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SUMMARY.

We examine adaptive allocation designs for the problem of determining the optimal therapeutic

dose for subjects in early-phase clinical trials. A subject can fail due to lack of efficacy or due to a toxic
reaction. Successful subjects will have both a positive response and no toxic side effects. Thus, we seek to
maximize the product of the nontoxicity and efficacy dose-response curves. We are interested in sampling
rules that perform well along several criteria, including the ethical criterion that, as often as possible,
experimental subjects be treated at or close to the maximum in question. Statistically, we wish to identify
the optimum dose with high probability at the close of the experiment. Here, we propose designs that combine
new allocation policies, directed walks, with new smoothed shape-constrained curve-fitting techniques. These
are compared with a variety of other curve-fitting techniques and with up-and-down and equal allocation

rules.
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1. Introduction

Classical dose-response problems for phase I clinical trials
focus on locating specified quantiles of the relationship be-
tween dose and probability of toxic response to drug therapy.
In the simplest case, a subject’s response at a given dose,
s, is modeled as a Bernoulli random variable with a proba-
bility of nontoxic outcome p(s) = 1 — Q(s), where Q(s) is
assumed to be continuous and nondecreasing in s > 0. Con-
siderable attention has been paid to such problems, and, in
recent years, adaptive formulations of dose-response problems
have taken center stage. Two-stage designs, stochastic approx-
imation, continual reassessment, dose escalation and up-and-
down methods have all been proposed. One reason for this
is an increased emphasis on addressing multiple experimental
criteria. Nonadaptive or fixed allocation designs tend to focus
on optimizing a single criterion, such as the variability of an
estimator. Potential simultaneous goals, such as reducing risk
to subjects, overall costs or time to decision have typically
not been well incorporated in fixed designs.

When a range of “acceptable” doses has been established
during a phase I study, then a phase II clinical trial will often
follow. The aim of the phase II trial is to examine the efficacy
of the therapy as it relates to adverse outcomes. In a variety
of circumstances, it may be desirable to integrate phase I and
IT trials (known as phase I/II trials). One reason for devel-
oping such designs is to accelerate the process of getting a
new drug to market. Ideally, the integrated trial will involve
fewer subjects and less time. Another goal, addressing ethical
concerns, is to allocate more subjects at or near doses that
are both safe and efficacious.

An increasing amount of attention is being paid to phase
I/II clinical trials with the competing failure modes of tox-
icity and lack of efficacy. Murtaugh and Fisher (1990) and
Jennison and Turnbull (1993) have addressed the problem
by assuming parametric bivariate response functions reflect-
ing efficacy and toxicity. Bryant and Day (1995) propose
two-stage designs that control error rates for the two fail-
ure modes, while allowing for possibly correlated outcomes.
Conaway and Petroni (1996) elicit trade-off curves to charac-
terize null hypotheses and develop stopping criteria to limit
subject accrual. Kpamegan and Flournoy (2001) describe a
modified random walk to locate the dose that optimizes the
product of the efficacy and nontoxicity response curves. Tack-
ling the same goal, Hardwick and Stout (2001) use modified
multiarmed bandit rules.

Focusing more on curve estimation, Thall and Russell
(1998) and O’Quigley, Hughes, and Fenton (2001) use
designs related to the continual reassessment method of
O’Quigley, Pepe, and Fisher (1990). The procedure proposed
in O’Quigley et al. (2001) also utilizes sequential probabil-
ity ratio tests. Gooley et al. (1994), taking a nonparametric
approach, and Thall and Russell (1998) specify error rates
to define acceptable doses, incorporating elicited information
about the expected response functions as a starting point for
their designs. In all of these articles, simulation is used as a
design aid.

1.1 The Problem

We examine a competing failure model in which the goal
is to maximize the probability that a subject being treated
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exhibits both a nontozic response and is cured. Throughout,
we assume that observations may be taken at one of D fixed
dose levels, 0 < s; < -+ < sp. The dose levels need not be
equidistant, although those used in our examples are.

Let R(s) be a nondecreasing response curve that models the
probability that dose s is effective (cures the patient). Then
we take F(s) = R(s){1 — Q(s)} to be the probability of a
“successful” outcome at dose s. We wish to locate the dose(s),
s*, that maximizes {F(s;): 1 < k < D}. For convenience, we
often refer to dose level s, as “dose k,” kK =1,..., D, and to
the optimal dose s* as “dose k*.”

Some authors model this problem by defining the efficacy
response curve only when there has been a nontoxic result.
Call this R'(s), and let F'(s) = R'(s){1 — Q(s)} be the success
function for this dependent scenario. (See Thall and Russell,
1998; Kpamegan and Flournoy, 2001.) In these cases, accom-
panying assumptions or model definitions are that R’ is non-
decreasing and that F’ is unimodal. This conditional model
is particularly appropriate when toxicities are severe and cen-
sor efficacy. It may also be preferable when there are clin-
ical reasons to assume efficacy given nontoxicity is nonde-
creasing, whereas here the marginal efficacy, R, is assumed
nondecreasing.

In such cases, the directed walk algorithm (DWA), intro-
duced in Section 2.2, could be modified so that efficacy infor-
mation is updated only when a nontoxic result has occurred.
This case is not pursued here. Instead, we assume that R(s)
and Q(s) are observed for all patients. We also take the two
response curves to be independent, although this is somewhat
stronger than is needed for our results. A broader approach
would be to fully model the dependency structure between
the efficacy and toxicity. Two such models are proposed in
Murtaugh and Fisher (1990), but they are highly parameter-
ized and thus not appropriate for our purposes here. Further,
in these models, the Gumbel and Cox bivariate binary mod-
els, it can arise that the success function, F”, is not unimodal,
which violates an assumption imposed here and by most other
authors. Unimodality of the success curve helps assure con-
sistency of estimators. In cases in which F” is unimodal, but
F'is used in its place, perhaps due to lack of knowledge of
the dependency structure, then the DWA still correctly tar-
gets the location of the mode as long as F’(s) is a monotonic
function of F(s). Also note that simple changes to the DWA
exploration rule could be used to guarantee consistency even
when success is not a unimodal function, albeit at the expense
of reduced efficiency.

As an illustration of the present setup, consider Figure 1, in
which a toxicity function, Q(s), and an efficacy function, R(s),
are plotted along with the resulting success curve, F(s). The
value Q71(0.3) is the “MD(30),” the dose at which 30% of the
subjects are expected to become toxic. This value is often used
to define a smaller range of doses for a subsequent efficacy
study. Note that, in Figure 1, s*, the dose that optimizes
the success function, is lower than @~!(0.3). This suggests
that the “phase I then phase II” trial sequence would involve
placing more subjects at higher doses than would a phase I/II
study.

In what follows, we work with designs in which, at each
stage, the toxicity and efficacy response curves are estimated
independently, and estimates of the optimum dose are ob-
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Figure 1. Example of nondecreasing toxicity (Q) and effi-

cacy (R) response curves and the unimodal success curve (F).
Here, s* represents the mode of F, and $(0.3) corresponds to
the dose at which 30% of the subjects are expected to expe-
rience toxicity.

tained based on all data accrued to date. We restrict consid-
eration to designs in which the next dose to be sampled is
moved at most one dose in the direction of the updated op-
timum. While related to random walks, these sampling rules,
which we call “directed walks,” are not constrained by the
Markov assumption, and thus they use all available infor-
mation to determine each allocation. Such walking designs
are to be contrasted with “jump-to-goal” sampling designs in
which the next dose to be sampled is the current estimate of
the optimum. Clearly there are times when allowing jumps
would provide a more efficient design. Although jump-to-goal
designs have been developed in Li, Durham, and Flournoy
(1995) and Hardwick and Stout (2001), here we restrict to
walking rules for space purposes.

To specify a sampling or allocation design, it is neces-
sary to define a sampling rule and a terminal-decision rule.
The sampling rule determines which dose to sample at each
stage. In general, sampling rules can include a curve-fitting
scheme as well as special rules to handle startup and ending
processes, boundaries, and premature convergence. The
terminal-decision rule determines the dose declared best
at termination. We assume a fixed, small number, n, of
subjects—generally 25 to 50. Furthermore, we assume a sub-
ject population that is uniform in prognosis throughout the
phase I/II experiment.

To evaluate the sampling designs, we estimate both a sam-
pling and a decision error. These measures are based on the
probability of sampling at or deciding on a suboptimal dose
weighted by the difference between the success probabilities
at that dose and the optimal one. See Section 4.

In the next section, we review an up-and-down random
walk design proposed in Kpamegan and Flournoy (2001), and
outline our directed walk designs. Also discussed in this sec-
tion are various special considerations, such as starting and
ending processes. Following this, in Section 3, we specify a
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number of curve-estimation approaches that are used in con-
junction with the directed walks. Some of these are clas-
sical parametric techniques, both Bayesian and frequentist,
while others are nonparametric. Included are a couple of new
smoothed shape-constrained curve-fitting techniques. In Sec-
tion 5, the various designs are compared via simulation, and
in Section 6 we offer some final comments.

2. Sampling Rules

We first review “up-and-down” designs in which movement is
a random walk and observations are obtained only from the
success curve, F. Next, we consider a class of two-component
directed walk designs. In this case, outcomes are observed for
both the toxicity and cure response curves, and both are used
to update the allocation rule.

2.1 An Up-and-Down Design

Previous up-and-down designs targeted quantiles of the toxic-
ity probability curve. For the opposing failure mode problem,
Kpamegan and Flournoy (2001) propose the following opti-
mizing up-and-down design. At each stage i, i1 = 1,...,n/2,
the rule requires that two consecutive doses be observed; say
at s, and sp,1. Once the responses at stage i have been ob-
served, allocation for stage ¢ + 1 is as follows:

1. Move up to (k + 1, k + 2) if there is a success at dose
k + 1, a failure at k, and &k + 1 < D.

2. Move down to (k — 1, k) if there is a success at k, a
failure at k£ + 1, and k > 1.

3. Otherwise, stay at dose levels (k, k + 1).

There are no parametric assumptions utilized in the up-
and-down scheme and no form of curve estimation is being
used. For these reasons, this design is not expected to perform
as well as the others considered. For the evaluations herein
we select the dose with the highest observed success rate.
Doses not sampled were considered to have a success rate
of 0.

2.2 Two-Component Directed Walk Algorithms

As noted, the directed walk approach uses all outcomes ob-
served to date to guide allocation of the next subject. The
curves Q(s) and R(s) are estimated at each stage using ob-
servations of previous dose assignments, and the next dose se-
lected is based on the estimated location of the optimal dose.
Using this algorithm, one can work with either parametric or
nonparametric curve-estimation methods and develop termi-
nal estimators based on maximum likelihood (ML), smoothed
maximum likelihood estimation (MLE), or Bayesian methods.
We explore several such options.

Directed walk designs comprise a start-up procedure, a
curve-fitting and estimation routine, and a set of rules speci-
fying behavior under special circumstances.

2.2.1 Start-up procedure. Some methods require a certain
amount of information to form a valid estimator. This is true
for MLEs, for example, although not for Bayesian estimators.
Thus, depending on the curve-fitting method, the first few
observations of the directed walk may follow an up-and-down

231
scheme. Let an observation be a pair (X., X;), where

0 if not efficacious
{1 if efficacious

if toxic

if not toxic;

(1,1) stay
(0,1)
(1,0

)

move up
then when (X, X;) =

move down

(0,0) apply exploration rule.

The exploration rules are discussed later in this section.

2.2.2 Curve estimation. Given appropriate observations, we
estimate () and R using one of the curve-estimation routines
described in Section 3. We determine the dose, k*, that has
the highest estimated probability of success and move one step
towards it. If we have just sampled that same dose, then we
utilize an exploration rule which, while usually reallocating to
k*, may also indicate a move away from it.

The DWA stops the experiment after n trials and estimates
the optimum dose according to the curve-estimation scheme
employed. If the observations are not sufficient for the curve-
estimation method, then the dose with the highest observed
success rate is chosen.

2.2.3 Starting dose. The DWA can be started at any dose.
Many investigators prefer taking the initial observation at the
lowest available dose based on the physician’s edict, “First, do
no harm.” This perspective weighs toxicity failures more than
those due to lack of efficacy. (Here we weigh them equally.)
While one could explicitly incorporate weights in the objec-
tive function, to implement this viewpoint consistently, one
would also need to make adjustments elsewhere in the sam-
pling decisions. Note that there are cases, such as with AIDS
drug trials, in which issuing too small a dose is deemed more
hazardous than a toxic response.

If one assumes that the mode of F'is uniformly distributed
among the doses, then starting at the lowest dose is on average
~D/2 doses from the optimum, while starting at random is
on average ~D/3 doses away. In this case, the best choice
would be to start in the middle, which is only ~D/4 from the
optimum. Another reason to prefer a middle start is that an
investigator with any prior knowledge is likely to attempt to
place the optimal dose near the center of the dose range.

Due to space limitations, we provide results only for the
random start scenario. While this avoids the impact of a bi-
ased start in our simulations, we would not recommend it in
practice, since some prior information is usually available.

2.2.4 Ending processes. The DWA continues making obser-
vations until the sample size is reached. Since the optimizing
up-and-down design in Kpamegan and Flournoy (2001) re-
quires an even sample size, if n is odd, then on the last stage
we randomly choose between the pair of observations that the
method indicates.

Note that in much of the literature related to this problem,
authors have sought stopping rules that perform well with
respect to trial goals, instead of using a fixed sample size.
While a fixed sample size is used here to simplify comparisons,
note that stopping rules could easily be incorporated into the
DWA designs.
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2.2.5 Boundary considerations. We use the convention that
whenever a rule indicates sampling at a dose outside the range
{s1,...,8p}, we instead sample at the closest endpoint. Note
that for the up-and-down design, if we have sampled at
(s1, s2), the rule stays at (s;, s2), even if a downward shift
is indicated. For some purposes, one might prefer to sample
(81, 81).

2.2.6 Ezploration rules. In some cases, sampling rules may
get “stuck” allocating repeatedly to a suboptimal dose. To
avoid this, we use an exploration rule to force occasional, but
infinitely often (i.0.), sampling at neighbors of the dose in
question. As long as the estimators employed are consistent,
exploration rules guarantee that the optimal dose would be
identified in the limit. Moreover, they are extremely impor-
tant for problems with small sample sizes to ensure that sam-
pling will eventually occur away from the starting dose region.

The exploration rule used for the results in Section 5 forces
a move to a neighbor with probability pg;,i = 1,... n, when
3 consecutive failures have occurred at the given dose, where
Zfilpm = o0 and pp, — 0 as n — 0. There are an infinite
variety of exploration options available and developing and
analyzing them is an open area for research. For example,
the rules can be created to ensure more exploratory sampling
near the beginning of a trial. Furthermore, more sophisticated
rules can be developed to improve or guarantee convergence
rates of the sequence of the estimated optimal doses, Ic* to k*
as n — oo.

2.2.7 Delayed responses. In situations where responses are
delayed, the present techniques can still be used. Depending
on the type of delay and the availability of subjects, a variety
of start-up allocation procedures may be appropriate. Very
little work has been done in this area, although Hardwick,
Oehmke, and Stout (2001) present an exact analysis for a
two-treatment problem with exponential delays. Their results
suggest that moderate delays only mildly diminish efficiency.
We would expect the same to hold here.

3. Curve-Estimation Methods

Here we examine seven approaches to model the toxicity and
efficacy response functions, and to obtain estimators for the
mode of the success function on {si,...,sp}. These include
classical ML and Bayes parametric methods as well as un-
smoothed and smoothed shape-constrained methods.

Sampling is such that estimates are updated after every
observation. Naturally, this represents an assumption that all
subject responses are available prior to selecting a dose for
the next subject in the study.

At any point in the experiment, if there have been my ob-
servations at dose k, resulting in x; nontoxic responses and
my — T toxic ones, then the likelihood function for toxicity
is

c- H(”“) (1= g, 1)

where ¢, = Q(sg) for k = 1,..., D. For the efficacy response
curve, we substitute R for @). Thus, in the following discussion
we focus on estimation methods for Q.

3.0.1 Method 1: Two-parameter logistic mazimum likelihood
estimator. Perhaps the most common assumption for toxicity
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response functions is that they follow a logistic distribution
with two unknown parameters

exp(a + bs)

@s) = 1+ exp(a+ bs)’

(2)
If b were allowed to be nonpositive, we would occasionally get
flat or even decreasing curve estimates, which would result in
a choice of an extreme dose. If b were unbounded above, we
could get an estimate with sharp corners and flat sections.
Therefore we bound the parameter b by choosing a small
€ > 0, and require that € < b < 1/e. This produces smooth,
strictly increasing estimates of ). For the experiments herein,
e = 1/50. Because there are no restrictions on a, a necessary
and sufficient condition for existence of an MLE is that data
be observed at two different doses, with at least one success
and one failure.

3.0.2 Method 2: One-parameter Bayes. As a model for
the continual reassessment method for locating quantiles,
O’Quigley et al. (1990) use the one-parameter function
Q(s) = [{tanh(3s — 1.5) + 1}/2]* in examples. Since this
function is increasing convex-concave and has already been
studied, we use it as an example here as well. As in O’Quigley
et al. (1990), we assume that the unknown parameter, a, fol-
lows an exponential distribution 7(a) = e %, a > 0, and use
the mean of the posterior density & as an estimate for a to de-
termine the next dose level. While not a true Bayesian design
in that we do not determine the posterior expected values at
each dose, this simplified semi-Bayesian approach is straight-
forward to implement. Note also that this method may be
used to estimate the curve, regardless of the observations.

3.0.3 Method 3: Two-parameter Bayes. For this method, we
again use the logistic-response function (2) in the likelihood
(1), and a pseudoconjugate (joint) prior for a and b.

H eXP{Vukmk(a +bsi)}
{1 + exp(a + bsy)} ™7’

where . is the prior guess for the probability of response at
sk (see Meyer and Laud, 2002). The parameter -+ is a weight
given to the prior that represents the amount of “faith” in the
prior relative to the data.

For the simulations in Section 5, we take p = sg, since the
dose ranges are conveniently between 0 and 1, and v = 0.1, a
small weight. The posterior is proportional to

H exp{ (yurmy + o) (a + bsy)}
{1 + exp(a + bsy) }mx(1+7)

The mode of the posterior is used as the estimate of the curve.
Note that the posterior at stage m is not the prior for the stage
m + 1. Instead, the prior is redefined at each stage using the
current design points.

3.0.4 Method 4: Nonparametric convex-concave shape-
constrained MLE. A shape constrained MLE maximizes the
likelihood subject to shape assumptions on Q. Meyer (1999)
gives an efficient algorithm for the nondecreasing convex-
concave shape on (qi,...,qp).

For the nonparametric MLE (both
smoothed and unsmoothed), the minimum dose range for
curve estimation is 3. The MLE for the curve at the doses

convex-concave
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observed is determined, but for doses outside the observed
range, their values in general are underdetermined. Here, they
are given the value of the closest observed dose.

3.0.5 Method 5: Smoothed nonparametric convez-concave
shape-constrained MLE. One problem with nonparametric
MLEs is that they tend to be flat at the ends, since most of the
information is near the estimated optimal dose. If there are
several doses with equal estimated probabilities of survival,
method 4 chooses the smallest of these as “best.” This leads
to the choice of the lower extreme dose too often, especially
with the smaller sample sizes. To get a smoothed nonparamet-
ric curve fit, we include a term in the likelihood to penalize
flatness. The penalized likelihood is proportional to

D m D P A
k\ @hiq o \mg—zk k — Gk—1
I (2 )azea- a0 1 (2=22) . o
Here ) is the smoothing parameter, with A = 0 corresponding
to the unsmoothed MLE. We choose A to be small (A = 0.05
in the simulations) because fidelity to the data is important,
and because only a little smoothing is required for a better
result.

3.0.6 Method 6: Nonparametric — monotone  shape-
constrained MLE. The unsmoothed monotone or isotonic
shape constrained MLE method differs from method 4 only
in the shape assumption. The monotone constraint is weaker,
and computationally much simpler. For each dose k such
that my, > 0, let g, = z1/ms, be the observed success rate.
Then the monotone shape-constrained MLE is the weighted
least-squares monotone regression of gj,, where g, is weighted
by mg, k=1,...,D.

3.0.7 Method 7: Smoothed nonparametric monotone shape-
constrained. A semi-Bayesian approach is used to smooth the
monotone shape-constrained MLE. The toxicity at each dose
is given a beta prior. At each stage, a weighted least-squares
monotone regression is fit to the posterior distributions, using
the posterior mean as the value and the sum of the posterior
beta parameters as the weight. The prior used in Section 5
was the same for all doses, namely, Be(0.45, 0.05). This is a
weak prior, so that the data dominates the behavior, and it
has a high expected value to initially encourage exploration
to doses not yet sampled. In some settings, one might have
more information and use a stronger prior, or perhaps one
that is not uniform on the doses.
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4. Evaluation Criteria

Although we use various curve-fitting techniques to guide the
DWA, we do not evaluate designs via measures of closeness to
the entire curve. Attempts to optimize in this manner would
conflict with the ethical goal of optimizing subject well-being.
As mentioned, we seek designs that behave well along two per-
formance measures—a sampling error to assess experimental
losses and a decision error to predict future losses based on
the terminal decision.

Given any decision rule and sampling design, there exists
a probability measure on the doses that reflects the chance,
&n(k), that dose k is selected as best at the end of an ex-
periment of size n. While one could take &, (k*), the proba-
bility of correct selection or P(CS), as a measure of decision
efficiency, this slightly misses the goal of diminishing harm
to patients because it does not differentiate between select-
ing a dose with near-optimal success rate versus one with
a meager success rate. Thus, we define decision efficiency as
D, = {ZkD:l &n(K)pr}/p*, where pr, = F(sg) for k=1,...,D,
and p* = Pk*-

The sampling error is the normalized expected loss in-
curred when sampling from doses other than k*. Letting
E,(ng) denote the expected number of observations on
dose k in an experiment of size n, we define sampling effi-
ciency as S, = {Zszl E,(ng) pr}/(n-p*). This is closely
related to the well-known measure ezpected successes lost:
= 3 e peE(n).

Note that p*S,, is the expected success rate of patients in
the experiment, and p*D,, is the same rate for subsequent
patients if they are given the treatment selected as best.

4.0.1 Large sample performance. We say that a design is
efficient if D,, and S,, converge to 1 as n — oo. For each
method, our analysis of efficiency assumes that the model
assumptions in the curve estimation for ) and R are met and
that F is strictly unimodal.

To establish decision efficiency, two requirements must be
met. First, the estimators of (pi,...,pp) must be consistent,
which they all are. Secondly, the allocation algorithm must
sample the best dose, k*, and its two neighbors i.o. For the
DWA, this is guaranteed by the exploration rule. For the up-
and-down and equal allocation rules all doses are sampled i.0.,
so no exploration rule is required.

To obtain sampling or experimental efficiency, it is nec-
essary and sufficient that the rate at which dose k* is

1-Q

(a) Model 1

Figure 2.

(b) Model 2

(c) Model 3

Model 1: Q(s) = [{tanh(5s — 3.5) + 1}/2]* and R(s) = exp(—2 + 55)/{1 + exp(—2 + 5s)}. Model 2: Q(s) =

exp(—0.5 + 2s)/{1 + exp(—0.5 + 2s)} and R(s) = exp(—1 + 10s)/{1 + exp(—1 + 10s)}. Model 3: Arbitrary curves.
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sampled goes to 1 as n — oo. This is the case for the DWA,
although not for the optimizing up-and-down nor equal allo-
cation rules.

5. Data Models and Performance
The seven different curve-estimation methods were evaluated
and compared along with the up-and-down rule and an equal
allocation scheme, using estimated values of D,, and S,, ob-
tained via simulation. Data were generated for every combi-
nation of the following: three models of probability curves for
toxicity and efficacy, run lengths (n = 25 and n = 50), and
number of dose levels (D = 6 and D = 12). For each combi-
nation, at least 1000 simulated experiments were performed.

In Figure 2(a), model 1 is shown. The true probability
curves are

Q(s) = [{tanh(5s — 3.5) + 1}/2]* and

R(s) = exp(—2+5s)/{1 4+ exp(—2 + 5s)}.

For model 2, Figure 2(b), the curves are
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I 7
> 095 6
[ e
20 8
°
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0.80 |
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> 095
c
2
°
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o 3
(2]
-g 0.85
a 15 6
0.80
0.75 0.80 0.85 0.90 0.95

Sampling Efficiency

Figure 3.
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Q(s) = exp(—0.5+2s)/{1 + exp(—0.5 + 2s)} and

R(s) = exp(—1+10s)/{1 4+ exp(—1 + 10s)}.

Note that the success probability curve is rather flat compared
to that of model 1.

Model 3 is nonparametric. The success curve has approxi-
mately the same shape as that of model 2, but both the tox-
icity and efficacy curves stay away from 0 and 1, making the
individual curves harder to estimate. Figure 2(c) illustrates
model 3 with D = 12.

5.1 Results

The trade-offs between the two efficiency measures according
to method are illustrated in Figure 3. For each model, the
estimates of D,, are plotted against those for S,, when n = 50
and D = 6. Methods falling in the top-right corner of the plots
are the best, and points that fall together in groups should be
considered roughly equal.

Numbers represent the methods as follows: (1) 2-
param MLE; (2) l-param Bayes; (3) 2-param Bayes; (4)

1.00
Model 2
0.95

0.90

0.85

0.80

0.75 0.80 0.85 0.90 0.95

1.00
Average of Models 1-3
0.95
0.90

0.85

0.80

0.75 0.80 0.85 0.90 0.95

Sampling Efficiency

Efficiency Trade-off Curves: Sampling versus decision efficiency by method and model. n = 50 and D = 6. Methods

that are missing from plots fall below the plot ranges. Methods are: (1) 2-param MLE; (2) 1-param Bayes; (3) 2-param Bayes;
(4) Convex-concave; (5) Smooth convex-concave; (6) Monotone; (7) Smooth monotone; (8) Up-down; (9) EA.
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Convex-concave; (5) Smoothed convex-concave; (6) Mono-
tone; (7) Smoothed monotone; (8) Up-and-down; and (9)
Equal allocation (EA). EA is included to represent fixed allo-
cation techniques.

In model 1, the underlying curves are the tanh and logis-
tic and, as expected, the parametric models (1-3) performed
extremely well. Somewhat surprisingly, however, so did the
smoothed shape constrained methods (5, 7), as did even the
unsmoothed monotone method (6). The unsmoothed convex-
concave (4) performed poorly.

Model 2 results are similar to those of model 1, with an ex-
ception being the poor performance of the 1-parameter Bayes
model (2). Both underlying curves in model 2 are logistic and
thus match the models assumed in the 2-parameter MLE (1)
and the Bayes (3) methods. While these methods perform
well, however, they do no better than the smoothed shape-
constrained methods (5, 7). Again, method (6) is close to the
leaders.

The excellent performance of the 1-parameter Bayes
method (2) was a bit unanticipated in model 3. Recall that
model 3 was included to test the robustness of the parametric
methods. Note also the poor performance of the 2-parameter
MLE (1).

Since the up-and-down method (8) involves no curve fitting,
the results for all three models are quite poor. As expected,
however, the decision efficiency of the up-and-down rule is
much better than the sampling efficiency. This also holds
for the fixed allocation, which appears in the plots only for
model 2. The rest of the points are out of range.

The fourth plot in Figure 3 contains efficiencies averaged
over the three models, with D = 6 and n = 50. In this plot the
2-parameter Bayes and smoothed monotone methods appear
to be preferable. In the equivalent plot (not shown) when
D = 12, the smoothed shape-constrained methods outperform
all the others, with the monotone version being best.

Generally speaking, the efficiency data for cases in which
D =12 and/or n = 25 are quite similar to the results presented
here and have been omitted due to space constraints.

6. Discussion

In this article, we have focused on two aspects of the de-
sign of phase I/II clinical trials. The first relates to rules for
movement of an adaptive sampling design on a discrete-dose
set. Along with the basic walk, there are a number of fac-
tors, such as starting sequence, endpoint conventions, and
exploration rules, that play an important role in design per-
formance. Ignoring these factors can lead to highly flawed
designs.

The second emphasis in this research has been to exam-
ine curve-fitting methods and assumptions. We took seven
curve-fitting techniques and two methods with no fitting at
all and compared them according to their sampling and de-
cision efficiency. It is difficult to draw general conclusions
based on the close examination of only three sets of curves,
although these results strongly hint that parametric mod-
els have powerful competitors in smoothed shape-constrained
methods.

With the parametric designs, two of the three cases had un-
derlying structure that matched the curve schemes. However,
these methods appear very sensitive to structure, whereas the
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simple assumption of monotonicity seems effective for esti-
mating a variety of response curves. Needless to say, a more
variable set of curves, perhaps even a space of curves, should
be examined.

Because this is a design article, we have not concentrated
much on the analysis phase of the trials. It should be pointed
out, however, that the designs can be analyzed from a va-
riety of perspectives. Many of the methods described here
use Bayesian concepts to some extent. This is natural when
sampling adaptively, since updating prior information is an
inherent part of the methodology. Nevertheless, we support
the idea used, for example, in Thall and Russell (1998), of
evaluating designs for frequentist characteristics even if they
have resulted from a Bayesian approach. The main difficulty
in the analysis phase lies in gaining an understanding of the
distribution of the estimators, since these are affected by the
sequential design. Simulation studies and exact computational
methods can assist in this analysis.

Next, there are a number of useful extensions of this work.
For example, the type of failure observed (toxicity or lack
of efficacy) affects the DWA only during the starting se-
quence. It is possible that continuing to use this informa-
tion after the estimation step kicks in would improve the al-
gorithm. Other enhancements involve step size. It is likely
that the greatest improvement would be garnered when vari-
ation of step size is allowed. Large steps at the beginning
are needed for exploratory purposes, but smaller steps to-
wards the end will typically improve both sampling and de-
cision efficiency. One version of this process arises when the
algorithm moves directly to the best estimate of the mode
(Li et al., 1995; Hardwick and Stout, 2001). Another version
would be to define a sequence that reduces step size at a given
rate.

In conclusion, while it was expected that the parame-
terized designs would outperform all others when the un-
derlying models matched those of the sampling model, this
is apparently not the case. In particular, the smoothed
shape-constrained methods performed roughly as well as the
parametric techniques for each model, while requiring fewer
assumptions.
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RESUME

Nous examinons des schémas d’attribution adaptative des
doses pour le probleme de la détermination de la dose
thérapeutique optimale dans des essais cliniques précoces.
Un échec peut étre lié a un manque d’efficacité ou a une
réaction toxique. Un succes est & la fois une réponse posi-
tive et 'absence d’effet indésirable toxique. Nous cherchons
donc a maximiser le produit des courbes de dose-réponse
d’efficacité et de non-toxicité. Nous sommes intéressés par
des regles d’attribution acceptables selon plusieurs criteres,
dont le critere éthique de traiter le plus de sujets possible
a ou pres de ce maximum. Statistiquement, nous souhaitons
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identifier avec une forte probabilité la dose optimale a la fin
de I’essai. Nous proposons ici des schémas combinant de nou-
velles procédures d’attribution(les chemins dirigés) avec de
nouvelles techniques d’ajustement lissé de courbes sous con-
traintes de forme. Ils sont comparés avec une variété d’autres
techniques d’ajustement ainsi qu’avec la regle up-and-down
et la regle d’attribution égale.
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