative amounts of trigon-
ally and tetrahedrally coordinated carbon atoms may be determined. For
diamond, the bonding is sp3 ( tetrahedral), and the coordination number
is 4. For graphite, the bonding is sp? (trigonal), and the coordination
number is 3, whille the bonding between planes is weak and attributed to
Van der Waals forces. The number and distance of the first four coor-
dination spheres of diamond and graphite are shown in Table I. Models
for glassy carbon in which the trigonally and tetrshedrally bonded atoms

are found are proposed in section 5. 2, and the areas under the first

few peaks examined.



11

TABLE I

2000°C HUCKE SAMPLE

Coordination Diamond Graphite

Sphere r(f) n r(f) n
1 1.54 L4 1.hko 3
2 2.53 12 2.46 6
3 2.96 12 2.8% 3
L 3,80 12 3.75 6

A comparison with crystalline forms of carbon was performed origi-
nally for the diffraction pattern of fine carbon blacks (Warren and
Biscoe, 1941) which have rather broad diffuse peaks. After Fourier in-
version, it was found that the distribution of neighboring atoms was
exactly the same as in a single layer of graphite. Ihe diffraction lines
of general form (00.1) and (hk.0) could be correlated with the diffrac-
tion pattern but the general lines (hk .£) were missing. This suggests
a random layered structure in which the single graphite layers are
stacked parallel and equidistant with each layer having a random orien-
tation relative to the other layers; that is, there is a random rotation
of layers about the layer normal. This is called 'turbostratic graphite'
and may be considered as a two-dimensional crystal.

The atomic bonding of glassy carbon has also beeh analyzed by com-
parison with'the types of bonding found for the crystalline forms of
carbon. Noda and Inagaki (196h) have acquired the X-ray diffraction
pattern of a glassy carbbn from Tokai of Japan, obtained from an initial
resin of furfuryl alcohol. Diffraction patterns were taken for various

carbons after treatment at various temperatures and the peaks tend to



12

sharpen at higher temperatures. The first peak of the radial distribu-
tion function, which is equivalent to the position of the nearest neigh-
bor atoms, has an area corresponding to the a mean coordination number
of between » and 4. They assume, therefore, that the glassy carbon is
composed mainly of two types of carbon bonding in some proportion which
varies from sample to sample. One type has tetrahedral (sp5) coordi-
nation between the carbon atoms as in diamond, and the other trigonal
(spg) bonding like graphite (see Figure 1.1).

They further separate the first observed peak into two components
which correspond to the different types of carbon atoms, using the
assumption that the curve for each type was Gaussian. The amount
ol trigonal carbon atoms was increased by raising the heat treatment
temperature, and the positions of the observed maxima in the RDF also
approached those found for graphite. They assume that.the trigonal
carbon atoms form a two-dimensional layers, whereas the tetrahedral
carbon atoms have no regular arrangement. Their structural model
therefore has the tetrahedral carbon domains cross-lining the regions
of graphite-like layers in a random fashion. The extend of the domains
of these types of bonding cannot be determined by analysis of the
radial distribution function which shows detail out to only a few
interatomic distances. This structural model is based on that consist-
ing of domains of graphite interspersed by disordered regions, which

was first proposed by Franklin (1950) for amorphous carbon films.
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The radius of the first coordination sphere of amorphous carbon films
lies around 1.50 & between the values of graphite and diamond.

Kakinoki et al. (1960) studied the structure of evaporated carbon
films of thickness ~ 100 & by electron diffraction techniques and ob-
tained a diffractlon pattern out to 33 A_l. They found that the radial |
distribution function's first two peaks both acquired the corresponding
distances in diamond and graphite with nearly equal statistical weight.
The first peak could be decomposed into these two peaks, whereas the
second peak required the third nearest neighbor of graphite and diamond
to be taken into account.

The discrepancy between the observed density and that calculated
using the Noda-Inagaki model has led Furukawa (1964) to propose a dif-
ferent model. Noda and Inagakl assumed trigonal islands linked together
in a random way by tetrahedral bonds. Furukawa proposed a three-dimen-
sional irregular network of carbon atoms involving all kinds of carbon-
carbon bonds. This model is disordered with no more than three hexag-
onal units in a rov in any direction; thisallows small regions, about
10 & in size, of planar hexagonally linked carbon atoms.

For low-temperature heat treated samples, these two models are
similar, since the Noda-Inagaki model has little trigonal bonding and
the Furukawa model consists mainly of tetrahedral and planar double
bonds. On the other hand the specific heat of glassy carbon heat

treated at 3000°C shows a Tg-dependence (Takahashi and Westrum (1965))
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which i1s characteristic of a two-dimensional layered lattice. More re-
cently (Salinger, 1973) there has been found a linear anomaly in the
specific heat at the lowest temperatures around 4°K.

Kakinoki (1965) further proposed a model in which oxygen atoms are
added as bridges between the various tetrahedral and trigonal domains.
The oxygen bridges are then assigned the responsibility for the low den-
sity of glassy carbon. However, it was later found that the oxygen con-
tent necessary for this model was greater than that reported originally
(Noda et al., 1968).

The structural model of Noda and Inagaki is generally believed
to be the best of the three; that is, small domains of graphite-like
layers cross-linked réndomly by tetrahedral carbon atoms to form a
continuous, iéotropic, low-density material. They claim further that
this model is valid for the different types of glass-llke materials.

The large number of cross-linking atoms are held responsible for the
non-graphitizability of glass-like carbons. These graphite-like layers
have a very small size (of the order of 15-100 R) with an average layer
spacing of 3.55 R (perfect graphite has a spacing of 3.35 R), the layers
being randomly stacked as in turbostratic carbon.

More recently, Kasatochkin et al. (1973) have also proposed a model
in which the carbon atomic orbitals may exist in three hybridizations,
sp, spg, and sp. The carbon atoms are bonded such that there are many

graphite-like regions linked by atoms of the other types of bonding,
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including polyene (- C = C -) and cumulene (= C = C =). Consequently
their model includes all possible forms of carbon bonding. This
agrees with Whittaker and Wolten (1972) who made electron diffraction
measurements on glassy carbon and found small regions in which carbon
is bonded in all its crystal forms.

A K-emission band study of glassy carbon by Saxena and Bragg (1973)
tends to support the Noda-Inagaki model. They studied not only glassy
carbon heat treated at various temperatures, but also diamond and
graphite. They concluded that glassy carbon contains both trigonal and
tetrahedral bonding, and that the amount of trigonal bonding increases
with increésing heat treatment temperature. They do not state the
relative amounts, but it seems that they believe that the amounts of
tetrahedral bonding is not negligible even at the highest (2700°C)
temperature.

In contrast, Kammereck and Nakamizo (1972) performed laser raman
studies on graphite and on glassy carbons prepared from polyfurfuryl
alcohol, heat treated between 500°C and 2000°C. They conclude from
their spectra and there is little tetrahedral bonding even for the low-
er temperature carbons, and that the raman band attributed to graphitic
layers increases in intensity and becomes more narrow with increasing
heat treatment temperature.

In summary, therefore, it is fair to say that the structure of

glassy carbon is not well known. Yamada (1968) believes that the
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different forms of amorphous carbon may have the saﬁe short-rangce
structure with differences which depend on the starting material and
on the heat treatment temperature. The first and second coordination
spheres have coordination numbers which lie between those of graphite
(3,6) and those of diamond (4,12). The particular values depnd on
the method of preparation, and they affect the physical and chemical
properties of the resulting carbon. To account for the low dehsity,
there are non-communicating pores, 25-40 R in diameter which are
observable by transmission electron microscopy. The presence of these
volds can be detected by small angle X-ray scattering (Bragg and
Hammond, 1965; and Perret and Ruland, 1972).

The investigation of the structure of bulk disordered carbons is
performed directly by diffraction methods. It will be seen (section 5)
that the Fourier inversion of diffraction data gives an RDF with
spatial resolution inversely proportional to the maximum value of recip-
rocal lattice space scanned. If the resolution width is less than the
differences in the positions of the peaks for diamond and graphite, then
the differences in the coordination numbers should be sufficient to de-
duce the amounts of the two types of bonds. It is specially true for
the area of the first peak which is independent of the type of model
proposed for carbon,

The X-ray diffraction pattern of Noda and Inagaki out to Q = 10.25

-1
R does not extend to large enough values of wave vector change for a
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determination of the type of bonding in glassy carbon. Their data

gives a resolution of only about .63 R in the RDF which is insufficient
to resolve the closely spaced peaks (Figure 1.1). It is unrealistic

to attempt to separate the first peak into two peaks having a separation
of 0.12 A. Consequently, it is necessary to use diffraction techniques
which allow sufficient resolution in the RDF to determine the amounts

of trigonal and tetrahedral bonded atoms, in order to test the Noda-
Inagaki model.

Since carbon has a low atomic number the scattering power for X-
rays is small. Consequently, there is merit to considering neutron
diffraction (section %.6). Additionally if the diffractometef can be
designed to collect data at very large wave vector transfers, then
the results may have sufficient>resolution to determine the form of

bonding between atoms.



CHAPTER II. THE THEORY

2.1 INTRODUCTION

In this section the relationship between the atomic structure of an
amorphous material and its neutron diffraction pattern is developed.
More complete discussions of the basic theory of neutron scattering are
given by Lomer and Low (1965) and by Windsor (1975), and its application
to amorphous materials by Leadbetter (1973) and by Wright (1974). Here
the scattering by a target system of only monoatomic nuclei is consid-
ered, although ths results may be generalized for a polyatomic system.

Since the wavelength of thermal neutrons and the interatomic dis-
tances of materials are comparable (~l§), the intensity of scattered
neutrons as a function of scattering angle, that is the diffraction pat-
tern, will have properties which depend upon the arrsngement of the
atoms within the scattering system. This is analogsus to X-ray dif-
fraction. Additionally the frequency of scattered radiation for thermal
neutrons is comparable to the vibrational frequencies of the scattering
system, and therefore the vibrational frequency spectrum of the system
may be analyzed by thermal neutrons. In fact, this introduces a
difficulty with neutron diffraction compared to X-ray diffraction, where
the energy shanges are small in comparison to the incident X-ray energy.
However, while X-rays interact with the atomic electrons which have a

spatial extent 1&, neutrons interact with the nucleus of extent ~10 X,

19
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Hence the neutron-nuclear interaction i1s localized, and in addition
the scattering amplitude of this interaction varies with the specific
nuclear isotope. (In fact, it varies quite randomly unlike X-ray
scattering whose amplitudes increase monotonically with the atomic
number Z.) Also, the scattering cross section can be divided into
coherent and incoherent parts, and 1t 1s the coherent total scattering
cross section which gives information about the distribution of inter-

stomic distances in the target system.



2.2 THE PHYSICS OF NEUTRON DIFFRACTION

Consider a beam of neutrons of initlal wave vector k which are
scattéred by a system of nuclci through an angle 0, with a scattored
wave vector k. The interaction between a neutron and a nucleus is gov-

erned by the laws of conservation of momentum and energy, so that there

is a net transfer of momentum hQ and energy hw to the system given by

he = Ak - k) (2.1)
fo = B2 k) )
®w = gmn ( o (2.2

The neutron wave vector k 1s related to its velocity v by hk = mnx,
where m is the neutron mess, and h is Planck's constant divided by 2n.

The scalar momentum transfer is given by
| 2 .2 1/2
@ = lal = (k +x - 2k cos 8)7". (2.%)

Eliminating the final wave vector k gives

Q2 = 9k§[l-(mnu¥ﬁk§) - cos G(ln-(2mnuyhki))l/2]. (2.4)

For elastic scattering, there is no energy change; i.e., w = O and ko =

k. Then

Q = Vek(1 - cos e)l/2 = 2k sin 6/2 ='%sin e/ . (2.5)

where A = 2ﬂ/k is the wavelength of a neutron with an associated wave -

number k. ' It will be shown that for amorphous materials and for
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polycrystalline substances, the diffraction pattern is the intensity
of scatter as a function of Q, the scalar wave vector transfer.

The scattering amplitude of a nuclear interaction is denoted by b,
the bound-atom scattering length. This is related to the free atom
scattering length by b = a(M + mn)/M, where M is the mass of the scat-
tered nucleus. For thermal neutréns, b is independent of mbmentum
transfer Q, and the differential cross section do/dQ is isotropic for a
rigid single nucleus. Hence the total cross section o may be found by

integrating over all solid angles; viz., for a single bound nucleus

do 2
on = flmd_Q aQ = kb, (2.6)

For a system of nuclei, the scattering amplitude is given by
g:bjexp(ig.zj), where the sum extends over all nuclel with position
vector r. This may cause a transition in the radiation from a initlal
energy state EO to a final energy state E, with an energy transfer of
fw. Details of the derivations of the scattering cross section are
found elsewhere (Summerfield et al., 1968) but the main result is that
the cross section for scattering is proportional to the following;

(1) the product of the matrix elements of the scattered amplitude

between the initlal i and final f states,

5 o<ilbe @ Ei)r s <o e k] g >
J,k J k
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(2) the probability that the initial state is occupled at a tem-

perature T,

o~Eq/kgT

P =

1

where kB is the Boltzmann constant,

(3) an energy conserving delta function,

1 - = B
S(Ei +E - E E) (E

f - Ei- ‘h(JJ),

g
(4) the ratio of the scattered and incident wave vectors,
X
pallt
o
Then the double differential cross section,which 1s the probability that
neutrons are scattered into a solid angle 40 with a neutron energy in

the range 4E, is

o

d g k -iQ.r-
= b 2 2Jlf

d0dE k_ i S L]bse £ >

+iQ.
< flb e lg£k|i>8(E - E - hw) (2.7)
k f i

The energy sum may be transformed into a time integral to give

2
d o k 1 -iwt
andE k_ 2rh [:dte
-iQ.r.(0 +1Q.r (t
£ <be Iy Jp, 1 Zk(E) (2.8)
ik k

Where the angular brackets indicate a thermal average over the different
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energy states of the system.

The Van Hove space-tlime correlation function (l95h) is introduced

as

-iQ.r -1Q.rs(0) +iQ. t
o(r,t) = % ?i fdQe T T <e 25(0) 118-2(®) >

(2.9)
where N is the total number of scattering nuclel. For a classical sys-
tem G(g,t) may be described as the probability of finding a nucleus at
r at time t given that a nucleus was at r = O at time t = O.

By separating the sum of equation (2.9) into sums for j = k and
Jj # k, G(r,t) may be divided into a self-correlation function GS(E,t)
describing correlations between positions at different times for the

same particle, and a distinct correlation function Gd(z’t) describing

corrélations between positions between pairs of different particles.

That is
G(r,t) = Gs(z,t) + Ga(g,t) (2.10)
where
- ~-iQ.r.(0) +iQ.r.(t
Gé(z,t) = =3 [dge g.x <e g —J( )e - ‘J< ) > (2.11)
J
and
1g.r | -10.7.(0) +i@.r (%)
Gd(g,t) = = » fdge ='=<e J e (2.12)

The division of the double sum on j and k in (2.9) into separate
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sums for j = k and j # k may also be performed for equation (2.8). Since
there is no correlation between bi and bk’ then < bibk > =< b >, where

this average is performed over the nuclear isotopes and spins of the

system, and equation (2.8) becomes

2
d o k 1 -lwt
dpdE koﬁf:odte
2 -iQ.r.(0) +iQ.r (t)
{<b >SI<e g—J( )e —*J< >
J
-1Q.r:(0) +iQ.r (t)
pcb Py <o 2Iyl0) Hia.x > (2.13)
J#k
or
d% k 1 i(Q.r - at)
anas - Nk ze/lutt e ST
o 2
{<b >GS(_1_‘,1:) +<b>Gd(_1:,t)} (2.1k)

However, it is customary to divide the cross section into two
parts: viz., (1) coherent scattering which accounts for correlations in
positions of nuclei, and (2) incoherent scattering which accounts for
difference in the scattering lengths for either different isotopes or
different splin configurations. The differential coherent scattering

X 2 2
cross section is bcoh =< b >, the square of the average scattering

length of the nucleus; and the differential incoherent scattering cross

section is

2 2
b = <(b-<b> > = <b >’<,b>2 (2.15)
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the mean square deviation of the average scattering length. If in

(2.14) we add and subtract < b 2 (r,t), we obtain
s\ X

da k1 . 1(Q.r - wt)
dgag ¥ < 2m [Jarate
2 2 2
€<b >-<b>) GS(_I:,t) +< b > G(;_,t)} (2.16)

which may be written

dgo coh coh

k i(Q.r - wt)
= — d dt V== G t r\.
dQdE o k_ [fazat e (r,t) (2.17)
and
2
2 Nb ,
d o inc inc k i(Q.r - wt)
= — JJdrdt == 2,18
d0dE o k_ [farat e G (z,t) ( )

The scattering functions S(Q,w) and Ss(g,aﬁ are Ilntroduced as the

Fourier transforms of G(r,t) and GS(E,t). Therefore

1 i(Q.r - wt '
s(Q,w) = = JJdrdte (8.x )G(g:,t) (2.19)
and
1 i(Q.r - at)
ss(g_,w) = = Jfdrdte™ == Gs(g,t) (2.20)
such that (2.14) may be written as
dgocoh 2 k
- = — 2.21
dQdw Nbcoh ko S(_Q_,(D) ( )
dgainc 2k

= Nb

. 2.22
dQdw inc k Ss(g’dﬂ ( )
e}
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By definition, the scattering law S(g,uﬂ depends only on the properties

of the scattering system, and not upon the scattered radiation.
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2.3 THE STATIC APPROXIMATION
The structure factor S(g) of an atomic system is defined as the

integral of the scattering law over all energy transfers
+00 .
s(Q) = [ s(q)de (2.23)

which after substitution of (2.19) reduces to

s(Q) = IG(g,o)eig-'—{dg . (2.24)
Now
G(r,0) = G (z,0) + Gd(,l;,O) = &(r) + g(r) (2.25)

where g(g) is the static pair correlation function, or the average
atomic density at a distance r from an atom located at the origin.

Then

S(Q) = 1+ fa(r) e ¥ up . (2.26)

Similar trestment for the incoherent scattering law shows that
iQ

s (@ = [ s (qw)a = [0 (r,0)e=Tar = 1. (2.27)

The coherent angular differenﬁial cross section is given by

dcrcoh 2 o Kk
m = W, f_m}—( S(Q,w)aw . (2.28)
0]

If the assumption is made that ko ~ k, then
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do

coh 2 .
_coh N, 2Q
30 Mo, n s(Q). (0.20)

This is true for X-ray scattering in which the integration over energy
transfers is performed at constant Q, since the energy transfers are
small compared with the incident energy. In the ideal scattering
experiment to measure the structure factor S(Q), the scattered intensity
I(Q), which is proportional to the differential cross section do/dQ, is
measured as & function of momentum transfer Q (usually with a constant
ko and theréfore as a function of scattering angle 8), regardless of any
energy transfers involved. This is called the static approximation and
is valid for conventional X-ray diffraction.

For neutrons, on the other hand, the static approximation does not
hold, since the neutron energy is comparable with energy transitions of
the scattering system. Hence in a diffraction experiment in which the
integrated intehsity I of scattered neutrons measured at a glven
scattering angle 6, the integration over energy transfers is performed,
but not at constant Q. The integration path in Q-w épace is along a
path of constant scattering angle 6, which deviates from a constant Q
path, especially at high energy transfers hw. Additionally there is a
minimum@n integration 1limit defined when the energy loss fw is equal to
the incident neutron energy'Eo. Hence the measured differential cross

section (dc/dnzn is now given by

00

do 2 k
a (== = k N
T dQ) m INbcoh[-Eo/‘h ko S(gﬁb)dblconst e] (2.30)
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where we have neglected an additional weighting factor with energy
dependence accounting for the incoherent scattering and the detector
efficiency.

Now the structure factor S(Q) is less easy to obtain. If, however,
a constant - Q neutron scattering experiment could be performed, with
the static approximation able to be invoked by adequate corrections,
then the total scattered intensity I(Q) is proportional to S(Q), and
1s given by

d
0coh 2 iQ-

ol9) total coh

I(Q) @

it
—
Q
—
H
-
O
®

]
&
-

+
®
=
o

|
L

(2.31)

Another technique is to perform an elastic neutron scattering
experiment, with a double energy analysis, so that the elastic coherent

scattering differential cross section is measured and given by

do h 5 iQ

co iQ-r
——— = Nb G ) — 2.32
an elastic cohf (ry=)e™==dr . (2.32)

The correlation function G(r,) is the time averaged value of G(r,t),
and may be described in terms of static equilibrium positions Gé(i)
and thermal displacements about the equilibrium positions. For
harmonically bound atoms, this gives a Debye-Waller factor of the form

exp(~-2W), where

W o= 1/6 <u® > q° (2.33)
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for isotropic mean square displacements < u2 >. Then
&(r,=) = G(z) exp(-2W), (2.34)
and the elastic scattering cross section (2.32) becomes
<§222£>e1astic N Nbiohf G () e MMy (2.35)
If the equilibrium correlation function Ge(z) mey be expressed by
6 (r) = 8(x) +e(x), (2.36)

where ge(g) is the pair distribution function for equilibrium atomic

positions, then

do
—coh 2 iQ-r | -°oW
(m )ela.stic = M, (1 + g (z)e=dar)e . (2.37)

Hence elastic scattering experiments may give information about the

|

thermal displacements which are averaged out in the total scattering
measurements.
If the same separation is also made for the static pair correlation

function, giving

g(r) = g_(x) e (2.38)

then the total scattering cross section equation (2.37) becomes

do
2
coh Nb

an total coh(

-OW iQ
o2

1+ fg (r)e Har) . (2.39)
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Hence the relationship between the total and elastic scattering cross

sections is simply



53

2.4 THE RADIAL DISTRIBUTION FUNCTION

Equation (2.31) expresses the relationship between the diffraction
pattern (or the intensity I(Q) of scatter as a function of scalar momen-
tum transfer) and the static pair correlation function g(r) (or the num-
ber of atoms in a volume element dr at a distance r from an atom located

at the origin).

2

(@) = m_. (1 + Je(x) e'2'X

dr) . (2.31)

For large distances, g(z) approaches a constant value go which is the
average atom density in the sample. We add and subtract go from g(z)

to give

I(Q) = M- (1 + fv(g(z)-go) e 1AL dr + g/ e X dr)

coh
(2.41)

where V is the sample volume.

For isotropic systems the vector r may take on all orientations in
space with equal probability to give the density fluctuation (g(g)-go)
spherical symmetry. For distances greater than a few atomic distances,
(g(r)-go) approaches zero, except near the sample surface; and for dis-
tances less than the closest interatomic distance, g(r) = 0. Hence the
orientation average for the second term may be performed, and is
fhﬂrz(g(r)-go) sin Qr/Qr dr. This second term basically involves only
interactions between atoms which are closely separated. The third term

involves interactions between distant points within the sample, and
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gives rise to forward angle scattering (see section 2.5). Provided that
the sample size is great enough, this term may be ignored, and the co-
herent scattered intensity I(Q) is given, neglecting absorption and mul-~

tiple scattering as well as incoherent and inelastic scattering, by

2 00 i 2
1(Q) = Nbcoh (1 + Ux fo (g(r)-—go) Ei%;QE r dr) . (2.42)
We define the radial density function (RDF) as
D(r) = bLn(g(r)-g) (2.43)

that is, the fluctuation in the atomic density about its mean value as a
function of r. This may be obtained by Fourier inversgsion of equation

(2.42). Note that at large Q, I(Q) approaches Nbioh = I(w), the "struc-
ture independent'” coherent scattering intensity at large momentum trans-
fers. Then define i(Q) as the "normalized intensity" obtained from the

experimental diffraction pattern I(Q) by

i(@) = (I(Q) - I(w))/I() . (2.44)

By substitution in equation (2.42), this becomes

Qi(Q) = bLx f: r(g(r)-—go) sin Qr dr . (2.45)

The Fourier transform then gives

|-

r(g(r)-g)) = [7 Qi(Q) sin Qr dQ (2.46)
2

\Y)

or
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rD(x) = bwi(e(r)-g) = = [Ti(@) sinQrda  (2.47)

which is one form of the formula of Zernicke and Prins (1927).

The function Qi(Q) may be obtained from neutron scattering data,
and the evéluation of the integral in equation (2.&7)‘yields the RDF,
D(r), which gives the structure of liquids and non-crystalline materi-
als. This formula is also valid for polyatomic substances, except that
the densities g(r) and go are averages weighted by the coherent scatter-
ing lengths of the various isotopes according to the composition of the
system.

In an amorphous materials, the function g(r) has peaks which become
less distinct and more broad with increasing r, until g(r) approaches a
constant value equal to g, The distances between the peaks and the
origin correspond to the distances between the atoms. Additionally, the
area Am under the m®? peak in the function rED(r) gives a measure of the

number nm of atoms at a distance r from & typical origin atom. That is

2
Am = fmth peak Yrr (g(r)-—go)dr = n_ - (2.48)

The RDF i1s therefore analogous to the Patterson function for solids and
crystals, which is a correlation function giving the position of every

atom relative to every other atom. It is directly proportional to the

square of the atomic structure factor, as is the RDF via the Zernicke-

Prins formula (2.47) and the Van Hove space-time correlation function

(2.9).
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2.5 FORWARD ANGLE SCATTERING

For small crystallites the intensity of scattered radiation in a
region around each reflection point in the reciprocal lattice may be de-
scribed as a function whose form depends upon the external crystal and
not upon its internal structure. These diffraction regions extend in
reciprocal spaée out to distances Q from the reflection center of the
order of 2xn/d where d is the linear dimension of the crystallite
(Guinier (196%)). Hence the Scherrer formula AQ =~ 2x/L relates the
width AQ (after subtraction of resolution) in reciprocal space of a par-
ticular reflection to the apparent size L of the crystallite in a direc-
tion perpendicular to the plane spacing corresponding’to that reflection
or node. Reflections of the indices (000) at the center of the recipro-
cal lattice are also describable by the same function, and hence small
crystallites give rise to small angle scattering around the incident
beam. For a homogeneous substance, the diffraction pattern may contain
some reflections for which an interpretation may be found by analogy to
the crystalline form. However, around Q = O, there certainly exists a
node center with the same characteristics as the crystallite of the same
external form.

In the derivation of the intensity of scattered radiation for amor-
phous substances (section 2.4), we ignored the third tefm in equation

(2.41), viz.,

Q) = - g [ e =L (2.49)

coh "o " v
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which involves interactions between distant points within the sample and
gives rise to forward angle scattering. For large distances r, the
static pair correlation function g(g) approaches a constant go’ the
average atomic density within the sample. Hence by equation (2.25)

g, = Limit G(r,0). (2.50)

large r

Also in the limit of large r, there are no correlations between distant
atoms, so that the space time correlation function (equation (2.9)) be-

comes

Limit G(z,0) = N[ dag e =%, (2.51)

large r
Hence by the substitution of

- e r

N = g fv e dr (2.52)

into equation (2.49) gives
_ .2 2 -iQ'r .2
(@) = v, e |/ e dr| <. (2.53)

The integral is taken over the entire volume of the sample which has
been considered.to be homogeneous.

Moreover, if the sample consists of Nb homogeneous domains, then
under the assertion that individual contributions to the small angle
scattering are independent, they may be summed together so that equation

(2.53) becomes
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1Q) = N_b°o g |f &L

D Pcon & 1D (2.54)

where the integral extends over a typical domain. Hence the small angle
scattering will be characteristic of the domain sizes within the sample,
and independent of the atomic structure of the individual domains.

On the other hand, let us consider a homogeneous sample with inde-
pendent but similar voids. This assumes that the voids are oriented
randomly within a material of constant density g, with sufficient dilu-
tion that their separation is large compared with the interatomic
spacing, since large r limits were taken for the orientation averaging of
the‘second term in equation (2.41). We make no assumption about the
relative number and size of the voids and the material, other than that
the'void volume is much smaller than the sample volume. It is then
possible to analyze the small angle scattering data, not in terms of
domains of material, but in terms of voids within the material.

Hence the voids are treated as scattering domains with a negative
atomic density -go within a material of uniform zero densit&, with neg-
ligible interference between the waves scattered by the individual voids.
The observed intensity is the sum of the diffracted intensities produced
by the individual voids, which for Nv identical voids, each of volume
Vv’ distributed at random with a material of constant density g, is

given by

2 2 -iQ-r 2
coh go |f I

1]

I(Q)

N b . (2.55)
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2.6 INHOMOGENEOUS POROUS MEDIUM

In the previous section, it is assumed that the voids in the
material are not only independent but also similar. However Debye and
Bueche (1949) have demonstrated that the small Q diffraction from an
inhomogeneous porous material may be characterized more generally by the
fluctuations in the scattering property of the medium. The Debye theory
may be applied to the case of neutron scattering.

Define a correlation function y(r) by the equaﬁion

[, &(x-z")e (z")ar’

7(1) = 2 J (2'56)
fvé (r)dr

where &(r) is the local fluctuation at the point r in the atomic density
from the average value go in the bulk material. Let the true local
atomic density of the solid regions of the material be g_; (the reason
for this subscript will become epparent in Chapter 6). Then the local
fluctuations of the density in the solid regions and in the voids from
the average density are glven by (gB— go) and -go, respectively. Let
the vold fraction by volume of the substance be ¢; then the denominator

in equation (2.56) is given by
2 2 2 2
J &€ (r)ar = <€> = (g,-g) (1-09) + (-g")e. (2.57)
v o o (o]
The void fraction is defined by

¢ = 1 - , (2.58)
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so that equation (2.57) becomes
2
<t > = g leg-¢g) - (2.59)

The small Q scattering term in equation (2.41) has the implicit
assumption that the material i1s homogeneous, and we rewrite equation

(2.49) as
@) = v [ gl (2.60)
v o
where the number of scattering atoms may be defined by
N = gV, (2.61)

However to treat an inhomogeneous medium with sharp boundaries between
regions of material and void, we must consider local fluctuations in the
. 2 . . 2
stomic density. Hence we replace g in equation (2.60) by y(r)<¢™>.
@ .

The intensity of scatter for small Q from an inhomogeneous medium is

therefore given by

2 2 -1
1(Q) = bcoh \Y fv <t > y(r) e @ dr. (2.62)

For an isotropic medium, y(r) has spherical symmetry, so that equation

(2.62) becomes

2 o
Q) = o, Ve (g 6) [0r 2(r) T ar. (2.63)
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Debye further showed that the functional form of y(r) for a random

scatterer may be given by
y(r) = exp(-r/a) (2.64)

where a is a correlation length. The substitution of equation (2.64)
allows the integral in equation (2.6%) to be performed, to give

8ﬂbith g (gE— g ) 8
Q) = R (2.65)
(1 +a™Q")

as the intensity of scattering at small Q for an inhomogeneous porous

medium.



CHAPTER ITI. THE EXPERIMENT

3.1 TIME-OF-FLIGHT DIFFRACTOMETRY

In diffractometry the intensity of scattered radiation is measured
as a function of wave vector transfer Q; and it is useful to extend the
measurements to as high a value, Qmax’ as possible in order to increase
the spatial resolution Ar = EK/Qma#' It is seen from equation (2.5)
that Q depends on two factors, the wave length A of the radiation and
the scattering angle 6. In conventional diffractometry a monochromatic
incident beém of neutrons or X-rays is used, and the intensity of
scattered radiation is measured as a function of scattering angle. This
method therefore has a maximum Q-range determined by the wavelength
used. Presently a practical limit is Qmax ~ 23 A-l for X-rays, and
~15 ﬁ-l for neutrons. An alternative method is to keep the scattering
angle fixed, and Q is varied by using a white beam of radiation, that
is, a wide range of wavelengths. For neutrons this may be accomplished
by time-of-flight diffractometry which has been reviewed by Turberfield
(1970).

A pulsed neutron beam containing a broad distribution of neutron
energies, with a flux per unit wave number at time to given by ¢(ko,to),
is emitted by the source. Neutrons are scattered with a probability
given by equation (2.29); viz., NbQS(Q) in the static approximation. A

detector which subtends a solid angle AQD at the target counts scattered

Lo
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neutrons with an efficiency n(k). The observed count rate C(0,t) at
the detector at a scattering angle © and at a time t is determined by
neutrons with a velocity v which were emitted by the source at a timc
t' = ¢ -(LO+ L)/ v, where LO and L are the distances traversed by the
neutrons between the source and the target, and between the target and
the detector, respectively. Then, neglecting finite target effects,

and in the static approximation,

c(e,t) = f¢(k,to)Nb2S(Q) AQDn(k) s(t - to-—(LO+ L)/v)dtodk
(3.1)

where the delta function ensures an integration of neutrons arriving at
the detector at the same time t, that is, recorded in the same time
channel.

Since a pulsed source is used, ¢(k,to) mey be represented as ¢(k)
6(to),so that the time integral may be performed, and the observed

count rate C(6,t) is given by
C(e,t) = [o(k) M8(Q) 48 n(k) B(t - (L_+ L)/v)dk . (3.2)

Since hk = mnv, and the momentum transfer Q is a function of k and 6 by
equation (2.5), then the integral may be performed in principle, and
the observed count rate C(G,t) is proportional to the observed
intensity as a function of Q. However this includes two unknown
functions, the transmitted neutron flux ¢(ko) and the detector effi-

ciency n(k). These may be eliminated by performing an identical ex-

periment on a material with a known cross section.
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It" we now consider the possibility of inelastic scattering, then
the count rate C(t') includes all combinations of initial and final
velocities, v and v, for which (LO/Vg + IL/V) is a constant; that is,
those velocities which have the same time of arrival at the detector.
Each combination of Vé and v (or wave numbers ko and k) has a
corresponding energy change h®w and wave vector transfer hQ for a given
scattering angle © given by equations (2.1) and (2.2). Hence the
diffractometer integrates all scattering events along a path in Q-w
space corresponding to each time of arrival. The path intersects the
w = 0 axis at a momentum transfer which corresponds to elastic
scattering.

The ideal integration path in (Q=w) space is the constant - Q path
so that the structure factor S(Q) may be obtained directly via equation
(2.31). However time-of-flight diffractometry will always have in-
elastic contributions to the scattered intensity and Carpenter and
Sutton (1972) have considered the integration paths in Q-w space as a
function of the ratio of the flight paths, L/LO. They show that with
eqﬁal flight paths, L = LO, the integration path crosses w = O tangent
to the line of constant Q. Hence in equal flight path time-of-flight
diffractometry, the constant Q integration requirement is better ap-
proximated than in the case with a choice of unequal paths, and also

for conventional crystal diffractometry. However this arrangement of

equal flight paths causes a minimum in the counting rates.
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3.2 UNIVERSITY OF MICHIGAN TIME-OF-FILIGHT NEUTRON DIFFRACTOMETER

The extended neutron diffraction pattern of the glassy carbon was
obtained on thevUniversity of Michigan Time-of-Flight Neutron Diffrac-
tometer which is located at beam port J of the two megawatt Ford Nuclear
Reactor. A schematic drawing is shown in Figure 3.1. The original
machine was described by Sutton (1971); but many modifications have
been made since that time, and the present diffractometer with nearly
equal flight paths has been described by Carpenter et al. (1974).

The beam port looks radially at the heavy water tank adjacent to
the reactor core, which enhances the leakage flux from the core. The
neutron beam is defined by a plug composed of graphite, lead and
concrete, before it passes through two rotors. The first is a fiber-
glass-resin rotating collimator with a wide divergent slit designed to
transmit a relatively broad pulse of both thermal and fast neutrons.
The second is a curved-slit chopping rotor of Nimonic - 90 alloy, with
a thin cocating of gadoliﬁium along the surfaces of the slits such that
only slow neutrons are transmitted. The neutron beam is further
collimated between the chopper and the target by an aperture of
dimensions 1 in. (vertical) x 3/8 in. (horizontal). Together with the
chopper, this arerture defines the beam size at the target position to
be 1-1/2 in. x 1/2 in.

The rotor transmission characteristics, which define the

distribution of neutron energies transmitted by the machine, are a
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function of the speed of rotation of the rotor and the curvature of its
slit; while the resolution is a function of the slit width alsc. The
10-in. diameter Nimonic rotor has three 1/k-in. slits with a 4O-in.
radius of curvature. This gives a value of the ratio of the optimum
transmitted neutron*sbeed (NS) to the rotor tip speed (TS) of 1€;
that is NS/TS = VO/RD = 16, where v, is the optimum neutron
velocity for a rotor of radius R rotating at an angular frequency w.
For the rotor frequencies used in the experiment 140 Hz, 24O Hz and
480 Hz, the optimum’neutron energies afe 17 meV, 49 meV and 197 meV,
and the optimum neutron time-of-flights are 559 us/m, 326 ps/m and
163 us/m, respectively.

The rotor's performance does not appreciably diminish even at 1 ev,
and using equation (2.5) a neutron energy of 0.934 ev gives a wave
vector transfer of 30 A-l for 90° scattering. The fali-off of the
reactor neutron spectrum at high energies, however, is the practical
limitation to the range of Q scanned by the machineir For this study
the highest wave Vector transfer for which reasonable data are obtained
is about 25 21 at & rotor frequency of 480 Hz and scattering angle of
90°; and the lowest, 0.9 &1 at a rotor frequency of 140 Hz and
scattering angle of 20°.

The rotors are each driven by a Harwell type (Pickles and Hazlewood,
1961) three phase hysteresis synchronous drive motor (Figure 3.2). The

amplifiers are driven at any of 13 frequencies between 140 and 480 Hz
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by a signal generator controlled by a precision‘tuning—fork oscillator.

Timing signals emantate through a magnetic pick-up for each rotor
system. The second rotor triggers the starting of a time-ot-t1light
multichannel analyzer after a pre-set delay. ‘'l'vrether with a suitable

channel width, this allows the scattered thermal neutron spectrum to
be analyzed efficiently. By selecting a suitable‘phase difference
between the two rotors, the fast neutron background may be eliminated
in the time-of-flight region of the scattered thermal neutrons. Four
scattered intensity distributions are analyzed in 256 channel memory
segments; ﬂhose from the sample and the reference at two different
scattering angles.

Neutron detectors are mounted in banks at scattering angles of 20°
and 90°. The 20° bank of four detectors subtends an azimuthal angle of
14.7° and solid angle of 3xiuf5steradian; and the 90° bank of seven
detéctors subtends an azimuthal angle of 27.8° and solid angle of
1.5x% ldgéteradian. Fach detector has a 5 in. x 5 in. Stedman type
(1961) thin Li6F - ZnS(Ag) scintillator bonded to a boron glass plate.
Neutrons cause the reaction Li6(n,a)H:, and consequent excitation of
ZnS produées photons which are collected by a photomultiplier tube via
a polymethyl methacrylate (PMMA) light guide. The pulses are trans-
mitted by an emitter follower output circuit, and are passed through
a pulse shape discriminator for the elimination of gamme pulses and

background noise, before finally arriving at the analyzer. The high



voltage characteristics of the detectors are matched to produce a
maximum signal to background ratio for detected neutrons.

The momentum resolution AQ of the machine is determined by wvarious

parameters which include:

(1) the beam angular divergence,

OFEORO)

(2) the time width of the neutron burst,

(A.@) ot (3.1)
Q/rt ot

and

(3) the flight path uncertainties,

AQ AT,
<—Q_>AL = 7 - (3-_5)

However Carpenter (1967) has shown that, for a point source and point
scatter, and for detectors of finite extent, that (AQ/Q)AL (and hehce
AQ/Q) is minimized if the scintillator surfaces are located on a
constant time-of-arrival surface. The effect of time focussing on the
resolution of aluminum and graphite polycrystals diffréction lines has
been measured. The slab target was placed at an angle of 45° to the
incident beam, and the angle between the scattered beam direction and
the normal to the detector face was vained. A schematic drawing is

shown in Figure 3.3, with the results of the resolution (measured as a
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A\

DbtectOr

Figure 3.3. A schematic drawing for time focussing of detectors.
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Tunction of the detector angle for the two scattering banks in Figures
3.4 and 3.5 On the basis of these measurements, the detector angles
for the time-focussed dit'fractometer were chosen as 80° for the 20°
scattering angle bank, and as 45° for the 90° scattering angle bank.
These angles are the same.as those predicted by the time-focussed

geometry, that is, the focus for o?timum.resolution.
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3.3 THE CALIBRATION PROCEDURE
The count rate at a given time after the triggering of the ana-

lyzing system determines the observed intensity at a particular wave
vector transfer Q, and is given by equation (3.2). A useful calibration
requires an accurate determination of the flight-path lengths, LO and L,
and the scattering angle ©, so that the time-of-flight analyzer channel
number n may be expressed as a function of Q, or in fact its inverse.

A more accurate method is to use a polycrystalline target whose plane

spacings d are known, and to perform a calibration run for each de-

hk !
tector bank. Aluminum is a useful calibration target, and its structure
and diffraction parameters are given in Appendix B.l.

For a given scattering angle ©, and plane spacing dhkl’ neutrons

are diffracted if they have a wavelength A given by the Bragg equation

- . - 21 2anh
A= edh.kl sin(6/2) = » - (3.6)

where v is the neutron velocity corresponding to a wavelength A. If

terr is the timing error of the magnetic pick-up of rotor (positive if

the pick-up pulse is later than the time of the opening of the rotor),
tdel is the pre-set delay before the analyzer actuates, and AT is the

time width of each chanhel of the analyzer, then the channel number n

corresponds to a time t after the trigger from rotor 2 given by

b= bty (n-1.5)AT (3.7)
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The factor 1.5 expresses a delay time in the time-of-flight analyzer,
measured to the midpoint of the analyzer channel. Since the neutron ve-
locity is simply given by the distance travelled divided by the time

taken, then the calibration equation is given by

2rh
+
mn(Lo L)

2%mlsnﬂ@@) (%r + 1 + (n=-1.5)at) (3.8)

r del

Hence the channel number n is a linear function of the plane spacings
dhkl’ or the inverse of the reciprocal lattice vectors lghkll = gﬂ/dhk['

A typical calibration run for aluminum is given in Figure 3.6, in
which many peaks are shown as a function of channel number. The problem
is then reduced to determining which peaks correspond to which plane

spacings. A plot of d

Wk 1 versus n (Figure 3.7) will give a straight line

only if the correct peaks and spacings are matched. The slope of such a
plot will yield a value of (LO'FL) sin 6/2, while the intercept will
also give a value of (t +t_ _). This is sufficient information

err del
needed to calibrate a specific runj; that is to determine the momentum

transfer Q as a function of channel number n, since from equations (2.5)

and (3.6)

Q@ = Ux/\ sin 8/2 = 2n/dhkl(n) (3.9)

It turns out that the greatest spacing for aluminum corresponds to
Q = 2.678 K-l which is fine for the 90° detector bank. However, for the

20° bank, it is necessary to find a polycrystalline target with a larger
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spacing so that there might be a reliable calibration at lower values of
Q. Lead has a face-centered cubic structure similar to aluminum with a
lattice constant about 20% greater, giving the lowest Q value of 2.198
ﬁ—l (see Appendix B.2). However, the 20° bank diffraction pattern was
unable to be interpreted uniquely.

Reactor grade graphite is a suitable sample for calibration at low
Q, for though it has a very large density of diffraction lines, the low-
est Q value is 1.877 ﬁ-l (see Appendix A.2). Often only two other peaks
are seen at 20° scattering; viz., Q = 2.954 2t ana 3.140 2L, The
paucity of lines at low Q introduce a possibility of inaccuracy of cali-
bration for this particular detector bank, especially due to the absence
of clear peaks for (10.0) and (10.2).

A check of the diffraction from graphite shows that (hh.!{) peaks
for even [ are expected to be very strong, and for odd ! are absent.
Strong peaks are indeed found for (00.2), (00.4), and (00.6), and for
(11.0), (11.2), (11.4), etc. Though the general peak (hk.!) should be
much weaker, some are much weaker than eipected. The odd [ peaks are
greater than the even [/ peaks as expected for the (20.1) and (21.1)
peaks, but it is found the (10.1) peaks are much weaker than expected.
No explanation is offered by the presence of rhombohedral graphite (see
Appendix A.B), since only (hh.l) planes are common to both forms of
graphite. The inability to locate the second peak due to (10.0) planes

clearly, and the lack of other lines at low Q introduces a possibility
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of inaccuracy of calibration for the 20° detector bank. However, since
the detector circuits in each bank are similar, the same value of

(¢ rr) is used for the calibration equation (3.8) for each bank.

del+te
Hence the 20° bank has an extra point on the calibration line. Perhaps
an additional usefulness of having graphite for calibration in the study
of glassy carbon is that it shows the effect of crystallinity on the
breadth of the diffraction lines.

From the aluminum calibration runs, it is possible to obtain the
resolution AQ/Q of the machine from the full-width at half-maximum for
the diffraction peaks. The results, shown in Figure 3.8, demonstrate, as
éxpected, that the resolution for measurements at the 90° detector bank
is superior to that at the 20° bank. Although the resolution for 90°
scattering becomes progressively worse for higher values of Q, the dif-
fraction pattern of amorphous materials have less pronounced features at
high Q anyway. In practice, the value of AQ/Q is less than 0.025 over

the whole range of Q scanned by this detector bank. The resolution for

the 20° scattering is such that AQ is always less than 0.12 R,
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3.4 THE VANADIUM REFERENCE METHOD

In the lowest order of approximation we ignore both the effects of
attenuation and multiple scattering, and contributions from inelastic
scattering eventé, and we assume that the experimental integration path
in the Q-w plane is along paths at constant Q, so that the static
approximation holds. Then the scattering cross section for the sample

(Q)

is given by equation (2.29). The observed scattered intensity Iobs
recorded by a bank of detectors with an efficiency n (which may have an

unknown neutron energy dependence which we neglect for the time being),

and with a solid angle AQD subtended at the sample is given by

IobS(Q) ::IOrng S(Q)AQDn (3.10)

where IO is the beam intensity incident upon the sample of T{ atoms per
unit area in the direction QO. This is shown schematically in Figure
3.9, where the cross section per scattering nucleus 1is given by
do/30(Q) = bES(Q).

The factors IO, AQD and n may be determined by measuring the
scattering intensity from a reference material for which the cross
section is known. Vanadium is a suitable reference material since it
is an almost totally incoherent elastic SCatter of neutrons. The

coherent scattering length bco is -0.52 fermis, and cross section

h

Son is 0.034 barns (Willis, 1973), whereas the incoherent scattering

cross section Oinc is 5.1% barns (Hughes and Schwartz, L957). Note from
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Figure 3.9. A schematic drawing of time-of-flight diffractometry.
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equation (2.27) that S(Q) for an incoherent scatter is unity, so that
the observed scattered intensity from vanadium is isotropic and is

given by

v

| @
~ T b O .
Iobs - IoTlv incA Dn (3 ll)

If the vanadium reference method is used, the material under study
and the vanadium target are cycled continuously into the sample posi-
tion, so that any slow variations in the neutron flux or detector
efficiency will be time-averaged equally in the observed intensities
corresponding to each position. The analyzer therefore records counts
alternately from tﬁé sample (S) and vanadium (V), and in the lowest

order of approximation, the ratio of the observed intensities gives

I | ps ©
obs (g) ~ (s _coh S(Q) (3.12)
1" v e
obs - Tv P, -

Hence the sample cross section per scattering nucleus as a function of

momentum transfer is

do _ .s° N Lobs Ty v2
(:%5 (QE> S - bcth(Q) - IV (Q) Ms binc (3.12)
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3.5 FINITE TARGET EFFECTS

The detectors provide a measure of all the radiation scattered by
the target into the detector directions, including those neutrons which
are scattered more than once. Again ignoring inelastic contributions,

the observed intensity may be expressed by

I,. = IO(Pl+PM)n (3.14)

where Pl and PM are the probabilities of single and multiple scattering

from the incident dire?tion Qo into AQD about the detector direction QD.
In the ideal experiment (that is, with no finite target effects),

there will be no multiple scattering, such that PM = 0. In this case P

will tend towards the ideal probability of scatter, PI’ which is seen

from equations (3.10) and (3.14) to be

P ='T('b2 s(Q) AR, = Ti,—g-g Q) AQ - (3.15)

It is then convenient to rewrite equation (3.1k4) as

s = IOPIn - /- (3.16)

such that the factor, Co = (Pl f PM)/PI, is now the multiplicative cor-
rection factor that is necessary to be applied to the ideal scattered
intensity to account for the finite thicknesé of the target.

If we assume that other correction factors are either negligible
or that they are included 1n OO whiech msy be calculshle for hoth‘ﬁhv

sample and the reference, then the expression for the sample oross gec-
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tion (equation (3.13)) becomes

s

J IO TZV CZ \2
(%(Q))s = :S(Q) — (-;(Qb biic (3.17)

Iobs TIS C0

In a well-devised experiment, the correction factors Co will be close

to unity, and may be calculated with an adequate accuracy using approx-
imate cross sections.
It is useful to observe that CO can be written

P +P P
1 M Pl

M
c = — = = (1 + =), (3.18)
PI PI Pl

where the ratio CA = Pl/PI has the significance of an attenuation cor-
rection factor, and CME (1 + PM/PI) might be called a multiple scat-
tering correction factor. The effects of attenuation are also present
in EM’ of course, so that strictly speaking, "multiple scattering cor-
rection factor" is a misnomer. However, for various reasons it is appro-
priate to discuss the attenuation correction factor separately.

We refer to Figure 3.10. The incident radiation is attenuated as it
travels a distance 11(2) in a direction Ql to the point of scatter, and
the emerging radiation is similarly attenuated traveling a distance
lD(E) in a direction QD out of the target. If we assume that the scat-
tering interaction is elastic, then the attenuation coefficient ZT is a
constant before and after scattering. The probability of single scat-

ter into QD per neutron is given by

P.(Q) = % J; av exp(-2,1,(x)) exp(-leD(z))N—gg(gf_@D)AQD

(3.19)
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Figure 3.10. The general case of target attenuation
in a neutron scattering experiment.
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where the integration is over the volume V of the target which 1s bathed
by the incoming beam (which is assumed to have & uniform profile). Then
the target attenuation correction factor is

1

o = 5 - v Ty & exp(-n1 (x) exp(-my L (x)) (3.20)

and is independenﬁ of the unknown differential cross section, although
dependent on the total cross section.

The multiple scattering correction factor CM, on the other hand, is
dependent on the differential cross section, which is both unknown and
is to be measured. Consequently special methods are required when the
differential cross section cannot be expressed analytically. It should
be stressed that finite target effects are often severe, and that cor-
rections must be made for these geometric factors. Without these ad-
justments the Fourier transform of the observed diffraction pattern may
lead to poor conclusions of the local ordering from an incorrect radial

distribution function.
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3.6 THE GLASSY CARBON SAMPLE
. 12 .
The 1sotopes of carbon found in nature are C with an sbundance of
1

98.89%, and C 3 with an abundance of 1.11%. Willis (1973) gives the co-
herent scattering length b, for the two as 6.65 fermis and 6.0 fermis,
respectively. The coherent cross section for carbon may be written as
the sum of the individual cross sections for the isotopes weighted by

their abundances.

3
I b .
9 oh RN P on (5.21)

where ni is the percentage abundance of the ith isotope. Then the co-
herent cross section for carbon is 5.545 barns. The incoherent cross
sections for each isotope are 0.0 and 1.0 barns, respectively, so that
the incoherent cross section for carbon 1s 0.011 barns, by equation\
(2.15). Additionally the thermal absorption cross section is 0.003k
barns. Carbon is therefore an excellent choice for a neutron scattering
experiment, since 1t has a reasonably high coherent cross section and a
negliglibly small Incoherent cross section; and moreover it is a mon-
atomic subétance.

It is useful in a neutron scattering experiment to have a large
target to increase the scattered intensity, since neutron fluxes are
much smaller that those in X-ray sources. However, an increased target
size increases the problems of attenuation and multiple scattering, and

a good rule of thumb has often been a target with thickness t such that
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there is about 10% scatter. Hence 0.1 = got where g is atomic number
density of the target. The density of most carbons is of the order of
1.5 gm/cc, so that g ~ 0.075 atoms/ﬁB. Hence an ideal thickness

would be about 0.24hk cm, or 1/10 in. Additionally the ideal target
would be in the form of a slab which completely covers the neutron beam,
so that corrections may be applied more easily later.

Our sample was provided by Hucke (1972) and was prepared by the
carbonization of polyfurfuryl alcohol resin which leave the carbon in a
disordered smorphous state. The bulk materiel was formed in a long cyl-.
inder of diameter 2 cm, and heat treated at 2000°C. The bulk density of
the material is 0.923 gm/cc because of the large-scale pores which were
introduced into the sample during preparation. However helium pycno-
metry, which measures the density of the material between these large-
scale pores, gives a value of 1.4l gm/cc, and mercury intrusion to 60,000
psi gives a real density of 1..49 gm/cc.

This particular sample (512-51) has been thoroughly characterized
by numerous measurements by Hucke (1973). Wide angle X-ray diffraction
analysis was performed on a 3 mm thick disc of the sample. The (002)
peak 1s smooth and quite broad which shows that the carbon is of a
single phase. Further results of the analysis are given 1s section 4. 8.
Select.area electron diffraction has also been employed. Bright and
dark field transmission electron microscopy has been used to examine the

microstructure. The micrographs show irregularly shaped platelets
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containing granular texture whose sive sugpesi that they correspond Lo
small paracrystalline regions. Small angle X-ray scattering shows that
the carbon is polydisperse, since large-scale voids were introduced
during the preparation in addition to the small-scale voids character-
istic of all glassy carbons. The large-scale volds have a mean pore
diameter of about 250 & and an intrusion pore volume of 0..4118 cc/gm

as measured by mercury porosimetry. Further discussion of the volds in
this carbon is found in Chapter 6.

Another sample of glassy carbon was provided by Bokros (1972) and
was prepared by pyrolytic deposition of the carbon in a fluidized bed.
The deposition temperature was 1180°C + 10°C as measured by a thermo-
couple. The sample was heat treated for 1 hr at a temperature ~ 2000°C
(maximum 2025°C). The density of the sample is 1.86 gm/cc and is in the
form of 55 pieces, each of dimensions 1/4 in. x 1/4 in. x 1/6L in.
These have been placed in a holder to form a sample of size 1/2 in. x
1 in.x 7/64 in. surrounded by .003 in. aluminum. This is approximately
an ideal target. No measurements have been made of this particular
target as yet, but it is intended that a neutron diffraction pattern
will be taken as a comparison to the data taken from the Hucke sample,
which was preparediby different method but with a similar heat treatment
temperature.

In the analysis of the diffraction results it will be necessary to

take into account contributions due to the sample container. However,
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the Hucke sample, which was about 1-1/2 in. long could be held in the
target position with screws. This eliminated a container, though not

with a background measurement.



CHAPTER IV. DATA ANALYSIS

4.1 DATA REDUCTION

It was found convenient to take diffraction data of the glassy car-
bon sample at three different rotor frequencies; viz., 140 Hz (the low-
est available frequency), 240 Hz, and 480 Hz (the highest available
frequency). For each rotor frequency and detector bank, this allows
the scattered radiation to be measured for the sample and the reference
over a large range of wave vector transfer Q. Reasonable statistics

were obtained in the following ranges:

Frequency Scattering Angle Range of Q Space

140 Hz 20° 1.0 - 2.5 A'i
oLo Hz 20° 1.5 - 3.0 K‘l
480 Hz 20° 2.5 - 3.5 &"l
140 Hz 90° 2,8 - 12.0 A'l
240 Hz 90° k.5 - 15.0 &7
480 Hz 90° 9.0 - 25.0 &

The data sets have a large amount of overlap in the range of Q
scanned, which increases the confidence of the measurement. The real
test occurs at the overlap of data for the same range of wave vector
transfer from different scattering angles, for which the magnitudes of
the corrections will be different. Better statistics have been obtained
on the 90° bank, since not only is the resolution much better, but also
the solid angle AQD subtended by the detectors at the sample is flve

times greater than that at the 20° degree bank (Carpenter, et al., 1973).

>
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A rotor of a magnesium-cadmium alloy with different transmission
characteristics (NS/TS = 8) from the Nimonic rotor has also been used at
a frequency of 180 Hz with a scattering angle of 90° to obtain better
data for the range of Q below 3.0 ﬁ_l. However, the composition of this
alloy is such that the removal cross section for fast neutrons is so low
that there are background problems, and the data has not been used.

Reliable data has therefore been obtained for the carbon sample and
the vanadium reference for a range of wave vectbr transfer between about
1.0 A—l and 25.0 A_l. These data have been reduced by computing the

s v
£ d i
ratio of the observed intensities, Iobs/Iobs’

of the two samples at each
channel, accounting for the length of time taken for the counting of

of each sample. In practice the fractions of the total counting time
for the sample and reference were O.74671 and 0.25329 for the 240 Hz

and 480 Hz data, and 0.48831 and 0.51169 for the 1LoO HZ data which was
taken at a later time. By taking the ratio for similar channels, the
factors (ko), the neutron flux, and n(k), the detector efficiency, in
equation (3.2) are eliminated, and the differential cross section of the
sample is given by (3.13).

In each of the data runs, there are contributions due to the back-
grouhd which can never be entirely eliminated. It is of course mini-
mized by large amounts of shielding, and by judicious phasing of the two
rotors. Background has been compensated by two methods; first, by

taking a separate background measurement, and secondly, by a linear

interpolation beneath the data between points where the observed
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intensity is erffectively constant. A separate background measurement
is obviously ﬁore desirable, in case the background has some analyzer
channel or time dependence as is true for fast neutron background.
However the present analyzer and sample cycler capabilities prevent
this from being performed simultaneously with the other measurements.
A background measurement performed at a later time may have errors in
the neutron flux and detector efficiency. The interpolation procedure
on the other hand does not allow for any time-dependent background.
H@wever it is usual to arrange the phasing of the rotors, and the time
delay and channel width such that the edges of the fast neutron back-
ground are just seen. Consequently the interpolation is performed
between the two minima in the observed intensity at each end of the ob-
served spectrum. It is fbund in practice that 1little difference
exists between the two procedures, and the interpolation method has
been used in the final analysis.

While the counting times used in this study have been reasonably
lengthy, statistical variations may still occur in the data. The dif-
fraction spectra have been smoothed by using a formula such that counts
in a particular channel are averaged over a few side channels. For the
sample data, this averaging has been over 5 channels wlth a ratio of
1:4:6:4:1. For the vanadium data which are expected to be more smooth,
the averaging has been over 7 channels with a ratio of 1:6:15:20:15:6:

1. These ratios have also been taken into account to the computation
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of the standard deviation for the ratio of the counts in each channel.
This first stage in the analysis is performed by the program DATRED,
for "Data Reduction."

Having obtalned ratios of the diffracted intensities for the sample
and the vanadium reference, corrections for attenuation and multiple
scattering in equation (3.17) must be computed. The vanadium finite
target corrections are performed first since they are easler to compute
than for the sample. The sample corrections require a knowledge of the
total éross section for attenuatioﬁ purposes, and the differential
scattering cross section for the multiple scattering calculation. Pre-
liminary values of the latter are obtained from a partially (i.e., van-
adium) corrected diffraction pattern which has been normalized. After
the sample corrections have been made, the fully corrected diffraction
pattern is normalized again. A second iteration of the sample correc-
tions should be made from the fully corrected diffraction pattern to
ensure the convergence of the corrections computed in this way. The
diffraction pattern is then transformed by equation (2.47) to give the
radlal distribution function. After termlination error removal, the

analysis of the RDF proceeds by comparison with models for the sample.
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4.2 VANADIUM REFERENCE CORRECTIONS

The vanadium slab has a thickness t of 0.3175 cms, and a density of
6.1 gm/cc. It is approximately a 10% scatter of neutrons when it is
placed perpendicularly to a beam of incident neutrons. In this
experiment the slab was inclined at an angle ¢ of 45° to the incoming
beam direction Qb, as shown in Figure 3.3, so that the 20° detector
bank is in a time-focussed geometry. Not only is vanadium an incoherent
scatterer with a total scattering cross section ot of 5.1% barns (Hughes
and Schwartz, 1957), but it is also a l/v neutron absorber with a
0.0253 ev cross section o, of a 5.06 barns (Hughes and Schwartz, 1958).
Consequently, severe attenuation corrections are expected in addition to'
multiple scattering corrections; moreover these corrections are required
to be made for accurate measurements.

Since the effective size of the vanadium slab is 4 in. by 2—1/& in.,
which is much greater than the size of the beam at the sample (1-1/2 in.
by 1/2 in.), the vanadium corrections are computed easily using a
transport calculation for an infinite slab, as originally suggested by
Vineyard (1954). The assumptions are that the incoming neutron beam is
uniform, that the scattering is entirely elastic and incoherent, so that
the angular distribution of primary scattered neutrons is isotropic.
Hence the vanadium scattering is treated in the elastic approximation,
since the incoherent scattering cross section is much greater than the

inelastic scattering cross section which is of the order of millibarns.
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However in the lowest order of approximation, the measurement senses the
total (elastic and inelastic scattering), so that no Debye-Waller
correction has been applied.

Normally vanadium scattering is treated as completely incoherent
and therefore isotropic, so that the diffractionbspectrum is an image
of the reactor spectrum, ¢(ko), modified by the machine transmission
characteristics, and the detector efficiency n(k). However it has been
found that the diffraction spectrum for vanadium has little peaks due
to the small coherent scattering cross section (0.0BMbbarns) of
vanadium. A lack of cognizance of this fact may cause small dips in the
computed diffraction pattern at Q values correspondinglto the vanadium
crystal structure (see Appendix B.3). In fact a number of peaks or
anomalous points found in the 90° scattering data were attributed to the
following planes; for 140 Hz, (260) and (211); for 240 Hz, (220), (310),
and (321); and for 480 Hz, (L0O) and (L20).

X-ray diffraction from the polycrystalline vanadium sample used in
these measurements showed that it had no preferred orientation. It
therefore seems to be a valid assumption that the crystalline grains of
the sample are raﬁdomly oriented, and that the coherent scattering is
azimuthally symmetric and cannot be reduced substantially. Since the
amount of coherent scattering cannot be assessed easily, it is found
convenient to simply interpolate beneath these coherent peaks which

appear in thé vanadium data, and to analyze the results thereafter as
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tor & totelly incoherent scatterer.
The program used to account for the vanadium corrections is dn
adaption of that due to Rowe (1973). Define the following probabil-

ities, P_ and PN, as the probabiiity of an incident neutron being

I
scattered from the incident direction QD inﬁo‘a sblid angle-AQD about a
detector direction by the target per unit atom scatterer, in the
ideal case (i.e., neglecting attenuation),‘and after N scattering
events. Let LD and LN be the distances travelled by the neutron in the

target in the directions QD towards the detector after the last scatter,

and QN before the Nth scatter. HEnce'Qo and Ql are identically equal.

Then
P oy = fHo °‘d1'0, 3% * 8p) 8y s (1)
P (2) = f:/sin "’dLl‘ e 21 2 g, >0) e Z1p b, (h.2)
and
Pz(QD) - IZ/Sin ) dLl e-szl fiﬂdnz %%(21 R 92)
f(I)’ aL, eIr'e g-"d (8, > a) e"Zp b (4.3)

where ZT is the total macroséopic cross section of the target for
neutrons of a given wave vector. Note that PI is not really & probabil-
ity but rather a ratio of the detected to incident neutrons in the ideal

case.
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'The plane of the vanadium slab is inclined at angle ¢ to the
neutron beam direction Qo (see Figure 4.1). TFor each detector point
with azimuthal angle B at a scattering angle 6, define a parameter
T = sin 6 cos P cot ¢ - cos 6. For ©® > ¢ (i.e., reflection geometry),
T > 0; this applies to the 90° bank. For © < ¢ (i.e. transmission
geometry), T < O; this applies to the 20° bank. Fortunately for
vanadium do/dQ=:zs/hﬂ, and being isotropic has no angular dependence.

Consequently the ratios of the probabilities reduce to

)

1 1 t/sin o
P 2y = Teme /| ALy exp(Lyly) exp(-Zlp) (e 4)
where
Ly = Ll/T for T > 0O
= (L, - t/sin ¢)/T T <0
and
P )y
2 s +1 .2xn t/sin ¢
p (%) = T/sine ! [auda [ aL) exp(-Z.L,)
I -1 o
L
a - - .
&>L2a®(2%b)en)(zﬁb) (L.5)

where p is the scattering cosine of the first scatter angle V, and & is
the azimuthal angle of the first scattering direction relative to the

incoming beam; and where
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Single Scatter
in Horizontal Plane

Double Scatter
in General Geometry

-Figure 4.1l. Schematic drawings for the vanadium correction program.



with

and where

with

The first integral can be performed analytically, and in the

T

1]

]
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Ll/p for o > 0O

(L1 - t/sin ¢)/p p <O

sin ¥ cos & cot ¢ - cos ¥

(Ll - Lgp)/T

(Ll - Lgp - t/sin ¢)/T

sin 6 cos B cot ¢ - cos ©

general case for all scattering angles © > 0,

where

HJ

L
1

(%)

1 - exp(—ZTt/sin o (1 + 1/71))

for T > 0O

T<O

th/sin ¢ (1 + 1/71)

O for 6 > ¢

1 for 8 < ¢

exp

tz
ZT

sin ¢ T

(reflection geometry)

(transmission geometry).

(L.6)

(4.8)

The second integral cannot be computed analytically, but must be
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performed by summing over segments of &, the azimuthal scattering angle,
and p, the cosine of the first scattering angle ¥. p is exactly
analogous to T, and pv> O when the first scatter is towards the
reflection surface, and p < O when the first scatter is towards the
transmission surface. The integration for the first scatter is taken
over all values of p, and is pertormed by a numerical integration. In

general, for all scattering angles 0 > O

. . N qx | <?th ')
_.2_<Q ) = s _1 ZMZ C¥P\Sin ¢ 7 1
P_"—-D NN t/si -
I Zp N, - o /sin ¢ 1-p/T
.t : st D
1-e . (1 + 1/7) 1 T (L +1/
P sin ¢ R - ®XP \" sin ¢ 1/p)
(1 + 1/7) (L +1/f
-
where (4.9)
o =1 for p > 0

t
= 1L <0
S*P\sin ¢ o] T e
and, as before,
z = O for 6 > ¢ (reflection geometry)

z = 1 for 6 < ¢ (transmission geometry).

Hence for neutrons of a given wave number k (and therefore a given

total cross section ZT), values of Pl/PI(QD) and PE/PI(QD) may be easily
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computed. In practice it is found that values of Nu and Nd cqual to
10 and 20, respectively, are sufficient for convergence with adequate
statistics.

The finite extent of the détectors in a bank of scattering angle <
is analyzed by treating the detectors as points at different azimuthal
angles B. Due to the horizontal symmetry of the targets, azimuthal
angles B may be examined from O° (horizontal) to a maximum value Bmax
(appropriate to the particular detector bank) with suitable weightings

UD to account for the actual location of the detectors, so that for any

detector bank

PN(e) = zD;UD PN(QD) , (4.10)

where the sum extends over the detectors of the bank. Hence for a given
scattering angle 6, values are computed for Pl(e) and Pg(e), the
probabilities per neutron of sihgle and double scatter by the target
into the detector bank.

The probability of an incident neutron being scattered more than

once by the target into a detector is given by
P = P +P +P + ..... e . .
) 3 (4.11)

In cases where the scattering isotropic, Vineyard (1954) has shown that
it is reasonable to assume that the ratio of successive scattering

probabilities is a constant; i.e., successive probabilities form a
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geometric progression,

P P P PQ/PI
2 ~73 ~7h~ ... = r = 575 (k.12)
P, P, Py ~ 171

then
Mo~ 2 (4.13)
Pl l-r

Hence the attenuation correction factor, CA’ and the multiple
scattering correction factor, CM, which are defined in section 3.5,

may be determined for the vanadium slab target, and are given by

P
_ L f
W@ = 5 (00 (4. 14)
and
PM
cM(Q) = 1+ EI (6,k). (4.15)

Hence the overall correction factor, C , defined by equation (3.18), is
O
given by

Pl(e,k> + PM(e,k)

V —
¢ () = 7 (6,1 (4.16)

Values of CA’ CM, and CZ computed in this way are shown as a function
of Q for each of the scattering banks in Figure 4.2. The correction
factor Cz(Q) may be applied to equation (3.17) to provide a 'vanadium-
corrected' diffraction pattern of the sample, or a differential cross
section as & function of Q. This second stage in the analysis is

performed by the program VANCOR, for "Vanadium Correction."
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4.3 TOTAL NEUTRON CROSS SECTION

In order to apply finite target corrections for the sample itself,
it is necessary to know its total neutron cross section as a function of
wave number. Hence, it is usual to make a transmission measurement on
the sample, using the same transmitted neutron energy spectrum as in the
diffraction measurements; that 1s, using the same rotor frequencies.
The transmitted neutrons may be measured by a fission chamber further
down stream from the target. By the physical measurement of the dis-
tances Lo’ from the Nimonic rotor to the sample, and L, from the sample
to fission chamber, the transmission experiment may be calibrated using
equation (3.7). The timing error terr may be obtained from a calibra-
tion run as for the diffraction experiment. Hence the channel number n
of the analyzer is inversely proportional to the wave number k of the

neutron, and 1s given by

1 t 1
= = = = t -t + n -1, . L.1
v L, tL LotL ( err " Yael 1587 7)

With no sample present, the count rate Co(n) in the fission chamber
corresponding to channel number n is determined by the incident neutron

flux ¢(k) and the detector efficiency n(k); that is
Co(n) ~ ¢(k) n(k). (4.18)

However with a sample present, a certain proportion of the flux 1s re-

moved from the transmitted beam which is determined by the total cross
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section aT(k) of the sample. Ignoring any scattering into the fission

chamber, the count rate with the sample present is given by

g0 (k)x

Cs(n) ~ (k) n(k) e T (4.19)

where x is the thickness of the target. Hence the measured cross sec-
tion may be determined from the ratio of the incident flux to the trans-

mitted flux; that is,

c
2 o 59< n) (4.20)
S

ol®) = &

. where equation (4.17) gives the relationship between channel number n
and wave number k.

Such a measurement was attempted without success; it will be de-
scribed here, together with the reason for its failure. The carbon
target was placed with its ecylindrical axis along the neutron beam so
that its effective thickness x was l~l/2 in. The beam area was stopped
down by a thick cadmium sheet so that only those neutrons transmitted
through the target were measured. A fission chamber of diameter of 7
cms was placed at a distance L of 1.2509 m downstream fron the target,
so that the solid angle AQFC presented to the fisslon chamber by the
target was 0.00246 ster. With an expected total cross section UT ~ 5.5
barns, the transmitted beam would be about 38% which should be suffi-
cient for reasonable results. However the experiment gave a measured

cross section of the order of 3 barns. Even with the flssion chamber
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stopped down further with cadmium sheeting, this value did not change
significantly. A difference between GT and the measured cross section
of the order of 2 barns in 5 is a very large discrepancy in the trans-
mission results.

If we take into account scattering into the fission chamber, then

equation (4.19) becomes

c_(n) ~ o(k) n(k) e 5% .

o) () e f, . Sx)an x(2) £(9)

FC
+ multiple scattering terms. (4.21)

Considering only single scatter into the small solid angle AQFC’ so the
attenuation correction f(g) may be approximated by

- 80
fa~e T (4.22)

Then equation (4.21) becomes

%

-80 x
~ X[ :
c(n) ~ o(k) n(k) e " T(1 + gI{JAQFC o 1)a9)
-€0 x &X oo
~ { —_
o(k) nfk) e T e fAQFC an(k)d{z, (L4.23)
and equation (4.20) becomes
ol _ A Lo
oT(k) - fAQFC aQ(k)cm = gchg (Cs(n)). (L4.24)

Hence the total cross section UT is decremented by an amount

f

J0/30 40 to give the measured cross section o ; 1.e.,
A2 meas

FC
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o (k) = o (k) + IAQFC%%(k)dQ (4.25)

For an isotropic scatterer with no absorption, an experiment with
this geometry would give a discrepancy of only 0.02% by equation (L.25).
Although the assumption of no absorption 1s valid for carbon, the scat-
tering is certainly not isotropic since the incoherent scattering is
negligible compared to the coherent scattering. Let us assume that for
all wave numbers the forward scattering that reaches the detector has
been produced by a constant differential cross section dc/dQlF over the
angular range AQFC, and that the remaining scattering is isotropic, and
equal to 0.L4L2 barn/ster, the 'structure independent' value. The aver-
age value of da/dQ]F required to produce the observed 2-barn discrep-
ancy is of the order of 800 barn/ster from equation (4.25). Just such
intense forward scattering is a characteristic feature of glassy carbons
(Bragg and Hammond, 1965), and has been measured in detail (section L4.9)

Since it is not possible to measure the total cross section di-
rectiy by a simple transmission measurement, if there 1s any appreciable
amount of forward angle scattering another method must be found. In
theory cross sectlions may be computed, but for low energy neutrons the
cross section 1s dependent upon the structure of the material. Conse-
quently any assumptions made about the atomic structure for the de-
termination of cross sections will bias the final result of the diffac-
tion measurements. Obviously then, the best estimate of the details

of the cross section may be obtainable from the diffraction pattern



91

itself, which is of course characteristic of the structure of the
material (equation (2.31)).
In the static approximation, the scattering cross section is given

by the integral of equation (2.29) over all solid angles; viz.,
g (k) = b2f s(Q) 4q. (L4.26)
s L

Using the elastic scattering equation (2.5)

. |
Q€ = ek (1 - p) (4.27)

where p 1s the cosine of the scattering angle ©. Differentiation of

equation (4.27) gilves
2
Qd@ = -k du. (L4.28)
Substitution of equation (4.27) into equation (4.26) yields
2
o (k) = 2®m" [ 8(Q) sin © 6

= om” [ 8(R) du

2 2k
= gg b [T s(Q) Q 4q. (4.29)
k (@)

Placzek corrections (Placzek, 1952; Wick, 195k4) which are due in this

relationship on account of inelastic contributions, have been ignored.
Hence for a particular neutron wave number k, the scattering cross

section may be estimated from the partially corrected diffraction pat-

tern by integrating its product with Q from zero to 2k, as in equation
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(4.29). To employ this method, a diffraction pattern is required be-
yond Qmax’ the maximum value of Q for which data were taken. At high k,
the cross sectlion becomes constant and independent of the structure of
the material; so that at high Q, J0/3d0 tends towards bg (equal to 0.L4h2
barns/ster for carbon). It is assumed that this constant value has been
reached in this study at Q =25 s

At the low Q end of the diffraction pattern (Q < 1 ﬁ_l), the small Q
diffraction pattern (section 4.9) joined to the large Q diffraction pat-
tern (Q > 1 ﬁ-l). Hence a total neutron cross section as a function of

wavenumber for the glassy carbon may be obtained using

UT(k) .= os(k) + EEE o (k

k0, (5) (k.30)

where o (kth) is the absorption cross section at a wave number Kth

a
equivalent to the thermal energy, 0.0253 ev. For carbon this is 0.0034
barns, so that the total neutron cross section is essentially the same

as the scattering cross section which is shown in Figure L4.3. This has

been performed by the program TOTALX for total cross section.
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4.4 DATA UNIFICATION AND NORMALIZATION

Effectively there are seven sets of diffraction data each covering
overlapping regions in Q space, which must be joined together and nor-
malized. The first region is the small Q diffraction pattern (see sec-
tion 4.9) which was obtained between Q = 0.065 2! and 2.0 87F using
4.06 & wave length neutrons. These data have been extrapolated to Q =
0 g7t by fitting an exponential to the data for‘Q less than 0.3 £t
The data sets obtained for the extended Q diffraction pattern and their
effective Q-range are listed in section 4.1. They cover a range of Q
between 1.0 A~ and 25 3.

The problem is to unify these data and to normalize them. In fact
this procedure has to be performed twice. The first time uses 'vanadium-
corrected' data to provide a normalized partially-corrected diffraction
pattern which must be extended out to Q@ = 50 K-l in order to provide
cross sections for the attenuation and multiple scattering corrections.
The second time uses 'carbon-corrected' data to provide a normalized
diffraction pattern for Fourier inversion to the pair correlation func-
tion.

Each of the data sets taken on the UMTOFND machine gives the ratio
of the observed intensities, Izbs/Izbs(Q)’ as a function of Q for each
analyzer channel. These data are the results of the program DATRED and
have had no corrections for attenuation and multiple scattering for

either sample or vanadium; nor has account been taken for the sample
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thicknesses and atomic densities. The program VANCOR computes the over-
\4
all correction factor CO(Q) for vanadium, and gives a vanadium-corrected

2 - 5.13/L4n as the vanadium dif-

differential cross section, using bch
ferential cross section, but with the factorsTZS, the number of scat-
terers per unit area in the sample, and CE(Q), the overall correction
factor for sample, both equal to unity in equation (3.17). However it
is possible to multiply the result by an arbitrary factor which ac-
counts for]Zg and Cz(Q); i.e., the assumption is that the sample cor-
rections are independent of momentum transfer Q. This is done for all
the sets of data but with different scaling factors such that within a
reglon of Q of overlap, one data set matches the previous set. Conse-
quently using arbitrary scaling factors, the various sets of data may
be made internally consistent.

Fortunately there are two occasions for putting the data on an ab-
solute basis. First the Thermal Neutron Time-of-Flight Spectrometer
(TNTOFS) mechine (Kleb et al., 1973), on which the small Q scattering
data of glassy carbon were taken (Mildner and Carpenter, 1975), is cali-
brated against a vanadium standard, so that the vanadium-corrected
sma.ll-Q diffraction was obtained using CZ(Q) ~ 1. Secondly the nighest
Q data set was normalized such that around Q = 25 A-l where the diffrac-
tion pattern is reasonably flat, the vanadium-corrected differential
cross section was made equal to 0.442 barns/ster, the carbon 'structure

independent' differential cross section. This is plausible provided
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that the diffraction pattern has been taken to sufficiently high Q. It
is believed that this criterion has been fulfilled by our data, since
there are no large ripples in the datavbeyonde = 20 &7L.

Hence the 480 Hz - 90° vanadium-corrected data has been normalized
by using an arbitrary factor D;CE(Q) to account for the sample attenua-
tion and multiple scattering corrections in equation (3.17). Since
there is a region of overlap of the 240 Hz - 90° and 480 Hz - 90° data,
these may be matched over a region that is relatively flat, so that an-
other arbitrary scaling factor may be determined for the 240 Hz - 90°
data. This maﬁching procedure may be performed for all the data sets
down to the 140 Hz - 20° data which must be joined also to the indepen-
dently normalized small-Q diffraction data.

Since the attenuation and multiple scattering correction Cz(Q) is
dependent on the behaviour of S(Q), it is expected that the assumption
that Cz(Q) may be approximated by a constant becomes progressively worse
at smaller values of Q, where S(Q) becomes more sharply varying. Hence
it is not unexpected that the matching of the UMIOFND data and the
TNTOFS data at small Q was not perfect, since it is obvious that this
factor CO(Q) varies not only with Q but with scattering angle ©. This
mismatching becomes more noticeable for the regions of the large Q data
where both 20° and 90° data were obtained with different geometries;
viz., in transmission and reflection, respectively. The scaling factors

for the 90° data were approximately the same; and for the 20° data too.
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However the particular scaling factor for each angle was very different
since again the correction factor is not only dependent on Q, but also
varies markedly with scattering angle. Therefore in practice two dif-
ferent correction factors corresponding to each scattering angle are
used, but each is constant, that is independent of Q.

Values of BQ/BQ(Q) were selected in the following regions from the

data:

o - 1.0&°% the TNTOFS small-¢ diffraction data

-1
1.0 - 2.0 & ‘& combination of the small-Q data and the
UMTOFND 140 Hz - 20° data

-1
2.0 -~ 2.5 % a combination of the 140 Hz - 20° data and the
240 Hz - 20° data

2.5 - 3.0 8% a combination of the 240 Hz - 20° data and the
480 Hz - 20° data

-1
3.0~ 3.5 4 a combination of the U480 Hz - 20° data and the
140 Hz - 90° data which have very different cor-
rection factors

3.5 - 6.3 g7t the 140 Hz - 90° data

6.3 = 7.3 K_l a combination of the 140 Hz - 90° data and the
240 Hz - 90° data

7.3 - 11.0 7% the 240 Hz - 90° data

11.0 - 14.0 X = a combination of the 240 Hz - 90° data and the
480 Hz - 90° data

14.0 - 25.0 & L the 480 Hz - 90° data

25.0 = 50.0 gt no data with sufficient statistics are available.
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The region about 25.0 & 1 has been assumed to be constant, and has been
given the 'structure independent' value, the same estimate used to nor-
malize the data at high Q.

Hencé a vanadium-corrected and normalized diffraction pattern for
values of Q from O ﬁ-l to 25 &' nas been obtained (see Figure L.L).
Analysis of this is left until later (see section 4.8). Values of
d0/30(Q) were computed in steps of AQ = 0.02 2L from 0 to 50 A—l, so
that the total cross section o(k) might be obtained in steps of Ak =
0.01 £t up to k = 25 ﬁ-l, using the equations (4.29) and (4.30), where
bzs(Q) is approximated by dg/30(Q).

The small Q diffraction data were corrected for the sample attenua-
tion and multiple scattering first, since the corrections are most se-
vere at small Q. The results therefrom were again combined with the
other data. Then the UMTOFND data were corrected for the sample attenu-
ation and multiple scattering. Now we have again seven sets of data
which have been corrected for the sample finite targets effects and
which must be joined together. The same procedure as before was used,
with the value of do/d0 at Q = 25 A_l made equal to o/hm = 0.442
barns/ster. The rest of the UMTOFND data was then matched to this,
while the small-Q data was already normalized.

In normalizing the data at high Q, there remains a problem of de-
termining where on the scale of the unnormalized diffraction pattern

lies the value of the 'structure-independent' differential cross section.
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Krogh-Moe (1956) has suggested a normalization procedure which is based
on the effective exclusion of an atom from the immediate neighbourhood
of another atom. Hence for r less than the closest interatomic dis-
tance, the static pair correlation function g(z) is zero; i.e., in the

limit Qr ~ O, equation (2.46) reduces to
oo 2.
-2n2go = J, Qi(Q)aa. (L.31)

In practice, for all values of Q greater than a certain value Qmax’
which is usually the limit of the diffraction pattern for which the data
support reasonable statistics, i(Q) is set equal to zero. Then over the
range of Q for which data have been obtained, equation (4.31) is evalu-

ated which may be written, using equation (2.L4k), as

. Q
-2n2go - 1n gomex Q) - I(e) o240 (4.32)

) = I(e
Quax ~*® ° L)
It ﬁas been found that the value of go obtained by this integration is
very sensitive to small changes in I(w). The proper value of go in the
case of this carbon sample is 0.07471 atoms §-3, equivalent to a bulk
density of 1.49 gm cc-l, which ignbres the large scale (~ 250 ﬁ) pores.
If on the other hand, equation (4.31) is solved explicitly for

I(w), we obtain

Q |
5 0 " 1(0) Q7

I(w) = 1lim 3 5 . (4.33)
Quax ~ Qmax'-6ﬂ g,
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If the value of Qmax is sufficiently high, then the value of I(w) is
relatively insensitive to the choice of go. However it was found that
if the data were normalized at high Q to the 'structure independent'
cross section and a value of g, was obtained by equation (L.32), then
substitution of g, into equation (4.33) yields a different I(w). Since
equations (L4.32) and (L4.33) are equivalent, this apparent inconsistency
is explained by integration difficulties, especially at high Q and in
regions where I(Q) is wildly varying.

In order to obtain a normalized diffraction pattern which is con-
sistent with known values of g_ and I(w), values of I(Q) are changed
slightly around Qmax until equations (L4.33) and (L4.34) are equivalent.
Instead of applying a modification function which is unity for Q < Qmax’
and zero for Q > Qmax’ the function I(Q) is forced to approach I(e0)

smoothly; i.e., the modification function varies monotonically from
unity to zero in a region less than 0.4 K_l around Qmax' The effects of
this procedure on the transform is discussed in section 5.1. The nor-
malization method is performed by the program KROGHM, for the "Krogh-Moe

normalization.”
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4.5 SAMPLE TARGET CORRECTIONS
s

The target attenuation correction factor CA is independent of the
differential cross section from equation (3.20). Hence it can be found
easily by a transport calculation, similar to that for vanadium, pro-
vided that the sample geometry in the scattering plane is relatively
simple (Mildner et al., 1974). However it is often the case that the
target is not totally bathed by the incoming beam, so that a direct in-
tegration has to be performed to obtain the attenuation correction
factor. Provided that the total cross section is known as a function of
neutron wave number, thils may be performed in principle for any target
geometry.

The sample multiple scattering correction C;, on the other hand, is
dependent on the differential cross section whose relationship to momen-
tum transfer we wish to measure. In general we can make no easy assump-
tions about the differential cross section for the sample as were able
to be made for vanadium which 1is primarily an isotropic scatterer. The
partially cérrected data (Figure U4.4) shows how bad is an assumption of
isotropic scattering. Consequently the calculation of the multiple
scattering contribution to be detected events will be more difficult
than that for vanadium, for which the ratio of successive scattering
probabilities is approximately constant (equation (4.12)). 1In theory
numerical integrations for orders of scatter higher than two can be per-

formed, though it would be necessary to ensure that the results converge
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rapidly. In practice however, we perform a Monte Carlo calculation.

The procedure of the Monte Carlo simulation follows the work of
Bischoff (1970) and Copley (1973). The program has been adapted for the
time-of-flight diffractometer, in which we consider only elastically
scattered neutrons. The reason for this is twofold. Although inelastic
neutron scattering measurements have been performed on this sample by
Carpenter (1973), values of S(Q,w) are unknown for much of the Q-w plane.
Additionally the scattering events for carbon are predominantly elastic
(section 3.6), and hence inelastic contributions are a very small per-
turbation upon a purely elaestic model. Consequently the vanadium cor-
rected data are a reasonable approximation to S(Q) for the carbon. The
Monte Carlo calculation is first described briefly, and then in more de-
tall in the following sectilon.

The simulation wés performed by the program entitled MSCATD for
Multiple Scattering for Diffraction. This program presently requires
the writing of only one subroutine called TARGET which gives the partic-
ular geometry of the experiment as well as that of the sample. That is,
it gives the beam profile and the detector positions relative to the
target, in addition to the sample configuration. Various subroutines in
lieu of TARGET have been written for the UMTOFND machine including
UNICYL for a lone cylinder centrally located in the beam with its axis
vertical, as in the present experiment, and UNISLAB for a slab material

placed in the beam, as for the vanadium reference measurement. In
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addition the program also calls upon a file containing the diffraction
pattern from which the scattering probabilities are estimated.

The angular scattering distribution of neutrons is required for
both the scoring of detected neutrons and for following the paths of
the neutrons within the sample. Angles of scatter, © and ¢, randomly
selected from the cumulative distribution of scattering angles,

o
/7 s(Q) sin &' a6’

£(8) = — (4. 3L)
{: S(Q) sin 6' 8"
and
f'(¢) = 2 k. 35)
- D ’ ( '55

since the scattering is independent of azimuthal scattering angle. The
partially corrected differential cross section gives the best approxi-
mation to the angular scattering distribution. This will be valid pro-
vided that the variation of the correction factors with @ is not too
large for a given scattering angle, since the normalization procedure
for the partially corrected data assumes that the sample correction fac-
tor CO is independent of Q. This model is certainly superior to one
using a diffraction pattern derived from some other model independent of
the data obtained from the sample, since 1t will tend to bias the result
towards that of the model.

Since scattering events are exclusively of interest (only neutrons

which have been scattered are measured in the real experiment while



105

absorbed and unscattered neutrons are undetected), scattering collisions
are forced to occur in the computer simulation. This technique allows
every neutron at every collision to contribute to the angular scattered
Intensity, and improves the convergence of the calculation. This is
performed by assigning a statistical weight to the neutron at each col-
lision points are then chosen at random from the cumulative distribution

function for path lengths

[P exp (- go (K)x) dx
R(L) = = i , (1.36)
fo exp (- goT(k)X) dx

where t is the maximum distance from the last scattering point to the
surface of the sample in the direction of scatter.

In practice the calculation proceeds one neutron energy at a time,
with the scoring for all the detector angles, though in our measurements
there are only two. Consequently values of the sample multiple scatter-
iﬁg correction C;(Q) are determlned for a large number of Q values for
the two different scattering angles, with an increased density of points
around the regions of Q for which there are large variations in the dif--
fraction pattern. Judicious cholce of neutron energies reduces comput-
ing time. A smooth curve of C;(Q) for each scattering angle is computed
using spline functions. Hence values of C;(Q) may be determined by in-
terpolation from the results of the Monte Carlo simulation, and values
of Ci(Q) by direct integration (Figures 4.5 and 4.6).

Values of the overall correction factor Ci(Q) for the sample finite
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thickness as defined by equation (3.17) are used to adjust the data to
yield a fully corrected diffraction pattern. This has been performed
using the program CARCOR for Carbon Correction. It has been assumed
that the ratio of the true multiple scattering correction factor and
that computed by one iteration through the Monte Carlo simulation is
relatively insensitive to Q. The overlap of the data sets is good,
though small scaiing adjustments had to be applied. Even in the over-
lap region between Q = 1, &—1 and 2 ﬁ—l with data from two different
diffractometers, the values of d0/d0 (Q) had remarksble agreement. The
normalization procedure has already een outlined in section 4.k.

Due to the variation in resolution of the various segments of the
data, the best resolution regions of the data were used throughout in
deciding which data to accept. 1In fact no corrections for resolution
have been made at this stage in our analysis, nor have attempts been
made to account for the Placzek corrections which are due to the inelas-
tic contributions. The resulting scattered intensity distribution is
shown in Figure L4.7. The effect of multiple scattering is to de-
crease the peaks in the spectrum and to fill in the minima. By compar-
ison with the partially corrected date in Figure L.L, it can be seen
that the application of the multiple scattering correction factor is
such that the peaks are enhanced. The value of Qmax =25 ﬁ—l is suffi-

ciently high that the diffracted intensity is slowly varying.
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4,6 MONTE CARLO SIMULATION

The purpose of these calculations is to make estimates of the
overall correction factor which is defined by equation (3.18). The
probability that & neutron is scattered into a detector directiocon as
defined in section 4.2 is obtained from the 'score' accumulated by
neutrons scattered into that detector direction. 1In fact many histories
are traced in the simulation for neutrons of the same incident energy,
and the eventual score is normelized to 'per iﬁcident neutron per unit
area.' The method of averaging and estimating the variances of the
paremeters determined by the simulation are shown below. But first the
algorithm for following a neutron's history is given.

Each neutron used in the calculation is given an initial weight
wo of unity, and an initial direction Ql identical to the incident
beam direction QO. A point within the uniform incoming beam profile is
picked at random; this defines the position Eo on the target surface,
where the neutron beam direction QO intersects the target. The distance
to(zo’gi) is computed that the neutron must travel from r to the edge
of the target in the direction 91. Similarly at each collision point

within the target, a distance tn(;_n Qn) is calculated for the effec-

-1’

tive thickness as seen by a neutron travelling to the edge of the target
th

in the direction Qn’ after the (n-1) = collission at r 0 orf before

th .
the n collision.

The effective thickness to of the target as seen by the incoming
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beam in the @ direction is the value of tl averaged over the beam

-0
profile. The probability of scatter per unit atom scatters under ideal
conditions into the direction QD, that is, in the sbsence of finite

target corrections, is

= g;g- ->
PI(QO’Q'D) to dQ(Q'o QDMQD (&.37)

which is simply the evaluation of equation (L4.1).

Let the scattering and total cross sections be ¥ and ZT,
s

th
respectively. Then after the (n-1) scattering event, the escape
probability of the neutron travelling in the direction Qn is simply
exp(-ZTt ), and the collision probability 1 - exp(—ZTt ). Hence the
n : n
scattering probability is ZS/ZT(I - exp(—ZTtn)). The scattering event
is forced to occur at a distance L <t from r in the direction Q
n— n -1
by selecting a path length from the cumulative distribution function,
equation (L.36). This is performed by choosing a random number R,

(0 < R < 1) such that the distance I, is chosen from the modified
- - n

exponential distribution, i.e.,

R l—em&f%h) (s.38)
1 1 - éxp(-ZTtn) ’

The statistical weight of the neutron at the nth scatter is then
given by

z

- S - -
W= o (1 - exp( thn)) W, (4.39)
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where Wn 1 is the neutron weight at the previous scatter. The use of
statistical welghts takes into account the probability of absorption
and escape of neutrons, and allows the consideration only of scattered

neutrons. The "worth" of the neutron at the ntB scattering event is

simply given by

n |z
wo o= 1T |21 - -5t ) 4.0
i, L, ZT( exp(-2,, j)) ( )

After the nth scattering event, a score Sn(QD) is computed for
each detector D in turn. The distance LD(zn,QD) from the scattering
point zn to the edge of the target in the detector direction QD is
found in order to compute a transmission probability. The scattering
angle from the direction Qn to QD (and hence the corrgsponding wave
vector change) is found in order to compute the differential scattering
probability, AQD/U. ao/aa(n_n > _QD), from the diffraction pattern. Then
the score for the kth neutron and the nJGh scatter into the © scattering
bank is

AQ

k
s(8) = n U W exp(-x 1) —2
n D D n T D o]

(Q - QD), (b.41)

99 (g
N ™
where the summation extends over 8ll the detectors each with a relative
statistical weight Ub in the bank of scattering angle 8.
We now need to determine a new direction Q . The cosine p of
—n+1 n

the angle at the ath scatter (viz., @ - @ _) is selected from the
n ntl

cumulative distribution of scattering angles, equation (L4.34), which
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may be written

o 22 (5 k(1 - Y3

117
flp) = == (h.42)
"n 199 (o k(1 - u)l/g)du
1 o0

This is performed by choosing a random number R(O <R < 1) to give
momentum transfer Q by integratlon of the partially corrected diffrac-
tion pattern, i.e.,

Qn

[ms(Q) adQ

R Qn Ao
= = = ——— [ — (Q) Qdq, (b.43)
P s@em o (0x ° 0

where

Q = 2k sin en/z NERY (l'“n>1/2' (4.L4)

Hence, after selecting a random azimuthal angle (equation 4.35), a new
direction Qn+lvis found.

This process is repeated until the weight wn falls below & certain
cut-off weight W, at which point a game of "Russian roulette" is
played. There is a 50% probability that the neutron is thrown away and
a new neutron history started, and a 50% probability that the neutron
weight is increased by a factor of two and undergoes a further scatter.
This procedure has the attraction of concentrating the low weighted
events in a relatively small number of neutrons. Provided that the
cut-off weight is sufficiently small, this does not introduce any

biasing of the result. It is simply a means of ending of the neutron’'s
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"1ifetime" in the target, since it 1s forced always to undergo a
scatter without escape.

The purpose of the Monte Carlo simulation is to provide values of
Pl(e) and PM(G), the probabilities of single and multiple scattering
into a detector bank at angle 6, which are given by the average values

of the scores Sl(e) and SM(G) where

% AQ
_ _s _D dg(2.~92.)
sl(e) = %(e) Dz (1 - exp(-x% tl)) — X 1 -D
exp(-% LD(__l _D (L.L5)
and
sM(e), = i=2 SN(e), (4.46)
where
vz NI
sN(e) = x Ub §=1 - (1 - exp(-ZTtn)) — BQ (Q _D)
D(e) T
exp (-5, 1 (2,0))- (2.47)

It is interesting to compute the score SI(e) in the 'ideal' scattering
experiment where there is no beam attenuation. For thin samples, the
probability of an interaction is Zst . Then

o}

AQ

° X (5, 0 (4.48)

S_(6 = U t —_—
(6) z D Zs o o o0 ‘o

T D(8)
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With the substitution of

whereT] is the number of scattering per unit area, and after the sum-

mation over all detectors in a scattering bank, equation (4.48) becomes
p(6) = s.(6) =T (q) a0 (4.50)
I I N D

which is the same as equation (3.15).

The ihdividual scores Snk(e) are selected independently and ran-
domly from an unknown probability distribution with a mean Pn(e) and
variance Ui. Summations of the scores Si(e) over the total number K of

neutron histories will yield average values of the scores

sn(e) =

~ -

K

5 s%e) (4.51)
k=1 B
The sample mean Sn(e) is the simulation estimate of Pn(e), and provided

K is large enough, sn(e) - Pn(e). That is

_ Lim 1 Kk

P(0) = xu ¥ I 50 (4.52)
_ Lim 1 © _k

P(0) = T % §=1 5 5,00 (4.53)

Since the summation is performed for neutrons with the same energy or
wave number k, then these probabilities are a function of © and k, which

by equation (2.5) are related to the momentum transfer Q. Hence from



116

these values is found the multiple scattering correction factor

: il
Cy(@) = 1+ P (8,k) (k.54)

2
An estimate of the variance Un of the distribution of simulated scores

Sn(e) is given by
)]
2 2

K k
o v = ¥oI §=1 (Sn(e) - 8_(9)) (4.55)

Then cni/K is an estimate of the variance Oni of the probability dis-
tribution Pn(e) determined by the simulation.

In order to determine confidence limits to the estimated mean
Sn(e), the independent samples are divided into Ki groups of Kj
histories each. The average scores for the single and multiple

th
scatterings for the i group are

K.
i 1 J k
s (e) = — =% S_(e), (4.56)
1 Kj =1 L
ste) = + S s¥(o (4.57)
M( ) = K Lz ) - 5T

j k=1 n=2 B

Each group i is regarded as an independent sample of the proba-
bility distribution. IT Kj is large enough (~100), the distribution of
these samples becomes approximately normal (gaussian) by the central
1limit theorem. Then for Ki groups, the average scores for single and

multiple scatterings are

I 5O (1.58)

1
sl(e) = — 3
1 i
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and

i

N SM(e). (L.59)

() = +x
S (6 = — 5
M K

i i
The variance of the distribution of group-averaged score S;(e)

(the distributions being gaussian) is estimated by

2 1 ki 4 2
'OnKi = E;:_l §=l(sn(9) - Sn(e)):). (4.60)

Then the measure of the deviation of the sample mean score Sn(e) from
the probabiltiy distribution mean Pn(e) is the standard deviation On of

the group-averages scores

1
o, = ;FET OnKi' (4.61)

i
In order to apply a multiple scattering correction to the data, it

would be useful to know how various functions involving P PM and

1?
PT(= Pl+ PM) vary as a function of wave vector transfer Q, so that
interpolation may be made on a function that is relatively smooth over
the range of Q. To exhibit these variations in an easy manner, it is
necessary to make some crude approximations. Assume that on the
average all the scatters occur at a distance to/2 from th¢ surface of
the target, where to is effective target thickness as seen by the
incoming beam. Neglect differences in the scores for detectors at

different azimuthal angles. Then equations (4.45) through (4.47) may

be averaged over a large number of neutrons to yield approximate
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scattering probabilities given by

ZS AQD 3
P (6) ~ X1 - exp(-5 t)) — == (2> 0 ) exp(-% t /2)
1 T ZT le) o N 1 D o (h.62)
and
PM(e) = §=2PN(6>’ (4.63)
where
Zs AQD do
P(e) = 3:—;(1 - exp(-T b)) T g Q> a.)
N 7,
T | =21 - exp(zt /2))) exp(-2 t /2) (4.64)
n=> ZT o) To

These crude approximations may be reasonable for the case of
diffraction from a slab of vanadium. Since the scattering is isotropic,
the value of(AQD/o)(BG/BQ(QNé QD))is a constant for all orders N of
scatter. We shall call this probability Py for convenience. Then
equations (4.62) and (L4.63) reduce to

Zs
P () = Z—T<l-exp<-tho)> pDexp<-thO./2> (L.65)
and

2
P,(8) = E‘ST‘(l-exp(-ZTto)) 13 exp(-ZTtO/?—’)
L /2,1 - exp(- 2% /2))
=

(4.66)

1 (1 - exp (- ZTtO/Z))

s
ZT
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The total probability of scatter PT(G) is given by

n, (1 - exp(-ngb )y, exp(-2gt /2)

PL(0) ~ (L.67)

5 Jm

L- XS/XT

(1 -exp(- nt_/?))

It is found that the factors Pl/PT and PM/PT change the least with
respect to changes in ZT. Consequently it is believed that in general
that these functions are the most useful for interpolation purposes
when computing the multiple scattering corrections.

These crude approximations may not be reasonable for the case of
diffraction from glassy carbon. Since forward angle scattering is
predominant, the most probable scattering direction for all orders of
scatter is very close to the incident direction QO. Hence the proba-
bility(ao/aﬂ(gﬂf QI))(AQD/U) of scattering into the detector direction
is approximately a constant for all N. We shall call this probability
pD. On the other hand, the ratio of statistical weights before
successive orders of scatter is certainly not constant, but this ap-
proximation is retained so that a simple calculation may be performed.

Since the absorption of neutrons is negligible for carbon, the
scattering and total cross sections are approximately equal; so that

ZS/ZT ~ 1. Then equations (4 62) and (4.63) reduce to
Pl(e) ~ (1 —exp(-ZTto))pD exp(-ZTtO/Q) (L.68)

and

P (0) = (1 -exp(-2t ))p (1 -exp(-z t /2)). (4.69)
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The total probability of scatter PT(e) is given by

P(0) = P (0) + P (6) = (1 -exp(-Z.t ))p (L.70)

D

-5t /2
Tt is found that the factors Pl/PT(: e 2o o/ ) and
-t /2 , :
PM/PT('_‘_' 1 - e T o ) change the least with respect to changes in
ZT, which is a function of Q. Hence interpolation for multiple
scattering purposes is made between values of the inverse of multiple
-1 .
scattering correction factor CM; (1 + PM/Pl) or (Pl/PT). Values of

the ratios have been smoothed using spline functions and are shown in

Figure L.8.
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4.7 INELASTIC SCATTERING CONTRIBUTIONS

In the analysis of the data, we have neglected contributions due to
inelastic scattering, the cross-section for which is small, and have
assumed that thé total diffraction pattern may be treated as due to
elastic scattering only; i.e., the static approximation has been
invoked. If we consider the contributions from inelastic scattering

then the count rate given by equation (3.2) becomes

2 k Lo FL
c(e,t) = [ ¢(k0) Nb o S(Q,w) AQDn(k) alt -\ 7 + 3 ) ddk,
O O
L

.71)

where Q, ko, k, w, O are related by the energy and momentun conserva-
tion equations in section 2.1. The computation of this integral is
difficult; but if we neglect the wave number dependence of the neutron
spectrum, ¢(ko), and assume that the detectors have an efficiency,
n(k), inversely proportional to k, then the static approximation is the
result of integrating S(Q,w) along a line of constant Q in Q-w space.
Carpenter and Sutton (1972) have shown that the constant Q
integration path in time-of-flight diffractometry is best approximated
by equal flight paths. Typical integration paths for the UMTOFND
machine are shown in Figure 4.9, where the flight paths are given by
L = 2.37mand L = 2.47 m. It can be seen that at the 90° bank, the
static approximation is very good at high values of momentum transfer Q.

It becomes less good at lower values of Q, though for a given Q the
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smaller angle provide a closer approach to the constant - Q condition,
since the neutron wave number is higher (equation (2.5)). .However
within the range of Q values for the 20° scattering anglc, the Q-w
integration paths are not as good as the 90° scattering bank's highest
Q data. Fortunateiy most of the scattering is elastic, and the integra-
tion paths at w = O are a very good approximation to constant Q for all
values of Q and ©.

Due to the relatively long scattered flight path for equal-path
time-of-flight diffractometry, the counting rates are poor. Tomiyoshi
et al. (1973) have shown that the counting rates may be improved with-
out appreciable déterioration of the constant Q integration by using
relatively shortvscattered flight paths. This is true for small
scattering angles with low wavelength neutrons that are available from
pulsed neutron sources, (Sinclair et al., 1973).

Deviations from the static approximation are accounted by applying
Placzek corrections (Placzek, 1952; Wick, 1954) to the data, which in-
volve energy moments of the scattering law S(Q,w) and in consegquence can
be calculated only approximately. These are presumably minimized in
measurements using the equal flight path configuration. This has been
shown not to be the case for the calculable first moment corrections
(Powles, 1973), since the integration is not only characterized by a
path in Q-w space, but is weighted by the neutron spectrum ¢(ko), and

the detector efficiency n(k). Consequently it may be that the equal
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flight path arrangement is not the best.

The static approximation distortions in neutron time-of-flight
diffractometry have been discussed in detail by Sinclair and Wright
(1973). They show that the most dominant term in the Placzek correc-
tions to the scattered intensity is decreased by shorter scattered
flight paths. Consequently they conclude that the increased Placzek
corrections required for the equal flight path arrangement may offset
the improvement of having an integration path closely aligned to the
static approximation. However in instances where independent detailed
inelastic scattering measurements have been integrated to provide the
exact structure factor, agreement within 2% statistical error has been
found with measurement taken on UMTOFND (Carpenter, et al., 1973).

No Placzek corrections have therefore been applied to the glassy
carbon data, though it is recognized that they are appropriate. To be
able to perform these corrections accurately, it would be necessary to
know the wave number dependence of the neutron spectrum and the detec-
tor efficiency. Additionally, Carpenter (1977) has medsured the in-
elastic scattering from the same sample of carbon. The scattering law
S(Q,w) for frequencies .6 <w 50 rad/ps, and wave vector transfers 1.3
<Q<2.8 A7 were examined. S(Q,w) has a prominent elastically scat-
tered component (Figure 4.10), which shows that the diffraction results
will not be modified greatly by the application of Placzek corrections,
though these adjustments will be greater at higher values of momentum

transfer.
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4.8 ANALYSIS OF DIFFRACTION PEAKS

It is conventional in the characterication of carbons to describe
a 'degree of graphitiration' which is found by analysis of the diffrac-
tion peaks. The work of Short and Walker (1961) discusses the various
formulee used in computing crystallite sizes from the line shapes. The
first diffraction peak which is centered about Q ~ 1.8 ﬁ-l and is anal-
ogous to the (00.2) peak in graphite (see Appendix A.2) provides values
for the average plane spacing, dc’ and the mean crystallite height, Lc.
Additionally the second diffraction peak which is centered about Q@ ~ 3.0
A_l provides a value for the mean crystallite width La. The crystallite
size dimensions refer to a right cylinder of diameter La and height Lc’
and are introduced as & measure of the broadening of the appropriate X-
ray diffraction peaks.

The crystallographlc direction of the dimension L is perpendicular
to the planes whose reflections are studied, and the rglationship of L
to the true mean crystalllite dimension depends upon the distribution of
the crystallite sizes. Scherrer (1918) has given the relationship be-
tween the crystallite dimension L and a measure of the broadening AQ of

the peak as

27

L= K75 (4.72)

where K is of the order of unity and is called the Scherrer constant.

It has various numerical values depending on the shape of the crystals,
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the indices of the reflecting planes, the precise definition of the crys-
tallite dimensions and whether simple or integral line breadths are used.
Though it 1s not cléar what value of K should be used, it is relatively
unimportant for these line broadening parameters should not be inter-
preted too literally since they apply to highly crystalline materials,
and no allowance has been made for strain in the maferial (Ergun, 1973),
or a possible distribution of layer spacings. However,they do provide a
means of comparing various carbons. Several methods for extracting
crystallite size parameters from line shapes are examined below.

The first diffraction peak is shown in Figure 4.11. The peak lo-
cated at @ = 1.80 ﬁ—l provides a c-direction plane spacing dc = 2n/q =
3.49 R. After base value subtraction, the full widths at half maximum
and at three-quarters meximum are found to be 0.325 K_l and 0.17 K-l,
respectively. Using L, = 1.78 2rr/AQl/2 yields a value of 3L4.k4 R; where-
as using Lc = 1.02 21r/AQ3/4 gives a value of 37.7 K. An integral line
width is that of a rectangular profile which has the same maximum and

integral values of the observed line, using the formula

I A = [ I(Q) dq. (4.73)

max

This yields a value of AQ = 0.3716 ﬁ—l, and using LC = 2 2n/AQ glives a
value of 33.8 K. Hucke's analysis (1972) of wide angle X-ray diffrac-
tion using the full-width at three-quarters maximum formula after the
subtraction of the base value gives a value of L. = 27.6 & and a spacing

cC

dc of 3.57 R. He notes that a lower value of dc would be obtained if a
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Figure L.11. Analysis of the first diffraction peak of glassy carbon.
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more rigorous analysis were employed.

If we use a more elaborate approach to the determination of the
line shape of the first diffraction peak in the neutron data, it is
found that the peak can be fitted very satisfactorily over a range 1.4
<Q<KZ2.2 K-l by a Lorentzian. The peak 1is fitted to a function of
the form

B
Q) = B, + 2 | (4.74)
Yodfla - a)® ¢ 07

with Q = 1.816 ﬁ—l and T = 0.1793 ﬁ_l. This gives a c-direction spac-
ing of dc = Qn/QO = 3,46 R, The parameter ' gives a measure of the

crystallite height, Lc. The widths are approximately glven by AQ1/2 =
or, and AQ

3
L =1.02 2% AQ as above produce values of L
c 3/L c

/u = 2/J3 I'. Use of the formulae, Lc =1.78 QW/AQl/Q: and

31.19 & ‘and 30.96 §,
respectively. 1In addition the integral yields a value of AQ = 0.L4485
K-l which gives a value of L, = 28.0 £. Again it should be emphasized
that these are only approximate values and give an idea of the range of
ordering of planes.

The second diffraction peak is shown in Figure 4.12. It is anal-
ogous to the (10.0) and (10.1) peaks in graphite at Q = 2.95 and 3.1hL
A—l, respectively. The effect of‘peaks analogous to the (10.2) and
(00.4) peaks in graphite at Q = 3.49 and 3.75 K-l, respectively, can be
seen. A sloping base value yields values of AQ1/2 = 0.23 K-l and AQB/h

= 0.13 ﬁ-l. Using the formulae, La = 1.78 2x/AQ and

1/2
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Figure L.12. Analysis of the second diffraction peak of glassy carbon.
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La =>102 21(/AQ5/h as before, values of La are obtalned as 50.2 K_L and
k9.2 K-l, respectively. The peak at Q = 3.04 ﬁ_l gives a value for
le = 2x1/Q = 2.067 R. These values should be compared with the wide
angle X-rey diffraction analysis (Hucke, 1972) which gave L, = 5.0 K
and a spacing d;y = 2.10 .

It can also be seen from the diffraction pattern that there are
numerous peaks which suggests that the carbon is not truly amorphous;
that is; there is some ordering in the system. However, it is certainly
not crystalline, as can be verified by comparison of the peak width with
those in any of the calibration runs of the machine using crystalline
samples. However, the analogy of the first two diffraction peaks with
those found in graphite suggests that a closer examination of this anal.
ogy will be required. It should be pointed out that the first diffrac-
tion peak in cubic diamond is expected at Q ~ 3.05 &Y which is where
the second peak in glassy carbon diffraction 1s found. The presence of
some tetrahedral bonding might be expected to be felt because of the
presence of this diffraction peak. However, no useful comparison of
the higher-Q diffraction peaks with known diamond crystal reciprocal

lattice vectors has been found.
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4.9 SMALL Q SCATTERING

The small-Q diffraction pattern of this particular glassy carbon
was obtained by Carpenter (1973) at the same time as the inelastic
scattering data. The main features of the experiment wlll be presented
here since further analysis has been made of the small-Q diffraction
pattern. The measurements were performed on the Thermal Neutron Time-of
Flight Spectrometer, TNTOFS (Kleb et al., 1973) at the Argonne National
Laboratory. The incident monochromatic beam of neutrons have a wave-
length xo = 4,06 &, which was obtained by scattering from the (00.2)
planes of pyrolytic graphite. By using a beryllium filter at liquid
nitrogen temperature (77°K), which has a sharp drop in the scattering
cross section for wavelengths greater than 3.96 R, high order contamina-
tion (e.g., xo/2 = 2.0% &) is eliminated.

The sample used in this experiment was a section cut from the same
cylinder used in the large Q diffraction experiment, iIn the form of four
discs, each 2.0 cm in diameter, and 0.267 gm/cm2 (0.291) em) thick. The
total cross section as a function of neutron wave number (Figure L.3)
was obtained using the corrected data from TNTOFS and UMTOFND. For
4.06 R wavelength neutrons (ko = 1.55 ﬁ-l), the cross section is 10.3
barns/atom. The density of the carbon is 0.923 gm cc_l, or 0.0L4628
atoms (barn—cm)— . lence the probability of scatter of neutrorns from
this sample is 1%%, and much of this is through small angles.

The elastic scattering was determined at angles between 2.40° and

-1
and 115.2°, Hence data were obtained for Q values between 0.065 R
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and 2.613 A-l, to supplement the extended Q diffraction results from
the UMTOFND machine. The detectors were calibrated against a vanadium
standard scatterer, for which multliple scattering and attenuation cor-
rections have been appllied, so that absolute normalization is accom-
plished. The inelastic scattering and the background, mainly due to the
aluminum sample support, were subtracted in the data reduction. It was
found (Figure 4.10) for these small Q values, that the inelastic scat-
tering was negliglble compared to the elastic.

The Debye-Waller factor (equation 2.33)) is given by Marshall and
Lovesy (1971)

2.2 k S}
hQ > B T 1 D.2

o
1 D4
oM (kgfp)? [+ 356 ( T) - 3600 ¢ 7)1 (4.75)

where M is the mass of the scattering atom, and eD is the Debye tempera-
ture of the substance, which for graphite 1550°K at a temperature T =
298°K (Gschneidner, 106k4). Evaiuating equation (L4.75) we obtain the

Debye-Waller factor

2 -1
U e-o.ooz52Q(A ).

(4.76)

Since for Q = 1. ﬁ_;, the factor e_gw is only .9977, it is reasonable to
approximate the Debye-Waller factor as unity, and to consider the inte-
grated elastic peak as essentially equal to the total scattering.

The small Q diffraction pattern, uncorrected for multiple scat-

tering, has two main features; the first diffraction peak around Q~ 1.8
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K-l and the small Q scattering to which, for Q < 0.4 ﬁ_l, a good fit is
an exponential of the form 280 exp(- 13.9 Q) barns/ster-atom. This
small-Q diffraction data is Jolned to the large Q data as outlined in
section 3.4 to provide a continuous diffraction pattern from which both
approximate total cross sections (see section 4.3) and scattering prob-
bilities (see section 4.6) may be obtained. The small Q scattering in-
tensities were then corrected for attenuation and multiple scattering
using Copley's (1973) modification of Bischoff's Monte Carlo multiple
scattering simulation (1970), the elastic algorithm of which is similar
to that of section 4.6,

Hence,the uncorrected data were used to correct the data themselves.
The multiple scattering correction factor varies between 1.17 and 1.33
over the range of Q measured. The total cross section used in these
corrections was 9.5 barns, obtained from the integral (equation (4.29))
of the uncorrected diffraction pattern, for a wave vector k = 1.55 ﬁ_l
(equivalent to 4.06 & neutrons). The value obtained from the sample-
corrected diffraction pattern is 10.3 barns. Had this corrected cross
sectlion been used to generate a second iterastion of the multiple scat-
tering correction, about a 2% greater correction would have resulted.

The corrected small Q diffraction results are shown in Figure L4.13.
The statistical errors are in fact smaller than the plotting symbols,
though a normalization error exists of the order of 2%. The angular Q

resolution of TNTOFS is negligible except at the smallest value of Q,
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viz., 0.065 ﬁ-l. The results have two main features.} The scattering
for @ >1 K_l overlaps the data obtained from UMTOFND, the practical
range of which has a lower limit of 0.9 K_l. This overlap is necessary
for the matching of data obtained from both machines to acquire the full
diffraction pattern. Secondly, the intense scattering at small Q, which
is characteristic of voids, appears to be well-fitted in the range 0.065

R 7 by the function

do

99 -0RQ
dMN'elastic

= Ae ()'l‘-TT)

where A is 340 barns (ster—eal’t:om)-l and o is 13.6 R. While the form of
this function is simple and the fit very satisfactory over this range,
it is not one of the conventional froms describing small-Q scattering.

Results of small Q X-ray diffraction (Hucke, 1973) show that the
voids in this particular carbon are polydisperse, which suggests that
there is interference between the scattering patterns of the small and
large scale voids. It is therefore not too surprising that the small Q
neutron elastic scattering may be fitted by a simple exponential func-
tion, e_QQ, where the parameter o will be interpreted as a scale length.
for the small-scale voild system. The interpretation of the small Q

diffraction results will be presented in Chapter 6.



CHAPTER V. RADTIAL DISTRIBUTION ANALYSIS

5.1 TERMINATION OF THE FOURIER INTEGRAL

The variation of the pair density g(r) from the average atomic
density go as a fﬁnction of interatomic distance r is found by Fourier
inversion of the measured intensity distribution I(Q) using the

Zernicke-Prins relation,
2 o
hrr(g(r) - go) = ;‘fo Q i (Q) sin Qr dQ, (2.46")
where i(Q) is the normalized intensity,

i(Q) = I(Q%(;)I(OC) ’ (2.44")

and I(«~) is the limiting value of the scattered intensity at very large
wave vector transfers. The data are normalized by finely adjusting I(e)
(see section 4.4), which amounts to imposing a chosen value of g, upon
the trahsform.

Reliable data have therefore been obtained for our glassy carbon
sample from two machines for wave vector transfers out to 25 A—l, the
transformation of which gives a radial distribution function (RDF) as
shown in Figure 5.1. Since the maximum extent of the diffraction
pattern is Qmax =25 ﬁ-l, the spatial resolution in the RDF is given
by Ar = gﬂ/Qmax ~ 0.25 K-l. However using a unit modification function

a delta function in the true RDF will have a width of Ar = 5.78/Qmax

138



159

*UOTQRBUTWTITS JOJJI® UOTFBUTWISY ANOUYITM UOQIBO ASSBTT JOJ UOTAOUNI UOTINATIZSTP TRIPBI aYJ

<«—(wousbuy) 4

*T°G aan3td

%

VA T )
> >> \/> T OM
A TERRVATHR 1T
! £
\ _
c —Ol

:




140

~ 0.15 K-l. This is comparable to the difference between the tetra-
hedral bond length in diamoni (1.5k4 K) and the trigonal bond length in
graphite (1.42 &), which is about 0.12 A. Heznce it should prove ?os-
sible to resolve the nearest neighbor peak into tetrahedral and.trigonal
parts. Moreover the resolution of the RDF can be improved by a tech-
nigque which reproduces on a fitted function the limitations of the
resolution caused by the truncation of the data at Qmax (Warren, 1969;
Sutton, 1971).

Not only does the restricted range in Q of the diffraction pattern
limit the spatial resolution of its Fourier transform, but it also
produces termination ripples in the RDF. Since the diffraction pattern

is given a value of I(x) for Q > Qmax’ the effect is to modify the true

diffraction pattern by a function

M(Q) = 1 for Q < Qmax
= 0 Q> Q . (5.1)
max

Effectively this function causes the integration to be taken over the

J

=01t b ivi i £ >
range from Q o) gmax’ v giving zero weight to I(Q) for Q Qmax

where no reliable data has in fact been taken. Unfortunately, this

modification function causes the RDF to show spurious maxima and minima
which will make the interpretation of g(r) difficult. A full discussion
of the effects of modification functions is given by Waser and Schomaker

(1953%).
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The Fourier transform r D(r) of Q i(Q) with a modification
function M(Q) is the convolution of the RDF, r D(r), ani the transform

T(r) of the modification function; that is,

rD(r) = —5 /7 Qi(Q) M(a) sin Gr dq (5.2)
21 o
becomes
r D(r) = —lE fm r'D(r') T(r - r') dr’' (5.3)
b -

where T(r) has the form sin(Q ﬁ/Q r This function goes to zero
max " ‘max

when r = nt (integer n # 0). Hence the transform has a full width
ax

2 t i b f i i
of wr/QmaX at its base, and has ripples of period 2n/QmaX with

diminishing amplitude. Consequently we obtain

max 00

r D(r) = —— [ r'D(z') (5,0Q  (r -7"))

+3 (@ (r+r'))lar’ (5.4)

O max

To show the spurious effects caused by the truncation at Qmax’ let

us assume that there is an infinitesimal narrow peak in the RDF at r .
o)

That is, let

hrr!

g(r') = % &(r'- ro); (5.5)

and noting that
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D(r) = bn(s(r) - g ), (2.127)

we obtain after substitution in equation (5.4)

Q
bnr g(r) = n?ax {jo(Qmax(r - TO» +jcSQmax<r + TO))}- (5.6)
o 3

Hence a peak which in theory has the appearance of a delta function in
the RDF appears in the experimental RDF as a peak reduced in height
with a full width at half-maximum of 3.78/Q s’ and with satellite

. max
peaks having a period of Zﬂ/Qmax'

The spurious termination features may be greatly diminished by

2
-
using an ‘'artificial temperature factor,' e ? . The modification
function M(Q) becomes
-aQ2
M(Q) = e for Q < Q
— max
= 0 Q>Q . (5.7)
max
2
= 0.1.

~Q
where e “max

This may be justified since equal weight should not be given to peaks
and valleys in Q i(Q) at very large Q, where the resolution becomes
poor. While this convergence factor reduces the false termination
wiggles, it increases the resolution as defined by the full width at
half-maximum; viz., 5/Qma&' Other modification functions can be used to
reduce the termination wiggles, but they also decrease the resolution of

the RDF relative to that given by the unit of modification function

(equation (5.1)).
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Integrating equation (2.46) with respect to r from (r - Ar/2) to

(r + br/2) gives

/ Qma'
fr+Ar/2 r D(r) dr = 1 fr+Ar,2 ar | X

> Qi(Q)sin Qr 4Q.
r-Ar/2 on r-Ar/2 o

(5.8)

Provided that Ar << r, we may consider the RDF to be a constant over
the limits of fhe integration; that is, a sufficiently fine mesh in
real space must be used. Integration of equation (5.8), neglecting
terms in Ar relative to r, yields

Q

r D(r) = —lé- [ Qi) %ﬁ—g%@—) sin Qr 4Q (5.9)
21 O

Lorch (1969) has used this modification function which is given by

M(Q) = M@l for Q S Q

(arQ/2) max

= 0 Q> Q (5.10)

max

where Ar/2 = n/QmaX. While this also reduces the termination ripples,
the resolution is 6.28/Qmax- Consequently it is believed that the unit
modification function is probably the best to use provided that the
spurious features can be identified.

In order to recognize the spurious termination peaks, we build a
model of the RDF and transform it via equation (5.4) in an attempt to

reproduce the wiggles caused by the truncation, viz.,

1 = sin(QmaX(r -r'))
r D(r) le - "2 f T'D<r')f't dr'. (5.11)
ca.lc Ll—]'f o 1 Q, (I‘ -I")
ma.x
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We compare values of the calculated RDF, D(r) , obtained in this way

calce

with the observed RDF, D(r)ob@’ acquired experimentally via equation

(5.2); we alter the values of the fitted RDF, D{r) yand iterate

1'it

=

through equation (5.11). Eventually when a goodl comparison has been

obtained between D(r) and D(r)obs, we say that D(r) is a good

calc fit

equivalent of D(r) the real RDF of the material.

true’

We represent the fitted distribution as a series of delta functions,
' = —_— ' _ \
D(r )fit i > a(r rn), (5.12]

where rn = (n + 1/2)Ar, and where Ar is a sufficiently small interval in
r to show up details in D(r). Then the calculated distribution is

obtained from equation (5.4); viz.,

(0 - r )+ 3.(Q (r+r)))

ax

n (5.13)

Hence a set of {An} is found for D(r)

I'D<r)calc B i1 %

in order to obtain D(r)c

fit alc

for comparison with D(r) These {An} are easily adjusted to give a

obs

new D(r) The Bessel functions damp out reasonably rapidly in

calc
practice, so that adjustment of the values of {An} is confined to a
small interval in Ar.

This has been performed for the glassy carbon data, and the results
are shown in Figure 5.2. Unfortunately not all of the termination

errors have been eliminated. The largest peak adjacent to r = O has

been very difficult to eliminate; it is probably due to & normalization
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error, especially since there are difficulties with the diffraction data
at the highest Q. In this region it is probable that Placzek correc-
tions are the most severe. Additionally, a unit modification function
has been used which gives equal weighting for the high Q data, and the
normalization procedure was such that values of I(Q) around Qmax were
adjusted and this may be the cause of terminations effects around r = O,
well below the first peak in the RDF.

To see the effect on an improper normalization of the data, con-

sider a small error AI(«) in the normalization, and its outcome on the

function which is to be transformed; i.e.,

Q i(Q) = Q 1@Q) - I(m{] . (5.14)

I()

By differentation we obtain

d (QiQ) . _oIQ) -Q Q) -I(=) ]| _Q
d I() . I(e)? (o) T(e) :} T(e) (5.15)
Then
e i(Q)) = %—% Q 1(Q) - iiﬁ? Q. (5.16)

If we now transform Q i(Q) + A(Q i(Q)) we obtain

2 meaX Q i(Q) <§ - AIG@{) + L) Q ) sin Qr dQ@ =
7t I()

e (o) - ) Q ey R SN RIS B CR L)
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Consequently the transform of the first term in equation (5.16) is pro-
portionalvto the RDF, and gives a shift in scale. The transform of the
second term gives an additicnal oscillatory error around r = O, and
which damps down with increasing r.

Values of I(«x) are very insensitive to the choice of g, and more-
over, the value of go which is strictly compatible with the data is not
well-known. This is due to the fact that the macroscopic density is
influenced by the large-scale (~250 K) pore system within this particu-
lar carbon, which must give rise to small-Q scattering in the range'of
Q< 2ﬂ/250 ~ 0.02% R-l which was not observed. Since the diffraction
pattern includes some of the small-Q scattering due to small-scale
voids, the value of 2, imposed on the normalization has therefore been

chosen as that corresponding to the density measured by mercury

-4
/

porosimetry, viz., go = 0.07471 atom R , which is assumed to be the
density of the material between the large scale voids (see section 6.2).
It should be noted that no resolution broadening factor has been
unfolded from the observed scattered intensity. If the exact intensity
I(Q) is broadened by & resolution function F(Q,Q'), then the observed

intensity is given by

I Q) = [aQ" 7(Q,Q") 1(Q"). (5.18)

obs

A discussion of a method of correcting for resolution broadening is

given by Sutton (1971). It is probable that there is little effect for



148

peaks in the RDF beyond a few Kngstroms, whereas the first few peaks
may be slightly narrowed. The danger is to overestimate the effect of

broadening, which will give false information about the RDF.
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5.2 CARBON COORDINATION MODEILS

It was proposed in section 1l.L that various models for glassy car-
bon in which trigonally and tetrahedrally bonded atoms are found could
be checked agalnst the areas under the peaks in the RDF. Let us signify
a fourfold bonded carbon by D, since diamond 1s tetrahedrally bonded
and a threefold bonded carbon by G, since graphite is trigonally bonded.
Every D atom is surrounded by four atoms, and every G atom is surrounded
by three atoms. If the total number of atoms is N, with a fraction x

which being fourfold coordinated, there will be Nx atoms with sp5

(four-
fold) bonding, with four nearest neighbors, and N(1 - x) atoms with sp2
(threefold) bonding, with three nearest nelghbors. The total number of
nearest neighbor pairs is 1/2(LnNx + 3N(1 - x)) or (N/2)(3 + x), and the
area Al under the first peak of the RDF will be proportional to (3 + x);
i.e., the average coordination number will be 3 + x. Hence the coorai-
nation of the first peak is linearly dependent on the proportion of
fourfold bonded carbons atoms. Thils result is lndependent of the type
of model used to describe glassy carbon since the scattering length is
independent of the type of bonding. However, the type of nearest neigh-
bor bonding will depend on the model.

On the other hand, the area A2 under the second peak of the RDF
will depend on the model for a given fraction x of fourfold bonded car-

bons, since the number of second nearest neighbours will depend on the

type of nearest neighbors. Since rg(D) ~ rg(G), that is, the second-
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nearest neighbor distances for diamond and graphite are not too differ-
ent, the second peak will include contributions from all the different
combinations of trigonal and tetrahedral bondings which are available

to second nearest neighbors. This might also be true for the third pesk
since some of third nearest neighbor distances for graphite and diamond
are not too disimilasr around 2.9 ﬁ, and are less than the c-spacing dis-
tance of %.35 & in graphite. In fact, in all the models considered,

except one, the second coordination number n,. is 6(1 + x), so that the

2
third coordination sphere should be considered.

Following the work 6f Betts et al. (1972), we consider some possible
models for glassy carbon. At one extremity is the phase separated model
in which glassy carbon has large regions of diamond-like (tetrahedrally-
coordinated) carbon atoms seaparted by regions of graphitic (trigonally-
coordinated) carbon atoms. These regions extend over lengths much
greater than the inter-atomic distances, so we neglect the boundaries
between regions. The D and G atoms are found in the proportion of
x to (1 - x). The coordination numbers are a linear combination of
those for diamond-like and graphitic carbons in the proportion of the
sample composition.

At the other extremity 1s the random coordinated model in which no
chemical ordering is assumed, such that the numbers of D-D, G-G and D-G

nelghboring pairs are determined by the coordination numbers and the

sample composition. There will be some considerable distortion of the
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angles and distances between carbon atoms from those found in diamond
and graphite. The net result will be for the first peak in the RDF to
be very broad reflecting the difference in the bond lenghts between
tetrahedrally and trigonally coordinated atoms.

Since the RDF has peaks whose postions correspond well to graphific
inter-atomic distances, the other models all have graphitic regions
with a smaller proportion of tetrahedrally-coordinated atoms inter-
spersed in some way. In the dilute linear fourfold coordinated model,
all tetrahedrally bonded carbons are arranged in non-interconnecting
linear chains within a graphitic structure. Thus the tetrahedrally co-
ordinated carbons link graphitic regions with different orientations.
The chain density is sufficlently dilute so that no two chains arewithin
two nearest nelghbors. This condition gives a maximum value to x of l/h.

In the dilute fourfold coordinated model, tetrahedrally bonded car-
bons are sufficiently dilute such that there are no D-D nearest neigh-
bors. This gives a maximum value to x of 3/7L In the very dilute four-
fold coordinated model, no D-D second-nearest neighbors are allowed
either so that the maximum value of x is 1/5. These dilute models
might occur if tetrahedrally bonded carbons link regions of planes of
grarhitic layers having difterent orientations.

In the dilute double fourfold coordinated model, tetrahedrally
bonded carbon atoms are found in pairs and might be used for linking
graphitic layers of different orientation. The maximum value of x is

1/2. If no D-D second-nearest neighbors are allowed (the very dilute
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double fourfold coordinated model), then the maximum value of x is 1/L.
The contributions from the various pairs of atoms to the first and
second coordination sphere for the carbon models are shown in Table II.
Additionally the coordination numbers for the third and fourth coordina-
tion spheres is given as a function of the proportion of tetrahedrally
bonded carbon atoms. This is also illustrated in Figure 5.3. It should
be pointed out that the numbers for n3 and nu are probably not exact
since it is difficult to assign distances in a mixture of trigonally and
tetrahedral stoms to the third or fourth coordination sphere. However
in all models, n5 and nLL should be 3 and 6 for x = O which is equivalent
to graphitic layers. The dilute models are probably only accurate for
x < 0.2, since all models should tend towards the dliamond structure for

x »+ 1; i.e., both n5 and nLL approach 12.
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AK FUNCTION ANALYSIS

N
N
F'j
L]
'
>

It can be seen from the RDF that the first real peak occurs at
1.425 & which is close to the value found for the nearest nelghbor dis-
tance in graphite. There is no-evidence of a peak around 1.5k ﬁ, the
bond length in tetrahedrally bonded diamond. Moreover the area under
this first peak corresponds to a coordination number éround 3, as in
trigonally-bonded graphite. Hence it is believed that there are no
tetrahedral structural units as éuggested by Noda and Inagaki (196k4), but
that graphitic units are linked by four-fold atoms of the crder of a few
per cent, which is unseenwithin the precision of the present measurements.

It is also found that there are additional peaks at higher dis-
tances which correspond also to graphite distances, as shown in Figure
5.4, the RDF from the partially corrected diffraction data (Mildner and
Carpenter, 1972). These peaks have been analyzed by computing»the ares
under each peak which should be proportional to the coordination number
at that distance by equation (2.48). The results are shown on Figure
5.5 and the values for the first few real peaks are shown in Table IIT;

values for graphite are also shown for comparison.

TABLE ITI

MIIDNER (1973) 2000°C HUCKE SAMPLE

Coordination Glassy Carbon Graphlte
Sphere r (R) n r (R) n

.Lhos 2.99 1.42 3
>, 45 6.10 2,46 6
83 3.28 2.84 3

W N -
nNn
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Figure 5.4. The RDF from partially corrected data showing the first
four graphitic in-plane correlations. The heights correspond to the

coordination numbers.
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Figure 5.5. The integration of the peaks in the RDF
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These numbers have been obtained by integrating the RDF without
elimination of the termination errors. Consequently the error limits
are difficult to access properly, and the values are only approximate,
especially for larger coordination spheres. Additionally the fourth
broad peak around 3.4 R we attribute to an interplanar distance, though
it 1s modified greatly by termination errors, since graphite has an in-
terplanar distance of 3.35 k.

Unfortunately it cannot be ascertained from these numbers which
model in section 5.2 is uniquely defined, because the coordination num-
bers are not known accurately. Additionally we should expect nl to be
greater than 3; and the value of n2 gives a fraction of tetrahedrally
coordinated atoms of between 1-2%. Hence it is believed that these atoms
are in fact dilute. The value of n3 suggests that for any model the
fraction is less 10%; and it is conjectured that the true value is proba-
bly of the order of 5%, so that the bulk of the atoms in glassy carbon
are linked trigonally as in graphite. Figure 5.6 shows in-plane corre-
lations for graphite with artificial Gaussian widths. Many of the

features of the RDF may be correlated with this figure.
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5.4 TURBOSTRATIC MODEL

Since a comparison of the peak positions and areas in the RDF of
glassy carbon can be made with the interatomic distances and coordina-
tion numbers of graphite (Figure 5.6), it would seem appropriate to con-
sider models for glassy carbon which reflect some similarity to the
hexagonal layers of graphite. Moreover the initial comparison with a
single hexagonal layef was sufficiently good, that this may be extended
by considering a large number of such layers. These layers certainly
have no fixed orientation relative to each other, otherwise peaks in the
RDF due to interplanar correlatibns.would be apparent as for graphite.
Consequently we conslider these planes to be arranged randomly in orien-
tation.

The theory of the diffraction pattern of a two-dimensional lattice
which takes with equal probability all orientations in space was ini-
tially studied by Warren (1941). The reflections from a sample contain-
ing a large number of blocks of layers with random orientation are of
the type (001), or the two-dimensional type (hkO); but there are no re-
flections of the type (hkl). It is this form of model of random layers
that should be considered for comparison with glassy carbon.

The stacking of random lasyers ylelds an atomic density g(g) as a

function of interatomic distance r given by

=+

g(r) = z, 8 =l - Jx -z, D (5.19)

1,1
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where N is the total number of atoms, and El’ r are the positions of

ll
the atoms marked 1, 1'. Now subdivide the summation index 1 into a
plane index j and an atom-in-plane index i1, so that equation (5.19) may

also be subdivided into in-plane correlation and out-of-plane correla-

tions. Hence

l ' - -
gr) = 2 = o( [zl - rgs - x50
l ' - -
S hg el -z -y D- (5.20)

For out-of-plane correlations, let Ej be the position of the plane

indexed j along the c-axis. Then

15T 1y 2y 7 2 Tyeg) T Zyggny) (5.21)

Since the layers have no fixed orientation, there is no correlation be-

tween r_, ., and r,, ., and the distributionof |r,, .- r., .
=1(J) =i(J3')’ ’—1(3) =i(J

the mean densilty nA of gtoms in the plane. If NP is the total number of

,)ldepends on

planes each with NA atoms, then

N = N_N (5.22)

The sum over the indices i, 1' for the out-of-plane correlations in

equation (5.20) gives nANA. Then performing the sum over planes for

both types of correlations gives

l 1
g(r) = ﬁ; 2 8|zl - Izyy i)+ m, ZJ 8( |z] - ?zjl), (5.23)
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where T is the vector distance between atoms marked i,i' in the same
plane, and gj ls the vector distance between two planes, j layers apart.
Since the model is an isotropic arrangement of blocks of random
layers, an orientation average must be applied to equation (5.23) in
order to obtaln an RDF. The first term represents the correlations of
atoms in the same plane, and consequently is independent of the orien-
tation of the particular layer, and the blécks of layers are oriented at
random so that the averaging may be performed for many such blocks.

Then equation (5.23) becomes

1 ' n +r 1
glr) = 5 »' ¥(r - rii’) + A [ ? 5(z - zj)dz.

Yrr NA 1,1 or T (5.04)
The second term, the density of atom palrs in distinct planes, is
governed by the pair density of planes and mean atom density nA of in a
plane. Let P(z) dz be the probability that a plane exists in dz about
a distence z from a given plane; i.e., the plane-pair density function.
The contribution to the RDF at dr about a distance r from & ring element
of volume 2n dr dz at constant z wlth an atomic density nA is oxr dr dz
n P(z). Consequently the radial distribution function for a turbostra-~

A

tic layered structure can be expressed in the form

2' l 1
)y - L S(r - ricy) +
Qﬂ:rnA [:T P(z) dz. (5.25)

Let fj(z) be the functlon giving the appropriate contribution to
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the distribution P(z) from the plane indexed j. Then
P(z) = ' £ (2). (5.76)

If the values of the distances between the planes are chosen from a

Gaussian distribution with

2

(2) - ) (5.27)
W(z = = expl|- ————— }» 5.27
<2W)l/202 <l 20§ ;>

then the contribution from the plane indexed j is

= <2ﬂ)l/202 \ 2’3'05

: (z - 3a)?
£ylz) = S exXP (- “—"“c—> (5.28)

where dc is the average distance between the planes with a standard de-

viation a- Then equation (5.25) becomes

vt g(r) = = B! B(r-r )+
NA i,i ii
2nr n or v (z - jdc)2
—_— fv % Ijl exp [- — ldz.
(2nf/% T g o eliled (5.29)

This function should therefore be compared with the experimental
RDF. The first three peaks will determine the validity of the parame-
ters used to determine the in-plane correlations. For the turbostratic
model of graphlte, the average lattlce parameters are taken as ao = 2,46
X and co = 3.%25 R. TLattice parameters for this model of glassy carbon
are best obtained from the diffraction pattern of the sample itself
(section 4.8).

The position of the (00.2) peak yields a distance dc = 3,46 § for
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the mean layer spacing. The position of the (10) peak yields a distance
dlo of 2.067 & which cofresponds to a lattice parameter a of 2.39 R
which 1s significantly different from that of graphite. X-ray analysis
of the (10) peak gave le =>2.lO A and therefore a_ = 2.43 K. On the
other hand, the RDF of the neutron diffraction pattern gave a value of
a equal to 2.45 A.

The in-plane correlations for the ideal graphitic model are gilven
in Appendix A. 5, and hexagonal layers were constructed on the computer
using a lattice parameter of 2.4 R. In order to fit the peak widths in
the RDF, the parametric vaiue was taken as the peak in a Gaussian dis-
tribution of standard deviation oa = 0.03 R. The orientation and posi-
tioning of adjacent iayers were selected at random, with the constraint
that the planes were ﬁarallel and that their distance apart was selected
at random from a Gaussian diétribution around 3.46 R with a standard
UC = 0.04 A. Although an RDF of this model was constructed, it is
believed that the artificial method used for broadening the diffraction
peaks is unsatisfactory.

A more reasonable function for representing the pair density of
planes is that suggested by the shape of the (00.2) peak of the dif-
fraction pattern. That peak is of Lorenzian form, and is characterized
by & plane spacing dC and a mean crystallite height LC. In the limit

-1
of large |Z|, P(Z) approaches dC . Thus we assume a function which

reasonably approximates the desired behavior, viz.;
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-z '/L
- L 1 - ' c
Plz) = fﬁ 5(z - jd ) e ’Zl/ c + = (5.30)
o o a
c
The integral in equation (5.25) gives
2L
+ r/d -3d~/L > c -r/L
/ * P(z) d&z = 2 [ é:C] e d o/Te = (1 - e / ),
- j:l dc dC

(5.31)
where [r/dc] means the greatest integer in r/dc. Since the limiting

value of the density is given by

= a .
g, n,/d,; (5.32)
then equation (5.25) becomes
o 1,
br(g(r) - &) = = 5!, 8(r-r )
. o) NA 1,1 1
_E.JL]
d
bxr n 1-e¢ o fe - ES (1 - e-r/LC)
A edc/Lc -1 dg

(5.33)
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5.5 RELAXED QUINOID COMPUTER MODEL

Though graphite was one of the first crystal structures to be
determinéd, it may have a form beyond the two given in chapter 1, for
the X-ray diffraction results of Lukesh (1955) showed that perhaps both
ordinary and rhombohedral graphite had larger units of structure with
lower symmetry. Pauling (1967) has suggested that perhaps the double
bond of each carbon atom (which has a valence of four) does not resonate
equally among all three covalent bonds. Since two of the valence elec-
trons of carbons are identical, he proposed that it is likely that at
least two of the bonds connecting each atom to its neighbors are equal
in length. By symmetry the odd bond makes equal angles with the other
two. If all the valence electrons hybridize to form three bonds equal
in length, the stfucture is completely resonating. But if this third
bond is not equal in length, the structure is quinoidal; that is, this
theory assumes that this double bond is concentrated in one of the three.

This model of graphite,therefore,is a layered structure of carbon
atoms with three neighboring atoms as before. In both hexagonal and
rhombohedral graphite these atoms are 1.418 & apart, with a lattice
constant of 2.456 K. However, in the quinoid structure, each carbon
forms one stronger (double) bond, and two weaker (single) bonds. The
structurél characteristics of the quinoid model are given in Appendix
C. Pauling suggests a number of advantages of the quinoid structure

over the completély resonating structure. It permits a better packing
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of the superimposed layers, a decrease in the inter layer spacing, and
hence an increased stabilization through the stronger Van der Waals
attraction between the layers He assigns the observed interlayer
spacing of %.35k4 R to the quinoil structure, and the spacing of *.L44 A
and greater found in many graphitic carbons to the completely resonating
structure.

Turbostratic graphite is a form of carbon which has graphitic
layers superimposed upon each other, but with great disorder, and with
inter-layer spacing between %.44 A and z2.70 £. Presumably then,
turbostratic graphite has the completely resonating structure, with all
bonds equal in length.

The difficulty with the turbostratic model for glassy carbon is
that there is no striking difference between it and a.model for turbo-
stratic graphite. And yet graphite is soft, whereas glassy carbon is
hard, and does not cleave. The problem is to find particular properties
that will differentiate glassy carbon from graphite. One'solution,
originally suggested by Ergun (1973), is to consider the quinoidal
model created by Pauling (1967) to explain graphite. Since this model
causes the inter layer distance to decrease compared to the completely
resonating model, there is greater bonding between the layers, and
hence greater strength.

Ergun's gquinoidal model for glassy carbon is a quasi-crystalline

two-dimensional model. In contrast, we have considered an 'amorphous
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two-dimensional' moiel, in which the stronger or 'double' bond 1is
selected at random, such that one bond out of three on every atom is
shorter than the other two. This means that there is no ordering of the
shorter bond in the individual plane.

A computer code has been written which generates a large plane of
hexagonal arrays of atoms with random shorter bonds, and with periodic
boundary conditions. The arrays are formed within cells in the shape
of a rhombus, and of edge n times the lattice parameter ao Conse~
gquently the two-dimensional cell contains 2n2 atoms. The algorithm is
general and can cope with any n; the highest number of atoms in a plane
produced by the program is 1250 atoms for n = 25.

The constraints are that each atom has one short and two long
bonds, and that periodic boundary conditions apply at the cell boundary.
Conséquently any bond may be picked initially and assigned as a double
bond; this labels four short bonds. The end of one of these joins is
selected randomly as the next double bond, and so on It should be
noted that often the selection of a particular bond to be short also
determines other bonds to be short. Due to periodic boundary condi-
tions, this allows arrays to be produced which are unable to comply with
the first constraint. As a result, a number of arbortive efforts at |
completing an array are encountered.

For the cell of dimension n equal to unity, the periodic boundary

conditions demand that the cell is unique, and all the short bonds are
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aligned to give a 'l-4 guinoid' structure. For ceil dimension n equal to
two, the cell may be one of two forms; a 1-4 quinoid structure (ade-
quately defined by n = 1), ani a 1-- quinoii structure. The ratio of
1-3 quinoids to 1-4 quinoids is %:1. However, for cell dimensions
greater than two, the distorted hexagons may have anywhere between zero
and three double bonds, though the total number of double bonds in the
cell must be n2. It is interesting to notice that there are clearly
definite small scale patterns of the smaller bonds. An ensemble average
of these should provide a useful comparison for the RDF.

Because of the strain introduced by these random stronger bonds,the
atoms in the model of distorted hexagons are forced to move into new
positions. The resulting atomic configuration within the cell is such
that the energy within the bonds connecting the atoms is minimized, and
the atoms are in equilibrium positions. This has been performed using
a computer program constructed by Orlandea (1973) for the stuily of
dynamic mechanical structures.

Central forces due to changes in bond length betveen nearest
neighbors in two adjacent planes, and forces due to the bending of
planes, which are proportional to the displacement of atoms in the
c-direction, have been ignored. Consequently we have considered only a
two-dimensional problem, in which atoms may move only within the layer
plane. Young and Koppel (1965) have shown that this is probably a

reasonable assumption for graphite, and consequently it should be better
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for glassy carbon with a larger interlayer spacing; additionally it

would be difficult to estimate useful force constants for these motions
Forces due to changes in bond angles within the plane have been ignored
and they are probably an order of magnitude lower than the bond
streching force constants. Thus only central forces between nearest
neighbors have been considered.

The equilibrium bond lengths used are those given by Ergun (1973)
for his quinoid structure, viz., L, = 1.5k R ana L, = 1.356 A. A
discussion of the appropriate force constants is found in Appendix D.
If it is assumed that the short bonds are double bonds, and the long
bonds are single bonds, then the ratio of the force constants should be
of the order of kg/kl = 2.16. It is probably far too drastic an
assumption that the short bonds are equivalent to double bonds, and we
have arbitrarily chosen a ratio of 1.76 for the computer model. Conse-

quently the force constants used are k. = 1.31 Mdyne/cm and k2 = 2.51

1
Mdyne/cm, where the resonating bond force constant is 1.81 Mdyne/cm
(Waser and Pauling, 1950).

The atoms in the plane are allowed to move in a harmonic potential
function of a given force constant depending on the type of bond.
Finally when the energy of the structure becomes minimal, the atomic
positions are noted. This should be performed for many layer models

since it has been observed that there are clearly small-scale patterns

in the arrangement of the double bonds.
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This relaxation method has been usedl for planes containing 19
different atoms, that is, starting with a rhombohedral lattice contain-
ing 5 x ? unit cells of graphite, two atoms per cell, random double
bonds are specified such that periolic boundary conditions are pre-
served. The small cell size has been used to reduce computational work,
vet we feel it is indicative of the results of computing with a large
cell. It can be seen that only four different types of structures can
be generated for the 3 x % cell (their frequencies of occurrence are
found assuming equal energy for all structures);

(a) a mixture of 1-3 and 1-4 gquinoids (with a relative frequency

of 7/16),

(b) a '3-2-1' structure (frequency 7/16),

(¢) a 1l-4 quinoid structure (frequency 1/16),

(d) a '3-%3-0' structure (frequency 1/16).
The frequencies with which these various structures are generated for
the » x > cell, is such that quinoids are produced as often as are
structures containing a hexagon with three shorted bonds, though in
general this is not true. The four 18-atom celis are shown in Figure
5.7.

These structures are relaxed by keeping atoms marked 1 through 4
as a fixed frame, so that an outer relaxation is performed in which the
frame may be adjusted. It is found that the frame does not move by

more than 0.1% for any of these structures (and for the 1-4 quinoid
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structure, the structure does not move at all since the equilibrium

bonl length values were taken from Ergun's 1-4 quinoid graphite layers.
The distances between the atoms in the relaxed planes are computed, so
that the first term in equation (5.7%) which represents the correlations
of atoms in the same plane is computed as the ensemble average of the
four distinct relaxed structures

The second term in this equation, which represents the out-of-plane
correlations between atoms, requires values for the interlayer spacing
dC and the crystallite height LC. We have taken dC = 5.460 R and LC =
35.0 R from the centroid and width of the first diffraction peak (sec-
tion 4.8). 1In each of the relaxed structures, the cell was a 60°
rhombus, 7.371 A on a side .area 47.05 &2) containing 18 atoms. Thus
the density of atoms in each plane is n = 0.3826 atoms/&z. Using
equation (5.%22), the average atomic density g, is given as 0.1106
atoms/ﬁz which is to be interpreted as the microscopic atomic density,
exclusive of any voids. Further discussion of the atomic density is to
be found in Chapter 6.

The modeled radial distribution function (equation (5.33)) for the
turbostratic, disordered layer structure is shown in Figure 5.3. The
numbers above the peaks shows the coordination numbers contributing to
the peaks. The non-zero value for g(r) below the interplanar distance
(r = 32.46 ﬁ), except for the peaks, is due to an artifact of the model

for the out-of-plane correlations. For if we consider values of r in
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the region, r < dC << LC, and neglecting the in-plane correlations,

equation (5.3%) reduces to

2
Iy = 2 Ak
nr g(r) m, T (5.34)
cc
Additionally at r = dc, the difference between the average atomic
density and the out-of-plane correlations is given by
d
bnr(g - g(r)) = omn == . (5.35)
. o} AL

C
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5.6 GRIGOROVICI-BELU MODEL

In the modelling of an amorphous substance, it is useful to con-
sider a continuous network of atoms with the same type of covalent bonds
as 1n the analogous crystal. ©Since glassy carbon appears to be a two-
dimensional substance with trigonally bonded carbon atoms, it would be
useful to construct a model with the constrains that the model is
planar, and that each carbon atom has three diverging bonds. Grigorovici
and Belu (1972) have built such a model using units consisting of three
symmetrically diverging equal springs. They have formed a two-~-dimen-
sional hexagonal crystal lattice containing only merged hexagons, and a
continuous disordered network which consisted of merged pentagons,
hexagons and heptagons.

The bond lengths, bond angles, and the RDF of both models were
recorded under conditions of

(1) no stress,

(2) hydrostatic tension (equivalent to an outer
relaxation),

(3) wuniaxial stress.

The radial distribution analysis of the amorphous model showed
that the 1st, 2nd, 4th, and 6th nearest neighbor distances of the
lattice were present but with a definition which became worse with
increasing distance; the »rd, 5th, and T7th peaks were strongly broad-

ened, shifted, or absent (see Figure 5.9). It was found that distances
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between atoms within the zig-zag chains were relatively well con-
served in the amorphous model, whereas distances between atoms linked
to the zig-zag chain by branched-off bonds were strongly changed ani
smeared out.

Uniform radial extension did not change the width of the bond
1ength distribution in either model, but did change the width of the
bond angle distribution in the amorphous model. Instead of a wide dis-
tribution of angles, there was a tendency to form angles which corre-
spond to those of the regular polygons, the distorted form of which were
present in the amorphous model. A uniaxal elongation shifted all the
peaks in the RDF to higher distances; the second peak which is sensitive
to changes in bond angles was broadened both strongly and asymmetri-
cally.

No explanation is given for the peak around 3.2 & which corresponds
to ho in-plane correlations for graphitic layers (see Appendix A.5).
However atoms in regular heptagons have third nearest neighbor distances
3.19 8. If the hexagons and heptagons are found in equal numbers, then
this peak will be approximately twice as strong as that for hexagons
(2.83 K). The peak around 3.2 A in our RDF (Figure 5.1) has been
found to be a termination effect. Consequently the number of heptagons
in reality must be small in comparison with the number of hexagons.

A network of planar hexagonal rings has been constructed on the

computer by Cooper and Aubourg (1972), with the restrictions that each
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atom has three adjacent atoms, and that all bond lengths are equal.
Consequently the average bond angle is 2ﬂ/5. The distribution of bond
angles © were restricted to the range n/} < 6 < % to avoid network over-
lap and reentrant angles. It was expected that the a priori distribu-
tion of bond angles would influence the pair correlation function and
the final distribution of bond angles of the model. However,they found
that the density and the determined distribution of angles were rela-
tively insensitive to the initial distribution, but were sensitive
rather to the limits of the distribution of 6. Consequently a self-
consistent structure could be determined for a given angle of ©. They
only report results for a uniform distribution in the range n/j < 6 < nx.
Their histogram shows mexima at 1.42, 2.8L, and 3.80 K. However the
limits of the range are unrealistic for carbon, and the model should be

explored with a narrow distribution around © ~ 2x/3.
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5.7 CTHER GLASSY CARBON DIFFRACTION PATTERNS

In this section we give the results of the more recently published
data of radial dlstribution studies of glassy carbon. The original pa-
per on the structure of glassy carbon was that of Noda and Inagaki
(196L4), who obtained a diffraction pattern of glassy carbon from Tokai
out to Qmax = 10.05 ﬁ_l, using copper and molybdenum Kd radiation. They
used an artificial temperature factor such that exp (- QQE) = 0.1 at
Q = Qmax' Consequently this convergence factor gives a resolution in
the RDF as defined by the full width at half-maximum of 0.5 K. The RDF
of the glassy carbon with a 2000°C heat treatment temperature is shown
in Figure 5.10, and the peak positions and coordination numbers are
given In Table IV. DPeaks at approximately these same positions were
found for the 900°Cc and 1500°C treated samples. The similarity with
graphlte is not apparent and their coordination numbers (obtained from

Lindberg, 1969) are surprising low. The interlayer spacing of their

1800°C sample is given as 3.48 R by Wright (1969).

TABLE IV

NODA-INAGAKT (196L4) 2000°C TOKAI SAMPLE

Coordination Glassy Carbon Graphite
Sphere r (X) n r (A) n

1 1.5 3.5 1.42 3

2 ' 2.46 6

5) 2.68 2.6 o8k 3

N 3.75 6

5 L.25 k.1 h.25 6

6 4.91 6

7 5.2 5.0 5.11 6
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50t

. RDF of Tokai Glassy Carbon
(2000°C)

(Noda & Inagaki, 1964)

w H
IO ®)

N
?

47reg(r)(atoms A1)

r (R)

Figure 5.10. The radial distribution function of Tokai glassy carbon.
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Further analysis was made of the first peak in the RDF, and is
shown in Figure 1.1. It was assumed that the two types of coordination
were present, and each had the same equilibrium distance ss in the crys-
talline caSe. The peak was separated into these two components, each
with a Gaussian form. Thils analysis suggested that the amount of tri-
gonally coordinated atoms in glassy carbon increased with the heat
treatment temperature. Although the resolution of their data is in-
sufficient to support their analysis, their ideal of graphitic layers
has been borne out by further experiments, except that the amount of
tetrahedrally bonded atoms is probably much smaller than they suggest.

Lindberg (1969) took diffraction measurements on Lockheed glassy
carbon with heat treatment temperatures of 1000°C, 2000°C, and 3000°C,
9ut to Qmax = 8.0 ﬁ-l using copper Ka radiation. The scattered inten-
sity showed peaks at Q = 1.72, 3.03, and 5.18 A-l. The RDF of the
2000°C sample is shown in Figure 5.11, and the peak positions and coor-
dination numbers are given in Table V. ©No general trends were seen be-
tween the different heat treated temperature samples, in either the
coordination numbers or peak distances; though this is not too surprié-
ing since the RDF héd only a resolution of Ar ~ 0.78 . 1In addition,
the value of go used to obtain the coordination numbers was 0.1078 atoms
ﬁ-B which was obtained from an estimate of the density neglecting the
small pores within the volume. Consequently these numbers need not be

too accurate. However Lindberg concludes that glassy carbon has the
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same nearest neighbor distances as graphite layers, and that the number

of atoms at each distance is approximately the same as in graphitic

layers.

TABLE V

LINDBERG (1969) 2000°C LOCKHEED SAMPLE

Coordination Glassy Carbon Graphite
Sphere r (&) n r (R) n

1 1.43 3.3 1l.k2 3

2 2.46 6

3) 2.60 9.6 ok 3

L 3.75 6

5) k.05 L.25 6

6 4,91 6

7) >.12 5.11 6

Wright (1969) has obtained an X-ray diffraction pattern out to Qmax
= 16 K-l of a Plessy vitreous carbon as shown in Figure 5.12. The sam-
ple was prepared by thermal degradation of a phenolic resin, and was

subjected to a maximum heat treatment temperature of 1800°C. The sample

had a thickness of 2.556 mm, and a density of 1.5183 gm em >

(or
0.07613 atoms ﬁ_3), giving an X-ray transmission of 0.8. From the dif-
fractlon pattern, he also concludes that vitreous carbon is composed of
units of parallel graphitic layers, with L, "~ 20 R, and L, ~ 30 R. a
large amount of small angle scattering was found, but was not analyzed.

The RDF 1s shown in Figure 5.13, and the peak positions are given in

Table VI. In fact all the peaks out to 10 X that are expected from
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Figure 5.12. Experimental X-ray diffraction pattern
of Plessey 1800°C vitreous carbon.
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RDF for Vitreous Carbon (1800°C)
from X-ray Diffraction (Wright,I969)
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Figure 5.13. The radial distribution function
of Plessey 1800°C vitreous carbon.




187

graphitic layers are believed to be seen with none extra. No coordina-
tion numbers are quoted. Apparently Lorch has obtained an unpublished
neutron diffraction pattern of this particular sample (Leadbetter and

Wright, 1973).

TABLE VI

WRIGHT (1969) 1800°C PLESSEY SAMPLE

Coordination Vitreous Carbon Graphite
Sphere r (X) r(R) =

1 1.4k l.ke 3

2 2.kt 2. k46 6

3 shoulder 2.84 3

L 3.78 3.75 6

5 4.28 L.25 6

6 4.91 6

72 5.0t 511 6

Duwez (1971) acquired a diffraction pattern out to Qmax = 17.4 K_l
of a Beckwith vitreous carbon with a heat treatment temperature of 1800°
C (Figure 5.14). The data were taken with copper and molybdenum Ky ra-
diation, and no Compton corrections have been applied. The data is very
similar to that of Wright. TFrom the widths and positions of the first
two diffraction we have obtained Lc ~ 28 &, and La ~ 34 R, and spacings
dc = 3,59 R distance of 1.425 R.

Ergun and Schehl (1973) have obtained a diffraction pattern of a
glassy carbon sample of Fitzer produced from a polymer of furfuryl alco-

hol with a heat treatment temperature of 3000°C. The data were taken
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using silver K& radiation. The corrected intensity tunction is shown

in Figure 5.15. The position of the first diffraction peak gives the
layer spacing of d_ = 3.42 8 + 0.03 K, and the width gives L, ~ 30 .
However, a detalled analysis of the Fourler transforms of the (fkO) re-
flections glves an interpretation of distorted hexagonal rings with con-
siderable strain, and their conclusion is that these distortion effects
outweigh the defect or layer size effects in the observed profiles of
the (110) reflection. Ergun (1973) believes that folds are the cause of
strain in the lattice and that in the vicinity of faults the possibility
of the existence of quinoidal rings are very likely, since the distor-
tion becomes less than in resonating rings. From a diffraction point of
view folds constitute defects in the two-dimensional lattice. Ergun was
the flrst to suggest that perhaps glassy carbon is composed of layers of
quinoidal rings rather than hexagonal rings.

Wignall and Pings (1974) have most recently obtained a diffraction
pattern out to Qmax = 1k, A_l of a sample of vitreous carbon from
Vitreous Carbons (Beckwith) which has been subjected to a maximum
temperature of 1800°C. The sample had a thickness of 1.28 mm, and a
mean densiﬁy of 1.484 gm cm_B. The data were taken using molybdenum Ka
radiation, and the corrected intensity functlon is shown in Figure 5.16.
The RDF showed remarkable similarity to the correlations of carbon black
(Ergun, 1968), and the nearest neighbor distance of 1.40 £ was obtained

from the second diffraction peak. No significant amount of tetrahedral
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bonding was found. From the widths and positions of the diffrasction
peaks, they obtained L~ 15 &, and La ~ 22 R, and a layer spacing of
dc = 3,54 &, This spacing is higher than in graphite, and they attrib-
ute this to the fact that there is no correlation between adjacent par-

allel graphitic layers.



CHAPTER VI. ©SMALL Q DIFFRACTION

6.1 SMALL Q DIFFRACTION ANALYSIS

In this section, we consider possible explanations for the experi-
mental forward angle scattering. We play the 'small Q game' of fitting
the data to known theoretical forms for the size and shape of the pores
to obtain an estimate of the local atomic density for comparison with
bulk density measurements. All the formulae in this section will apply
to a homogeneous medium; i.e., the volds are assumed identical and uni-
formly distributed throughout the system.

Applying formulae originally developed for small angle X-ray scat-
tering, we consider integral relations of the diffracted intensity which
describes scattering from voids (Guinier and Fournet, 1955). The void
volume VV and its characteristic length 1 (the mean length of all lines
passing through every point of the void in all directions and ending on

the surface of the void) are given by

2
£ @) @ - 2= (0, (6.1)
\'
and
e a = 1o, (6.2)

Since the small Q diffraction (Figure L4.13) is more intense that the

large Q diffraction, the whole pattern may be approximated by

195
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s(Q)
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e

(6.3)

and

1(q) = ;%e'QQ, (6.14)

!

where ¢ = 13.68. This gives 1 from equations (6.1) and (6.2); i.e.,

1 = n/fca = 21.36 K. (6.5)

Hence if the small-Q scattering may be approximated by a simple expo-
nentlal from, then the mean chord length may be determined from the
slope of the intensity as a function of Q. It wlll be seen later how-
ever, that the scattered intensity is proportional to Q-3 (instead of
Q-h) in the wings of the small Q curve. Guinier and Fournet (1947)

have shown that in this case the appropriate integrals become

2
12 [fa ) a = - 10), (6.6)
and
1/« [2 i) da = 21 1(0), (6.7)
where
1) = ZQi(Q). (6.8)

Hence the simple exponential form e_O(Q gives 1 equal to o exactly. That

is, the mean chord length is the characteristic void length;vviz.,
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1= 13.6 8. The integrals also give a void volume,

vV = unQB = 3.16 1ou AB. (6.9)

v

If equation (6.3) is transformed by the Zernicke-Prins relation

(equation (2.47)), where

i

1(Q) N S(Q) (6.10)

and

I( o) N S(w) = Nbg, (6.11)

N being the total number of scatterers exposed to the incoming beam,

then

e o sin Qr 4qQ

1}
almn
s
O

brr(g(r) - go)

) Ef e % gin Qr dq

= |

A
2

b
2 A 2
] (6.12)

b
This shows the deviation due to small-scale voids of the atomic density
g(r) from its average value go. Note that at small r, g(r) approaches
the local variation in atomic density which is obtained from the inver-

sion of the extended diffraction pattern.

The variation in g(r) is given by

(6.13)

a(r) - gol_l . 0.4188 ]

(1 + (r/13.6)%)°
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and is shown in Figure 6.1. It may be fitted to a macroscopic parameter
at infinite r. TFor at large r the value of go is given by 0.0747 atoms
ﬂﬂs, the atomic density corresponding to a density of 1.49 gm cc_l
obtained by mercury porosimetry, which method determines the bulk den-
sity neglecting the large scale pores. This yields a value of the local
density of 0.1060 a’comﬁn3 at zero r. Obviously a slightly different
value would be obtained had not the structure factor S(Q) be approxi-
mated by equation (6.3), where the extended Q diffraction was assumed to
be constant. However to be remarked is that the local density is very
close to a local atomic density of O.ilO6 atom A-B which was obtalned in
section 5.5- by analogy with graphite using a plane spacing of 3..46 R.
The slope of the small Q data depends on the void size, provided
that the voids have a convex shape. It is important to note that the small
Q neutron diffraction results do not appear to be obeyed by a conven-
tlonal form for small angle scattering (Guinier, 1939). For example,
Guinier's law for distinct globular voids with random orientation,
widely distributed within a homogeneous material of constant atomic

denslity, is glven by

I1(Q) o exp(- QERi/B) (6.1k4)

where RG 1s the radius of gyration of the void, and the region of valid-
ity is @ < O.6n/RG. The characteristic void dimension is 13.6 £, so

that one might expect a Guinier law compliance for Q < 0.1k R. The
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lower limit of the small Q neutron diffraction results is Q = 0,065 ﬁ—l,
‘and it is probable that there are deviations from the simple exponential
form around this value.

Although the data are outside the limitatlions of the Guinier cur&e,
one might expect in the wings that the intensity 1s given by Porod's
law (1952). For at the large Q extremity of the small angle region, the

scattered intensity i1s given by

I(Q)wQ’M (6.15)

This law is valld in the region QL >> 1, and for any voild shape provided
that the orientation is random. If the data are plotted as log I(Q)
versus log Q (see Figure 6.2), it will be seen that there is a range,

-1 o-1 ;
0.15 8 ~ < Q< 0.6 A , over which that data may be approximated by a
straight line. It is obvious from the Porod plot that reasonable agree-

ment is given by the relationshilp

Q) o q°. (6.16)

Moreover, if the scattering due to the first diffraction peak 1s extra-
polated to smaller Q and subtracted from the higher intensity region,
then equation (6.16) is a good fit for all Q > 0.15 A-l (Figure 6.3).
The X-ray Porod plot for Q > 0.15 ﬁ_l‘is shown in Figure 6.4, and it
also obeys a Q'5 law. Porod (1952) states that the straight line por-

tion indicates a sharp density transition from one phase to another;
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Figure 6.3. The Porod plot of the corrected small Q scattering of glassy
carbon with the first diffraction peak subtracted as in Figure 4‘13.
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i.e., vold to material. Hence it is believed that the small scale voids
are not interconnecting.

In general, small Q scattering experiments are capable not only of
giving the size aﬁd shape of the voids, but also of giving the distri-
bution of pores sizes. However if the voids are close together, im-
portant interference effects occur, especially if these voids have some
form of regular arrangement as might be expected for glassy carbon.
Schmidt (1958) has shown that at very low Q, interference effects be-
tween small and large-scale voids distort the Gulnier felationship. The
results of that part of the small Q X-ray diffraction measurements which
covers a range will within the Guinier limitations (section 6.3) suggest
that the volds are polydisperse (Hucke, 1973). It would seem therefore
that interference effects between the small and large voids are apparent

for q ~ 0.15 A ~.
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6.2 DIFFRACTION REGIONS

In the discussion of the diffraction from glassy carbon, it is
found that the scattering can be separasted into distinct regions because
of the large and small-scale voids found within the sample. The three
regions correspond to: (1) the very low Q diffraction characteristic
of large-scale voids; (2) the samll Q diffraction characteristic of
small-scale voids; and (3) the large Q diffraction characteristic of
interference of neighboring atoms. Since mercury porosimetry measure-
ments (Hucke, 1972) have shown that there are large scale volds of di-
mensions ~ 250 &, the first region extends in wave vector transfer
range, 0 < Q < Ql ~ 0.025 A-l. The second region is below the first
diffraction peak at Q =~ 1.8 K, and has small-scale voids of character-
istic length 13.6 § within the dense material; the range of the region
s <a<q,=1 2l The thira region has the range @ > 1 A'l, which
is the normal diffraction region characteristic of interatomlc spacings.

The normalized intensity i(Q) defined by equation (2.44) may be

separated into three functlons characteristic of each region, viz.,

i(Q) = 1.(Q) + ig(Q) + 15<Q). (6.17)

The separation is fortultously convenient because three scales of order
exist, and we further make the assumption that the relative magnitudes of
these functions are such that they differ by an order of magnitude for

different regions in the diffraction pattern (see Figure 6.5). That is,



20L

™ 14(Q) piffraction Pattern
Showing Three
Distinct Regions

——== Logarithmic
Linear

10
102 {3
Q) i5(Q)
10 —2
1.0 ' |
o) ——0
-1.0 l -

10°5 1074 1073 10;2 10" 10° 10" 102
Qa )

Figure 6.5. A schematic diffraction pattern of glassy carbon showing
three distinct regions in wave vector transfer.
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(1) 1i(Q) > i.(Q), for @ £Q

1 1
11(Q) << i?(Q), for @ 3 Q) (6.18)
and
(i1) 1(Q) > i3(Q>: for Q £ Q,
ig(Q) << i}(Q}, for Q > Qg. (6.19)

Hence we may divide the diffraction pattern into three distinct regions

within which the diffraction pattern is approximated by one of the three

functions
(1) i(Q) = il(Q), for 0 < Q< Q. (6.20)
(2) i(a) = 1 (Q), for @, <Q<Q,, (6.21)
(3) i(Q) = iB(Q)’ for @, < Q. (6.22)

If we ignore all the small Q scatterlng, by extrapolating the first
diffraction peak at low Q as in Figure 4.13, then i(Q) is approximated

by iB(Q). Fourier inversion gives

2 2r ..
b (g(r) - gg) = = [ a i,(e) sin or dq, (6.23)

where g5 is an average local atomic density as introduced in sectlon
2.6. It could be defined as the limiting atomic density on a 'local'
scale as r becomes large, but smaller than the distance between the

voids. That is, presumably for r << 2w/Q2 ~ 6 R. i3(Q) therefore is
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the ilntensity shown in Figure 4.7 with the small Q scattering sub-
tracted. The inversion of the exteﬁded Q diffraction only is shown in
Figure 6.6. It therefore has the normalization as used previously;
viz., the Krogh-Moe procedure with go = g2 in equation (3.32); though as
before we note that the value of go is very sensitive to small changes
in I(o).

Since there is an effective exclusion of an atom from the immediate
neighborhood of another atom, then g(r) =0 for r < Rl’ the first neigh-

bor distance. Then equation (6.23) becomes

2
[ a 1,(Q) sinar aq = -2r'rg,. (6.2L)

Integration of equation (6.23) fromr = 0 to R < Ry gives

R 2 R 2

_& ber™(g(r) - gj) dr = 4) - UYnr 85 dr
_ Lk .3
B ELE (6.25)

or
- 1 R 2
: = - ——— - d -2
g5 = &(R) WS [, b (g(r) g, dr (6.26)

The function é(R) determined from the transformed date is shown in Fig-
ure 6.7, bqt no useful value of g3 can be estimated. The fact that_é(R)
rise to a value equal to g3 obtalned by analogy with graphite is en-
tirely colncidental. Without termination wiggles which are most trou-
blesome at small r, the function é(R) would be identically equal to g

3
for all R < Rl'
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If neighboring atoms are neglected, and i(Q) is approximated by
ig(Q), then equation (€.12) is obtained where g = 8 the microscopic
atomic density. Figure 6.1 shows the atomic density variation due to
small scale voids. Note that the density decreases with increasing r,
which shows the effect of voids in constrast to the Fouriler transform of
i_(Q). The same effect will be shown by the Fourier inversion of i(Q) =

3
il(Q); that is,

brr () - g,) = %r f: Q 1,(Q) sin Qr dq. (6.27)

This gives the atomic density variations due to the larger scale inter-
connecting volds. TIts limliting value gl may be determined from the

-1
macroscopic density of 0.923 gm cc determined by mercury immersion.

Now combine all three functions

1 00
glr) - g = e [, @ 1(Q) sinar aq
1 e 2 sin Qr
= 22 [ a1,(Q) el U
(6.28)
o 2, sin Qr 00 2. sin Qr
J, @i =7 e+ [heti(Q) == ael,

where go = gl, the macroscopic atomic density (schematically shown in
Figure 6.8). There will be two natural divisions in the radial distribu-
tién function due to the assumptions originally made for i(Q). These
will occur at rl ~ QW/Ql, and r2 ~ Qﬂ/QE giving three regions of inter-
est. For O <rK rg, the RDF willl show the local ordering of atoms with

a mean value of gB, the local atomlc density. For r L rK rys the
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-

value of g(r) will tend towards gg, the microscopic atomic density, and
for r> rl, the value tends towards gl, the macroscopic atomic density.
Hence with the above assumptions about the relative effects of the
small and large scale voids, the radial distribution function may be
estimated. The local ordering of atoms in the glassy carbon is deter-
mined from the large Q diffraction pattern which was measured by neutron
time-of-flight diffraction out to @ < 25 &, while the longer range vari-
ations are resolved by small Q diffraction. In practice the first dif-
fraction region given by il(Q) is considerably modified by multiple
scattering, and in fact has not been measured. Hence we have trans-

formed only the other two parts (see section 5.1).
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6.3 SMALL SCALE LAMELLAR VOIDS
Kratky and Porod (19h9) have given relations analogous to the
Guinier equation (6.1k4) for the small Q scattering from lamellar volds
. . . 2 2
whose radii of gyration are given by Rl ~ R2 << R5’ where R3 = H /12,

H being the disc thickness, and Rl < RE = R/2, R being the disc radius;

viz.,

1(Q) o <5 exp(- R§Q?>, (6.29)
_ Q

in the region, Eﬂ/Ri < stfO.6ﬁ/R5, and
22
1(Q) o exp(- RjQ), (6.30)

in the region, Q 2n/Rl. A plot of log [Q2 I1(Q)] versus Q2 for the
neutron small Q data is shown in Figure 6.9. The straight portion for
0.02k §-2,$ Qg's 0.1 872 has a slope which gives Ri = 11.7 Kg, or an
average thickness, H, of the lamellae of 11.8 X. The experimental upper

-1
limit of the validity of this equation is Q 0.32 R , which is well

0.55 A

within the theoretical limit of Q < O.6n/R3
In addition, integral relation analysis (section 6.1) gives a void
L o.3 .
volume of 3.16 10 X”. For a lamellar thickness, H, of 11.8 &, the
radius of the lamellar disc is 29.2 R. Hence the diameter of these
voids is 58.3 R, which is a remarkably close fit to the crystallite
size, La ~ 50 & by neutrons, and 56 £ by X-rays, from the (10) diffrac-

tion peak.
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Since the experimental lower limit of the Guinier fit is Q ~ 0.155

X , then lez 4o.5 A, glving the average radius of the lamellar disc,
R~ 81 &. Presumably the diameter, ~ 160 &, should be compared with
platelet distances found by electron micrography which were originally
found to be between 200 £ and 500 ﬁ, though a later measurement gave
distances of the order of 150 A (Hucke, 1972). Additionally dark field
electron microscopy gave a distance greater than 100 & in the (100)
direction. The discrepancy of these distances with the void diameter
found by the Guinier fit for lamellae may be explalned either by inter-
ference effects or lnhomogeneity. However, we shall assume that these
volds are wedge-shaped between adjacent crystallites, and lie perpendic-
ular to the (00.2) direction of the crystallites.

In order to interpret the small Q scattering data extrapolated to
Q = 0 given by equation (4.77), it is necessary to consider the total

number of scattering nucleil; vix., ggV. Then

1(0) = Ag V. (6.31)

If we assume that there are NV identical voids of volume Vv’ then the
intensity of scatter is given by equation (2.55). The maximum intensity

occurs at Q = O and is given by

N

I(0) = NV b g

<

(6.32)

W N

The voild fraction ¢ is given by
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e = (6.33)

And finally we assume that there exists on the average one thin void per
crystallite with cross section similar to the crystallite size in the

(10.0) direction. Then

v g
\ ¢ 3
- =2 - 2.1, (6.3L)
L Ta T )
where I, and Lc are the crystallite sizes obtained from the diffraction
a

peaks, and correspond to a right cylinder of diameter Lg and height Lo
(see section L4.8).
The combination of the last four equations gives the intensity per

scattering nucleus in the limit of Q > 03 i.e.,

L X120 2, (B3 2
A = 3L T, b g5 (g2 1), (6.35)
or
_ hng’
3 D o 2
-2 - — = 0. 6. 36
g5 858, *© 858 (6.36)

2 wlreL
cc
The large Q diffraction data give values of La and LC equal to 50 R and
28 ﬁ, respectively. These are similar to values obtalned by select area
X-ray diffraction. The small Q diffraction gives a value of A equal to
-1
240 barn ster . Substituting these values into equation (6.36), and
_ -3 _ -3
using g, = 0.0747 atom B ~ as before, gives g5 = 0.103 atom & ~.

Hence our model assumes that there are large grains of atomic den-

sity g? which are composed of many crystallites of atomic density gB,
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and that these crystallites may be considered as similar to turbostratic
graphite with lamellar pores between the planes of adjacent crystallites.

Conséquently the small pore fraction is approximately

6 = 1--—= = L (6.37)

where H is the thickness of the pores. If we relax the assumption that
these lamellar voids are regular in shape, then crystallites within a
given grain need not be aligned. Consequently the gralns themselves
will be isotropic, though the individual crystallites give rise to dif-
fraction peaks corresponding to each reflection in the reciprocal
lattice.

While the neutron small Q diffraction data does not extend much
lower than the point of breakdown of equation (6.29), the X-ray small Q
measurements have been made on this sample in the experlmental range
0.1 87t < Q < 0.01 g7t (Hucke, 1973). This may be within the Guinier
law limitations for globular voids (equation (6.14)), depending on the
size of the voids. If the distribution of pore sizes 1s reasonably nar-
row, then the plot of log I(Q) versus Q2 will be a straight line, the
slope of which yields a value of the Guinier radius RG. However for a
wide distribution of pore sizés, the slope of I(Q) versus Q2 varies for
values of Q, and the sample is described as polydisperse. In fact, in
the analysis of polydisperse systems of equal numbers (Guinier and
Fournet, 1955), the scattering from pores with the larger radius of gy-

ration is dominant for most Q values.
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The Guinier plot of the X-ray small @ diffraction data shown in
Figure 6.10 suggest that the carbon sample is indeed polydisperse.
These results which used slif collimation gave a Guinier radius, RG’ of
26.6 R from the slope. Using pinhole collimation, the value of Ry is
31.6 8. Assuming globular voids, this gives a value of 40.8 X to the
average radius of the pores. Then the reglon of validity of this anal-
ysis is QWSZO.6ﬁ/RG = 0.06 A—l, which is below the straight portion of
the plot.

While this discrepancy may be explained by polydisperseness, there
may be an oveflap of small-scale laméllar volds and larger scale glob-
ular voids. The Guinier plot for lamellar voids (equation (6.30))
yields a radius to the voids of ~ 63 R. The region of validity of this
equation is Q 21r/Rl ~ 0.2 A—l, which includes the straight portion of
the plot. This results lends support to the idea that the small scale
voids are lamellar in shape. Interestingly, there is also a range,
0.025 ﬁ-l,s Qg .10 ﬁ_l, for which these X-ray results may be fitted to
an exponential (Figure 6.11) with & characteristic length of 32.3 &.
This may have some connection with the mean granulation diameter of

25 R found by bright field microscopy.
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Small Angle X-Ray Scattering
from Spherical Voids (Hucke,|973)
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v
5
2. 32
S
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Figure 6.10. The Guinier plot for spherical voids for the
small Q X-ray scattering from glassy carbon.
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Figure 6.11. An exponential plot of small Q X-ray
scattering from glassy carbon.
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€.4 POLYDISPERSE VOIDS

The inability to determine uniquely the long-range order of this
carbon suggests that perhaps the voids are not identical but have a
random distribution of shapes as required by the Debye theory. Since
the material itself is homogeneous, then the intensity of scatter of

given by equation (2.65), or

I(Q) = R (6.38)
(L +aq)

-1/2 2
A Debye plot, which is a graph of I(Q) / versus Q , gives a value of

the value of the correlation length a from the square root of the slope-
intercept ratio. Debye et al. (1957) have shown that the correlation
length and the void fraction ¢ can give characteristic lengths, iv and

1 , of the voids and of the solid material respectively, by
s

L, = 3 % (6.39)

and

!
1]

a
o (6.L40)

The Debye plot of the neutron smell Q data is shown in Figure 6.12,
and gives a gorrelation length a of 7.80 R. Using equation (6.33) we
obtain characteristic lengths, iv ~ 11.6 & and is ~ 2L K. The
characteristic length in the voids agrees well with thickness derived
from the Guinier plot for disc-shaped voids. The characteristic length

in the solid agrees well with the crystallite size I, found from the
C
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first diffraction peak.

The Debye plot of the X-ray small Q data is shown in Figure 6.13,
and gives a correlation length a of 17.8 R. It should be noticed that
these data are in a different Q range from the neutron data. The
characteristic length iv in the voids is 26.4 &, and the characteristic
- length is the soiid is 54.9 K. These values have a reasonable agreement
with the crystallite parameters, Lc and La’ determined from the extended
Q diffraction pattern, where Lc is interpreted as the distance between
pores, and La as the distance across regions of two-dimensional ordering
It seems as though disc-shaped voids of average thickness about 11.6 X
act as spacers between crystalline cylinders of helght LC and diameter
La' This analysis 1s entirely consistent with the previous concept of
separated lamellar pores. In addition the slope appeers to lncrease for
Q< .025 A—l, which corresponds to large-scale voids of dimensions 250 k.
fhese general ideas have been confirmed recently by Wignall and Pings

(1974) for Beckwith vitreous carbon using X-ray diffraction techniques.
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Debye Plot of Small Q X-ray Scattering
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Figure 6.13. The Debye plot of small Q X-ray
scattering from glassy carbon.
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6.5 VERY LOW Q DIFFRACTION

The range of wave vector transfer over which the small Q neutron
diffraction measurements have been taken does not extend sufficiently
low to be able to define a value of Ql’ the boundary between the
diffraction effects of short and long range voids. However mercury
porosimetry measurements suggest that the interconnected pore systems
have a mean diameter of ~ 250 A which should have dominant effects in
the range of Q < 0.025 A™'. Additionally the small Q X-ray data
suggest more intenée scattering below this value. Not having any
further clues to the value of Ql’ we shall assume that is is around this
estimate.

In the range of Q very close to zero, it is possible that re-
fractive effects may become important, and even overshadow the dif-
fracted intensity. This is due to multiple scattering near the bound-
aries between the voids and the material, so that severe corrections may
be necessary in the first diffraction region. We will calculate a
value of the critical wave vector transfer QC, below which refraction
must be considered.

For neutrons of wave length A and a material of atomic density‘g
and scattering length b, the refractive index n is given (Goldberger

and Seitz, 1947) by

n = 1-2>80 (6.41)



225

Hence for a positive scattering length, the refractive index is less

than unity, so that total internal reflection is possible if the

glancing angle is less than the critical angle O given by cos © = n.
c c

Since n is very close to unity, all angles are very small for refractive

effects to occur. Then the critical glancing angle is given by

\1l/2
o = x.(}ﬁi:> (6.42)
C 7

and the critical wave vector transfer is given by

@ = o = (16xg0)Y/? (6.47)
which is independent of neutron wavelength. This analysis will only be
valid if the boundary between the voids and the crystallites is
relatively flat which is the case for lamellar voids. This may als> be
true for globular voids whose radius of curvature is very much greater
than the incident radiation wavelength. The appropriate number density
is that overaged over a few mean free paths at the boﬁndary between the
voids and the material; that is, g, ~ 0.1106 atom A™°. Hence the
critical wave vector transfer QC is about 0.019 ﬁ—l. _waever the depth

of penetration of radiation reflected at grazing incidence is given by

-1/2

d = (Lngb) (6.54)

and total reflection will be seriously influenced by inhomogeneties at

distances less than d ~ 100 & from the void surfaces, which is about
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twice the crystallite size La' Hence 1t is believed that the refractive
effect corrections may not be too severe in the first diffraction
region.

Since we have had great success in transforming a simplified
function (equation 6.3)) for the second and third regions, we now
attempt the same procedure for the first region, also. We assume that
the diffraction pattern may be approximated as a constant over all
ranges of Q, except at very small Q where the Guinier approximation

(equation (6.14)) is valid; that is:
22 2
S(Q) ~ Bexp(- RQ /5) +b (6.145)

where R is the average radius of the large-scale pores. Then

' 2.2
'hnr(g(r) -gl) = % fz Q B exp<£%5Q4:>sin Qrdr (6.46)

or

3/2
2 2
g(r) = g, + B(: 2 é) . -Lr /3R, (6.47)
4nR

The results from the transform should be fitted to the following
macroscopic results. The density measured by mercury immersion is
-1 )
given as pl = 0.923 gm cc , which is averaged over the large -scale
voids. Hence the atomic density g = 0.046% 87 for r > w. The density
. . -1
measured by mercury porosimztry is given as p2 = 1.49 gm cec which

neglects the large-scale voids. Hence the atomic density gg is
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0.07k7 A " as T - . For spherical voids of radius R ~ 125 &, the

first diffraction region gives a density function
2
g(r) = gl(l + 0.614 exp{-(0.007167) J}) (6.48)

which falls to 1/e of its maximum at r = 116 K (see Figure 6.9).

Clement (1972) has discussed the distribution of path lengths
through a porous material assuming that there are no correlations in the
sizes of the pores and the distances between the pores. The assumption
in equation (6.41) is that the large-scale void sizes are much smaller
than the distances between the pores; that is, the material is rather
like a Swiss cheese. To test this hypothesis, consider a continuous
system with voids distributed uniformly throughout the material with a
void number density nv, Since the effective cross section of a void
in any direction is ﬂRg, then the probability of traversing a distance

I without encountering a void is given by
p) ;
p({) = exp(-mRn g = exp(-4L) (6.49)

where Lv is the mean "void-free" mean free path. The fraction of volume

occupied by the voids is

_ 3 _ LR
¢, = (4/3R)n_ = L (6.50)

The large secale pore volume ¢v is given by

o = 1o, (6.51)
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and is 0.3%8 using the bulk measurements of density. The mean dlameter
of the interconnected pore system is 250 K, as determined by the mercury
porosimetry measurements. Then R~ 125 K  ana l/Lv ~ 2.3 107> K_l,
which is within the first diffraction region, and the 'void-free' mean
free path, Lv, has a value about 440 K. Unfortunately this is not
significantly greater than the large-scale pore diameter, which suggests
that there will be interference between the scattering from the grains
and the large-scale pores. This is in addition to the interference
between the interconnecting large scale pores.

Because of these difficulties and the inability to make measurements
within this region, cur structural determinations have ignored il(Q)
altogether. While no neutron diffraction measurements have been
taken in this region, it would certainly be interesting to explore it
using neutrons of very long wavelength at small scattering angle. Such
low Q neutron diffraction measurements may be performed for Q > 0.001

K-l at Grenoble (Maier, 1973).



CHAPTER VII. CONCLUSION

The neutron diffraction pattern of the Hucke glassy carbon treated
at 2000°C is similar to the X-ray diffraction patterns of other glassy
carbons. This has been found by comparison with data from Ergun of the
Fitzer glassy carbon treated at 3000°C, and from Wignall and Pings of &
1800°C treated sample from Vitreous Carbons.

It is believed that the structure of glassy may be described by
two-dimensional graphitic layers, and the arrangement of these planes
may be found from the diffraction pattern. The position of the first
peak gives the interplanar spacing of 3.46 K, and the position of the
second peak gives an interatomic distance of about 1.4 A based on the
hexagonal lattice. The widths of these diffraction peaks are inter-
preted as corresponding to crystallite sizes of L, ~ 31 R and L, ~ 50 K.
These numbers have been confirmed by wide angle X-ray diffraction.

The radial distribution function has peak positions and coordina-
tion numbers which correspond to those expected for graphitic planes.
However, there is no peak corresponding to interplanar correlations, so
that there is no regular arrangement in the stacking of the planes as in
graphite. There is no evidence of a peak corresponding to tetrahedrally
bonded carbon atoms as suggested in the double peak distribution for

Noda and Inagaki.
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The small angle neutron diffraction has been examined using & num-
ber of traditional means. While none is clearly the best, there is no
disagreement in the results from each method. The solid regions of two-
dimensional ordgring have dimensions which agree with those obtained
from the diffraction pattern. These regions may be joined in the direc-
tion of the planes by tetrahedrally bonded atoms, the amount of which is
estimated at less than 8%, though this is too small to be seen in the
RDF. The crystallites are stacked end to end with thin non-
interconnecting voids which act as spacers between the solid regions.
The voids have a mean thickness of about 12 A, and a mean diameter of
about 50 A.

There are also much larger pores with dimensions of the order of
250 KA. These voids give rise to very low Q diffraction. Consequently
the diffraction pattern has been separated into three distinct diffrac-
tion regions which reflect the solid regions and the two scales of
voids. The transforms of each diffraction region have been correlated
with the atomic densities on the local level and those taking into ac-

count the two scales of voids.



APPENDIX A.l. CUBIC DIAMOND STRUCTURE AND DIFFRACTION

Each carbon atom is surrounded by four equidistant neighbours at
the corners of a regular tetrahedron. The unit cell is cubic, and the

structure has eight atoms arranged in the following positions:

(0,0,0), (0,1/2,1/2), (1/2,0,1/2), (1/2,1/2,0), (1/4,1/4,1/k),

(1/4,3/4,3/%), (3/4,1/1,3/4), (3/b,5/1,1/%).

The cube length or lattice constant a_ is given as 3.56679 & at a

temperature 20°C. The reciprocal lattice vector has a length,
-1
|b| = onfa_ = 1.T616 K.
A typical reflection (h,k,1) has an associated wave vector transfer

!

hkl = 231/3-0 (h)k‘)l))

with a magnitude

2, .2 2,1/2
= |b|l (b~ + + .
gyl = Bl ®+xB41®)
The structure factor Fhkl for a given reflection (h,k,l) may be given by
= + - i(h+k +
Fel [1+exp(-n/2i(h+k +1)]
[1+exp(-ni(k+1)) + exp(-ni(h+1)) + exp(-ni(h +k))]
Hence F = 0, if

hkl

251
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(1) (h+x+1) mod 4 = 2, or

(2) h,k,l are mixed indices.
With the above restrictions, the only allowed reflections have structure
factors of either

8 for (h+k+1) mod L

]
o
e
o}
)

it

4(1+i) for (h+k+1) mod 4 = 1,3.

The first few reflections are shown below:

Plane  h2+k2+12  Multiplicity  |Frkal® lapper | (B71)
111 3 4 32 3.051
220 8 6 6L 4. 983
311 1 12 32 5.843
L00 16 3 an 7.046
331 19 12 32 7.611
Loo 24 12 N 8.630
511 27 12 32 9.15k4
355 27 L 52 9.15k
440 32 6 6L 9.965
531 35 ol 32 10.422
620 Lo 12 6k 11.1k1
533 43 12 32 11.5%52

Ll 48 L Sn 12.205



APPENDIX A.2. HEXAGONAL GRAPHITL STRUCTURL, AND DIFFRACTION

Each carbon atom is surrounded by three equidistant neighbours to
form an hexagonal array. The unit cell is a prism of dimensions ao =

2.456 & and c = 6.696 K, with four atoms arranged in the following po-

sitions
(0,0,0), (0,0,1/2), (1/3,2/3,0) (2/3,1/3,1/2) .

The reciprocal lattice vectors have lengths

o
I

|b

—2' = 2n/a.o-2/~/§ = 2.954 A’l,

and

o
I

_ -1
b, 2n/co = 0.938% £ ~.

A typical reflection (h,k,1) has an associated wave vector transfer

G = 2n(=(+k)/a, +(h-K)N3 2 , +1/c )

with a magnitude

2

B 2 2 2 _2,1/2
|apq | = (B 7T +nk+ k%) + b7 17)7 %

The structure factor Fh for a given reflection (h,k,l) may be

k1
given by

255
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Fropg = L F exp(-nil) + exp(-2ni/3(h +2k))

+ exp(-nil) exp(-2ni/3(2h +k))

Hence F, . = O when both 1 mod 2 = 1 (i.e., 1 is odd), &nd (h2-+hk-+k2)

k1l

mod 3 = 0. The only allowed reflections have structure factors of

either

]

1 for 1mod 2 =0 (1 even) and sz+hks+k2) mod 3 # 0, or

]

4 for 1 mod 2 =0 (1 even) and (hg-fhk<+k2) mod 3 = 0, or

+iN3 for 1 mod 2 =1 (1 odd) and (h2-+hk-+k2) mod 3 # O.
The first few reflections are shown below in hexagonal units, and

equivalent L-axis units:

Plane
heiifzzal inii;f Maltiplicity IFhkl|2 ER e ")

(hkl) (ajapes-c)

00.2 000.2 1 16 1.877
10.0 101.0 3 1 2.954
10.1 101.1 6 3 3.100
10.2 101.2 6 1 3. 501
00.4 000. 4 1 16 3.753
10.3 10I.3 6 3 4.0o81
10. 4 101.4 6 1 L. 776
11.0 113.0 3 16 5.117
11.2 112.2 6 16 5.450
10.5 101.5 6 3 5. 5kl
00.6 000.6 1 16 5.630
20.0 202.0 3 1 5.908
20.1 202.1 6 3 5.982
20.2 203.2 6 1 6.199
11.4 112.4 6 16 6.346
10.6 101.6 6 1 6.358
20.% 202.% 6 3 6. 54k
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Plane
heﬁifizal ﬁniii: Multiplicity thkll2 R e ")

(hk1) (ajapaz.c)

20. 4 2024 £ | 6999
10.7 101.7 6 4 7.202
00.8 000.8 1 16 7. 507
20.5 202.5 6 3 7.54L
11.6 112.6 6 16 7.607
21.0 213.0 12 1 7.816
21.1 213.1 12 ) 7.872
21.2 213.2 12 1 8.038
10.8 10I.8 6 1 8.067
20.6 202.6 6 1 8.161
2l.3 213.3 12 3 8.307
21.4 213.4 12 1 8.670
20.7 202.7 6 3 8.834
30.0 303.0 3 16 8.862
10.9 10I.9 6 2 8.946
30.2 303.2 6 16 9.059
11.8 112.6 6 16 9.08L
21.5 21%.5 12 3 9.116
00.10 000.1C 1 16 9.383
20.8 202.8 6 1 9.553%
30.4 303.4 6 16 9.624
21.6 213.6 12 1 9.632
10.10 10I.1C 6 1 9.837
21.7 213.7 12 3 10.209
22.0 22k.0 % 16 10.2%%
20.9 202.9 6 3 10.306
22.2 22h.2 6 16 10. Lok
30.6 303.6 6 16 10.499
31.0 31L.0 6 1 10.651



APPENDIX A.3. RHOMBOHEDRAL GRAPHITE STRUCTURE AND DIFFRACTION

Each carbon atom is surrounded by three equidistant neighbours to
form an hexagonal array. The unit cell is & rhombohedron with dimen-

sions a_ = 3.635 A and a = 39°30', with two atoms at 1écations
(1/6,1/6,1/6), (-1/6,-1/6,-1/6).

The reciprocal lattice vector has a length

b| = 2n cot af2 - 3.019 871

B %o (3-4 singo;/e)l/2

A typical reflection (h,k,l) has an associlated wave vector transfer

a _ 2n (h+k -21) (h-k) (h+k +1)
=nkl 8. 2% sin o/2 ’ 2 sin of2 (9-12 Sinea/e)l/z

with a magnitude

2 1/2
2 hk +k1 +hl
o | = {[b2(n+r+1)2- (2 ( )

=hkl - . 8 . 2

; o sin“of2

The structure factor Fh for a given reflection (h,k,1) may be
given by
= 3.(h+k+ .
Pl 2 cos(n/3(h+k+1))

Hence all (h,k,l) planes reflections are allowed with structure factors

of either
2 for (h+k+1) mod 3 = O, or

1 for (h+k+1) mod 3 # O.
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In addition rhombohedral graphite may be viewed with an hexagonal
pseudounit of dimensions a' = 2.456 &, and ¢ = 10.0LL K, with six atoms

arranged in the following positions:

(0,0,0), (1/3,2/3,0), (0,0,1/3), (2/3,1/3,1/3),

(1/3,2/3,2/3), (2/3,1/3,2/3).

The first few reflections are shown below in rhombohedral units,

hexagonal units, and the equivalent planes for hexagonal graphite.

Planes Equivalent
rhombohedral  hexagonal Hexagonal Multi- IF |2 Iq | (ﬁ‘l)

units units Graphitic plicity hkl =hkl

(hkl1) (hkl) Planes
111 00.3 00.2 1 N 1.876
100 10.1 (10.2/3) 3 1 3.020
110 10.2 (10.4/3) 3 1 3.208
222 00.6 00.4 1 L 3,752
211 10.4 (10.8/3) 3 1 3.871
221 10.5 (10.10/3) 3 1 4.302
110 11.0 11.0 3 I 5.116
322 10.7 (10.14/3) 3 1 5.282
210 11.3 11.2 6 L 5.450
3%3 00.9 00.6 1 i 5.628
332 10.8 (10.16/3) 3 1 5.811
111 20.1 (20.2/3) 3 1 5.941
200 20.2 (20.4/3) 3 1 6.039
221 11.6 11.4 6 in 6.349

Notice that the rhombohedral graphite reflections do not include
all the hexagonal graphite reflections; conversely, there are some
rhombohedral graphite reflections which have no corresponding hexagonal

graphite reflections.



APPENDIX A.4. HEXAGONAL DIAMOND STRUCTURE AND DIFFRACTION

Each carbon atom is surrounded by four equidistant neighbours at
the corners of a regular tetrahedron. The unit cell is a prism and the

structure has four atoms arranged in the following positions:

(0,0,0), (1/3,2/3,1/2), (0,0,u), (1/3,2/3,u+1/2)

in hexagonal coordinates.
The unit lengths are a_ = 2.5235 £ ana c, = 4.1134 A, with an axial

ratio co/aO ~ 1.63, and u = 0.375, found by assuming an interatomic dis-

tance of 1.54k4k K.

The reciprocal lattice vectors have lengths

o
I

| o

= . =z = -l
bl = 2n/a - 2N3 = 2.875 4

and

o'
i

_ -1
b, enfe = 1.527 .

A typical reflection (h,k,1) has an associated wave vector transfer

9

iy = 2(-(a*k)/a +(n-x)N3a_, +1/c )

with a magnitude

_ 2, 2 2 2.2,1/2
a1 = (b [T +he+x%) + {2 [T217)7 7.

The structure factor F for a given reflection (h,k,l) may be given by

hkl

258



259

F = [1+exp(-2niul)][1 +exp(-ni/3(2h +L4k +31)].

(1) (2ul) mod 2 = 1; i.e., 1 =L, 12, etc.

(2) (2h+L4k +31) mod 6 = 3; i.e., there are some reflections
missing when 1 is odd.

Since u = 0.375, the only allowed reflections have structure fac-
tors of

L for 1 mod 8

0 and (h+2k) mod 3 = 0O

Il

1#y3i for 1 mod 8 = 0 and (h+2k) mod 3 # 0

2(1+i) for 1 mod L

]

2 and (h+2k) mod 3 = 0O

I

1/2(1#1)(1 £ ¥3i) for 1 mod L

2 and (h+2k) mod 3 # O

N3/2W3+i)(1+(1L+i)/N2) for 1 mod 8 = 3,5

V3/203+i)(1- (1 +i)N2) for 1 mod 8 = 1,7.

The firsgt few reflections are shown below:

BEquivalent

(hk1) ) N 2 -1

Planes Cubic Multiplicity IFhkll Ighkll (8 7)
Planes

10.0 3 L 2.876
00.2 111 1 8 3,051
10.1 6 1.7574 3,256
10.2 6 2 L.192
11.0 220 3 16 L.983
10.3 6 10.2426 5.406
20.0 3 N 5.754
11.2 311 6 8 5.843
20.1 6 1.757h 5.952
20.2 6 2 6.513%
20.3 6 10. 2426 7.352
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EBquivalent
éﬁi; Cubic Multiplicity lﬂmﬂg !%mﬂ (&™)
Planes

21.0 331 6 L 7.611
21.1 12 1.7574 7.762
10.5 6 10.2L26 8.152
21.2 12 2 8.200
30.0 Lo2 3 16 8.630
21.% 12 10. 2426 8.881
30.2 511 6 8 9.154
00.6 333 1 8 9.154
20.5 6 10. 2426 9.555
10.6 6 2 9.595

Note that the 00.4 reflection (equivalent to the 222 reflection in cubic
diamond) is missing. Also none of the forbidden reflections in cubic

diamond are found in hexagonal diamond.



APPENDIX A.5. IDEAL GRAPHITE IN-PLANE CORRELATIONS

We consider a graphitic layer in which atoms are located on lattice
size of a regular hexagonal array which the graphitic unit cell dimen-
sion ao = 2.456 K. Distances between the atoms are given by

ao 2 2
r' = —— (p +pa+tq’),
V3
where p and q are integers, such that p > 0, and p >q > 0. The in-

plane atomic density correlations are given
g(r) = n(r) &(r-r')

where n(r) is given by

]

3 if q =0, and pmod 3 # O

6 if g = 0, and pmod 3 = O

6 ifq =7p

6 if p#4q # 0, and (p-q) mod 3 # O
12 if p#q # 0, and (p-q) mod 3 = 0

and 1s undefined elsewhere.

The first few in-plane correlation distances are shown below:
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P2 +pq + q2 Distance (&) Coordination r
1 1.418 3
3 2.456 6
L 2.836 3
7 5.752 6
9 L.254 6

12 4.912 6
15 5.113 6
16 5.672 3
19 6.181 6
21 6.498 12
25 7.090 3
27 7.368 6
28 7.50% 6
51 7.895 6
36 8.508 6
37 8.625 6
29 8.855 12
L3 9.298 6
48 9.824 6
49 9.926 2
52 10.225 6
57 10.705 12
61 11.075 6
63 11.255 12
6l 11.344 3
67 11.607 6
73 12.115 6
75 12.280 6
76 12.362 6
79 12.603 6
81 12.762 6
8l 12.996 12
91 13.527 2
93 13.674 12
97 13.965 6



APPENDIX B.l. ALUMINUM STRUCTURE AND DIFFRACTION

Aluminum has a close-packed cubic structure with a lattice constant
ao of L4.04958 & at a temperature of 25°C. The unit cell has four atoms

arranged in the following positions:
(0,0,0), (0,1/2,1/2), (1/2,0,1/2), (1/2,1/2,0).
The reciprocal lattice vector has a length
bl = erfa_ = 1.59% 3L,
A typical reflection (hkl) has an associated wave vector transfer

q'h.kl = Eﬂ/ao(h)k)l)

with a magnitude

2 2 2\1/2
Ighkll = 2n/aO (h° +k~+1°) / .

The structure factor Fhkl for a given reflection (h,k,l) may be
given by

Frug = 1 + exp(-ni(h+k)) + exp(-ni(h+l)) + exp(-ni(k+1)) .

Hence F, ., = 0, if any two of (h+k), (h+1), and (k+1) are odd; i.e.,

if h,k,]l are mixed indices. Otherwise, F = L.

The first few reflections are shown below:

23
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Plane  Multiplicity h-+k-+1-  Distance (k) |9 ] (A7)
111 L 3 2.33803 2.68739
200 3 L 2.02479 3.10313
220 6 8 1.43174 L.38849
311 12 11 1.22099 5.14596
222 L4 12 1.16901 5.37478
Loo 3 16 1.01240 6.20626
331 12 19 0.92904 6.76311
L20 12 20 0.90551 6.93880
o2 12 2L 0.82662 7.60108
333 L 27
-~ 1o o7 0.7793L 8.06217
L4Lo 6 32 0.71587 8.77698
531 ol 35 0.68450 9.17918
Lo 12 36
600 5 - 0.67493 9.30959
620 12 Lo 0.64029 9.81296
533 12 - L3 0.61756 10.17429
622 12 L 0.61050 10.29192
Ll L 48 0.58451 10.74955
551 12 51
- 15 5¥} 0.56705 11.0803%9
640 12 52 0.56158 11.188L9
oL2 2L 56 0.54115 11.61084
553 12 59
751 ol 59} 0.52721 11.91779
800 3 Sn 0.50620 12.41245
733 12 67 0.49473 12.70010
6Ll 12 68
820 15 68 0.49108 12.7945%
660 6 72
800 15 70 0.47725 13.16546
555 L 75
751 ol 75 0.46761 13.43694
662 12 76 0.46452 13.52623
840 12 80 0.L45276 13.87761
753 2L 83
911 1o 83} 0. 44450 14.1354%
8L2 24 8k 0.44185 14.22033
664 12 88 0.43169 14.55Lk97
931 2L 91 0.L42L51 14.80098
8ul 12 96 0.41331 15.20217
755 12 99
771 12 99 0.40700 15.43787

953 12 99



APPENDIX B.2. LEAD STRUCTURE AND DIFFRACTION

Lead has a close-~packed cubic structure with a lattice constant ao
of 4.9505 K. The unit cell has four atoms arranged in the following po-

sitions:

(0,0,0), (0,1/2,1/2), (1/2,0,1/2), (1/2,1/2,0) .
The reciprocal lattice vector has a length
o] = 21(/&0 = 1.2692 1.
A typical reflection (hkl) has an associated wave vector transfer

k1

= 2n/ao(h,k,l)
with a magnitude

2 2 2.1/2
Ighkll = 2n/ao (h™ +x°+1°) / .

The structure factor is given by

LA exp(-ni(k+l)) + exp(-ni(h+l)) + exp(-ni(h+k)) .

Hence F = 0 if any two of (k+1), (h+1), and (h +k) are odd; i.e.,
if h,k,l are mixed indices. Otherwise, the structure factor is constant.

The first few reflections are shown below:
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Relative 2 -1

Flane  \iitiplicity | P! 9 A7)
111 L 16 2.198
200 % 16 2.538
220 6 16 3.590
311 12 16 L. 209
222 L 16 L.397
400 3 16 5.077
331 12 16 5.5%2
420 12 16 5.676

Lo2 12 16 6.218



APPENDIX B.3. VANADIUM STRUCTURE AND DIFFRACTION

Vanadium has a body-centered cubic structure with a lattice con-

stant a_ = 3.024 R. The unit cell has two atoms at positions
(0,0,0,), (1/2,1/2,1/2).
The reciprocal lattice vector has a length
|p| = 2:rr/8.o = 2.0778 A7 .
A typical reflection (hkl) has an associated wave vector transfer

Gy = 2:1/8.0 (h,k,1)

with a magnitude

lghkll = 2n/ao (h2+k2+12)l/2.

The structure factor is given by

= + -ni(p+q + .
P - 1 exp(-mi(pra+r))

Hence F = O whenever (p-+q~+r) mod 1 = 1 or (p-+q-+r) is odd; and
F = 2 whenever +q+r) is even.
- n (p+q+r) n

The first few peaks are:

2l7
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Plane Multiplicity Distance (&) lghkll (A1)
110 12 2.138 2.938
200 6 1.512 L.156
211 2k 1.235 5.089
220 12 1.069 5.877
310 2L 0.956 6.570
222 8 0.873 7.198
321 L8 0.83%9 7.492
400 6 0.75 8.311
330 12 0.713 8.815
420 2l 0.617 9.292
332 2k 0.645 9.746



APPENDIX C. QUINOID STRUCTURE OF GRAPHITE

The structural unit has orthorhombic symmetry with dimensions, a_ =
2.461 &, bO = L4.263 &, and c, = 6.708 K, and with eight atoms arranged

at the following positions:

(0,0,0), (1/2+u,1/2,0), (0,0,1/2), (1/2-1,1/2,1/2),

(o,v,0), (1/2+u,1/2+v,0), (0,-v,1/2), (1/2-u,1/2-v,1/2),

where v = 0.318, and u ~ O.

The reciprocal lattice vectors have lengths

-1
lgll = 2rc/ao = 2.55% B,
B B -1
|32| Eﬁ/bo = 1.h474 BT,
and

-1

b = =
|_5 zn/co 0.937 8.

A typical reflection has an associated wave vector transfer
= k/b
Qiq an(n/a_,k/b_,1/c )
with a magnitude

la

_ 2 2 2 2 2 2\1/2

Notice that the 1-4 quinoid structure is given when v < 1/5, and

u = 0. The structure factor Fhkl for a reflection (hkl) may be given by

2Lh9
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Pl = [1+exp(-ni(h+k))] [(1 +exp(-2nikv))

+exp(-nil) (1 + exp(+2nikv))]

Hence Fhkl = 0, if

(1) (h+k) mod 2 =1 (or h,k are mixed indices)

0 (1 even) and 2kv mod 2 = 1

]

(2) 1 mod 2

1 (1 odd) and 2kv mod 1 = O.

i

(3) 1 mod 2

Note that if v = 1/5 (exactly equivalent to hexagonal graphite)

I

F [1 - exp(-ni(h+k))] [(1+exp(-2rnik/3))

hkl

+exp(-nil) (1 + exp(+2nik/3))]

Hence Fhkl = 0, if
(1) (h+k) mod 2 =1
(2) 1mod 2=1 (1 odd) and k mod 3 = 0.

The first reflections are shown below:
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Planes

orthorhonbic ii;ii;iig? Multiplicity iFhkllg lghkll(ﬁ"l)

units (hkl) units (hkl)
002 00.2 1 6l 1.873
ézg 10.0 3 i:gg 2.948
ééi | 10.1 6 l;:fg 3.093
222 10.2 6 | i:gg 3.49%
ook 00.4 1 ol 2.747
é;; 10.3 6 lg:ig 4.07%
é;t 10.4 6 i:gg L. 768
igg 11.0 3 2?.57 ’ 5.106
e H-2 6 211*.57 5. 1439
o 10. 6 13: 2 5.534
006 00.6 1 6L 5.620
e N
gii 20.1 6 1§I$8 5.970
gig 20.2 6 li:gg 6.186
igt b 6 23.57 6.333
- 10.6 6 fiég 6.546

Note that each reflection has a corresponding hexagonal graphite
reflection.
Notice also that the 1-3 quinoid structure is given when v > 1/5,

and u # O.



APPENDIX D. FORCE CONSTANTS FOR DISTORTED MODELS

For elements in the solid state, Waser and Pauling (1950) have
given an empirical law, analogous to Badger's rule for molecules in the
gaseous state (1955), for the relationship between the force constant k

(in Mdyne/cm) of a bond and its equilibrium distance r (in &); viz.,

k'l/5 = a(r - b).’ (D.1)

The constants for solid carbon are a = 2.89, and b = 1.13 R. A graph of
this relationship is shown in Figure D.1l, and the force constant k for &
particular bond of length r may be estimated using Badger's rule from
this figure.

We also estimate the equilibrium bond length using a method analo-
gous to that suggested by Pauling (1960) for molecules. Let rl, rg, rn
be the equilibrium interatomic distances for a single bond, a double
bond, and a bond of intermediate type with a bond number n. Assume that
the potential function of the resonating bond may be expressed as the
sum of the two parabolic functions representing the poteﬁtials of the

single and double bonds, weighted by the proportion of each type; viz.,

(2 - n) and (n - 1). This potential function is

V(r) =

N

(2-n) kl(rn—_rl)2 + % (n-L)x, (r - r2)2 . (D.2)

The equilibrium value for a given bond number n is at the minimum of the
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potential function. Thus

(r2— rl)(n—l) kg/k1
r = r

n 17 (2-n) + (n-1) kg/kl) . (D.3)

To use this relationship, we need to estimate a wvalue of kg/kl'
Consequently we substitute the following values into equation (D.3);

r. = 1.542 R for diamond, r_ = 1.334 A obtained from X-ray diffraction

1 2

of crystals, and r = 1.421 X for n = L4/3 as in graphite. This gives
k
2
— = 2.78 , (D.4)
k
1
which may be compared to k2/k1 = 8.24 given by equation (D.1). However
the simple Badger relationship only holds good when the bond type
remains constant during compression. Since we know that bonding in
2 2
diamond is sp and in graphite is sp , thisrelationship is invalid
over such a large range of r.
We have used in our computer model (section 5.5) equilibrium bond
lengths found by Ergun (197%) for the quinoid structure of graphite;
viz., L = 1.454 K for the single bonds, and L, = 1.%356 R for the

double bonds. Using Badger's rule, which may be valid over this limitec

range, we obtain force constants, k. = 1.28 Mdyne/cm andk2 =3.259

1
Mdyne/cm. However the ratio of these, kg/kl = 2.95 is close to that for
Pauling's method (equation (D.4)) for quite different bond lengths. An
estimate values of kl and k,_ may be obtained form the observed compres-

2

sibility of graphite in its basal plane.
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Consider a system with n atoms per unit cell, and assume that each
atom has three bonds, each with an associated energy and degree of free-

dom. Then for N unit cells, the total energy U is piven by

(D.5)

where ki is the bond force constant and_gi is the position vector of
the neighboring atom of the typical atom whose position vector is r .

Then

4 U _ ,
5 = Nn(kl+ k2+ k5) . (D.6)
dr

The compressibility K is defined by

1 d2 ng 4 2
k - V2TV 5?‘}) (0-7)
dav dr

a

where V signifies the volume of the system. Hence the force constants
may be estimated from the compressibility of the material.

For the benzenoid (resonating) structure all three bonds are con-
sidered equivalent with a force constant k . The structure is that of

O

hexagonal graphite, with lattice parameters a and ¢ , and 4 atoms per
0 o

unit cell. Then for N cells, the volume of the system is

V =

v V2 a2 (D.8)
2 o)

0]

Substitution into equation (D.7) gives the planar compressibility

2k
o

% - (D.9)

C
O
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The observed compressibility of a single crystal of graphite along its
basal plane is given as 0.32 10—13 cmg/dyne (Lynch and Drickamer, 1966).
Waser and Pauling (1966) used equation (D.9) to obtain a stretching |
force constant ko of 1.81 Mdyne/cm for graphite. DPauling notes that
this value is smaller than the expected value.

For a quinoid system; two bonds are equivalent with a force con-
stant kl, and the other bond is stronger with a.force constant kg.
Then equation (D.6) becomes

2
d

ol

= Nn (2k. + kg)' (D.10)

1
dr

L1 and L2 are the equilibrium lengths of these two types of bonds.

The 1-4 quinoid structure is orthorhombic with 8 atoms per unit

cell, with lattice parameters, ao, bo’ Co’ given by

8 = 2Ll sin @&,

o
i

2L, - 2L, cos (with a > n/2) . (D.11)
For N cells, the volume of the system is
V = Nabec = L4Ne L. sin O(L_- L_ cos Q). (D.12)
0O 0 O o 1 2 1

Substitution into equation (D.7) gives

2(2kl+ ke) (Lg/Ll-cos o)

sin & 2
s (1 + L/~ 2 cos a)

(D.13)

oW L
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In general for quinoid structures, there is no definite relation-
ships between the bond angles and lengths. However regular quinocid
structures may also form hexagonal symmetry which does provide such a
relationship. If & is the angle between the short and longer bonds, and

B is the angle between the longer bonds, then
B +20 = 2m. (D.14)
The 1-4 quinoid structure has the relationship

)1/2

2L1 sin (B/2) = (L

H e

2
+ -
L2 QLlL cos O

5 (D.15)

which, for Ll = 1.454 K, and 1. = 1.356 ﬁ, gives a value of @ equal to

2
122.21°. Then equation (D.12) becomes

2k_+
_L__k_l___}i?_ (D.16)
K 17.59 ’ :
and (2k1+ kg) = 5.4%5 Miyne/cm. If we assume that Badger's rule is
N -1/3
8 reasonably good approximation to the slope of k versus r only for

values of r arond the graphitic equilbrium value, then we obtain the
following values of the equilibrium constants for the 1-4 quinoid

structure,

o
I

1.505 Mdyne/cm

b
i

2.8%  Mdyne/cm (D.17)
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The 1-7 quinoid structure is also orthorhombic with 8 atoms per

unit cell with dimensions given by

= I, sinC& - I, sin
a_ o 51 1 B

o
]

2L1 - 2L, cos @ (with & > n/2) (D.18)
For N cells, the volume of the system is

= = i o - i - .
Y N aobocO 2NCO (L2 sin L181n B)(Ll L, cos ?g .

It also has the relationship

- 2L, Q@ =1, - 2L .20
L,- 2L, cos Ly , cos B (D.20)

which, for I, = 1.454 & and L, = 1.356 &, gives a value of Q equal to

1 1

120.76°. Then equation (A.7) reduces to

1 2kl+ k2
X = '—f?i;?— , (D.21)
and (2k1+ kg) = 5.429 Mdyne/cm. In the same way as for the 1-4 quinoid,

we arrive at the following values of the equilibrium constants for the

1-3 quinoid structure,

>
i

1.305 Mdyne/cm

k., = 2.82 Miyne/cm D.22)

Hence for a model in which all carbon atoms have three bonds, two
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single bonds of length L1 and one double bond of length Lg’ then the
ratio of the force constants should be of the order of
k2
x = 2.16 . (D.22)
1

It is probably unrealistic to find force constants that differ so much
in a hexagonal latticeé_consequently we have chosen values of k., and k2
symmetrically about k 3 viz., k, = 1.31 Miyne/cm, and k, = 2.51
Mdyne/cm. Additionally neutron inelastic scattering measurements
(Carpenter, 1975) suggest that glassy carbon is dynamically similar to

graphite, with frequencies on the glass generally lower than in the

crystal.
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