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NOMENCIATURE

The principal symbols are presented below, Those quantities having
only temporary or limited significance are not mentioned here, but are

clearly defined in the text, The dyadic notation is discussed in Section

1.3.

Symbol Definition

a a =1r/d

CMC Carboxymethylcellulose

D Differential operator = d/dX
D/Dt Material time derivative, (1.16)
@/@t Jaumann derivative, (1.17)

d d =rz - ry

E Rate of strain tensor, (1.14)

Vad

E{ Elasticity number = T1,/pd?®

HEC Hydroxyethylcellulose

/I{t(t') Deformation history tensor, (1.32)
I Identity tensor

~\/

MW Molecular weight

0 Zero tensor

”n

b Pressure

R Reynolds number = pd®Q;/7

Ry Modified Reynolds number = R/BO
Ry (t') Rotation tensor, (1.3%3) and (1.3L4)
v
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Symbol

ry and ro

[§2)

NOMENCIATURE (Continued)

Definition

Radial coordinate

Radii of inner and outer cylinders
respectively

Stress tensor, (1.18)

Taylor number, (1.1) for large-gap
case and (1.60) for small-gap case

Critical Taylor number

Critical Taylor number in Newtonian
case

Modified Taylor number = T/g2
Present time
Time previous to present time (t' < t)

Perturbation on radial velocity
component

u¥ = u/Md

Eigenfunction, (4.40)

Perturbation on 6-velocity component

v* = v/Mad

Velocity vector

Perturbation on axial velocity component
w¥ = w/Q1d

X

(r-ry)/d
z/d

Axial coordinate

Z
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NOMENCIATURE (Continued)

Greek Symbol Definition

a a = (Q2-01)/91

Bo Bo = Mo/

Bs Rheological parameters, (4.47) - (4.55)
E Transpose of velocity gradient tensor
¥ Shear rate

A Rheogoniometer tangential stress

armature displacement

€ dimensionless wave number = nd/\

€c Critical wave number

M ‘ Viscosity

To Zero-shear viscosity

M1,M2,N3, and Ng New material functions defined in
(4.30)

) Angular coordinate

Ga Rheogoniometer cone angle

A Height of vortex cells

3 Perturbation variable

P Density

o, and o2 First and second normal stress

differences respectively

03 and o4 New material functions defined in
(4.30)

T Characteristic time for fluid

¥ Eigenfunction, (4.40)
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NOMENCLATURE (Concluded)

Greek Symbol Definition

Q1 and o Angular velocities of inner and outer
cylinders respectively

10

Vorticity tensor

w Angular velocity of rheogoniometer
platen

The superscript (o) refers always to quantities associated with the
primary motion, while the superscript (1) denotes secondary flow param-

eters,
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ABSTRACT

Theoretical and experimental consideration is given to the stability
of viscoelastic flow between concentric rotating cylinders.

In the mathematical analysis, the general Coleman-and-Noll simple
fluid with fading memory is employed as the rheological model. Since all
previous treatments of this stability problem have dealt with special
cases of the simple fluid model, the earlier works are shown to represent
special cases of the current investigation. General techniques are de-
veloped for treating small perturbations on "viscometric flows" of simple
fluids, and these are subsequently applied in analyzing the pertinent
stability behavior, under the usual assumption of neutral, axisymmetric
disturbances. It is found that there are exactly eight material func-
tions of the rate of shear which are necessary to define this problem.
Three of these functions can be determined from existing laboratory
tests, but the other five are entirely new, and their form can be deduced
theoretically only in the limit of vanishing shear rates.

Another important result of the theoretical investigation concerns
the definition of one of the stability criteria, the Taylor number. It
is shown that this quantity should be calculated using the apparent fluid
viscosity, as evaluated at the average shearing conditions in the ap-
paratus.

Stability tests and viscosity measurements were conducted on agueous
solutions of cellulose-derivative polymers whose three determinate mate-
rial functions have been reported in the literature at specific concen-
trations. In all instances, it is found experimentally that the flow is
less stable than in the Newtonian case and that the wavelength of the
disturbance 1s greater. By comparing these findings with the results of
numerical stability calculations, one concludes that certain well-known
approximate models do not suffice to describe the observed stability be-
havior.
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CHAPTER 1

INTRODUCTION

1.1 PRELIMINARY COMMENTS

The tangential flow of any fluld between two long coaxially rotating
cylinders (Couette flow) represents a curved motion which is inherently
unstable due to centrifugal effects. In 1923, G. I. Taylor59 first con-
sidered this stability phenomenon for the case of incompressible Newton-
ian liquids, and showed both theoretically and experimentally, that at a
certain critical speed of the inner cylinder, a steady, laminar disturbance
appears in the flow. This disturbance takes the form of a set of cellular
toroidal vortices spaced regularly along the cylindrical axis.

In recent years, two dimensionless parameters, the Taylor number T
and the dimensionless wave number €, have come to be associated with the
above effect, The Taylor number, which is a measure of the ratio of cen-

trifugal forces to viscous forces, is given by

T = -A(a al + (a+1DR2
2+g

where
o = (Qa‘Ql)/Ql
a = ry/d (1.1)
ol = I'g'rl

R (a Reynolds number) = pd2ﬂl/n

and where (1 and Qg2 are respectively the angular velocities of the inner



and outer cylinders, r, and rp are the corresponding radii, p is the fluid
density, and n is the viscosity. The dimensionless wave number is de-

fined by
e = nd/n (1.2)

where N is the height of the vortex cells. Couette flow remains stable
as long as the Taylor number is maintained below a critical value T,.
At T = T, the characteristic vortex pattern develops, and the critical
wave number €. then describes the vortex spacing.

In the case of viscoelastic fluids, non-Newtonian effects such as
shear thinning, normal stresses, elasticity, and perhaps other phenomena
which have not as yet been discovered may influence the values of T. and
€. determined for the Newtonian case. These possibilities are considered
herein. The theoretical portion of the present study has been devoted
to treating the Taylor-Couette stability of a Coleman-and-Noll9 simple

fluid with fading memory. This is the most general mechanical constitu-

tive equation currently available and has had remarkable success in pre-
dicting all known aspects of viscoelastic behavior. Experimental con-
sideration has been given here to the stability of agqueous solutions of
three different polymers; for the systems investigated, the critical Tay-
lor number and dimensionless wave number are presented as functions of
polymer concentration.

The remainder of this first chapter will be devoted to familiarizing

the reader with the properties of viscoelastic fluids, presenting the



preliminary theory, and discussing previous work. In Chapter 2, the ex-
perimental work of the current investigation is presented. A theory of
infinitesimal secondary flows of "simple fluids'" is developed in Chapter
%. This is then applied in Chapter 4 to the Taylor-Couette stability
problem; here the disturbance equations are derived and solved, and the
theoretical and experimental results are compared. Finally, the conclu-

sions of this study are given in Chapter 5.

1.2 SUMMARY OF VISCOELASTIC FIUID PROPERTIES

The following is a brief summary of some of the unusual effects ex-
hibited by viscoelastic fluids. It is presented in order to acquaint the
reader with the type of material being considered and also to establish
some nomenclature,

Stress Relaxation and Recoil.—Stress relaxation and recoil are the

principal phenomena distinguishing viscoelastic fluids from viscoinelastic
fluids. Stress relaxation is characterized by the gradual, as opposed to
the instantaneous, decay of stress in a fluid which is held at fixed strain
after experiencing a rapid deformation. Recoil, on the other hand, is

the partial recovery of strain occurring in a deforming viscoelastic fluid
when the driving force causing the motion is suddenly removed.

Shear Thinning (Viscosity) and Normal Stress Effects,—Consider the

motion of a viscoelastic fluid between two horizontal parallel plates
which are everywhere separated by a distance d. Let the lower plate be
held fixed while the upper one is moved at constant speed, V = yd (Fig.

1.1).
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Fig. 1.1. Schematic diagram of simple shear flow,

At steady state, the velocity profile will be linear and given by

where the quantity y is referred to as the shear rate,.
Viscoelastic flulds are found to yield the following stress pattern

for simple shear between parallel plates7:

Sxy = 7“(')’)
Sxx = Szz = o1 (7)
(1.4)
Syy - SZZ = 02(7)
Syz = 8xz = 0

where n is the fluid viscosity, and o; and oz are the so-called first and
second normal stress differences, respectively. In a Newtonian fluid,
there are no normal stresses and, in addition, the viscosity is independ-

ent of the shear rate. (The reader should note that, with regard to the



subscripts on the o¢'s, a notation opposite to that of Coleman, Markovitz,
and WollT has been employed here; it was felt that the quantity commonly
defined as the second normal stress difference (Syy-SZZ) should be named
oo rather than oq.)

A typical viscosity curve for a viscoelastic fluid is shown in Fig,

1.2 (which, as a rule, involves several decades of magnitude of n and v ).

Log 7

Log Y

Fig. 1.2. Schematic of a viscosity curve

for a viscoelastic fluid,
As can be seen from this figure, three distinct regions are present. At
very low rates of shear the viscosity approaches n, the "zero-shear vis-

cosity."”

For extremely high shear rates, the "upper limiting viscosity,"
Nws 15 approached. The intermediate region 1s characterized by a viscosity
which decreases with shear rate, a phenomenon referred to as shear thin-
ning. The familiar "power law'" viscosity model is frequently found to
apply in this region.

The two normal stress differences o; and oz have been studied ex-

tensively for a great many molten polymers and polymer solutions. It has

been found that o, 1s always positive 1in sign and considerably larger in



magnitude than oz, which usually assumes a value quite close to zero,
Weissenberg,u5 in 1948, set forth the so-called "Weissenberg hypothesis"
which claims that o = O for polymer solutions in general. Today, this
hypothesis is no longer accepted as fact by most rheologists, since re-
cent experimental evidence points to the conclusion that go > 0. We

therefore may write

op >> 02 >0 . (1.5)

Weissenberg Climbing Effect.—When a stirring rod, placed vertically

in a beaker containing a viscoelastic fluid, is rotated about its axis,
the fluid will begin to climb the rod. This is very different from what
is observed for a Newtonian fluid,

Swelling of a Jet.-—When a viscoelastic fluid emerges from a tube,

the resulting jet of liquid increases in diameter indicating, to some ex-
tent, the action of the normal stresses present.

Phase Iag in Oscillatory Shear.—When a Newtonian fluid is placed be-

tween two infinite parallel plates and the upper plate is oscillated, it
is found (in the case where inertial effects are negligible) that the
shear stress is in phase with the rate of oscillation. However, for a

viscoelastic fluid, the stress will lag behind the rate of oscillation,

1.5 KINEMATICS
Differences in the response of various materials under identically

imposed boundary conditions are the result of differences in the stress-



strain laws, or constitutive equations, for the materials. In general,

these laws can involve all the kinematic quantities which define the states
of the same particle of material during its previous history of motion
through space, Therefore, in our discussion of the preliminary theory,
we shall first consider, briefly, the kinematics of fluid motion.

The Gibbs dyadic notation is employed throughout the present work to
represent vectors and second-order tensors. (For a good summary of this
notation, the reader is referred to the appendices of either Transport

Phenomena by Bird, Stewart, and Lightfoot2 or Principles and Applications

of Rheology by Fredrickson.17 A more comprehensive treatment may be found

in Vector Analysis with an Introduction to Tensor Analysis pX_Wills.u7)

The following conventions will hold here:

(1) Vectors and second-order tensors will be denoted by lower and
upper case letters, respectively, with a . tilde beneath each.

(2) The transpose or conjugate of a second-order tensor A will be
given by'éf while its inverse, if it exists, will be é:l.

(3) I will denote the unit tensor or idemfactor (identity tensor):

e

- L = A (1.6)

(4) O will denote the zero tensor:

A-Q =2 (1.7)

(5) The matrix of the physical components of a tensor will be indi-

cated by employing the symbol_C::D, Thus in cartesian coordinates, for



example,

A Ayx  Ayy Ay
Azx  Azy  Agg
while, in cylindrical coordinates,
— —
Arr Ar@ Arz
A | Aor Poo Ao
Ay Ao Ay
Further,
(6) A= éf implies that A is a symmetric tensor.
(7) A = -AT implies that A is an antisymmetric tensor.
(8) é;l =:Aj implies that A is orthogonal.
(9) X denotes the gradient (vector) operator.
(10) tr/ﬁ shall denote the trace of A, a scalar: tr A = QQ : T

A . A is given by A2.

~

).

that we have established this notation, let us proceed with the

discussion of kinematics.

The kinematic state of a fluid at some timet (taken to be the present

time) is determined if we know the velocity, acceleration, etc., of every

varticle

of the fluid at that time. We shall assume that the fluid is

4 convinuum and” thHat the Kinematic varlables associated with a point fixed

in space may be regarded as continuous functions of the spatial coordinates.



Of primary concern here is the motion which occurs relative to a
particular fluid particle since the rheclogical behavior of a material
is presumably independent of the motion as a whole (the "principle of
local action"ug).

Let P and P' be two material points of a fluid, which at time t are

located at points X and x+dx with respect to the same frame of reference.

The velocity at point P relative to point P' may be written as

dy = [ - dg (1.10)

I o= (w’ (1.11)
In cartesian coordinates,
[dvy vy dvy |
gk oy oz
v v ov
I<= |5 S 5 , (1.12)
ov, Jv, Jv,

LA‘X- A\J A‘L _5

I b (1.13)

E = % (r+rT) (1.14)
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and for the antisymmetric part,
_ L ¢p_pt
L= 5 urh. (1.15)

The tensor E is a measure of the rate at which strain occurs; it is called,
indeed, the rate of strain tensor. Q represents the average rate of mate-
rial rotation near a fluid particle and for this reason, it is referred

to as the vorticity tensor.

There are two time derivatives which are also frequently employed
in considering the rheological behavior of a fluid. These are defined

as follows:

(1) The material derivative, DA/Dt of a tensor ﬁ;is the derivative of

A as seen by an observer who is "translating with a given fluid particle.”

From the laws of partial differentiation we have

DA OA
— = =4 v.VA (1.16)
Dt 3t e T

(2) The Jaumann derivative, j?é/gm of a tensor A is the derivative

of’f:as seen by an observer who is not only translating with the fluid,

but also rotating with its angular velocity. This derivative is given by

©L - D

o TR RTA L (1.27)

This completes our discussion of some of the basic aspects of the

kinematics of fluid flow.
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1.4 CONSTITUTIVE EQUATIONS

The mechanical constitutive equation or rheological equation of state
for a material is an expression of the relation between the state of stress
present within the material and the kinematics of the motion causing this
stress.

We shall begin our discussion of constitutive equations by first de-
fining the stress tensor 3, which enters into the determination of the dy-
namic state of a body. DNext, the various types of "fluid models" cur-
rently being considered as constitutive equations for viscoelastic fluids

will be presented. A definition of the general simple fluid of Noll50

will then be given. This definition will be augmented by a discussion of

the principle of fading memory. Finally, the special class of fluid mo-

tions called "viscometric flows" will be considered.

1.4.1 Definition of the Stress Tensor

Iet a differential element of surface dA be located in the interior
of a deforming body of material and let the orientation of dA be speci-
fied by giving the unit normal vector n (Fig. 1.%). Furthermore, let
the resultant contact force, acting on the side of dA towards which n

is directed, be denoted by $dA where g is the gtress vector.

n
sdA

N

Fig. 1.3. Geometrical specification of contact forces,
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In general, s will depend on n. One can show by a force balance that
P

this dependence may be expressed in the form
s = S-n (1.18)

where’é is defined as the stress tensor. Equation (1.18) expresses the
fact that the stress tensor § transforms any unit vector into the stress
vector on a surface normal to that unit vector.

By a balance of moments, it 1s furthermore possible to show that the
stress tensor S is symmetric, (More precisely, this condition, which is

AQ)

often attributed to Cauchy, defines a "non-polar” material.

1.4.2 Fluid Models

As understood here, "fluid models" are particular, as opposed to

general mathematical statements of the constitutive equations for certain
idealized materials, Some models, such as that of the Newtonian fluid,
are of special importance in that they can describe the rheological be-
havior of real materials over a wide range of flow conditions. However,
most models, due to their limited nature and sometimes arbitrary method
of formulation, represent nothing more than mathematical curiosities,

A1l previous Taylor-Couette stability analyses on viscoelastic fluids
have involved consideration of one type or another of special fluid model.
Hence, we discuss fluid models here in order to put these analyses into
the proper perspective with regard to the present more general treatment.

The rheological equation of state for an incompressible Newtonian

fluid is given by
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St Rl = 2n5E (1.19)
where p is a pressure and 7, is the viscosity, a material constant.7 It
is a well-established fact that this equation gives an excellent descrip-
tion of the mechanics of a great many fluids; unfortunately there are also
numerous examples of real fluids for which it is quite inadequate.

In 1945, Reiner55 attempted to account for more complicated material
effects in fluids by assuming that the stress tensor S could be expressed
as a polynomial in the rate of strain tensor E. By making use of the
characteristic equation for E, he was able to show that the most general

equation obtainable for an incompressible fluid would then be
8+ pl = 2uf + bopE (1.20)

where (3 and Qg are scalar functions of the invariants of E, Because of
the later work of Rivlin,56 Eg. (1.20) has come to be known as the Reiner-
Rivlin model,

The Reiner-Rivlin fluid gives a definite improvement in some respects
over the Newtonian model. A fluid obeying (1.20) would, for example, not
only exhibit a shear-dependent viscosity but also normal-stress effects.
However, the two normal-~stress functions o7 and oz resulting from the
Reiner-Rivlin equation are found to be equal to one another, a situation
contrary to what is observed experimentally on most polymer solutions and
melts. Furthermore, Eg. (1.20) is incapable of representing fluids which

are elastic in nature since such materials exhibit stress relaxation; in



1h

contrast, this model predicts an instantaneous decay of stress (to a
hydrostatic pressure) when motion ceases gg =;9). As Fredricksonl7 points
out, there are no known substances, other than Newtonian fluids, which
are described by the Reiner-Rivlin theory.

During the past twenty years, considerable progress has been made in
the development of fluid models which presumably can better represent
viscoelastic fluid behavior., There currently appear to be four types
which are enjoying prominence: differential models, integral models,
Rivlin-Ericksen models, and "anisotropic fluid" models.

The differential models are often founded on the assumption that
there is some analogy between the stress-strain behavior of dilute solu-
tions of randomly coiling macromolecules (polymer solutions) and the be-
havior of dilute suspensions of elastic spheres in Newtonian fluids (which
have been studied theoretically). Characteristically, the differential
constitutive laws are written in the form of ordinary differential equa-
tions in time which relate the stress tensor and its time derivatives to
the rate of strain tensor and its time derivatives., Unfortunately, terms
are all too often added in a rather arbitrary manner to these equations,
in order to include certain higher order viscoelastic effects; for this
reason, they cannot be expected to give more than a qualitative descrip-
tion of any existing fluids. One example of a differential type model is

the equation
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Pt ~

= 2T]O [E + To % - 2“213\,2 + Vg(E:E)I]} (1.21)

8+ [—3 - u1(S-E+E.8) + vy (E:8)T + HO(S:I)IJ

where Mg, Mg, M1, M2, Vi, V2, Ti, and T2 are assumed to be constants.
This is the "Oldroyd ' 8-constant model."

The so-called Boltzmann principle of superposition (see e.g., Fred-
ricksonl7) provides the basis for a certain class of integral models of
viscoelastic fluids. In deriving these models, it is assumed that, for
a particular fluid particle, a small strain at one instant of time t' re-
sults in a small stress at some later time t and that the two are related
through an influence function ¢(t-t'). The relation between stress and
strain is then generalized to a "convolution" integral of the form

£
stress (t) = /F g(t-t')d[strain (t')] (1.22)
t'=~c0
by further assuming that stresses are linearly superposible.

When expressed in the properly invariant form (relating the stress
tensor § to integrals of kinematic quantities), the integral models can
exhibit normal stresses, shear dependent viscosity, and stress relaxa-
tion. However, there is no guarantee that any existing fluids will con-
form to these models.

Fredrickson17 cites two examples of integral models which, in the

present dyadic notation, take the forms:

FL(67) - E(t') - Byl(e')at: (1.23)
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and

-~

’ T
S +pl = 2[ ¢(t—t'2’g‘£l(t’) S B(t) - F'(er)ae (1.24)

In these equations, Fy(t') represents the relative deformation gradient

tensor,7 a quantity which has been shown20 to satisfy the differential
equation

DF4 ()

= p(t') * Fi(t') (1.25)
Dt ~ ~

subject to the condition
Fo(t) = I (1.26)

Equations (1.23) and (1.24) have been discussed by Wza.lters,mL who refers
to them as liquids A' and B', respectively.

In 1955, Rivlin and Ericksen’T developed a new theory of nonlinear
viscoelasticity. By assuming that the stress within a fluid at a given
time depends on the first-order spatial gradients of the displacement,
velocity, acceleration, etc., at that time and by making use of certain
invariance conditions, these authors were able to derive a constitutive

equation which, for incompressible fluids, i1s expressible in the form

S+pl = g[élJézJ"'}én] (1.27)
where

A, = 2E (1.28)



Bl = oo *E Mot hn - B (1.29)

and where the tensors Ap are commonly referred to as the Rivlin-Ericksen
tensors. As with the Reiner-Rivlin theory, the Rivlin-Ericksen approach
is insufficient to account for complex "memory" effects, such as stress
relaxation, in viscoelastic fluids.

1k

The Ericksen

anisotropic fluids represent the last type of fluid
models to be mentioned here. Briefly, these have been founded on the fol-
lowing three assumptions:
(1) There is a preferred direction, defined by a vector n, associated
with each particle of a given fluid.
(2) Variations in the magnitude and direction of n are governed by
the fluid motion.
(3) The stress at any point in the fluid is a function of the rate
of strain tensor E and the preferred direction n.

A typical constitutive equation for an Ericksen anisotropic fluid is given

by
S+l = 2uE + [py+pe(E:pn)lon + 2p5(E-nn+nn-E)
where (1.30)
Dn
—= = g+ n+p(E - (E:m)I] - n
Dt~ o W

and where p, po, Hi, M2, and ps are material constants. The anisotropic
fluid models might be expected to give good qualitative descriptions of

certain substances (such as suspensions of rod-like or ellipsoidal par-
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ticles in a Newtonian fluid) which retain a flow-induced orientation long
after motion has ceased. However, for polymer solutions and melts, they

show little advantage over any of the other types of models discussed.

1.4.3 Definition of a Noll Simple Fluid

Noll50 has recently developed a very general theory of fluid behavior
vwhich appears capable of describing the stress patterns in viscoelastic
fluids for all motions that have been studied experimentally. The essence

of this theory is embodied in the definition of an incompressible simple

fluid,* a substance which satisfies the following two postulates:

(1) The present stress at a material point in a simple fluid is

determined, to within a hydrostatic pressure, by the history of
the motion in the immediate neighborhood of that point.

(2) No preferred configurations exist in a simple fluid.

All the types of fluid models (except the Ericksenlu anisotropic fluids**)
discussed in the previous section are seen to satisfy these two postu-
2xdowy werd Fboas reprecert gpecial cases of simple fluids.

There are numerous ways of expressing statements (1) and (2) in sym-
bolic form; for the present purposes we choose the constitutive relation

which has been suggested by Goddardl?:

t
S+vl = 7 [E(s)] (1.%1)

¥Henceforth, the term "simple fluid" shall imply "incompressible simple
fluid."

*%¥One can show that, for the present analysis, anisotropic fluids may also
be regarded as simple fluids.
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where E%(t') gives a measure of the history of the rate of strain. It is

defined, for =~ < t' < t, by

He(t') = RL(+') - B(t') « By(t") (1.32)

where Bt(t'), an orthogonal tensor, satisfies the differential equation

DR+ (t')
;:%ET_— = /Q(t’) - Re(t') (1.33)

subject to
Be(t) = 1 (1.34)

Physical interpretation may be given to both Ri(t') and Hy(t'). Rg(t')
represents the average rotation suffered by material in the neighborhood
of a given fluid particle during the time interval (t',t); Hy(t') is the
rate of strain tensor, at time t', as seen by an observer in a coordinate
frame that is both translating and rotating with a particular fluid par-
ticle.

The symbol + in Eq. (1.31) stands for a functional, that is, an
operator which maps a tensor-valued function into a tensor. It merely
relates the present stress g to all values assumed by the deformation
historylgt(t') as t' varies between ~o and t (the present time). The
form of the functional.jE determines the rheological characteristics of

? will vary from one fluid to an-

s

each particular simple fluid; thus,

other. Consider, as one example, the case of a Newtonian fluid for which
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s+pl = & [EGD] = engh (v = 2n6E(E) (1.35)

t ! ==c0

There is an important restriction which must be placed on Eq. (1.31)

7

due to the so-called "principle of material objectivity."  Briefly, this
principle requires that the state of stress within a deforming material

be independent of the motion of the observer. For the functional of

(1.31), Goddardl? gives as the required condition,

t t
[q - Et(t’)-Qr] = Q- Z [Hy(t)] -gr (1.36)

t ==

for all constant orthogonal tensors,@ and for each function,gi(t’).
Before concluding the present section, it is perhaps appropriate to

introduce a special property of the deformation history'gi(t') which we

shall have occasion to use in the forthcoming analysis. ILet us begin by

taking the material derivative of gt(t'):

Dﬁt(t') _ D imt(+1) . ) . !
Dt! Dt [RE(t') - E(t') - Ry(e")]
D s g+ men - [ g
S [E%%Ll] , (1.57)

Substituting (1.33) into this equation and combining terms, we then have

DH(t')
g. =
Dt' ~

»e]
ct+
ct+
t#
c_*.

]
o
o
¢ =

(£1) +§<t'>g<t'ﬂ LRyt
(1.38)

But from the definition of the Jaumann derivative (Eq. (1.17)), this ex-

pression becomes
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D,I;It(t’ )
Dt

OE(t')
ot

= Rl(t") - - By(t) . (1.39)

Thus, the material derivative of Et(t’) is related to the Jaumann deriva-
tive of E. By taking successively higher order material derivatives of

Et(t'): it is furthermore possible to show that, in general,

n ' n '

1.4.4 Principle of Fading Memory

The principle of fading memory has been developed by Coleman and Noll9

in order to allow for stress relaxation and other memory effects in simple

fluids. Essentially, this principle implies that, for a simple fluid with

fading memory, deformations which occurred in the distant past have less

effect on the present stress than deformations which occurred in the re-
cent past.

In order to put these intuitive notions of fluid behavior on firmer
mathematical grounds, Coleman and Noll have made use of the "norm” (or
magnitude) of a deformation history which may be defined as follows (for

the present analysis):

1 1/2
normlEy (t')] = [IH (£ = fhg(t-t')tr}g%(t')dt' (1.%1)

Here, h(t-t') is a "weighting" or "influence function" which varies with
the fluid under consideration; it is positive, continuous, and real-
valued and goes to zero rapidly as t-t' becomes large.

The norm is interpreted as the "distance' of a given deformation his-

tory'gi(t') from the "zero-history," Hy(t') = 0. It possesses the im-



22

portant property that the weighting function h(t-t') places greater em-
phasis on values of gﬁ(t’) for small t-t' (recent past) than for large
t-t' (distant past). Thus, a deformation history with a "small norm" is
expected to give rise to only a small contribution to the mresent stress.
Coleman and Noll9 have made use of the idea of a norm of a history

in conjunction with the operation of Fréchet differentiation of consti-

tutive functionals: If z: represents the constitutive functional for a
simple fluid, it is Fréchet differentiable at the function H(t')
if there exists a functional §:f (which depends on :ﬁ) such that the fol-

lowing equation holds for all Qﬁt(t') with finite norm:

t t

t
t,}L:_m [He (6" )+aHg (")) i [, (t)] + t@} [Hy(t),AH, (£")]

t'=~0 ==00

+

olag (£ (1.42)

where §} is both linear and continuous in AHy(t') and where SU|laH(t"){|]

satisfies the equation

lim lgBeCe ) (1.43)
laHg (£1) [0 [laBg (e )] -

That is, J has a Fréchet derivative at H, (t') if the difference between
the values of % at Hy(t') and Et(t')+§§t(t') is given to a good approx-
imation by a continuous, linear functional of égt(t') whenever égt(t')
is small in norm.

Let us now record, for later use, one additional condition which

must be met by &f as a consequence of Eq. (1.3%36). This is
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Q) = g 8%

1t ' ==c0 t'=-0

(B (60), 08 (2)] - 0]

(1.44)

for all orthogonal tensors @ and for all functions ﬂt(t') and é@t(t')

which satisfy (1.42).

1.4.5 Viscometric Flows

There exists a special class of fluid motions, called viscometric
flows, which possess extremely simple deformation histories. Their com-
mon characteristic is that they are all kinematically equivalent to simple
shear between parallel plates, except for a time dependent rigid rotation
of each material particle. Viscometric flows are of interest in the
present study mainly because the primary motion in the Taylor-Couette
stability analysis is viscometric.

Fredrickson}7 for one, has cited some well-known examples of visco-
metric flows:

(1) Simple shear between parallel plates.

(2) Flow in a pipe of circular cross section.

(%) Tangential flow between concentric rotating cylinders (Couette
flow).

(4) Flow between a plate and cone.

(5) Combined tangential and axial flow (helical flow) in an annulus.

It has been shown by Goddard and Millergo that the kinematics of all
viscometric flows may be described by the following set of equations: The

characteristic eguation for’E is
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ol N (1.45)
where
y = ~N2(E:E) (1.46)

ig the shear rate. Furthermore,

2
e (1.17)
2
%%L - 9 (1.48)
and
%{- - 0 . (1.49)

These relations can be put in a more convenilent form (involving the de-
formation history g (t')) by employing Eq. (1.40) and recalling that the

tensor B4 (t') is orthogonal. The final result is

B(t) = (s (1.50)
y = Ne(Eg(t'):Ee(t))) (1.51)
32%%+72§t(t’> -9 (1.52)

ELE?&Eill = 0 (1.53)
Dt ~ °

Iet us now solve Eq. (1.52), an ordinary, linear, second-order dif-

ferential equation, for H.(t'). We obtain

N

Et(t’) = E(t)cos y(t-t') - sin y(t-t") (1.54)

< |~
&
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which holds for general viscometric flows.
Coleman, Markovitz, and Noll7 have considered theoretically the mech-

anical behavior of simple fluids undergoing viscometric flows and have

shown that, for all such motions, the state of stress at a material par-
ticle 1s determined by three material functions of the shear rate vy,
These "viscometric functions'" are the viscosity n(y) and two normal
stresses o,(7) and 02(y), all of which are even functions of 7 With par-
ticular regard to steady laminar shear between parallel plates, this means
that a simple fluid will give a stress pattern identical with that repre-
sented by Eq. (1.4) for real viscoelastic fluids.

Now, for flows obeying (1.50)-(1.53%), it is also possible to show
that the constitutive functional f for a simple fluid may be reduced to

any one of the following eguivalent forms:

1 - 1
s+l = f [E(t)] =2q(y)8 (t')!. v 2aree) g2y
S + pI A B nE () 2 K ~!t'=t
+ (62;01) DIt (t ?J (1.55)
7 Dt + 0=t
= 2on(y)E + 2laaree) g2, (oa-01) B2 (1.56)
~ v2 - 2 Dt
= n(a ¢ B3 e Lzl g, (1.57)
o~ Y ~ 272 ~

where we recall that A, are the Rivlin-Ericksen tensors (see Egs. (1.28)
and (1.29)).
As was mentioned above, Coleman, Markovitz, and Noll7 have deter-

mined the minimum number of material functions necessary for describing
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vigscometric flows of simple fluids. One of the objectives of the present

study is to do the same for the Taylor-Couette stability problem.
1.5 DISCUSSION OF PREVIOUS WORK

1.5.1 Theoretical

The stability of fluid flow between two long concentric rotating
cylinders was first considered by Lord Rayleigh5u in 1916 for the inviscid
case (§+p£ = 9), He derived a simple condition for instability with
respect to rotationally symmetric disturbances based on energy considera-
tions. Rayleigh's criterion is as follows: if the magnitude of the cir-
culation increases outwards, the flow is stable, whereas, if it decreases
outwards, the flow is unstable.

Assuming that, in real fluids, viscosity serves to maintain the
steady flow but does not affect the occurrence of instability, Rayleigh's
criterion leads one to conclude that, for cylinders rotating in the same
direction, the flow is stable if Qor8 > Qir3, where Qi and Qp are respec-
tively the angular velocities of the inner and outer cylinders, and rj
and rs are the corresponding radii. For cylinders rotating in opposite
directions the circulation decreases outwards in at least part of the
field of flow and the flow is always unstable.

In 1923, G. I. Taylor59 published his now-famous work on the Couette
stability of incompressible Newtonian fluids. This theoretical treat-
ment has since served as a model for many later stability analyses. Tay-

lor began by assuming that, superimposed upon the primary Couette motion
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Xﬂo>, there is a small secondary velocity perturbationrx(l) which is a
function of the radial and axial coordinates but not of annular position
(axisymmetric disturbance). He employed this assumption in the Navier-
Stokes and continuity equations, dropped those terms involving products
of secondary quantities, and obtained a set of "disturbance equations”
which are linear and homogeneous in the components oftg(l)- When com-
bined with the homogeneous boundary conditions on X}l>, these disturbance

equations defined a characteristic-value problem for Q,, the angular

velocity of the inner cylinder. The minimum value of Q, over all allow-
able eigenvectors X(l) then gives the critical conditions for the onset
of instability. In solving the disturbance equations, Taylor confined

attention to the neutral mode of stability where‘y(l>

neither grows, de-
cays, nor oscillates with time, and further assumed that y(l) 1s periodic
in the axial direction (which amounts to resolving the disturbance into

its normal spatial modes). From Taylor's calculations, it is found that

the criterion for the onset of instability may be expressed in the follow-

ing form:

2n%

T, = (1.58)
a[0.0571 P+0.00056/P]

where

o a,

P - [2—*9+———0°652] (1.59)

and where o and a are defined in Eas. (1.1). Eguations (1.58) and (1.59)
give an excellent approximation for T., to terms of order l/a and for

o > -1. Taylor also determined that, for the case of cylinders rotating
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in the same direction (@ > -1), the critical wave number €. will have a
value approximately equal to n. From Eq. (1.2), one therefore notes that
the vortex cells will have roughly the same height as width, and will
thus be nearly square in cross section.

Chandrasekhar’ has recently (1954) reconsidered the Newtonian sta-
bility problem for the case where the radii of the cylinders are extremely
large compared to the distance between them (1/a << 1). This represents

the so-called small-gap approximation and gives rise to considerable simp-

lification in the mathematical treatment of the problem. In particular,
for a small gap, it 1s found that:
(1) The primary Couette motion approximates simple shear between

parallel plates with

y = (Q2-Q1)ri/d, a constant.

(2) The definition of the Taylor number reduces in form to

T = -20aR® . (1.60)

(%) The form of the disturbance equations and their solution are
greatly simplified.
Chandrasekhar's results agree quite well with those of Taylor for compar-
able situations. For the case of a stationary outer cylinder (a=-1), he

finds that

To = 3390
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and

€ = 3,12

Ip

Interest in the Couette stability of non-Newtonian fluids apparently
began in 1961 with the work of Graebel.21 This author investigated the
behavior of Reiner-Rivlin flulds under circumstances where the functions
o, and Op in Eg. (1.20) are constants. Here, the three viscometric func-

tions are given by

n(y) = (; = constant

2
o1(y) = apy (1.61)
oa(y) = opy®

By employing the small-gap approximation to simplify the analysis,* Graebel
found that the coefficient of cross viscosity Op can strongly influence
the results obtained for the critical Taylor number and critical wave num-
ber. He showed in fact that for o > 0, T, < Tc,N while e, > ec,N’ where
TC,N and ec,N represent the Newtonian values of T. and ec.' Although
Graebel's analysis has been performed for the somewhat unrealistic Reiner-
Rivlin model, it does give some general indication of what one might ex-
pect from a real non-Newtonian fluid, that is, that the critical param-
eters may differ from their Newtonian values.

Graebel22 has also presented a treatment of the Taylor-Couette sta-

bility problem for Bingham plastics. According to the standard model,

*Most non-Newtonian stability studies, including the present, have employed
the small-gap approximation, and this fact will be tacitly understood
throughout the further discussion.
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such materials exhibit no normal stresses in simple shear between parallel

plates but do have a viscosity which depends on shear rate:

n(y) = u {% + _32;1 (1.62)

wly|

where p is a constant, with units of viscosity, and {T is the yield stress.

Graebel defined the Taylor number as
5 T2
T = -20a [dﬁl} (1.6%)

and concluded from his solution to the disturbance equations that the flow
is more stable than in the Newtonian case. One might suspect, however,
that a Taylor number based on the apparent fluid viscosity n(y) evaluated
at the gap shear rate y might give a truer measure of the ratio of cen-
trifugal to viscous forces. Had Graebel employed this definition, his
above conclusion would have been reversed. This illustrates an important
problem which we shall attempt to resolve in the present analysis, namely,
that of determining which viscosity, in general, is most appropriate for
defining the Taylor number,

Lo, k1

Thomas and Walters have considered the stability in flow between
coaxial rotating cylinders of a Walters B' liquid (Eq. (1.24)), which has

for viscometric functions

n(y) = n, = constant

o1(7) (1.64)

I
=
o
~
\V}

oz(y) = 0
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where

and

>~
I

5 f td(t)dt
(0]

They found for the physically meaningful case of K, > O, that T, < TC,N
while 2o > €c,N-

Chan Man Fong6 has treated this same stability problem for the related
Walters A' model, in order to compare results with those of Thomas and

Walters. The A' liquid may be shown to yield

= Mg = constant
or(7) = 0 (1.65)
02(7) = '2K072

as viscometric functions. For values of K, > O, Chan Man Fong determined
that Te > Tc,N and €, < €c W exactly the opposite of what Thomas and
Walters obtained. Chan Man Fong summarized:
"Comparing the conclusions of the present study with those of

Thomas and Walters, it is seen that the stability criterion is

very dependent on the particular elastico-viscous model con-

sidered."

It is not surprising that the results of these two studies should
differ so greatly, expecially when one considers that the A' and B' models

exhibit extremely different normal-stress patterns. Indeed, the gquestion

naturally arises as to whether such diversity in behavior might not al-
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most entirely be attributed to differences in the viscometric functions
N, 01, and oz. It shall become apparent from the results of the present
study that this is in fact the case with regard to liquids A' and B',
However, for simple fluids in general, there will be additional material
functions which can influence flow stability.

In 196M, Dattall published a theoretical analysis on the Taylor-Couette

stability of the particular Rivlin-Ericksen fluid represented by
_ 2
8+ Pl = OgA1 + AT + Qsfo (1.66)

where 5, COp, and CGs are material constants. Coleman and N0118 have shown

that this model, referred to by TruesdellLLE

as a "fluid of second grade,"
describes the limiting behavior of simple fluids with fading memory at ex-
tremely low rates of deformation (or, equivalently, of fluids with very

short memories). If we choose for the moment to consider the special case

of extremely slow viscometric flows, we conclude from (1.66) and (1.57)

that

Ofl = 1im T]()’) = no
>0

0z = lim o1(y)/y° (1.67)
720

oz = lim (o2-01)/29% .
7*0

Thus, the three viscometric functions for this model are given by

n(y) = o
a(y) = a2® (1.68)
o2(y) = (0z+20g)y?
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Several very important results have come from Datta's treatment. First
of all, Datta noted that he could reproduce the disturbance equations
derived by Graebel2l for the Reiner-Rivlin fluid and by Thomas and Wal-
tersuo for their "ligquid B'" (for the case of short fluid memory) merely
by suitable cholce of 1, o0y, and oz corresponding to the viscometric
functions in these investigations; now, it is furthermore possible to

6

show that the same could have been done for Chan Man Fong's~ treatment
of the liquid A' (again for the case of short fluid memory). In fact,
one can demonstrate that, even for fluids with long memories, the dis-

turbance equations for the liquid A' and ligquid B' analyses could be re-

produced almost exactly from Datta's equations. These findings are

highly suggestive of the possibility that the three viscometric functions
M, 0y, and oo may play a large role in determining the stability cri-
teria.

Datta has also shown that, for a fluid obeying (1.66), the sign and
magnitude of the second normal stress coefficient (0p+2Qg) can drastically
affect the values obtained for the critical parameters T, and €-.. In
particular, a small increase in (ap+20i5) can result in a relatively lafge
decrease in T, along with a relatively large increase in €.

In 1966, Giesekusl8 reconsidered the disturbance equations developed
by Datta for the purpose of treating two special cases; these were, simple
shear between parallel plates where a»w, and the case of negligible inertia
where T+0. He showed that, in both situations, the parameter (0p+20s) is

again of considerable importance. Furthermore, as part of this same work,
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Giesekus put forth an interesting suggestion which is worthy of note here.
He postulated that it might be possible to approximate the stability be-
havior of certain viscoelastic fluids outside the range of applicability
of Eq. (1.66) (i.e., at finite rates of shear) by replacing the material
constants Oy, 02, and Qs in Datta's disturbance equations by the functions

which they approach at y = 0, That is

&y = T](')’)
a2 = o0u(y)/r” (1.69)
o = loa(y)-o1(y)]1/29% .

This same author stressed the fact that such a substitution would not
yield a strictly valid stability criterion within the framework of the
general simple-fluid theory but indicated that it was the best that one
could do at that time. Based on the results of the present study, we
now know that this was not the case. If Giesekus had instead substi-
tuted (1.69) into Datta's original fluid model and then rederived the
disturbance equations, his results would have come considerably closer
to what is actually obtained for simple fluids with fading memory.
Leslie25 has considered the stability in Couette flow of the ideal-
ized Ericksen anisotropic fluid represented by Egs. (1.30) for the case
of py = 0 and Ipol > 1., The viscometric functions for such a material

are given by Leslie as
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() = p+ pg + ponind
o1(7) = mna(uznd+2us)y (1.70)
o2(7) = ninz(pzni+2us)y
where
2n§ = (Ho‘l)/uo
and
2ng = (po+1)/ng

and where n; and np are respectively the x and y components of the pre-
ferred-direction vector n in simple shear between parallel plates (Fig.

1.1). The author defined the Taylor number by
a3q, |
T = -20a [?—ibJ (1+0/2) (1.71)
i

and then solved the disturbance equations for the case of p = po = s,

POJ=

Ho =2, ¢ = -~ 5, and a = 20, His calculations reveal that when ny > O
and nz > 0 one has Te v 9000 and €c ~ 3.0 while for ny; > 0 and np < O one
has Tc ~ 5000 and €, ~ 5.0. It is interesting to note that these results
would have been quite different had Leslie defined the Taylor number as.
in (1.60) and, moreover, calculated its value using the apparent fluid
viscosity n(y) rather than p. Under such circumstances, he would have
obtained T, .~ 2500 for nj > 0 and nz > 0, and Te « 1400 for n; > 0 and

ng < 0. These findings may be compared with the "exact" value of 2275
given by Thomas and Waltersul for the Newtonian case (for o = - %).

Recently, Davies12 has investigated the Couette stability of the

idealized viscoelastic fluid defined by



t
S+ L - pol(8+pL):1]E = 2[ Fle-t)EL (6) - B(t') - B (t)at’
=0 (1.72)

which reduces to the Walters B' liquid when u, = O, and which has as vis-

cometric functions

U(V) = Mg [1+HOI<072/T10]
or(y) = 2K (1.73)
o2(y) = ©

His purpose was to elucidate the separate effects of (a) elasticity and
normal stresses, and (b) shear-dependent viscosity, on flow stability. In
order to provide a basis for comparison, he also considered the behavior

of the model

S+ pl = 210y[1+2uK,(E:E)/n,IE, (1.74)

which exhibits the same viscosity variation as (1.72), but yields neither
normal stresses nor elastic effects. Davies defined the Taylor number

in terms of the zero-shear viscosity n,; however, he recognized the fact
that, in stability problems involving a shear-dependent viscosity, two
definitions of T are actually possible, one based on a characteristic

parameter with units of viscosity (e.g., 7To) and the other based on the
true apparent viscosity n(y). Unfortunately, the author made no attempt
to resolve the question as to which definition, in general, is more mean-

ingful. The results of Davies' analysis may be summarized as follows:
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For Ky > 0 and puy <O,
(1) A fluid obeying (1.Th) yields Tc < T y and & < €. y.
(2) A fluid obeying (1.72) gives a value of T, which is less than
that for (1.74) and a value of €, which is greater.
These findings are independent of the definition of the Taylor number em-
ployed.

All of the stability analyses we have discussed up to this point have
involved consideration of various and particular simple-fluid models. As
such, they shall henceforth become special cases of the present more com-
prehensive treatment, in which the disturbance equations for a general
simple fluid with fading memory are derived. It will be shown here that
there are eight material functions of the shear rate which can influence
flow stability, and the special forms of these functions will be listed
for each of the models mentioned so far.

In formulating the disturbance equations for the present study, it
will be assumed, following Taylor39 and Chandrasekhar,5 that the onset of
instability may be characterized by an infinitesimal, steady velocity
disturbance superimposed upon the primary viscometric Couette flow. We
shall thus be dealing with a total flow which is "almost viscometric'" in
nature, that is, viscometric except for a small perturbation. The general
techniques necessary for treating such motions of simple fluids will be
developed in Chapter 3.

Metzner, White, and Denn29 have recently suggested that flows which

are sufficiently "close'" to viscometric motions might adequately be de-
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scribed by an equation of the form (1.57), which holds in the strictest

sense only for perfectly viscometric flows. If this viscometric hypothesis

were correct, then knowledge of the three viscometric functions
would suffice to determine the stability behavior of a given fluid a
priori; furthermore, no new information concerning the fluid could then
be obtained from a stability test. It is therefore considered imperative
that we determine here the validity of the "viscometric hypothesis."
Beard, Davies, and Waltersl have recently presented the results of
the only Taylor-Couette stability treatment that is not a special case of
the present analysis. Consideration was given to the so-called over-
stable mode of behavior for the Walters B' liquid, where it was assumed
that the disturbance, rather than being steady in time (neutral mode),
fluctuates with a complex frequency. The authors found that, for certain
values of the fluid parameters, the overstable mode can yield a lower
critical Taylor number than the neutral mode. However, as Giesekusl8 has
pointed out, this type of behavior is not necessarily characteristic of
all simple fluids. The experimental results of the present study indi-
cate that, for the polymer solutions tested, the neutral mode of behavior

is preferred.

1.5.2 Experimental
As part of his well-known work on the Couette stability of incom-
pressible Newtonian flows, G.I. Taylor59 performed several experiments de-

signed to test the validity of his theoretical results. The apparatus
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employed consisted of an opaque inner cylinder contained within an outer
cylinder of glass; the cylinders could be rotated in the same or in op-
posite directions. A colored dye was injected into the region near the
inner cylinder in order to allow for observation of the onset of insta-
bility which was characterized by the formation of a compartmentalized
cellular-vortex pattern. Taylor confined attention to the case of water,
and found his experimental results to agree very closely with theory.

In 1928, Lew1526 extended Taylor's findings to cover a wider range
of fluids and conditions. The fluid motion in this study was followed by
means of tiny suspended aluminum particles rather than by dye injection.
Thus, the problem of diffusion of dye into the fluid was avoided, and
each experiment could be repeated several times for the same sample.
Iewis' results have, for the most part, confirmed the mathematical rela-
tions derived by Taylor.

The first investigators to consider experimentally the stability of
viscoelastic flow between coaxially rotating cylinders were Merrill,
Mickley, and Ram28 in 1962. These authors determined the shear stress-
shear rate relation for several polymer solutions using a Couette visco-
meter with a stationary outer cylinder; high rates of shear were
employed and the gap between the cylinders was quite small compared to
fh@.t&dii.(a,%:1803¢ The onset of instability was observed as an abrupt
increase in the slope of the shear-stress vs. shear-rate curve. (Unfor-
tunately, the findings of this investigation must be viewed with some

skepticism since, from the authors' description of the experimental pro-
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cedure, helical flow was present within the apparatus to an unknown ex-
tent. Merrill et al., have found that

(1) For the Newtonian fluids tested, the critical Taylor number was
about 57% higher than predicted by theory.

(2) The polymer solutions studied showed no significant deviation
from Newtonian behavior, provided that the Taylor number was cal-
culated from the "thinned," apparent viscosity of the fluid.

Rubin and Elata58 have recently considered the stability in Couette

flow of various dilute polymer solutions and report that, for all the sys=-
tems examined, the critical Taylor number increases with concentration
while the cellular spacing remains relatively constant at its Newtonian
value. Here, the viscosity at zero shear rate has been used in calculating
Te. As part of this same study, the authors have compared the above ex-
rerimental results with the predictions of several rheological models;
their attention was focused upon the idealized fluids studied by Thomas
and Walters, 0,41 Datta 1l Chan Man Fong,® and Leslie.2d In addition,
Rubin and Elata have performed several new calculations of their own based
on leslie's analysis. They conclude:

"Ericksen's anisotropic fluid for n; > 0 and nz > O might be

a suitable model for the investigated fluids. Not only can

this model predict an increase of T,, without appropriate changes

in €s, but both Py1-Pos (o1-02) and Pop-Pas (02) are positive,

which is in accordance with most of the experimental results."

These conclusions are erroneous for a number of reasons. First of all,

for n; > 0 and np > 0, it is seen from Egs. (1.70) that, if y > 0, o,

and oz are both positive while if y < O, they are both negative. The
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shear rate y, throughout Leslie's treatment, may be shown to have been
taken less than zero. Hence oz was not positive for n; > 0 and np > O
as Rubin and Elata claim. This further reflects an error in the work of
Leslie. 1In particular, Ericksenl® has derived the viscometric functions
for the fluid model defined by (1.30), and his findings are consistent
with (1.70) only if absolute value brackets are placed around the y's in
these equations., The three viscometric functions will then be even func-
tions of the rate of shear, in accordance with the theoretical results of
Coleman, Markovitz, and Noil.l

As a further source of confusion in their theoretical treatment, Rubin
and Elata have, following Leslie, defined the Taylor number in terms of
the characteristic parameter p rather than the actual viscosity n(y). It
will become apparent from the results of the present study that, unless
T is based on n(y), the Newtonian and non-Newtonian results may not be
properly compared. The two cases considered by Rubin and Elata are listed
below along with the values for Tc,n,the critical Taylor number based on
n, and Tc,N) the Newtonian critical value.

Mo = 1.5, M2 = p, M3 = 0, & = -1, € o 3.1, Tc a 4600, To n o 3500,

Tc }N = 3590
Mo = 1.2, p2 = pug = p, @ = =1, €z 3.0, To ~ 16000, Te,m - 5700,
Te,y = 3390.

One notes that a somewhat less pronounced effect on T, is obtained by

correctly defining the Taylor number.
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Giesekusl8 has conducted some "makeshift'" experiments on viscoelastic
fluids in Couette flow as part of his previously-mentioned theoretical
work. For a 4% solution of polyisobutylene in decalin, he found that the
onset of instability occurred at a Taylor number which is approximately
3 x lO5 times smaller than in the Newtonian case. Furthermore, the cri-
tical wave number was about 25% larger than predicted by Taylor's analysis.
Giesekus also studied a 1% solution of aluminum napthenate in decalin and
obtained a critical Taylor number approximately 900 times lower than for
a Newtonian fluid of the same apparent viscosity.

Hupplerz)+ has recently reported the results of measurements on the
three viscometric functions 1, o0,, and op for solutions of several diff-
erent polymers at various concentrations. In the present work, it was
originally anticipated that these functions might play an important part
in determining viscoelastic flow stability. Therefore, two of the polymers
studied by Huppler have been chosen for experimental consideration herein.
In particular, attention has been given to the Couette stability of high-
viscosity grade CMC (carboxymethylcellulose) solutions, ranging in concen-
tration from O% to 0.55%, and to solutions of Natrosol 250-H HEC (hydroxy—
ethylcellulose), of concentrations between 0% and 1.0%. Furthermore, in
order to compare theory with experiment, the stability of a 0.5% CMC solu-
tion and a 0.9% HEC solution have, based on Huppler's viscometric func-

tions, been considered in detail analytically.
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1.6 OBJECTIVES

The objectives of the present study may now be summarized as follows:

(1) To develop general methods for treating small perturbations on
viscometric flows of simple fluids.

(2) To establish, as e.g., Coleman, Markovitz, and Noll! have done
for viscometric flows, the minimum number of material functions necessary
to analytically describe the Taylor~Couette stability of simple fluids
with fading memory.

(3) To determine the relationship, if any, between the above mate-
rial functions and the three viscometric functions n, o, and o2.

(4) To 1list the above material functions for all of the particular
fluid models whose stability has been previously analyzed.

(5) To establish which viscosity, in general, is most appropriate
for calculating the Taylor number.

(6) To perform stability experiments on polymer solutions whose
viscometric functions have been measured experimentally; and

(7) To study analytically the stability of viscoelastic fluids whose
viscometric functions are known.

(8) To determine, by a combination of theory and experiment, the

validity of the 'viscometric hypothesis."



CHAPTER 2

EXPERIMENTAL WORK

2.1 SAMPLES STUDIED

The experimental work of this investigation was undertaken for the
purpose of determining the stability behavior of some real viscoelastic
fluids in flow between coaxial rotating cylinders. Aqueous solutions of
three cellulose-derivative polymers, whose characteristics are summarized
in Table 2.1, were chosen for study; the viscometric functions n, o1, and
oz for the latter two of these have been reported in the literature by
Hupplerm‘L for various particular concentrations.¥ Since the present theo~
retical treatment has indicated that n, o;, and oz should greatly influence
flow stability, detailed numerical calculations have been performed on a
0.5% P-75-XH CMC solution and a 0.9% HEC solution based on Huppler's re-
sults. For these concentrations, the current theory and experiment may
be compared and, as we shall see later in Chapter L, one may then eva-
luate the validity of the "viscometric hypothesis" which postulates that,
for sufficiently close approximations to viscometric motions, the flow

criteria are determined entirely by m, oy, and os.

*Gratitude is owed to Dr. B. Duane Marsh and Professor R. B. Bird of the
University of Wisconsin for furnishing samples of these two polymers.

Lk
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TABLE 2.1

SYSTEMS INVESTIGATED

Pol Desienat Prod Average Viscosity Cone.
olymer signation roducer M Grade Range
CMC* ™MD Hercules not known Medium 0-2.5%
CMC P-75-XH Union Carbide 3.5 x 10° High 0-0.55%
HEC** Natrosol 250-H Union Carbide not known High 0-1.0%
*CMC = Carboxymethylcellulose

*¥HEC

I

Hydroxyethylcellulose

2.2 SAMPIE PREPARATION

The volume of sample required for the stability apparatus was approx-
imately two liters. The most concentrated polymer solutions were prepared
by first weighing solid polymer on a trip balance, with a least count of
0.1 g. The polymer was then transferred to a gallon container and 2500
cc of distilled water were added; complete solution was accomplished by
vigorous and frequent shaking.

Following Lewis,26 aluminum particles were suspended in each fluid
tested in order to facilitate observation of the flow patterns. The par-
ticles could not be mixed directly with the polymer solutions, however,
since under these circumstances they tended to form "clumps" due to the
high viscosity and the accompanying low wetability of the solutions. To
avert such difficulties, approximately 0.5 cc bulk of particles was mixed
with about one liter of distilled water, which served to wet them quite
readily; 500 cc of this suspension was then decanted and combined with the

2500 cc of solution already prepared to yield an intimately dispersed
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system totaling three liters. Iess concentrated solutions were prepared
by diluting those of higher concentration.
Of some interest is the effect of the aluminum particles on fluid

behavior. Now, Einsteinl? has derived the equation

n o= ny(1+2.5¢4) (2.1)

for the viscosity of a dilute suspension of small spheres in a Newtonian
fluid. Here ng refers to the viscosity of the suspending medium while

¢ is the volume fraction of spheres. For volume fractions on the order
of magnitude used, Egq. (2.1) predicts a negligible effect on fluid vis-
cosity. Hence, it is fair to assume that the material properties of the
solutions studied were not appreciably influenced by the presence of alum-
inum particles.

HupplermL

has observed no mechanical degradation in solutions of any
of the cellulose derivatives tested. 1In the present work, degradation

due to bacterial growth may also be assumed negligible since the stability

behavior of the samples was examined immediately after their preparation.

2.3 STABILITY APPARATUS

The stabllity apparatus used in this investigation was made available
by Professor W. P. Graebel (a member of the Doctoral Committee). It con-
sisted of an inner cylinder of aluminum, having an outside diameter of
5.52 in., contained within a transparent plexiglass outer cylinder, of in-

side diameter 5.98 in. (Actually, these diameters varied by approximately
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* 0.005 in. along the length of the apparatus, and the values quoted here
are those measured at the center.,) The ratio of the inner cylinder
radius to the width of the gap for the system was then a = r;/d = 12.

In order to minimize end effects, the apparatus was originally de-
signed so that its length, approximately %6 in., was relatively large com-
pared to the diameter; the working height of fluid within the apparatus

totalled approximately 30 in. (Fig. 2.1).

Fig. 2.1. The stability apparatus. The fluid shown
is a 2.5% aqueous solution of 7MI' CMC. Vortex cells
are visible, indicating that the inner cylinder is
rotating above the critical speed.

The facility was present for rotating the cylinders independently in

either direction by means of two 1/5 hp variable-speed electric motors con-
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nected to the cylinder shafts through rubber belts; the maximum attain-
able speed of rotation was approximately 400 rpm.

In the present work, tests were performed with only the inner cylinder
rotating; there were three reasons for this., TFirst of all, the outer cyl-
inder tended to "wobble" when driven, and it was expected that this might
influence the steady flow. Secondly, it is frequently desirable to com-
pare stability results at a fixed ratio of the rotational speeds which was
automatically assured under these circumstances. Finally, the theoretical
findings suggest that similar effects would have been experienced at other

speed ratios (at least for cylinders rotating in the same direction).

2.4 STABILITY EXPERIMENTS

The rotational speed of the inner cylinder was increased slowly until
vortex cells, which appeared as alternate light and dark bands wrapped
around the inner cylinder (Fig. 2.2), began forming in certain parts of
the system (primarily at the ends). It was next observed that, at a
slightly higher rate of rotation, the disturbance completely filled the
apparatus. The average of these two limiting speeds was taken as the
onset of instability and in no case did this differ by more than 5% from
either of the limits.

The rate of rotation of the inner cylinder was determined by count-
ing the number of revolutions and dividing by the corresponding time in-
terval. Revolutions were counted by means of a small protuberance, ex-
tending from the top edge of the cylinder, which was allowed to strike a
flapper, thus emitting a clearly audible sound at each rotation. The time

interval for several counts was measured using a stopwatch.
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()

Fig. 2.2, Transition to a vortex pattern. Figure 2.2(a) shows the
stablility apparatus when the inner cylinder is rotating below the
critical speed, Figure 2.2(b) shows the stability apparatus when

the critical Taylor number is exceeded. The fluid is a 2.5% agqueous
solution of TMI CMC,
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The wavelength of the disturbance could be determined quite accurately
in each case by measuring the combined height of several vortex cells at
the surface of the transparent outer cylinder. The results of these meas-
urements were reproducible to within L% of the average value.

After each stability experiment, the polymer solution was drained
from the system and its temperature was measured using a standard mercury
thermometer. It is estimated that the temperature was known to *1°F,

Fredricksonl? has presented the equation

-7, = nri(ﬂz"ﬂl)z (2.2)
Uk

for estimating the temperature rise due to viscous heating in a Cguette
apparatus. In deriving this relation, it was assumed that the outer cyl-
inder is maintained at the constant temperature Tg and that no heat trans-
fer takes place at the inner cylinder. The guantity k in (2.2) stands for
the thermal conductivity of the fluid, while Tpgy refers to the maximum
temperature attained in the system; Calculations reveal that, in the

present work, the value of T, ,.-T, was never greater than 1.8°C. As Fred-

max
ricksonl7 has indicated, a temperature rise of 1 or 2°C is tolerable for

most fluids in this apparatus. Therefore, it is reasonable to assume that

viscous heating effects were unimportant herein.

2.5 VISCOSITY MEASUREMENTS
In this study, fluid viscosities have been measured using a commercial

version of the Weissenberg Rheogoniometer, which is essentially a plate-
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and-cone viscometer. A detailed description of this instrument may be
found elsewhere,l6 and hence we present only the basic features of its
design and operation.

The fluid to be tested is sheared between a fixed flat plate and a
rotating cone as shown schematically in Fig. 2.3. This flow may be re-
garded as having a constant rate of shear y provided that the angle be-
tween plate and cone @, is less than Le (see e.g., Fredricksonl(); in

the present work, O, was 1°37°".

PLATE

CONE SAMPLE

\/‘L”‘J“’

Fig. 2.3. Schematic of plate-and-cone device.

The torque M on the flat plate is related to the apparent viscosity

through the equation

Moo= @i%—(ﬁ (2.3)

where D is the platen diameter. The shear rate y, for a small cone angle,

is given by

y = /6, (2.4)

where y has units of sec'l, ®w is the rotational speed of the lower platen
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in radians/sec, and 6, is in radians. Thus, from measurements of M and
w, one can determine the shear stress-shear rate relation for a given
fluid.

A schematic of the entire apparatus is presented in Fig. 2.4, It is
seen that the lower conical platen is driven by means of a l-hp electric
motor operating at 1800 rpm; variation of the platen speed is facilitated
by a gearbox connected to the output of this motor. Gearbox settings of
from 0.0 to 5.9 (in steps of 0.1) correspond to speed reduction ratios of
from 1:1079-0 (1:1) to 1:1072+9 (1:792,000), respectively. An internal
speed reduction of 1l:4 is present within the rheogoniometer so that the
maximum rotational velocity of the lower platen is 450 rpm; by Eq. (2.4),

this corresponds to a maximum shear rate of 1670 sec™d for the present

study.
CLAMP
TORSION BAR
1,ARMATURE<Z:>TRANSDUCER
!_r \
7777 \
E IR BEARING
ROTOR THERMOCOUPLE
CONE AND PLATE
1800 GEAR- 4:1 SPEED
RPM BOX REDUCTION
MOTOR

Fig. 2.4. Schematic of rheogoniometer.
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The torque on the upper flat plate is determined by the deflection
of a torsion bar joined to that platen through a rotor., This rotor passes

through an air bearing which serves to minimize frictional effects during

testing. The torsion bar armature deflection is measured by means of a

torsion-head transducer whose signal is displayed on a meter. For the

7.5 cm diam platens and the 1/8 in. diam torsion bar (torsion bar constant
= 3.43 x 1074 dyne-cm/0.001 in.) used in this work, the shear stress

7n(7) was related to the above deflection through the equation

yly) = 311 A (2.5)

where A is the armature displacement in thousandths of an inch and ()
is in dymes/cnf.

In practice, the apex of the lower conical platen is truncated
slightly so that the two platens do not actually touch one another; this
truncation may be shown to give a negligible contribution towards the
total-torque measurement. The upper flat plate is positioned vertically

by means of a gap-setting transducer (not shown in Fig. 2.4) which places

the hypothetical tip of the cone at the surface of the flat plate,

In the present work, viscosity measurements have been made immediately
after each stability experiment by using sample taken directly from the
stability apparatus. A wide range of shear rates, which included that
occurring at instability, were employed and care was taken to assure that,
near the critical shear rate, the temperature differed by less than 0.2°C

from its recorded value in the stability test. The method of temperature
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control, illustrated in Fig. 2.5, was as follows, If the initial platen
temperatures (AB), determined by means of a thermocouple embedded in the
upper platen, were below that desired, the platens were doused with hot
tap water until their temperatures rose a few degrees above this (BC).
They were then wiped dry and sample was loaded into the region between
them (CD). The system was then allowed to cool slowly (for several min-
utes) until the temperature dropped to about 0.5°C higher than at in-
stability (DE); at this point, testing was begun. During the entire
course of measurements, the temperature was observed to fall an additional
1°c (EF).

Calculations have shown that the several minutes necessary for the
platens to cool was sufficient for the system to reach thermal equilibrium.
Thus, it is reasonable to assume that the thermocouple gave an accurate
representation of the sample temperature.

It was initially observed that air currents generated by the air
bearing caused the platens to cool too rapidly during testing; further-
more, these currents gave rise to significant evaporation of the sample
from the gap between plate and cone. To protect the system from such ef-
fects, the platens were enclosed in a wooden test cell with a plexiglass
window. (This apparatus was designed and constructed by Dr. L. F. Ca.rterlL
as part of his doctoral work, and is described in detail in his Ph.D.
thesis. )

FredricksonlT has presented an equation for calculating the effects

of viscous heating in a plate-and-cone device, This is expressible in
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the form

Tpax - Yo = nD2af (2 .6)

where k is the thermal conductivity of the fluid and Tygx is the maximum
temperature attained in the apparatus. In deriving (2.6), it has been
assumed that both platens are kept at the constant temperature T, and that
no heat transfer takes place at their outer edge. For the present work,
the maximum temperature rise due to viscous heating may be shown to have
been less than 1.5°C in all cases, Therefore, such effects were not con-

sidered significant herein,

2.6 RESUITS AND BISCUSSION

Figures Z2.0-2.9 prescent the resulits of the viscosity measurements ob-
tained in this study; the viscosity 7m has been plotted vs. the shear rate
y at fixed values of temperature and composition. It is seen Irom these
graphs that the agueous solutions of all three polymers tested exhibited
shear thinning.

The dashed lines in Figs. 2.7 and 2.8 represent equations which were
used in the present theoretical work to approximate the experimental find-
riugs Of’ﬁagpjer24<z¢ ke coroertroatiors and temperatures shown. The lines
are seen to fall very roughly into appropriate positions with respect to

the current experimental results; that is, those solutions which flanked

Huppler's in concentration also flanked his in viscosity.
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For each of the investigated fluids, the critical Taylor number as a
function of concentration is plotted in Figs. 2.9-2.11; here, T, is de-
fined by Eq. (1.1), and the apparent viscosity at the critical shear
rate n(y) has been used in its calculation. The effect of polymer con-
centration on the critical wave number €, is shown in Figs. 2,12-2,1k,

One can employ Egs. (1.58) and (1.59) to calculate the theoretical
Newtonian value for T. for the present stability apparatus. It is found
that, for @ = -1 and a = 12, Tc,N = 3620. We also recall that Taylor’?
has shown that Ce,NaT = 3,14k, These values are indicated as broken
lines in Figs. 2.9-2.1k4,

The only Newtonian fluid considered in the current investigation was
pure water which corresponds to the point at zero concentration in the
above-mentioned plots. For this case, the critical Taylor number was
found to be L4140 which is about 14% higher than predicted by theory. How-
ever, this value compares quite favorably with the value, 57% higher than
theory, obtained by Merrill EE.EL-:28 for the comparable situation, and
represents fair agreement between theory and experiment.¥* It is worth-
while noting that the point at zero concentration appears to lie on a
smooth curve with the other experimental points and should thus provide

a valid basis of comparison for the non-Newtonian results, The critical

*One might argue that the present discrepancy between theory and experi-
ment could be attributed to the fact that, in practice, only finite sec-
ondary motions of fluids can be observed whereas, according to the theory,
the secondary flow is assumed to be infinitesimal in magnitude. Although
such may indeed be the case it should be pointed out that Taylor59 and
Lewisg6 both achieved good confirmation of Taylor's mathematical find-
ings using experimental procedures similar to those employed here.
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wave number obtained herein for the case of pure water was €, = 3,14,

As can be seen from Figs. 2.9-2.1Lk, the critical Taylor number and
critical wave number both decreased with concentration for all of the sys-
tems investigated. Thus, the flow was less stable than in the Newtonian
case, and the length of the vortex cells was larger, A comparison of
these findings with the results of several other stability studies on
viscoelastic polymer solutions is presented in Table 2.2. One notes im-
mediately that the only study to report a decrease in the critical wave
number is the current one; Rubin and Elata58 found no change in this
gquantity for the systems they studied, while Giesekusl8 obtained increases
in €,. The critical Taylor number was observed to decrease in our study,
giving qualitative agreement with the findings of Giesekus; however, the
magnitude of this decrease was much smaller in the present instance. By
way of contrast, Rubin and Elata report increases in Te, while Merrill
et gl,,28 have found, in most cases, no change in this quantity. Solu-
tions of several different polymers have been used in all of the above
investigations; thus, it appears that the stability criteria are highly
dependent on the systems studied.

In the theoretical portion of the present work, the small-gap approx-
imation has been employed in order to facilitate the mathematical treat-
ment of the Taylor-Couette problem. Unfortunately, the current experi-
mental stability apparatus was not a small-gap system in the strictest

sense of the term. This is illustrated by the fact that the theoretical

Newtonian value for T, (corresponding to the present system) was 3620 as
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TABLE 2.2

COMPARISON OF EXPERIMENTAL STUDIES

Investigator Te-Te N €c=€c,N
Rubin and Elata58 Greater than zero Equal to zero
Much less than zero
Giesekusl8 Greater than zero

(almost equal to -Tc W)

. 8 Zero 1in most cases
Merrill, et al.

. Not determined
— Less than zero in some cases

This study Less than zero Less than zero

compared with 33%90 for the small-gap case.5 A comparison of theory and
experiment is still possible however, if one assumes that the fractional
reducticn in T, is approximateiy the same in both the small-gap and large-
gap cases. Under such circumstances, one would have Tc/Tc,N‘fIO'86 for
a 0.5% solution of P-75-XH CMC and Tc/Tc,N 1}0.69 for a 0.9% solution of
Natrosol 250-H; the corresponding values for the critical Taylor number
for the small-gap case would then be (roughly) 2900 and 2350, respectively.
Before concluding the present discussion of experimental results, one
lasgst factor should receive some consideration, In the current theoretical
analysis, it has been assumed that the neutral mode of behavior is ex-

hibited by the fluid of interest at the onset of instability; i.e., the

disturbance takes the form of a set of cellular vortices, steady in time,

Now. as we have noted earlier, the experimentally observed vortex pattern
(obtained using aluminum particles) was characterized by the appearance

of a steady array of alternate light and dark bands wrapped around the
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inner cylinder. Thus, the assumption of neutral stability appears to be

valid for the systems studied here,.



CHAPTER 3

THEORY OF SMALL PERTURBATIONS ON VISCOMETRIC FIOWS

As was discussed in Section 1.4.,5, Coleman, Markovitz, and Noll,7
have made use of the general constitutive theory for simple fluids to
analyze the mechanical behavior of these materials in viscometric flows.
It has been shown that, even at very high rates of shear, the state of
stress at a material point is determined by three viscometric functions
n, o1, and oz, Unfortunately, most other motions of simple fluids are too
complex to be dealt with by general theory, save for those cases where
the deformation histories are extremely slow. As a result, rapid flows
have, up to the present time, gone largely untreated.

In this chapter, we shall consider a class of motions which are not

only amenable to general analysis but which also possess finite rates of

strain. These are defined by the presence of a small velocity perturba-
tion superimposed upon some primary viscometric flow. The techniques to
be developed here will have obvious application to certain linear stability
analyses, such as the current Taylor-Couette problem. However, it is fair
to say that there exist many other instances of practical importance for
which the methods discussed may find use. Iet us briefly cite, as some
examples, the following:

(1) Combined steady and oscillatory shear between parallel plates

where the amplitude of oscillation is small.
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(2) Problems in which the primary viscometric stress distribution
is not strictly compatable with the equations of motion so that
secondary flows arise. Among these are:
(a) Axial motion in a channel of noncircular cross section,
(b) Flow between a plate and cone,
(c) Torsional flow between rotating flat disks.
Tt should be noted that Pipkin and Owen’> have recently derived con-
stitutive relations appropriate for the description of small perturbations
on viscometric flows, The present independent development is more general,

perhaps simpler to follow, and may be applied more readily than theirs.

3,1 EQUATIONS OF MOTION
The equations of momentum and continuity, governing the flow of any

incompressible material, are given respectively by

-l

LA %X 4 ovvv| = pp o+ yes (3.1)
p]—)—{?—— P 696‘ NN~ _prv AR 5'

and

2

1<
H
O

(3.2)

where b is the body force/unit mass (assumed here to be due only to grav-
ity) and p is the density of the material,

Let us suppose that, within a particular simple fluid, there exists
a primary velocity field X(O) and an associated stress field §(O) which

satisfy (3.1) and (3.2) exactly* and let these fields be disturbed slightly

*¥The discussion of this section may be easily modified to deal with
problems of the type (2) listed above,



72

by a small perturbation on the motion. Our objective in this section shall
be to derive the linearized equations which must be satisfied in order
for the new total flow to also be consistent with (3.1) and (3.2). For

this purpose, we write
'Y = X(O) + gX(l) (55)

where £ has a value between O and 1 and where X(l) is some arbitrary, spa-
tially smooth velocity field having the same order of magnitude as Xﬁo>,

The new total-stress field’Elmay then be assumed expressible in the form

5 = sl o) (5.4)

~

where QXE) is a tensor-valued function with the property that

éig g(€> -0 . (3.5)

Substituting (3.4) and (3.5) into (3.1) and (3.2), we obtain

Dt Dt Dt ~ Dt
= pp+ ¥ [;1(0) +es(t) +g<gﬂ (3.6)
and
Tylo) gyl = o (3.7)
with

v, (3.8)
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and

g = .V
Dt Yool (3.9)

where, in accordance with Egq. (3.8) and the discussion of the material
derivative presented in Section.l.ﬁ, it is to be noted that the operator
D(O>/Dt defines time~differentiation along a pathline of the primary mo-
tion.z(o).

Recalling now that the primary flow satisfies (3.1) and (3.2) iden-

tically, one has

(3.10)

and

.Y,',‘C(l) = 0 . (3.11)

Equation (3.11) represents the reguired perturbation on the equation of
continuity. Assuming that D(l)z(l)/Dt is bounded at all points in the
field of flow, we obtalin our perturbation on the equation of momentum by

taking the limit of (3.10) as £+0. We obtain thus

0 [Dé:) v D]()? X(O)] = ,V,'SM(]") : (3.12)

3,2 DERIVATION OF THE STRESS PERTURBATION §(1>
An expression for the stress perturbation §<1)is obtained by consid-

eration of the constitutive equation for a simple fluid:
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b
s+pl = ¥ (BRG] . (1.31)
t'=-0

We first assume that the deformation history %t(t') is analytic in its
time arguments and then expand this quantity in a Taylor series about

the present time t:

B = ) (t'-t)n‘iDnﬂt(tW
n!

n:o Dt,n ti___t (5.15)
Cembining (3%.13) with (1.40), we then have
n
He(t') = 2 ot) DE (3.14)
n=0 . @tn

For the velocity field represented by (3.3), Egq. (3.1k) gives

B (e) = 2O +ea{P e 2B L (3.19)
with
ol n
JASUCH N (t';,c)n %:; £t (5.16)
n=0 )
) n o n-1 0 m
Dy Z (67-t)" £ E<1>+Z z (11-1)" §©)
~v = A =1 Rt nt o Rt

) AQCL) ﬁjo)nnm—l E(O)
,@t gﬁn-m-l ~

(x

(3.17)

and so forth, where the B<i) are independent of £ and where, for any ten-

sor field A,

(o)
%t A = ny:)é'él(O) A+ o) (5.18)
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and

3 SLR CONN G D (1)

A+ A - Q . .1

The quantities E}O) and Q(o> refer, of course, respectively, to the rate-

of-strain and vorticity tensors associated with the primary flow X(O)’

while E(l) and Q(l) are obtained from X(l).

(o)

H, "(t') is the deformation history due to g(o)

It is to be noted that
alone,
Let us now make the assumption of fading memory, so that the func-

tional ;& may be Fréchet differentiated at the primary deformation history

(o)

Hy o (e'):
v © (o) >
sl = F EO60I s 5f (7 0,m 005 ()
1t ' ==00 t'=-00
b, (1)-E) (50D (3.20)

where, as before, 33 is a linear and continuous functional in [Ht(t')

(o)

-H¢ " (t')] and where
o) Q(Ilgt_hl)_%g)(t')“) - o . (3.21)
g (67) = B (e)fbo L [Hy(e)me (e)]
The norm of gt(t')-géo)(t’) is given by
ACHPSCHIIE fttriﬁt(t‘)ﬁéo)(t‘)12h2(t—t')dt' v (3.22)

=00

which, from (3.15), becomes



Iy (e )-8 (1))

I
Yy
1
8,
-+
R
2
t—~
'._I
=
Ry
t —~
'._.l
™

1/2
+ ... ]h2(t-t")at!

1
E@Ef}l)(t' )“2+2§ f tr[ﬁél)(t' )-/I:L(f)(tv )]

1/2
(x) hg(t-t')dt'+...} / . (3.23)

If it is now assumed that the weighting function h(t-t') and the functions

Eén)(t') are such that all the integrals appearing in (%.2%) are bounded,

we have

Dy oglo) (g
i B GO )y (3.28)
£->0 g

Let us next substitute Eq. (3.15) into (3.20) and recall that &¥ is

(o)
. . N
linear in Et(t ) H

~

(t'). One may then write

t ( T
s+pr - £ GOm0 et s (w5
+ ! =00 + ' =m0
o (3.25)
t
+ Z gn E} [E(O)(ti>)Eén)(t')]+Q(lﬁt(t')-ﬁﬁg0)(t,)u)
n=2 tf=moo
But, from (3.24), we have that (for n > 2)
t
e 57 (0 (6),m{M (e1)]
lim 1! =~00
I, (1)-E () o] e (e1)-m{) (6]

= lim L— = - = 9 (3.26)
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Therefore, the summation term on the right-hand side of Eq. (3.25) may

be grouped together with the term_/gﬂ”%i(t')-Hgo)(t')H to yield

b5

s+pi= £ OG0 e p? (O (,m M (001 g (=m0 )

(3.27)

where‘fii aliso satisfies an equation of the form (3.21). Comparing (3.27)

with {3.4), we see finally that g(l) is expressible as

/ ) t
st ot o sy

I

1% er), B (61)] (5.28)
(1)

where p is a pressure.

Owing to BEq. (1.44), the relation

t ‘
61‘, @at)ghe Mgl - g of {ﬁ.ﬁ")(tw,;é“(t'j}@f
t'==00

(3.29)

must also hold for all orthogonal tensors g and for all functions §£l)(t’)

(o)

and Hy '(t') which are consistent with (3.28).

%.% DERIVATION OF Eél)(t‘) IN CLOSED FORM
We now demonstrate that, for all viscometric primary flows, Ea. (3.17),
our defining relation for Hél)(t'), may be written in a convenient closed

form.

Let us begin by defining a "primary rotation tensor" Béo)(t') which

satisfies the egquation

B _ Q(O)(t') .KR(O)(t’) (3.30)
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subject to

(3.31)

I
-~ A

As a consequence of (3.30) and (3.31), it is easily verified that, for

any tensor field é(t), the following relation holds:

(o)™ (o)™
o [,BJEO)T(’G’)'N(t’)'}}éo)(t’)] - géo)T(m- %{,—ﬁg(w R ()
(5.32)

We now consider the first (single) summation in (3.17). By employ-

ing (3.%1) and (3.32), we have

CY n [}
z (t'-1)" @(o) (1) y (t'-t)" D(O)n
n. ot . n! Dt '™
n=0 n=0
(x) [5§0>T<t'>-J1><t'>-,13£°>(t'>1 . (3.33)

But this expression represents the Taylor series expansion for R£O >T(‘(;‘ )
/@(l)(t' )-§£O>(t’) about t'=t. Therefore, for any primary flow, one may

write

H(l)(tx) _ BJEO)T(JC.).E(l)(tv).R(o)(t:)

A ~t
© n-1 m n-m-1
i Z Z (o B g O go) (3.34)
e n! gt ot @tn-m-l s
n=1l m=

T
where the quantity R,(CO) (t! )-rEi(l)(t' )-/13/£O>(t') must be evaluated at posi-

tions on a pathline of the primary motion since, as has been pointed out

earlier in Section %.1, the operator D(O)/Dt‘ (appearing in Egs. (%.30)
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and (3.33)) defines differentiation along a primary line of flow only.

Now, it has been shown in Section 1.4.5 that the two relations

2;(0)2 E(o) (0)2 . o)

0
otz ~ ~ ~

—

(3.25)

and

(o)
Dt/

D

(0) - o (3.36)

apply to all viscometric primary motions; as will soon be seen, Eq. (3.34)
can be simplified further by making use of these. Defining the tensor

quantities

~ gt~ .
L o= %f%).;%:—);ﬂfo)(t) (5.28)
u = 50 {ﬂﬁi} (3.39)
i - [,9(0)%(:)@)} {Dugi(o)g} o)

and making use of Egs. (3.35) and (3.36), one finds that the sums involving

m in Eq. (3.34) may be written as



INCOE 2 (o) (0)® 5 | (o)
) 4 _ (02 & gy (o) .0 i
n=b Lgts 7+° W}%*[etg 7L @tﬂ X

ol oy ()
' [ PR
BT L O o GO RIS LY e (YN IR [0 GO 9l
- ©)t° o9t ot | v Pt ot?
A
(0)4J
+ ,\L,
- — 2 ]
{%(:3 L5, (00 Q@(z--)JM i .9__;:2) - (0P|
8 -
S Y GO Y L | GO YL o CUM G I
Pte Qt4 @tZ ~
r 5 .
NS O ;%(_)J .
t @t 1 ~
O e DOF 5wﬂm _ [ji(_)_ Lo (0)? g(oﬂ .
ot4 o2 ~ L3 ot |V

and so forth, We turn attention here to only those terms in (5.5&) which
A
involve the tensor E& The sum of all such terms Ef(t'), say, can readily

be shown to be represented by

. [Eptytats,
+ 4(0) /f Ky (t4)dtadtadtadts+. .. (3.41)
t

K (e) = Z (o)™ GO (3.142)
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Iet us now make the substitution s = t'~-t into (3.41) and (3.42).

We obtain for them, respectively,

S

A 2 5 PS5
(t+s) = Kt t+s) - (O> t(t+s )dsods
/F Zf & 2 2083

o © (3.43)

and
2 n
ﬁ _ g+l Eﬁo)
Ry (t+s) z STl o (3.44)
n:

Next, taking the laplace transform_of'g%(t+s) with respect to the new var-

iable s, we have

2 4 ]
J?ng(t+s - {; _ 7(;: + 7(Zi ) _..} JZ[E&(t+s)]
- — qjo) Rk (t+s)] (3.45)
q=+y

where g stands for ILaplace's operator. The derivative property of the Ia-
place transform then yields
= t+s)| = (t+s)] - K(t+s . L6
£1L Rl J £ IX, e )L=o (3.46)

A
But since, from (3.4k4), Ei t+s)lgg = 0

a0

Eq. (3.45) becomes

TN

£ R(tre)] = ;j—;i[%gﬁdmﬂ . (5.47)

This expression may now be inverted to yield a convolution integral:
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S
?ﬁt(us) = f[—d— ,I/S\t(t"'sl)] cos y10)(s-s1)dsy  (3.148)

or equivalently

1
?% (t') = ‘_/ﬁ [?%I gt(tli] cos 7(0)(t"t1>dt1 (3.49)
-tl
where
[Lﬁt(t'ﬁ - Z GRS (5.50)
at’ O n! oth 7
n=

(o)

Now, once again employing the "primary rotation temsor” Ry (t') (as
has been done in Eq. (3.33)), we obtain from (3.50),

-

r(1)
It_d._,}j{t(tvij - NR-EO)T(t').L%t!

dt’

"

g“”(t')] R’y . (5.51)

Finally, then,

t e -
?i(t‘) - '_/ﬂ.ﬁéojf(tl)'[iiéfg §§O)(tliJ25§O)(t1)COS 7(0)(t"t1)dtl-
t1
(3.52)

The same type of analysis as presented above may also be applied to
the series of the terms in (3.34) involving the tensors L, M, and N. One
ultimately arrives at an expression for ﬁl)(t’) which holds in all cases

where the primary motionlxﬂo) is viscometric., The details of these

derivations are left for Appendix A, but the final result is
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t
H(l)(t!) = R(O)‘I—(t')‘E’(l)(t')‘/‘R’(o)(t') _f BO)f(tl)' —Q—EE(O)(tlﬂ

ﬂBéo)(t')cos 70 (41, )at,
E t (1) plo)
+ ;%37- | Rﬁo) (tq) [}%552 _Q__I,Efo)<tli] Rto)(tl)sin ,(0)
- (ty-thdt,
t -
(1), (o)
’ [ B () [’D'D—?:lo‘} [(ta-t")stn 70 (eat ) Taty

v (o) 1 n(1), ()]
e [ B0 (BT e

—

- y(0) (4 -t1)cos y(O) (£ -t1)]dt, (3.53)

which, owing to Eg. (1.54), may also be written in the more compact form

t
i{él)(t') - B:EO)T(t,).E(l)(t,).EéO)(t,) _f(liéO)T(t:L)
-t‘
= SRR CO PPN NS
o0t He (7)) Ry “(ta)dty . (3.54)

3,4  VISCOMETRIC PERTURBATIONS

In the remaining two sections of this chapter, we shall consider a
class of motions which will be called "viscometric perturbations.” These
are Tlows for which the primary velocity field‘z(o) is viscometric and,

1) may also be regarded as such.

in addition, the new total motion X(O)+§X(
The present section will be devoted to investigation of the kinematics of

these motions, while in Section 3.5 we shall examine their rheology.



8

The following set of equations has been listed in Section 1.4.5 as

describing the kinematics of all viscometric flows:

2
Ele') = I H(s') (1.50)
D°_ 5 (67) + 92H, (t') 2)
Dt,Z/VJC * 7mt(t = rQJ (1'5 /
B (g, (t)1% = ¢ (1.53)
Dt
and
Dy _
= = 0 . (1.49)

7o) (£r) + 7(0)%E£o)(t'> +E [igi%) gi?) . gi?) gi}5>,ﬁéo>(t')

Dt'2 it ~ f\.t

+ Hﬁ”(t*)ﬁé“(tﬁ]} f..0=Q (3.57)
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and
(o) (o)
D> (o) p(1) (o) , p'°) (1) _
Y +§l;—Dt—")' + T V4 + ... = 0 (3.58)
where
(1) = —2_ tp[glo).g(1)
y = r[E\0/ BV ] (3.59)
7(05 ~ “
and where, of course, the symbol ... indicates terms of order §2 and higher.

Recalling now that the primary flow XKO)

is viscometric, we may drop
those terms involving only primary quantities (those with no coefficient

involving ¢ ) from (5.55)—(5.58). By dividing the resulting expressions

by & and taking the limit as £ approaches zero, one then obtains

() ()12 (e yemfo) (e ) (D ) B0 (e (D e (1 (61097

t [~ /\,t A i A\

2
_ [27(1)7(O{§£0)(§ )+7(O)/g£l)(t')] (3.60)
pl0)? b2 5 ery 4y (1), (0)500) ()
g 4 He VAN
N <D(l) D(O) N D(O) D(l)> Héo)(t') -0 (3.61)
Dt' Dt' Dt' Dt' J—
D(l) (O) ' ]2 D(O) [ (O) ' (1> 1 (1) 1 (O) "]
D—t_‘—_/\H/t (t") gy He (er)-H 7 (e )+l (1 )l (8) ] = 9
(3.62)
(1), (o) (o)., (1)
Doy % DY -0 . (3.6%)

Thus, a viscometric perturbation will be defined mathematically as a flow

(1)

of the form y =‘X(°)+§X for which
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(1) H(O)(t') satisfies (1.49)~(1.53),
(2) £+0, and

(3) Egs. (3.60)-(3%.63) are satisfied by‘ﬁél)(t').

3.5 RHEOLOGY OF VISCOMETRIC PERTURBATIONS
)

We have proven in Section 3.2 that the stress perturbation.ﬁfl , due

to a small perturbation on any primary flow, will be given by

t
s oW1 _ sy w5 (5.28)

T
t!=-c0

where & is a linear functional in gél)(t'). Let us now investigate the
particularly simple form which this functional assumes whenever the velo-

1) corresponds to a viscometric perturbation.

city field x(o)+gz(
For all viscometric flows, it was shown in Section 1.4.5 that the

stress tensor S may be written as

t
s+pl = & [E(eN] = enm(enly, g+ giglggg)_ﬁi<t,>]t'=t
t'==00
(02-03) [ D ,
+ jgl [Dt, H (4 )Le : (1.55)

After substituting Eq. (3.15) into this expression, subtracting those
portions of the resulting equation due to‘z(o) alone, dividing by &, and

taking the limit as £-+0, one finally obtains



t
/S‘,(l) +p(l)£ - t/?\_z [HéO)(tl)Jﬂél)(t’)] = 21'],1:1’( )(t'>]t'=t
My 0 (e m M e e-ml e,
(o) ¥
(02-01) |D (1) (4
TP E)’G' S

) -
 Lome) @i,)ﬁﬁ")ﬁ’) v 2y(Wpimle) (1))
')'(O) Jt'=t -

+ 22(%2 [7(0)(Oi+cé> - 2(01+02)]£Eé0)(t')]i’=t

»(0)?
(1) (©) (o), .. |
+ -7-%55 [7(0)(02’"0i)-2(02-01)] Eit, f}éo <t‘)]t’=t (3.64)

where primes denote differentiation with respect to y and where 1, o0,, o2,
n', o;, and o) are all evaluated at y = 7(O>, Hence, we see that, when-
ever X§O)+§X(l) is representative of a viscometric perturbation, the stress
rerturbation g(l) may be obtained simply by a direct substitution into
Eq. (3.6k4).

Iet us now consider viscometric perturbations for which the deriva-

tives D(l)/Dt of all primary quantities are zero. In such instances, Eq.

(3.60) remains unchanged, but Egs. (3.61)-(3.63) become

502 0121l ey 4 oo (o) (1)(0)
—*7 Jﬂt (t1) + 29 H(E) = 0 (3.65)
Dt!

D) (o) ey m (P o) ¢ 1D w61 = o (5.66)

and
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Since terms involving D(l)/Dt no longer appear in (3.65)-(3.67), the cor-

responding stress perturbation is found from (3.64) by dropping the term

(02-01) D(:L> (O) ,‘)
7(0)2 [Dt’ ,I:I,t (t )Jtlzt
We then have
t
/SV(]_) + p(l)/E - /5\_? (O)(t’),/I\-I’JEl)(t')] — 2n‘E(l)(t’)]t'—t
t!=-c0
+ g_i_((g;_-;&)_ [H‘t (’t' . ( )(-tl +,I:,Ll(',l)(tl>.f}}.£0)(t’>]t’=t
e [D(o) H(l)ﬁw ¢ 222 500 (gegd)
tl=

At
(02 Dt

+ zy(l)n'ﬁéo)(t')]t,zt ) (3.68)

Thus, (3.68) will yield the appropriate stress perturbation whenever X(O)
is viscometric and, in addition, Egs. (3.60) and (3.65)-(3%.67) hold for
the perturbed flow,

We next suppose that there exists a perturbation on a viscometric

deformation history which may be written in the following form:

Eél)(t,) 3 [,%J(cl)(t"” s () () ]y (3.69)

satisfies (3.60)-(3.63) while [g(l)(t')] does not;

where [gél)(t’)] N v

accordingly, the subscripts v and nv will refer here to "viscometric" and
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"nonviscometric" respectively. Since the functional &% of Eq. (3.28) is

linear in Eél)(t’), the quantities Lgél)(t')1v and Lgil)(t')]nv may be

treated separately, in so far as their respective contributions to the

total stress perturbation are concerned. It therefore follows immediately

(1)

that the stress perturbation due to [H{  "(t')], is obtained by substitu-

tion of [Hél)(t‘)]v for Hél)(t') in (%.64); similarly, if g§£1>(t')]v

satisfies Egs. (3.65)-(3.67) and (3.60) (but not (3.61)-(3.63)), then

the stress perturbation due to [H<l)(t’)]v is obtained from (3.68) on

~t
replacing Hél)(t‘) by [Hél)(t’)]v.



CHAPTER k4

TAYLOR-COUETTE STABILITY

4.1 THE PRIMARY FIOW

We now apply the general theory developed in Chapter 3 to treat the
current Taylor-Couette stability problem. It is supposed that a simple
fluid is contained between two long coaxial cylinders of radii r, and ro
which are rotating at angular velocities Q; and o, respectively. Cylin-
drical polar coordinates (r,9,z) are employed, with the axis of the cyl-
inders lying along the z-axis. The undisturbed Couette motion consists

of a velocity field y(o) with physical components given by
v ' =0, vy ' = v(o)(r), C . (4.1)

Now, as we have indicated earlier, tangential motion between con-
centric rotating cylinders represents a viscometric flow; thus, from Eq.

(1.54), we have

ﬁ’go)(t') = E(O)cos y(0)(g-tr) - 2 L2 sin 7(0)(t-t1)  (h.2)

5(0) Ot

where, in the present instance, one may readily show that

7(0) = T d<v(0) r) (4.3)
dr
(o) 0O 1 0
g(o) &L — |1 o0 o (k. k)
-~ 2 O 0 0

90
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and
(0)gm(o) 2 1 0 0
872" el | 4 o (1.5)
ot 0O 0 o0

hgC) 7
A5 = )
(0) «(0) (o) (+.6)
Spp -S,0" = o2(7'°)
ség) - sﬁg) - 0

One can theoretically obtain an equation for the velocity of the
primary fkmrv(o)(r) by substituting the above stress components into the
equations of motion and applying the appropriate boundary conditions.

In particular, we have

Spg° = 7 m = C/r® (4.7)
V(O)/r = Oy atr=r;
(4.8)
v(o)/r = Qoatr=r1rs

where C is a constant. It is seen from Eg. (4.7) that, in general, the
shear rate 7(0) is a function of radial position within the gap between
the cylinders. Therefore, since the viscosity function n(y) may vary
with shear rate, there exists no general solution to (L4.7) and (4.8).

However, the solution to these equations can be approximated if the gap
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width d = ro-r; is regarded as small compared to either r; or rp. Under
such circumstances, C/r® will remain relatively constant as r varies be-

tween r; and rp, and one finally obtains

Vf.O) w Q1 + Ll%ll (92-0) (%.9)
7(0) < (Q2-01)r1/d (4.10)
and
av(©) (o) .
i Y . (bh.11)

4.2 THE STRESS PERTURBATION §(1)
Let us now assume, following Taylor,59 that the primary Couette mo-
tion.z(o) is disturbed slightly by a steady, rotationally symmetric velo-

city perturbation gx(l), for which £€-+0. We write accordingly

I('l) = él) =W (k.12)

where u, v, and w are functions of r and z only. In this section our ob-
Jjective will be to determine the stress perturbation‘g(l) due to the
altered motion,

One can first calculate the deformation history perturbation_gél)(t')
by substituting (4.1) and (4.12) into Eg. (3.54). The result is ex-

pressible in the form

nv,?2 +tL nv, 3

(k.13%)
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The subscripts v and nv are used here, as in Section 3.5, to denote "vis-
cometric”" and "nonviscometric" respectively; that is, one can easily

verify that [gél>(t')]v satisfies Egs. (3.65)-(3.67) and (3.60) with

AU = 0722 (4.19)
or

Therefore, based on the discussion of Section 3.5, the stress perturba-

tion gél), due to [gél)(t’)]v, follows immediately from (3.68):

s, - w2y, )
sBls @1, - Aadr) g o Aee) o
sl = - 5(g£r) (;;Zgﬁ)-kréigﬁzl (nenty (@) (u.20)
)], = T+ G

_ oW o ov
3 (o) oz

We are next faced with the problem of determining the remainder of
the stress perturbation arising from the "nonviscometric" terms in
Amﬂ (t'). As will presently be shown, it will be necessary to define
several new material functions of the primary shear rate 7(0) (other
than the three viscometric functions 1, o1, and oz) in order to account
for these stresses.

(1)

Let us begin by considering the contribution towards S

to [gél)(t’)]

due only

Making use of Eg. (3.28), one notes that the appro-

(1)

nv,1l

nv,1l*

priate stress perturbation'§ will be given by



—

IR I Y- LU CAPR: S CI RMES B (RS

1=~

1

where it is recalled that §f is linear in [ﬁé )(t')]nv 1 and satisfies
)

the relation

t ( t
o st e, M, et - 87 e,
ti=wc0 t'=-m0
PRI C S b (4.22)

for any orthogonal tensor Q. We now choose Q in (4.22) to be the orthog-

onal tensor whose matrix is

1 0 0
£&<::j> o 1 0 : (k.23)
o o0 -1

Substituting (4.2%) into (4.22) and employing Egs. (4.2), (4.4), (Lk.5),

and (4.15), one finds that

1
Hence, the stress perturbation ﬁévzl due to the history [H(l)(t’)]HVJ1

must have the property that

AN L C I (.25)

~ ) ’an,l — NnV,l

The matrix of Q - Sé%)l . QT is readily calculated to be
-~ ~~ B} -~
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g s des [s8) E SW)
1
s sl s s
:Sii) -Séi) séj) —_—

It follows then from (4.25) and (4.26) that

_ rall)
[Srz Jnv,l - [SGZ ]nv,l = 0 . (k.27)
That is, S(l) must have the form
~nv,1
(1) (1 1) ]
,\S,nv,l <::.> Sl("r) Sr('@ 0
1 (1)
sV 558 o (4.28)
0 0 S(l)
_ 2Z_J nv,l

(1)

Now, since the functional §3 is linear in Hy  '(t'), it is seen from
(4.15) that the components of Sé%)l will be directly proportional to
. )

d(ur)/ror; moreover, the "constants" of proportionality will be mate-

rial functions of the rate of shear 7(0). Hence one can write

(1)

- lour)
[Sre ]nv,l T gi ;%gj
[Séé)'séé)]nv 1 % Olur) M (k.29)
? or
L

Our purpose in defining the new material functions 7m;, N2, and oz in
this manner shall become apparent later. Suffice it to say at this point
that, by again applying (4.22), we can show that all three will be even

functions of the shear rate.
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A treatment similar to that presented abcocve may also be employed to

. . (1) 4(1) (1) arisi
determine the stress perturbatlons,gnv’Q,qgnv,B, and gnv,h arising from

Hy (t’)]nv’g, [H(l)(t’)]nv 35 and. [Eél)(t')]nv,h’ respectively. As a

~v

final result, we obtain the total stress perturbation §Kl):

(1), (1) du/r) d(v/r) . . L d(ur) ay(o) ny
Spp ¥ P -t 0 tr dr 2ty 1BTUETE (o)
(1), (1) _du/r) dv/r) 4 .1 dur) . ay (o) 5
I e a A ke o)
(L), (1) _ ow
S +p = 2n3
i % (k.30)
(1) _ d(u/r) (oy-0o) o(v/r) .
S = T ;l(§§ T (nen'7{0))
+ L olur) oz 0 dy(o) -
r Or 7,(o) ar
(1) _ v . .3 oo ,du
Srz TS o) T M
(1) _ dw o3 v, du o4
e T ) T e o)

where the new material functions M3, N2, Ma, N4, O3, Oa, A1, A2, and Ag

are all even functions of y evaluated at y = 7(0).

4,3 THE DISTURBANCE EQUATIONS

Appropriate expressions for the perturbations on the equations of
momentum and continuity for this problem are found by substituting (4.1)
and (4.12) into Egs. (3.11) and (3.12), respectively, and employing cy~

lindrical polar coordinates. We obtain

(continuity) % o(ur) , Qv _ o (k.31)
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or dz T
(1) (1)
d 3S g .
TN B e

Now, in order to facilitate the succeeding analysis, we make the usual
simplifying assumption that the annular gap between the cylinders 1s small
compared to their radii. The primary shear rate 7(0), which may then be
presumed constant, is given by Eq. (4.10), and, in addition, the com-

ponents of the stress perturbation reduce to

SIS%) +pll) - %% [n+n2] + g% o}
séé) v ptl) - g—? [ni-nl + -g—% o1
Sé%) + p(l) = 273 —g%
(k.33)
s - [@(:%%uﬂ 8 pan(0))
sil) o vy +%§776%y+§—3n4

ou

: ov o
S = —_— g + —— 4+ —
Oz or 7(05 z L dz 7(05

where terms involving dy(o)/dr have been dropped from (4.30). Further-
more, for the small-gap case, the equations of continuity and momentum

become
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g%+ %Vzi -0 (4.34)
) el sy
] rery) _ - rz_ _ 00
_vaEll + (Q2-01) L—a‘l“J 3 oz T
T _ re oz
pu(QZ-Ql)al = ar + aZ ()4'.55)
1 1
o - BS£Z) N BS§Z)
or dz

Substituting (4.33) into (4.3%5) and making use of (4.34), we then have

. L) e Pu _ 1 Py
-2pvmél+(92~91) Lzazil] = - —g;—— + N2 S;%‘ N4 g;% - J2 S;g

4+ 02 Fv (n1~1) é_ Qi_ QX
7(0) dz% Ty r ry Or
(4.36)
0o-0.) L1 05-(01+02) /2| Fu 04  O%u 1,(0)] v
ou(02-0 ) a [ 7(0) Rr 7(0) dz2 LA or?
Fv
+n 2V
n<a§2
_ oyl Pw O m 2w oo OV
0 az + n BTZ + ( s n4> 822 7(0) Bzar

To reduce these equations to dimensionless form, we define the fol-

lowing quantities:

X = r=Iq :r'rl % _ '
I‘2-I‘1 d_ u U./Qld_
7z = z/d v* = v/Qd
a = (92-01)/0 v o= w/Q4d (4.37)
a = r,/d R = pd?0;/n(y(0))

p(1)jqn(y(e))

= -20mR®
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The Reynolds number R and the Taylor number T are specified here in terms
of the apparent viscosity n(y(o)) rather than by some other 'characte-
ristic" point on the viscosity curve for the fluid. Any other defini-
tion of these quantities would serve only to introduce an additional and
superfluous parameter into the analysis. Thus, we have established that

the most appropriate and meaningful definitions of R and T are based on

the apparent viscosity evaluated at the gap shear rate.

From (L.34), (4.36), and (4.37) one now obtains

ohE A (1.58)
ov¥(1+0X)R = - X Fu* qu¥2 | gb Fvx oo OV
v¥*(1+0X) SX + Mz 2 + Mg N + by + ny(o) N

- Lﬂl:ﬂl é&i + Qi.éxf
na  oX na 0X

T = l: + n'V(O)J—SEV* . OBv* | log-(oi+op)/e | Pu* | 04 Pux
2R L n 32 d72 ny (o) oX% (o) 3z
op* . Fwx . (Cng-ng) Fwx . _op Fwx ,
o = - + 3-MN4 + ) L
oZ + N 1 72 UV(O) 37, (4.39)

Next, resolving the disturbance into its normal modes, we make the usual
assumption that the disturbance is spatially pericdic in the z-direction

and write

u*¥ = ey(X)sin €Z
v¥ = -cV(X)sin €Z (4.40)
w¥ = @Y-cos ez

ax

p*¥ = €eP(X)sin €Z (4. 41)
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where € is the dimensionless wave number of the disturbance. One can
readily verify that (4.40) satisfies Eq. (4.38), the equation of con-
tinuity, identically. Substitution of (4.40) and (4.41) into (4.3%9)

then yields

2V(1+aX)R + 9z PV - —9%2_ 2y = -pp + N2 D2y - N4 e2y - (Tl-] -1) Dy
il ny(O) N | na
- Ei-DV (L. 42)
na

ﬁ + 31112%] DRV - &3V = i v o+ [o3-(0;+02)/2] D2y - —J4 2y

n 2R TD’(O) T]?’(O) (4.43)
and
0 = -¢2P + D% - (2n3-1n4) 2Dy - —I2+ 2DV (L. k)
n ny(©)
where

D = 4/dax
We can now eliminate P between Egs. (4.42) and (4.LL); the final

disturbance equations are then given by

[3,D2-c2]V = E—R + goD° - Bge% v (L.hs)

and

@4—54621)2 + ggﬁ €2D+B5e‘{|\y = €2 E2R(1+OtX)+BsD2+B7€.2 + ;L& %v (4. 46)

where the B's are rheological parameters defined as¥*

*For convenience, we henceforth drop the superscript on the primary shear
rate 7(0) with the understanding that y and 7(0) are now one and the
same,
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_d En[nz]
Pr = d In vy (4. 47)
52 _ [03‘(0'1“{“0'2)/21 ()-l-.)-|—8)
ny |
Ba = 04/My (4.49)
By = (2ngtnz-ng)/n (4.50)
Bs = na/n (4.51)

Bs = 0—2[1‘1—@9—2-} (k.52)

ny d Iny
By = oz2/ny (4.53)
Be = Zxlinoy (k.5k)
ny d In vy )
and
ps = (ni-m)/2n . (4.55)

As can be seen from these equations, there are eight material functions,

depending on the shear rate y, which are necessary to define the Taylor-
Couette stability of a simple fluid in the narrow-gap limit. Three of
these are the viscometric functions 7, 0;, and oz, but the other five
Bz, Bs, B4, Bs, and Bg are entirely new, One notes, from (4.48) and
(4,49), that Bp and Bz are cdd functions of y while, from (L.50), (L.51),
and (M.SS), we see that B4, Bs, and Pg are even functions of 7y,

Equaticns (4.45) and (4.46) represent two ordinary, homogeneous,
differential equations in two unknowns, ¥ and V. Together with the homo-

geneous boundary conditicns,
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y =Dy =V =0at X=0,1 (k.56)

they determine a characteristic-value or eigenvalue problem for the Tay-
lor number T, as function T(e) of the dimensionless wave number e (for
fixed o and a); the smallest value, To, of T(e) determines the critical

conditions T., €. at which instabllity sets in.

4.4 IOW-SHEAR-RATE APPROXIMATION

There are presently no known methods, either theoretical or experi-
mental, for determining values for the five new material functions Bz to
Bs and Bg at finite rates of shear, However, as we shall see below, the
variation of these quantities in the limit as y>0 can be predicted, to
terms of first order in 7y, by making use of simple-fluid theory.

We recall from Section 1.5.1 that the fluid model considered by

Datta,ll

S+ pl = OqA; + ORAT + Ozho (1.66)

~~

has been shown to describe the limiting behavior of simple fluids with

fading memory at extremely low rates of deformation, Here

0y = lim n(y)
7>0
Og = 1lim o,(y)/y2 (1.67)
A y=>0
Qs = 1lim (o2-01)/29%
y->0

One finds from Datta's disturbance equations that
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Bo = Ba = (Qotas)y/on

(4.57)
Ba =2, Bs =1, Bg =0
Therefore, in the limit as y>0, we have
Bz = Bg = (oy+o2)/2ny
(4.58)

Be =2, Bs =1, Bg =0

An obvious suggestion which one might put forth at this point would
be to approximate the material functions B to Bs and Bg by Egs. (4.58),
even at finite rates of shear., If such a procedure were valid, then the
solution to the disturbance equations would be governed entirely by the
viscometric functions n, o0;, and oz; hence, knowledge of these three
functions would suffice to determine the flow stability of a particular
fluid a priori. One may now conclude the following: If at the point of

instability, the approximation (L4.58) were reasonable, absolutely nothing

new concerning the fluid of interest (beyond n, o1, and oz) would be

learned from a stability experiment. Conversely, if the approximation

were not valid, then new information would be obtained. In fact, any
difference between the results of a stability experiment and the solution
to the disturbance equations with the approximation (4,58) would presum-
ably be attributable to deviations from (4.58).

1

The validity of the "viscometric hypothesis" is likewise contingent
upon whether Egs. (4.58) represent a reasonable approximation. One will

recall that this hypothesis requires that Eq. (1.57) describe motions,
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such as the present one, which are close to viscometric flows; it is
readily verified that Egs. (4.58) are precisely what would have resulted
if Eg. (1.57) had been chosen as the original rheological model for the
stability analysis,

In certain cases, a stability experiment can be used to advantage
in determining which of two fluid models is more appropriate for repre-
senting the constitutive behavior of a particular viscoelastic fluid,
The primary requirement for these models, of course, should be that they
both adequately describe the experimental data on n, 03, and oz; 1in this
way, the material functions B; and Bsg to Bg would be the same for both,
If the models then differed sufficiently in their predictions of Bz to
Bs and Bg, the ccrresponding stability analyses would yield different
results. Based on a comparison of the theoretical findings with experi-

ment, a choice of the best model could then be made,

4.5 PREVIOUS ANALYSES

As has been pointed out earlier, all previous theoretical treatments
of the small-gap Taylor-Couette stability problem have involved con-
sideration of the behavior of various idealized simple-fluid models;
these treatments will henceforth represent special cases of the present,
general analysis. In order to illustrate more clearly the relationship
between past studies and the current work Table 4.1 has been prepared.
This table presents a listing of the eight material functions 1, o0,, 02,

Bz, B3, P4, Bs, and Bg for each of the previous investigations.
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One study not included in Table 4,1 is that of Giesekus,18 who at-
tempted to generalize the theoretical analysis of Dattall for finite

rates of shear, He substituted

Oy =0
op = 01/7% (4.59)

Op+lds = ag/y2

into Datta's disturbance equations and obtained

B =1 Bs = -02/17
Ba = Bas = (01+02)/2ny Br = o2/My
(4.60)
By =2 Bs = (201+02)/ny
Bs = 1 Bo =0

By comparing these equations with Egs. (4.47)-(4.55), one notes that
most of the expressions in (4.60) are clearly incorrect, except of course

at v =0,

4.6 SPECIAL CASES
In this section, we briefly discuss two special cases, The first

is that of negligible inertia where T+0 and the other is plane Couette

flow where a~o,

4.,6.1 Negligible Inertia
There are numerous ways in which the disturbance equations for the

current study could have been written. However, in the form we have pre-
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sented them (Egs. (4.45) and (4.46)), the terms due to inertial effects
(those containing the Taylor number T and the Reynolds number R) have
been completely separated from the "rheological terms" (those involving
the B's).

18

Giesekus—~ was the first investigator to consider the possibility
that, for a particular viscoelastic fluid, instability might occur at an

extremely small Taylor number, where inertial effects are negligible,

Under such circumstances, Egs., (4.45) and (4.46) become

(B1D%-e2]V = [B2D®-pae?ly

(k.61)
D*-B4e=D2 + gé2'€2D+Bs€ﬂ Vo= €2[%6D2+B7€2 + Eigj Vo,
a

Apparently, a modified Taylor stability criterion could no longer be re-
garded as applicable to these new disturbance equations since they do
not even contain the Taylor number. Instead, an entirely new criterion

results, in which the rheological coefficients determine the point of in-

stability.

4. 6.2 Plane Couette Flow (Simple Shear Between Parallel Planes)
The disturbance equations which describe this situation are obtained
by allowing a”w while y is held fixed in Egs. (4.45) and (4.L46), We
then have
[8iDP-€2]V = [-R'+B2DP-Bae®ly

(L.62)
[D*-p e2+Bse* ]y = €Z[pgDP+p,e2 ]V
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where

R' = pd®y/n . (L.63)

For the case of a Newtonian fluid, these equations yield only the trivial
solution, ¥ = V = O; however, for certain idealized viscoelastic fluids,
Giesekusl8 has shown that solutions other than the trivial one are pos-

sible.

4.7 SOLVING THE DISTURBANCE EQUATIONS

In the present work, three methods have been used to solve the
characteristic-value problem defined by Egs. (4.45), (L4.46), and (L.56).
The first and second of these were analytic techniques, and were employed
only to obtain approximate expressions for the Taylor number as a func-
tion of the dimensionless wave number; the third method, a numerical

technique, was used to obtain more precise results.

L,7.1 First Analytic Method
The first analytic method, which can be attributed to Chandrasekhar,5

is illustrated by considering the solution of the simplified equations

[(BD-e2IV = Tz v + palDP-c2ly (.64)

-
[D2-21%y = &2 [—2R(l+ocX)+BeD2+B7e.2 + Eﬁﬂv (L.65)

which result when the approximations shown in Egs. (4.58) are made.
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We begin by writing

o0
—

Vo= Ay sin mnX (L. 66)

.|

m=1

i

thus satisfying automatically the boundary conditions on V. Substituting

(4,66) into (4.65) and solving for y, one then obtains

Cy cosh €X+Dy sinh e€X + EpX cosh eX

(4.67)

2_p o2
+ F X sinh eX + [1+QX + Belu) @7(5:] sin mnX + Ip cos mnX
2R

where

= Loy - Bs )
I, mt Em)2+€2 2Raj| (4.68)

and where Cp, Dp, Ep, and Fj are determined from the boundary conditions

on \:
v =Dy =0 at X =0,1 . (L.56)

Equations (4.66) and (4.67) are next substituted into (4.64) to yield

e}

- 2 2 2 212 oo'
2 Bl (mr)2+e? ] [ (wr)P+e2)2 Z 5 [@m . 4E2R d@mh X
Te2 T

m=1 m=1

+ <Dm + EEZLR eEHD sinh eX + EpX cosh eX + F X sinh eX

+ <i _ gg;g) <l + oX + Ba(mﬂgz“ﬁzeé> sin mnX + Jp cos mn%] (4.69)
where

By = Ap/[(mn)®+e®1®

and (k.70)

cy
Il

0 [1 _ %%23 [(mn)2+egi‘ + hom @T&R
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Multiplying this equation by sin nnX and integrating between X = O and

X =1, we then obtain an expression of the form

(e 0]

) B = 0 (w12, (5.71)

which represents an infinite system of linear homogeneous equations in
the variables Bp. The condition under which this system has a nontrivial
solution is that the determinant of the coefficients Kpyn should vanish,
Since in the present treatment, we are seeking only an approximate solu-
tion for T as a function of €, we set only the first element K;, of the
K-matrix equal to zero, The first approximation, after considerable re-

duction, is then given by

[r2+e2)? (B n2+e2]

5 _ 8 2 (l+ he) - g_ éﬁﬁéﬁ
. [1+oz/2][ e cos ;] [1 (TR)Bg(n2+e2)] [1 + 2R(l+06/2)J

[x2+e2]® (e+sinhe

T =

(L.72)
L,7.2 Second Analytic Method
The second analytic technique employed was in many respects, quite
similar to the first. It was essentially a Galerkin method (see e.g.,
Crandalllo), and has been used by Walowitl6 in treating the Newtonian
stability problem in the case of a radial temperature gradient. Con-

sider here the complete disturbance equations:

[p1D%-€2]V = [§§'+ BoD? - Bae%]w (L.45)
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&4-5462])2 + 223_ €2D+35€{\ v = €% [—2R(l+OCX)+56D2+B7€2 + %D] v
(4.46)

Let us write

and (4.73)

where

and (L. 7h)

by = [x(1-x)]% xoL

One notes that all boundary conditions on both ¥ and V are thus satis-
fied. Substituting (4.73) and (4.74) into (4.45) and (4.46), we then

have

}: [%m(ﬁlDz‘eg)Vm + By {g§.+ BeD® - Bseﬂ w%l = 0

m=1

3} (5. 75)
Z [Bm E34'54€2D2+g%‘2€2]3+55€{] 1Ifm""Am€2 !:-ER(1+OCX)+BSD2+B7€2 + %D‘JV@ =0

m=1

These equations are next multiplied by V¥, and Vp, respectively and inte-

grated between X = 0 and X = 1 to yield expressions of the form
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Z (ChnAm*PupBm] = O (n=1,2,...)

m:l (4.76)
z (EppAp*FunBnl = 0 (n=1,2,...)

m=1

Equations (4.76) represent a doubly infinite set of linear homogeneous
equations in the variables A, and Bp. By setting the determinant of
the system equal to zero, we obtain the required characteristic equa-

tion for T. As a first approximation, we have¥

2 4 2
T - g’—?_ [50’—‘-4’1264? +§5€ ][lOBl+€ ] (LI'-TT)

56 57€
2(14q/2] [1 2R (28 4 . >J [1 + J
o/ T (5 PetPet R(1+0/2)

This same method may also be used to solve Egs. (4.61) for the case

of negligible inertia and Egs. (4.62) for the case of plane Couette flow.
One ultimately finds that the first approximations to the characteristic

equations for these situations are given respectively by

28  [504+12p,4e2+B5¢4] [lOBl+€2

2T 2 [67‘52 i ——Be] [B 2, J (.78)

and

g = 28 [50U+198,e2+85c4][108y+e2] g28 Ba+83€‘2} . (%79)
27 Eg[éﬁz 28 . 3

4.7.% Numerical Method

The numerical method used in solving the disturbance equations was

*The similarities between Egs. (L4.77) and (4.72) should be noted.



115

apparently first successfully applied by Beard, Davies, and Walters,l
It consists of replacing the current boundary-value problem with a re-
lated initial-value problem,

In any eigenvalue analysis, there is an arbitrary amplitude asso-
ciated with the eigenfunctions. This indeterminancy can be removed in

the present instance simply by imposing the additional initial condition
PPy =1latX=0 . (4.80)

We next assume values for D3y and DV at X = O:

Dsw]X:O = G1, DVlgy =0Ce (4.81)

where G; and Go represent first approximations. An initial-value problem

is now defined by Egs. (4.45) and (4.46) with boundary conditions
¥ =Dy =V=0, D=1, D% =Gy, DV=20Cs (4.82)

at X=0. Once the coefficients in (4.45) and (L4.46) are specified, one
can integrate the system of equations numerically by using a standard
Runge-Kutta technigyue (see e.g., Carnahan, Luther, and Wilkes5) from
X =0 to X =1, In the present work, the method of obtaining these co-
efficients was as follows:

(1) Making use of Eq. (4.10), rewrite the definition of the Taylor

number T in the form

T - -2aa [ﬁ&f _ E—EIJ LHQT (i.83)
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where T is an appropriately chosen characteristic time for the fluid,

Ny 1s the zero-shear viscosity, and El 1s the elasticity number, a

dimensionless constant:

Bl = 2-3—125 . (4. 84)

(2) Define the modified Taylor number T, and the modified Reymolds

number Ry by

} 2 _ 2 [P L oper?
T, = T %;> = = Eé] 2caRy . (4.85)

(3) Express the fluid viscosity m in the form

n = T]Q/Bo (y7) (4.86)

where B, defines a new dimensionless function.

(4) Express the material coefficients Bi(y) (i=1,...,9) in the form
Bi = Bilyt) . (4.87)
(5) Assume a value for the modified Taylor number Tyt
T, - G . (4.88)

(6) Calculate the corresponding modified Reynolds number R:

S/ BN rey (4.89)
[@a] [E4]

Ry
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(7) Calculate the dimensionless shear rate yT

yr = laallELIR, . (4.90)

(8) Evaluate the material functions B;(yr) (i=0,...,9) at the di-
mensionless shear rate,
(9) Calculate the actual Taylor number and actual Reynolds number
from the equations
T = Tmﬁg
(4.91)
R = RpPo
The solutions for y, Dy, and V obtained by integrating the disturb-
ance equations from X = O to X = 1 will depend, presumably in a continuous
fashion, on the values chosen for the three quantities Gy, Gz, and Ga.
Of course, for arbitrary choices, the boundary conditions (4.56) will
not necessarily be satisfied at X = 1, Therefore, one must determine
appropriate corrections to Gy, Gz, and Gz in order that these conditions
may be met. Such corrections are obtained in the present work using a
Newton-Raphson technique;5 in particular, we write, to terms of the fifst

order,

oy O ~ 7 — 7
3G, 3o e | 8G1 ¥
o(Dy) (DY) o(Dy) _

8= | = -| D b, o2
oG4 G2 0G5 2 v (+.92)
ov_ ov_ ov_ 5Cg v

-G, dGo g - X=1 - - - X=1
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where 8G; (i=1,2,3) represent the required changes in the G;. Iteration
on Gy, Gz, and Gg 1s repeated until satisfactory convergence of v, Dy,
and V at X = 1 has been achieved.

The nine partial derivatives in Eq. (4.92) have been evaluated
herein by a finite-difference process, That is, each of the quantities
G1, Gz, and Gg was individually given a small perturbation, and the cor-
responding differences in y, Dy, and V at X = 1 were noted.

By making use of the methods outlined above, one can determine the
Taylor number for any value of the dimensionless wave number ¢, The
smallest T over all e represents the critical Taylor number T, at which
vortex cells first appear in the flow, In this study, TC has been found

numerically by use of the "golden-section' minimum searching technique

M6>.

(see e.g., Wilde
Numerical calculations have been performed on the IBM 7090 digital

computer located at The University of Michigan Computing Center. A

short description of the programs and subroutines employed is presented

in Appendix D.

4.8 QUALITATIVE DISCUSSION

Iet us now examine the qualitative effects of the wvarious rheological
coefficients By to Bg on the critical parameters T. and €,. For this
purpose, we consider Eg. (4.77), our approximate solution to the complete

disturbance equations.
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One notes immediately that the variables Bg and Bg are absent from
(4.,77). Therefore, to a first approximation, Bg and Bg have a relatively
small influence on the stability criteria. This fact has been verified
numerically; in one numerical case, PBg was varied from -2.4 to +2.4 while,
in another case, Bg was varied from O to 2; in both instances, it was
found that T, and €. changed by less than 0.05%. Hence, we see that,
for moderate values of Bg and Bg, the critical parameters T, and €. are
determined primarily by six material functions (n, o2, and P2 to Bs) of
the shear rate rather than by eight. The corresponding disturbance equa-

tions for this situation are given by

[61D2-€2]V = [g§ + 62D2 - Bae%]w .
(4.9%)

[D*-p,e®D%+Bget]y = e®[-2R(1+aX )+36D2+B7e,2 v

In studying the effects of the other material coefficients p; to B~
on the stability criteria T, and €., we begin by noting that Eq. (4.7T7)

may be written in the general form

T = f£[g;(T),T,R(r),e] (i=1,...,T) (L.9k)

for fixed values of the parameters & and a. Taking the derivative of T

with respect to €, we have

ar of dBi dT . dF 4T , df dR 4T , Of I
de ~ OBy aT de+'aEE€_+aRdee+5Z (4.95)

or equivalently
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aT [0f/d€]
de
[_ or d51+_+§_§dR]
aa aT OT OR dT_J

The critical Taylor number T, and the critical wave number €, are found

by setting dT/de equal to zero. From (4.96), one obtains

X (B1(Te) e Re(Te) ] = O (+.97)
while from (4,94),
To = f£[Bi(Ta),To,Re(To),ec] (4,98)

where

T, = -208R2 . (4.99)

Equations (4.97) and (4.98) represent two simultaneous equations in the

two unknowns T. and €.

Iet us now allow Bi(TC) to vary independently of T.* and write

3¢ [Bi(TC))TC}RCJEC]

_ | Pe, Pr ane Fr e 4T, $fr de
3 =0
)
€

€dB3  Oedl dB3(Te) QedR dT, dB;(T.)  de2 ap; (T
co=C
(4.100)

and

aT. _ réf L of _dTe  of Be dTe  of _ dec
dg; (T,) agl R dp; (Ta) "R AT dpi(Te) T 481 (Te ) |q e

(k.101)

*This can be accomplished by varying the material parameters.
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Substituting (4.97) and (4.99) into (4.101) and solving for dTC/dBi(TC),

we have

dTe _ [of /oB4] (b 102)
Iy (Te) [1 b, or Be |
ST- BR 2TC Tc)ec
Moreover, from (4.100),
Fr L (FE Pr Re ) aTc
dec _ . _|oeoei 0edT  JedR 2TQ) ag; (Te ) (4.103)
aps (T.) 2 2 :
ilte [0°f/0e"] Teos€e
The terms

réi + QE.BE—] and o°f + °f Re
oI OR 2T. To,ee 0edT  dedR 2T T, e,

in these equations can be evaluated using Eq. (4.77). One obtains

— 28 B
(3- 56—8762) EES (%@ + 2)
[ég . of EE;} 1 2R (1+01/2) Toe '3 PetPac
OT 3R 2T, | T2 28 | o 2 5
cJTe €0 1+ (3— Bs-Bre?) 1 - EEE_(%Q 52+53€2>
B 2R, (1+0/2) c “T,,€,
(4.104)
and
2Re » Br€c
E% . 3 RC_I T. ~°°¢ . 2Re (1+0/2)
€dT  JdedR QTCJTC,€C - 2Re 28 (%é Be-B7€2)
1 -~ —= (== Bo#pac®) 1+
T T 3 2R, (1+/2) |1 e

crrc

(4,105)
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Now, in the present work, the expression given by (4.104) was, in all
instances, small in comparison with unity. Thus, it appears from (4.102)
that the sign of dT./dBi(T.) was determined entirely by the sign of
[af/agi]Tc)€c, This quantity has been calculated for each of the

cases i=1,...,7 and the final results are presented in Table L.2.

TABLE k4.2

EFFECT ON Tc OF A SMALL CHANGE IN B (T.)

Parameter dT./dss (Te)
Bi Greater than zero
Bo Greater than zero
Ba Greater than zero
Ba Greater than zero
Bs Greater than zero
Be Less than zero
Bz Greater than zero

In investigating the influence on €, of a small change in B;(Te),

we consider here (for simplicity) only deviations relative to the New-

tonian case, By =1, B2 = B3 =Bs = PB7 =0, B4 =2, Bs = 1. Under these

circumstances, from (4.,103) and (4.105), one has

ae, ) @f_f/ia_g__i]] (4.106)
ag; (T, ) [o2£/e2] Jr |

cs€e

Recalling now that at the minimum point of a function, the second deriva-

tive is positive, it is seen that

if—} > 0 . (4.107)

2
de”JTc €
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Therefore, for [Bzf/BEBBiJTC,ec > 0, we have that dec/dg;(T.) < 0, and
vice versa. Table 4.3 presents the results of a study on the sign of

[Bzf/éeéﬁi]Tc)ec for each of the cases i = 1,...,7.

TABLE k4,3

EFFECT ON €. OF A SMALL CHANGE IN B3 (Tq)*

Parameter dec/dps (Te)
B Greater than zero
Bo Zero
Bs Less than zero
B4 Less than zero
Bs Less than zero
Bes Zero
B~ Less than zero

¥Relative to Newtonian case,

4,9 PRESENTATION AND DISCUSSION OF NUMERICAL RESULTS

In this section, the numerical results of the current investigation
are presented. Consideration is given first to the Newtonian case, where
the values obtained here for the critical parameters T, and €. are com-
pared with those found by other authors. Next, we examine the stability
behavior of a fluid defined by the general constitutive model
S+ vl = 2ﬂ(7)§- Thirdly, we employ the approximations presented in
Egs. (L.58) to solve the disturbance equations for the case of two fluids
whose viscometric functions m, oy, and oz have been determined experi-

mentally by Huppler;glL the current experimental and numerical results are

then compared and certain definite conclusions are reached concerning
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the validity of the '"viscometric hypothesis."” Finally, we consgider

numerically the effect on T, and €, of varying the parameters Bz, Bs,

B4, and Bs.

4.9,1 The Newtonian Case

The disturbance equations describing this situation are given by

[D®-e2]V = g—R-q;
(4.108)
[D?-e2]3y = -2¢2R(1+0X)V
which may be expressed in the form
[DP-e2lV =
(4.109)
[D2-e2])%y = -Te®(1+aX)V

if the variable y is suitably redefined. It is observed from equations
(4.109) that the Reynolds number R =~NT/(-20a) (or equivalently the
radius-to-gap ratio a = rl/d) does not occur explicitly in the small-gap
Newtonian stability problem. Thus, for this case, the stability cri-
teria T, and €. are functions only of the parameter Q.

In order to illustrate the accuracy of the present numerical pro-
cedure, Table L L, which contains a comparison of the current findings
with those of several other authors (for the Newtonian case), has been
prepared., One notes the excellent agreement between the present and

past results,
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TABLE L. L

VALUES OF T. AND €. FOR NEWI'ONIAN CASE

Critical
Investigator Parameters a = -0.,5 a=-10 o=-1.5 a= -2.0
Thomas and Te 2285 3404 6431 --
WalterstO o 3.12 3.12 3.20 --
Chan Man Fong® Te 2290 3L1k -- --
€c 3.10 3.10 -- -
Beard, Davies, Te 2275 -- -- --
and Waltersl £e -- - - -
Chandrasekhar> Te 2275 3390 6L17 18677
€c 3.12 3.12 3.20 L.00
Harris and T -- 3390 oh1h 18663
Reid®? e -- 3.13 3.20 4,00
This study Te 2275 3390 61k 18669
€n 3.12 3,13 3.20 L. 00

4.9.2 Case of a Fluid Defined by S+pI = 2n(y)E

A fluid obeying the general constitutive law

8+pl = 2n(y)E (4.110)

exhibits neither normal stresses nor elasticity; nonetheless, this model
provides a worthwhile basis for comparison with real viscoelastic be-
havior since it possesses a viscosity which depends on shear rate, a
property common to all viscoelastic fluids. The usual Bingham plastic
model, the Ostwald-de Waele "power-law" fluid, the Reiner-Philippoff

fluid, the Eyring fluid, and the Ellis fluid are all special cases of
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(4.110). Hence, the need for any future stability treatments using
these or other such simple models should be obviated by the present
analysis,

By redefining the variable {, it 1s possible to express the dis-
turbance equations for (4,110) in the form

[BlDZ-ez]V = ¥
(k.111)
[D2-e2]%y = -Te®[1+aX]V

We see then that the stability criteria for this model will be governed
by the two variables ¢ and Bj.

Owing to the limited amount of computer time available in the pres-
ent work, numerical calculations have been restricted to the case of
a = -1, However, suitable approximations for T. and €. for other values
of & can be determined using Eq. (4.77). In particular, it is found

that, for ~1 < a <O

and (4.,112)

€o (OC,B:L) pS GC(']—)Bl)

where T.(o,1) and T.(-1,1) refer to the critical values associated with

the Newtonian case,

Table 4.5 presents the results of the numerical calowladions nor=

farmed herein for the model defined by (4.110), and Figs. 4.1 and 4.2
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show plots of T, and €. vs. B3 (for a = -1). It will be observed that
both T, and €. increase with increasing B;, in qualitative agreement

with the predictions of Tables 4.2 and L4.3.

TABLE L.5

NUMERICAL RESULTS FOR A FLUID DEFINED BY (4.110); o = -1

=51 Te €c

2.00 5009 3.50
1.00 3390 3.13
0.99 3373 3,12
0.98 3356 3,12
0.97 3338 3.11
0.96 3221 3.10
0.95 3304 3.10
0.90 3217 3.07
0.80 3040 3.01
0.60 2672 2.85
0.40 2276 2.7k
0.20 1822 2.30
0.10 1542 2.00

From the present experimental findings, the values of B, occurring
at instability have been calculated for each of the polymer solutions in-
vestigated, and these values have then been used in conjunction with Figs.
4,1 and 4.2 in an attempt to predict the experimentally observed stability
behavior. Table 4.6, which contains a comparison between theory and ex-
periment, presents the corresponding fractional reductions in T, and ec.
One notes that the theoretical results based on Eq. (4.110) are in quali-
tative agreement with experiment, in that the critical parameters both
decreased with polymer concentration. However, the predicted decrease

in €, was, in all cases, somewhat smaller than observed.
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Fig. L.1. Plot of T; against By for a fluld defined by (4.110); a = -1.
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TABLE 4.6

FRACTIONAL REDUCTIONS IN T. AND e,

Experimental Theoretical*
Substance Cone. (Wt.%) Tc/Te,N  €c/€c,N  Tc/Te N €c/fc,N
TMT CMC 0.5 1.0 0.97 1.0 1.0
1.0 0.92 0.93% 0.94 0.97
1.67 0.88 0.90 0.89 0.95
2.5 0.45 0.85 0.80 0.91
P-75-XH CMC 0.183 1.01 0.88 0.82 0.92
0.367 0.95 0.75 0.80 0.91
0.55 0.79 0.71 0.70 0.89
Natrosol 250-H HEC 0.48 0.86 0.82 0.80 0.91
0.80 0.7k 0.72 0.67 0.85
1.0 0.63 0.69 0.64 0.82

*Baged on Egq. (4.110) as a constitutive model.

4.9.% Approximate Analysis

Metzner, White, and Denn29 have suggested that the equation

S+ pI = n(y)a, + % af + (92701) o, (1.57)
~ ~ ~ y2 ~ 2y2
or eyuivalently
- E
S+ pl = 2n(7>E+ME+g§~§l_@_ﬁ (_‘|_56>

might be useful in describing motions, such as the current one, which are
extremely close approximations to viscometric flows (viscometric hypoth-
esis).* If this were the case, then, as has been indicated earlier in
Section 4.4, the "unknown" material functions Bz to Bs and Bg would be
given by the low-shear-rate approximation (4.58), and, in addition, the

Taylor-Couette stability behavior of a fluid would be governed entirely

#*The reader will recall that (1.57) is applicable in the strictest sense
only to purely viscometric flows.
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by n, 01, and o2. In order to explore these possibilities fully, the
following course of action has been taken. First of all, the viscometric

2l

data of Huppler on solutions of 0.5% P-75-XH CMC and 0.9% Natrosol

250-H HEC have been represented (in the power-law region) by empirical

expressions of the form

N WATSES
o1 = caoly|/|yT|P? (k.113)
o2 = cangly|/ 7|2

where 1T is a characteristic time,* Mo is the zero-shear viscosity, and

Ci, C2, Pgs; Pi1, and pe are dimensionless material constants; the partic-

ular values employed for these gquantities are shown in Table 4.7.

TABLE L.7

MATERIAL CONSTANTS USED TO APPROXIMATE HUPPLER’S2br DATA

Substance T(sec) n,(poise) cq co Po P1 Do
P-75-XH CMC 0.76 7.42 0.275 0.0812 0.446 0.1%3 0.19
Natrosol 250-H 0.148 13,7 1.99 0.127 0.61 0.k23 0.375

Next, based on Egs. (4.58), (4.113), and Table 4.7, the disturbance

equations for the two fluids of interest have been solved for the case

*In the present work, the characteristic time T has been taken to be the
reciprocal of the shear rate occurring at the point of intersection of
the zero-shear viscosity line with the power law line in Fig. 1.2, It is
found then that for [yr| <1, n .an, while for |yr| > 1, n is approxi-
mated by the power law,
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where o = ~1 and a = 12.%¥ The numerical results obtained are presented
in Table 4.8 along with the predicted small-gap values of Te and ec,

determined from the stability tests.

TABLE 4.8

COMPARISON OF APPROXIMATE THEORY WITH EXPERIMENT

‘ Theoretical Experimental
Substance T, e T, o
P-75-XH CMC 1771 3.73 2900 2.2
Natrosol 250-H 1001 5.25 2350 2.2

As can be seen, a considerably greater reduction in stability is
found theoretically than was actually observed. Even more noteworthy is
the fact that the critical wave number €. decreased from its Newtonian
value of 3,13 in the experiments while, in the calculations, this quan-
tity was greater then ec,N' One could argue that such discrepencies in
results might be attributed to small deviations of Egs. (4.113) and
Table 4,7 from the exact viscometric functions. However, calculations
have shown this not to be the case. For example, it was necessary to
actually reverse the sign on oz before the experimental and numerical

findings could be brought into even rough agreement.** Thus, we have

*Tt is recalled that values of a = 12 and & = =1 correspond to the cur-
rent stability apparatus and experiments,

**¥Dr, B. Duane Marsh2? has indicated in a private communication that
Huppler's results for oz have been checked by an independent tech-
nigque, and that the data from the two methods agree to within 10% for
HEC solutions, giving in each case the same sign,
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demonstrated that Egs. (4,58) do not represent a reasonable approxima-
tion for B2 to Bs and Bg at finite rates of shear and, furthermore, that

the "viscometric hypothesis" is unacceptable in the present instance.

L.9.4 Effect of Varying Bz, Ps, Pa, and Bs

In order to illustrate the fact that agreement between the present
theoretical development and experiment is possible for certain values of
the parameters Bz to Bs,* these guantities have been allowed to vary,
while n, oy, 02 (and thus B4, Bs, B7, and Pg) have retained their func-
tional dependence as given in the previous section. The disturbance
equations for the two fluids of interest were then solved numerically

for each of the cases listed in Tables 4.9 and 4.10, From the first en-

TABLE 4.9

EFFECT OF VARYING B» to Bs FOR P-75-XH CMC

B2 B3 Pa Bs Te €c

0 0 2 1 2067 3.h7
-1 0 2 1 1863 3.50
1 0 2 1 2290 3. 4L
0 -1 2 1 1798 3.95
0 1 2 1 2301 3.15
0 2 2 1 2511 2,92
-2 1 2 1 1882 3,00
2 -1 2 1 2223 3.86
0.5 0.5 2 1 2301 3.28
-0.5 -0.5 2 1 1838 3.70
-1 1 2 1 2082 3.19
-3 3 2 1 2032 2.85
0 0 2 2 2349 3.00
0 0 2 0.5 1851 L.03
0 0 3 1 2407 3,26
0 0 1 1 1706 3.71

*¥In Section 4.8, we have shown that the dependence of T. and €. on Bg
1s very weak,
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TABLE 4,10

EFFECT OF VARYING Bo TO Bs FOR NATROSOL 250-H

Be Bs Ba Bs Te €c

0 0 2 1 1925 3.36
1 0 2 1 2133 3,31
-1 0 2 1 1738 3. 40
0 -1 2 1 1683 3,88
0 1 2 1 2133 3.0%
0 2 2 1 2314 2.79
1 -0.5 2 1 2007 3.54
2 -1 2 1 2080 3,80
-2 1 2 1 1748 3.11
0.5 0.5 2 1 2138 3.15
-0.5 -0.5 2 1 1718 3,60
-1 1 2 1 1932 3,06
-3 3 2 1 1869 2.72
0 0 3 1 2228 3,12
0 0 1 1 1600 3,64
0 0 2 2 2158 2.89
0 0 2 0.5 1743 3.0%

tries in these tables, it is apparent that replacement of B to Bs by
their respective Newtonian values, of 0,0,2, and 1, yilelds considerable
improvement over the theoretical results shown in Table 4,8,

Figureé 4.% and 4.4 indicate graphically the effect on Te and e
caused by varying the parameters Bs and Bs, with B4 and Bs being held .
fixed at By = 2, Ps = 1. Similarly, Figs. 4.5 and 4.6 show the depend-
ence of the stability criteria on B, and Bg, with Bz = Bz = 0. In these
figures, the experimentally predicted small-gap values of T, and €, are
indicated using the symbol ®, and the numbers in parenthesis represent

points in the original Po-Bs or PB4-PBs planes which have been mapped into
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the T.-€, plane, Although no special attempt was made to achieve agree-
ment between theory and experiment in any of the cases shown, it is
obvious that certain appropriately chosen (but non-unique) combinations

of the parameters P to Bs could readily accomplish this.



CHAPTER 5

SUMMARY AND CONCIUSIONS

The stability of viscoelastic flow in the narrow channel between
two long concentric rotating cylinders has been considered both theo-
retically and experimentally.

In the mathematical analysis, the general Coleman-and—Noll9 simple

fluid with fading memory is employed as the rheological model. Since all

previous treatments of the small-gap stability problem have dealt with
special cases of this model, the earlier works are shown to represent
special cases of the current investigation. General techniques are pre-
sented for treating small perturbations on viscometric flows of simple
fluids, and these technigues are subsequently applied in analyzing the
pertinent stability behavior, under the usual assumption of neutral,
axisymmetric disturbances. It is found that there are exactly eight
material functions of the undisturbed rate of shear which are necessary
to define the problem. Three of these are the familiar viscometric func-
tions 7, 03, and oz, but the other five are entirely new, and their
forms can be deduced, at present, only in the limit of vanishing shear
rates. Furthermore, numerical calculations reveal that, in practice,
only six of the functions should actually have a substantial influence
on flow stability.

Another important result of the theoretical investigation concerns
the definition of one of the stability criteria, the Taylor number. It
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is shown that this quantity should be calculated using the apparent fluid
viscosity, as evaluated at the shearing conditions in the apparatus.

Stability tests and viscosity measurements are reported for agqueous
solutions of cellulose-derivative polymers whose viscometric functions
have been presented in the literature, for certain concentrations. In
all instances, it is found experimentally that the flow is less stable
than in the Newtonian case, and that the wavelength of the disturbance is
greater. By comparing these findings with the results of numerical sta-
bility calculations (based on empirical expressions for the viscometric
P tiome oF Ihe Fliide Frrmstieedad), one RORAIGAST Jhed AEREIL Wl -
known, approximate fluid models do not suffice to describe the observed
stability behavior, and, in particular, that the "viscometric hypothesis"
suggested by Metzner, White and Denn?9 is unacceptable in the present
instance. Additional calculations, however, reveal that the five newly-
defined material functions of the present work can be appropriately (but
not uniquely) chosen to give agreement between theory and experiment.

At present, the measurement of the three viscometric functions 7,
01, and oz constitutes an important part of the laboratory testing of
viscoelastic fluids. This is mainly because a knowledge of these func-
tions enables one to predict the stress distributions associated with an
entire class of fluid motions, namely, viscometric flows. By way of
contrast, the five new material functions of the current analysis may
very possibly be peculiar only to the Taylor-Couette experiment. There-

fore, since a stability test does not suffice to determine the varia-
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tion of the new material functions in a unique manner, it appears that
there is but one important rheological application for this test. That
is, it represents one additional means for experimentally testing simp-
lified rheological models to determine whether they are adequate for
describing more complicated flows of real viscoelastic fluids; the cur-
rent theoretical development provides a basis for interpreting the re-
sults of such a test.

Although the present work eliminates the need for further theoretical
studies on the Taylor-Couette stability of simple fluids (at least for the
small-gap, neutral-stability case), it would be interesting, as further
theoretical work, to determine whether the new material functions found

here are common to other stability problems.



APPENDIX A

Eél)(t') IN CIOSED FORM

In this appendix, we present the remaining details of the deriva-

tion of‘Eél)(t‘) in closed form, which was begun in Section 3.3.

A A
Let us start out by defining it(t'), M (t'), and yt(t’) to be the

summations of all terms in (3.34) involving the tensors L, M, and N re-

e

spectively. It i1s readily shown that
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Substituting s = t'-t into (A-1)-(A-3), we then have
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Next, taking the Iaplace transforms of Egs. (A-7)-(A-9) with re-
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spect to the new variable s, one finds that
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4 A

A 1 d

where ¢ denotes laplace's operator. These expressions may be inverted

to yield convolution integrals:

s
2 - 2 7 sin 7(0)(5-5 ) _
b = [ [ghoen] Sgremtan o

S~ —
ﬂ;(t+5) = - b/\ {%ZI ﬁt(t+slﬁ (o)

I/\}\Jt-,(tﬂ“s) = -u/\ s ﬁt(t+51;] [Siny(o)(S_Sl)-y(O)(S'Sl)COS7(°)(S-Sl)]ds;
~ o |ds? 2y(0)®
(A-15)

or equivalently

t
Ay & 2 sin 7(0)(t -t')dt _
Tv) = ft Lﬁﬁ(t% i (4-16)

t
{—i‘ﬁﬁt(tli}[Sin7(o)(tl—t')'7(Ozé§§‘t')0057(0)(t1—t')]dtl
27

(A-18)

Now, by again making use of the primary rotation tensor §£O>(t')

(as has been done with Eg. (3.33)), it is possible to show, from (A-L)-

(A-6), that
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Therefore, substituting (A-19)-(A-21) into (A-16)-(A-18) we have finally

that
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APPENDIX B

EXPERIMENTAL DATA

The experimental data of the current investigation are reported in
this section. First the results of the stability tests are presented,
and then the viscosity data are given. Units are as follows: concentra-
tion in weight percent, time in seconds, angular velocity in revolutions
per minute, height of vortex cells in cm., armature displacement in

1

. . - . 2 : .
0.001 in., shear rate in sec™ ™, shear stress in dyne/cm™, and viscosity

in poise.
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Stability Data

Temperature = 79°F, revolutions = 3, time = 5&.910.5, angular velo-
city = 3.28+0,02, height/20 vortex cells = 11,7%0.1, height/cell
= 0.585t0.005, €, = 3.14*0.03, T, = L41LO

2. TMT CMC
Concentration 0.5 1.0 1.67 2.5
Temperature (°F) 78 76 80 78
Revolutions iINg) 100 100 100
Time 57.7+0.6 51.0%0.6 27.0%0.3 17.20.5
Angular velocity 41.6%0.4 117.5%1.1 202+3 348410
Shear rate 52.3%+0.5 148+2 279%3 438+13
Critical viscosity  0.111 0.33 0.6L 1.41
T 4140 3790 3630 1880
Height/20 cells 12,0+£0.2 12.,6+0.2 13,0+0.1 13.7+0.1
Height/cell 0.600%0.010  0.630+0,010 0,650%0,005 0.685%0.005
€ 3.04+0.05 2.91+0,05  2.82#0.0%3  2.68+0,02
3., P-75-XH CMC
Concentration 0.183 0.367 0.55
Temperature (°F) 76 76 76
Revolutions 100 100 100
Time 48.5%1.0 27.8%0.5 20.5%0., 3
Angular velocity 12%.8%2.,6 216%h 29%+h
Shear rate 155,5%3,2 271%5 36815
Critical viscosity 0.327 0.590 0.880
T 4200 3950 3270
Height/20 cells 1%.3%+0.5 15.5%0.5 16.5%0.5
Height/cell 0.665%0,025 0.775%0.025 0.825+0,025
o 2.76%0,10 2.3%610,08 2.22+0,07
4, Natrosol 250-H HEC
Concentration 0.48 0.80 1.00
Temperature (°F) 76 80 82
Revolutions 100 200 200
Time 36,8%0.5 39,2+0.5 30.910.5
Angular velocity 16312 306+h 38816
Shear rate 20513 38445 4,88+8
Critical viscosity 0. 470 0.950 1.32
Te 3550 3080 2590
Height/20 cells 14,3+0.5 16,3+0.5 17.0%0.5
Height/cell 0.715%0.025 0.815%0,025 0.850+0.025
o 2.56%0,09 2.25%0.07 2.16%0,06
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Viscosity Data

1. Pure Water

Viscosity of water at 79°F52 = 0,00872

2. ML CMC
0.5% Solution (25.6°C)

Gearbox  Armature Displacement  Shear Rate Shear Stress  Viscosity

1.5 0.018 52.8 5.59 0.10k4
1.k 0.024 66. L4 7.545 0.112
1.3 0.029 83.6 9.00 0.108
1.2 0.038 105.3 11.8 0.112
1.1 0.046 132.9 14,3 0.107
1.0 0.059 167.0 18.2 0.109
0.9 0.07h4 210.0 23,0 0.110
0.8 0.090 26L.0 27.9 0.106
0.7 0.112 334.0 34,8 0.10k
0.6 0.138 420.0 42,8 0.102
0.5 0.172 528.0 53. 4 0.101
0.4 0.211 664.0 65.5 0.986
0.3 0.256 836.0 79.5 0.950
0.2 0.31k4 1053.0 97.5 0.929
0.1 0.387 1329,0 120.0 0.903
0.0 0. 480 1670.0 149.0 0.89%

1.0% Solution (2Lk.5°C)

Gearbox Armature Displacement  Shear Rate Shear Stress Viscosity

1.5 0.061 52.8 18.9 0.358
1.4 0.075 66,4 23,2 0.350
1.3 0.09% 83.6 28.8 0.3k4kL
1.2 0.117 105.3 36,3 0.346
1.1 0.1kh 132.9 Wb 7 0.336
1.0 0.176 167.0 55.6 0.333
0.9 0.21k4 210.0 66.5 0.316
0.8 0.260 264.0 80.6 0.306
0.7 0.%18 3340 98.6 0.295
0.6 0.3%78 420.0 117.0 0.285
0.5 0.k462 528.0 143.0 0.271
0.k 0.560 664.0 174.0 0.262
0.3 0.670 826.0 208.0 0.249
0.2 0.800 1053.0 248.0 0.236
0.1 0.93%0 1%329,0 288.0 0.216
0.0 1.14 1670.0 354,0 0.212
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1.67% Solution (26.7°C)

Gearbox  Armature Displacement Shear Rate Shear Stress  Viscosity

1.5 0.143 52.8 L h 0.840
1.4 0.176 66,4 54.6 0.823
1.3 0.212 83.6 65.8 0.786
1.2 0.258 105.3 80.0 0.762
1.1 0.312 1%2.9 96.8 0.728
1.0 0.377 167.0 117.0 0.700
0.9 0.455 210.0 141.0 0.672
0.8 0.540 264,0 168.0 0.636
0.7 0.655 3340 203%.0 0.608
0.6 0.775 420.0 240.0 0.571
0.5 0.910 528.0 282.0 0.535
0.4 1.08 6640 335.0 0.505
0.3 1.28 8%6.0 397.0 0.475
0.2 1.52 1053.0 71,0 0.448
0.1 1.77 1%329.0 549.0 0.413
0.0 2.05 1670.0 6%6.0 0.381

2.5% Solution (25.6°C)

Gearbox  Armature Displacement Shear Rate Shear Stress  Viscosity

1.5 0.435 52.8 1%5 2.56
1.4 0.535 66. 4 166 2,52
1.3 0.630 8%.6 195 2.3k
1.2 0.7%5 105.3 228 2.17
1.1 0.885 1%2.9 275 2.07
1.0 1.0k 167.0 222 1.9%
0.9 1.23 210.0 382 1.82
0.8 1,44 26L4.0 L7 1.69
0.7 1.68 334 .0 521 1.56
0.6 1.93 420.0 599 1.46
0.5 2.22 528.0 689 1.31
0.4 2,52 664 .0 781 1,18
0.3 2.90 836.0 900 1.08
0.2 3,40 1053.0 1055 1.00
0.1 3.95 1%29,0 1225 0.920
0.0 L. 45 1670.0 1370 0.820
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3. P-75-XH CMC
0.18%% Solution (24.5°C)

Gearbox  Armature Displacement  Shear Rate Shear Stress  Viscosity

1.5 0.077 52.8 23.9 0.453
1.k 0.090 66. k4 28.9 0.435
1.3 0.106 83.6 32.8 0.3%92
1.2 0.126 105.3 39.1 0.372
1.1 0.1kh7 132.9 45.6 0.3h3
1.0 0.171 167.0 5%.0 0.3%18
0.9 0.199 210.0 61.7 0.294
0.8 0.229 264.0 71.0 0.269
0.7 0.260 334.0 80.6 0.242
0.6 0.300 420.0 93.0 0.222
0.5 0.342 528.0 106.0 0.201
0.4 0.3%90 664, 0 121.0 0.183
0.3 0.448 836.0 139.0 0.166
0.2 0.515 1053.0 160.0 0.153
0.1 0.585 13290 182.0 0.137
0.0 0.678 1670.0 210.0 0.126

0.367% Solution (24.5°C)

Gearbox  Armature Displacement  Shear Rate  Shear Stress  Viscosity

1.5 0.194 52.8 60.2 1.1k

1.4 0.225 66. 4 69.8 1.05

1.3 0.260 83.6 80.6 0.96k
1.2 0.298 105.3% 92.4 0.880
1.1 0.3h2 1%2.9 106.1 0.797
1.0 0.387 167.0 120,0 0.718
0.9 0.445 210.0 138.1 0.657
0.8 0.510 264 .0 158.1 0.599
0.7 0.580 334.0 180.1 0.539
0.6 0.658 420.0 204.0 0.486
0.5 0.740 528.0 230.0 0.436
0.4 0.825 664 .0 256.0 0.386
0.3 0.925 826.0 287.0 0.34kL
0.2 1.03% 1053.0 320.0 0.305
0.1 1.16 1329.0 360.0 0.270
0.0 1.31 1670.0 406.0 0.243
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0.55% Solution (2k,5°C)

Gearbox  Armature Displacement Shear Rate Shear Stress  Viscosity

1.5 0.375 52.8 116.3 2.20
1.4 0.425 66. 4 1%2.,0 1.99
1.3 0.490 8%.6 152.0 1.82
1.2 0.558 105.3 173.0 1.65
1.1 0.630 1%2.9 195.5 1.h47
1.0 0.710 167.0 220.0 1.%2
0.9 0.790 210.0 245.0 1.17
0.8 0.885 26L4,0 274.0 1.04
0.7 0.982 3340 305.0 0.913%
0.6 1.090 420.0 338.0 0.805
0.5 1.22 528.0 378.0 0.716
0.4 1.3%6 664.0 L22.0 0.637
0.% 1.50 836.0 465.0 0.556
0.2 1.67 1053.0 518.0 0.493
0.1 1.84 1%29.0 571.0 0.429
0.0 2,02 1670.0 626.0 0.375

4, Natrosol 250-H HEC

0.48% Solution (2k.5°C)

Gearbox  Armature Displacement Shear Rate Shear Stress  Viscoslty

1.5 0.1%2 52,8 40.9 0.776
1.4 0.156 66. 4 4L8.3 0.729
1.3 0.181 83.6 56.1 0.671
1.2 0.208 105.3 6L4.5 0.61Y4
1.1 0.239 1%32.9 Th.1 0.557
1.0 0.275 167.0 85.3 0.511
0.9 0.3%15 210.0 97.6 0.465
0.8 0.358 26k4.,0 111.0 0. 420
0.7 0.402 334,0 125.0 0.37h
0.6 0.460 420.0 143,0 0.340
0.5 0.520 528.0 161.0 0.3%05
0.4 0.590 664 .0 183.0 0.276
0.3 0.670 826.0 208.0 0.249
0.2 0.755 1053.0 234.0 0.223
0.1 0.840 13%29.0 260.0 0.196
0.0 0.955 1670.0 296.0 0.177
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0.8% Solution (26.7°C)

Gearbox  Armature Displacement  Shear Rate Shear Stress  Viscosity

1.5 0.465 52.8 144 2.73
1.4 0.538 66.4 167 2.52
1.3 0.600 8%.6 186 2.22
1.2 0.675 105.3 210 2.00
1.1 0.745 1%2.9 231 1.74
1.0 0.822 167.0 255 1.5%
0.9 0.910 210.0 282 1.34
0.8 1.00 264 .0 310 1.18
0.7 1.11 3%4,0 34L 1.03
0.6 1.21 420.0 376 0.896
0.5 1.34 528.0 416 0.787
0.kL 1.47 664.0 L56 0.687
0.% 1.61 836.0 500 0.598
0.2 1.76 1053.0 546 0.520
0.1 1.92 1329.0 595 0. 4h7
0.0 2.10 1670.0 651 0.390

1.0% Solution (27.8°C)

Gearbox Armature Displacement  Shear Rate  Shear Stress  Viscosity

1.0 1. k44 167 Ly 2.68
0.9 1.56 210 L8l 2.30
0.8 1.69 264 525 1.99
0.7 1.83 33 568 1.70
0.6 1.96 420 608 1.45
0.5 2.12 528 658 1.25
0.4 2.31 664 717 1.08
0.3 2.51 836 779 0.931
0.2 2.70 1053 838 0.797
0.1 2.95 1329 915 0.688
0.0 3,18 1670 986 0.590



APPENDIX C

CRITICAL EIGENFUNCTIONS

The critical eigenfunctions V. and V, are defined herein as the
eigenfunctions associated with the critical parameters T, and €.. For
any particular simple fluid, Ve and V. can be determined using the pres-
ent numerical techniques, by integrating the disturbance equations from
X=0toX=1forT="T. and € = €;. As an example, Figs, C.1 and C.2

show plots of Y, and Ve vs. X corresponding to the Newtonian case with

a = -1,
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APPENDIX D

COMPUTER ANALYSIS

A main program and three subroutines (BETA., SOIVE,, and INVERT.) were
used in this work to (a) numerically solve the characteristic value prob-
lem arising as a consequence of the current Taylor-Couette stability anal-
ysis, and (b) determine the critical parameters Te and €.. The basic
techniques employed have been presented in Section 4.7.3. All programs
were written in the "MAD" computer language, and the time required to
determine each eigenvalue was approximately 2 sec.

The following is a summary of the primary duties of the main program:

(1) To direct the reading of data and the prinout of results.

(2) To initiate and implement the '"golden section" minimum search-
ing procedure,

(3) To call upon the subroutine BETA, to calculate the rheological
coefficients B, through Bg, for any prespecified dependence of these
quantities on the dimensionless shear rate 7yT.

(k) To call upon the subroutine SOLVE. to integrate the disturbance
equations from X = 0 to X = 1, using a Runge-Kutta technique,¥

(5) To determine the matrix of partial derivatives appearing in
Eq. (Lk.92).

(6) To call upon the subroutine INVERT.** to solve Eq. (L4.92).

*The computer library Runge-Kutta subroutine was employed in SOLVE.
*¥INVERT. is a modified version of the program appearing on pp. 390-
391 of Applied Numerical Methods,
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(7) To iterate on the quantities G,, Gz, and Gz until satisfactory

convergence is achileved.

A description of the important symbols employed is given below,

Program Symbol Definition
A a =ry/d
A(T,J) Elements of the matrix of partial

derivatives appearing in Eq. (4.92).
A vector consisting of ¢, Dy, and V
at X = 1 is appended as an additional

column,
ALPHA o = (Q2-01)/0
B aa
BET(I) B; (i =0,...,9)
COEF (1) c; (1 =1,2,) in Bgs. (4.113)
CRIT o
DEL(I) 8G; (i = 1,2,3) in Eq. (L4.92)
DELX AX, step size in Runge-Kutta integration
EL Ef = elasticity number = Tno/pd2
EPS €
GESNU(I) GUESS(I) x RATIO(I)
GUESS (T) G; (1 =1,2,3)
LEFT Left boundary in the golden section

interval (LEFT < ¢, < RIGHT)

MAX Total number of applications of the
golden section test

NU Maximum allowable fractional change
in G4 during final iteration
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Program Symbol Definition
POWER(I) p; (i =0,1,2) in Egs. (4.113)
PSI(I) Vi (1 =1,...,6); va =¥, ¥ = Dy,
Vs =V, Y4 = D2V, Vs = D3y, Yg = DV
RATIO(I) (1.0-RATIO(I)) represents the frac-

tional change in G5 used in numerically
determining the nine partial deriva-
tives in Eq. (4.92)

RIGHT Right boundary of the golden section
interval (LEFT < e, < RIGHT)

R Modified Reynolds number, Rp
SOILN Taylor number (eigenvalue)
TAUGAM |y |

TAYIOR Ta

TEST Boolean variable which specifies

whether or not the critical eigen-
functions V. and V., should be
printed

The MAD program listings and a typical computer output are presented

in the pages which follow.
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