MODELING CONCEPT
ACQUISITION IN THE CONTEXT OF
A UNIFIED THEORY OF
COGNITION

by
Craig S. Miller

A dissertation submitted in partial fulfiliment
of the requirements for the degree of
Doctor of Philosophy -
(Computer-Science and Engineering)
in The University of Michigan
1993

Doctoral Committee:

Associate Professor John E. Laird, Chair
Assistant Professor Steven L. Lytinen
Professor William C. Rounds

Assistant Professor Colleen M. Seifert
Professor Douglas L. Medin, Northwestern University

© C.S. Miller 1993
All Rights Reserved

ABSTRACT

MODELING CONCEPT ACQUISITION IN THE CONTEXT OF A UNIFIED THEORY OF
COGNITION

by
Craig S. Miller

Chair: John E. Laird

This dissertation presents a process model of human learning in the context of supervised concept
acquisition. I describe SCA (Symbolic Concept Acquistion), a computational model that acquires
and retrieves category prediction rules. SCA is a fully symbolic approach that retrieves prediction
rules searching from specific to general. From training examples, it acquires general rules but then
incrementally learns more specific ones.

SCA’s plausibility as a model of human learning is motivated by its functionality, its ability to
replicate human behavior and its constitution within a unified theory of cognition. Functionally,
SCA meets task demands by performing incremental, noise-tolerant learning within real time. For
replicating human behavior, SCA mirrors psychological data along the dimensions of response time,
accuracy and learning rate as a function of various instance and category structures including typ-
icality, linear boundedness, category level and definitional complexity. For its role within a unified
theory of cognition, SCA’s learning principles are composed from the basic processing mechanisms
posited by Soar, a candidate theory.

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, John Laird. John has allowed me to generate my own
ideas and approaches while offering me the appropriate amount of guidance necessary to bring them
to fruition. In that he has read and commented on almost every paper I wrote in graduate school,
I probably have learned how to write from him more than anyone else. On a wider scale, John’s
integral involvement with the Soar project has brought me many valuable opportunities including
contact with prominent faculty from other universities, discussion forums and speaking opportunities
at Soar workshops. On a much more frequent basis, our local Soar group has been particularly helpful
in exchanging current ideas.

I would also like to thank the remaining members of my committee, all of whom gave useful
comments and suggestions from earlier papers. They include Steve Lytinen, who got me started in
research; Bill Rounds, who encouraged me to understand the formal consequences of my work; Doug
Medin, who directed me to useful results in psychology; and Colleen Seifert, who introduced me to
the ‘big issues’ in cognitive science during those early seminars.

I would like to thank all of my friends, of whom the closest and the vast majority I met while in
graduate school. They’ve been key in keeping my work and career within the proper perspective. I'd
like to thank those that introduced me to ultimate frisbee, which helped me keep my nerves through
the last several years. I would especially like to thank my friend Miriam, who, in addition to simply
being a great friend, patiently listened to my worries and concerns of all the work I still had to do.

For my financial support, I would like acknowledge and thank the following sources of support:
the W.K. Kellogg Foundation through The Presidential Initiative Fund of The University of Michi-
gan, the Nissan Corporation, and NASA Ames through grant NCC2-517.

Finally, I would like to thank my family, who has been the true constant source of encouragement
and support throughout graduate school.

v

Contents

ABSTRACT

ACKNOWLEDGEMENTS

1 INTRODUCTION
1.1 Functionality o
1.2 Replicating human behavior oo o
1.3 Fit within a unified theory of cognition,
1.4 Organization of dissertation o oo

2 THE SUPERVISED LEARNING TASK

2.1 Relation to Unsupervised Learning
2.2 Relationtoothertasks
2.3 Relation to Learning Theory 0oL,
DESCRIPTION OF THE MODEL
3.1 Ruleretrieval and acquisition L L Lo Lo L
3.1.1 Representing concepts asrules oL
3.1.2 Predictingwithrules o oo
3.1.3 Ruleacquisition e
3.2 Featureselection e
3.3 Anextended example e
3.4 SCA in the context of previous work
SYSTEM BEHAVIOR AND EMPIRICAL EVALUATION
4.1 Introduction i i i i e e e
4.2 Behavior. L e e e
4.3 Searchcontrol e e
4.4 Empirical comparisonso Lo e e e e
45 SUMIMATY o i i i i e e e e e e e e e e e e e e e
REPLICATING HUMAN BEHAVIOR
51 Response time
5.1.1 Practiceeffect.
5.1.2 Typicalityeffects
5.1.3 Response timefor trainingo e
5.1.4 Asymptotic performance Lo L oo
5.2 Linear separability L e
5.3 Learning relevant feature dimensions,
54 Roleofstrategies L e e
5.5 Basiclevel superiority
5.6 Practiceeffect
5.7 Underextensions in early language acquisition

il

iv

[SURN SR U U

5.8 Summary of models and known phenomena Lo

EXTENSIONS AND MODIFICATIONS

6.1 Improving performance e
6.1.1 Stabilizing feature selection order o 0oL 0oL
6.1.2 Imposing a learning criterion Lo oL L.
6.1.3 Maintaining frequency counts L. oL L.
6.1.4 Integrating other knowledge sources

6.2 Expanding coverage of human behavioro 0 0L
6.2.1 Asymptotic response time and typicality Lo
6.2.2 Inter-category typicality Lo oo

6.3 Extending toothertasks oo L.
6.3.1 Concept verification o o
6.3.2 Expressing goodness of membership 000000000
6.3.3 Producing an example of a category L.
6.3.4 Taxonomic relations between concepts L.
6.3.5 Feature selection

CONCLUSION

SCA Implementation in Soar

Formal specification of a concept

B.1 Object descriptions e e e e

B.2 Concept definition e
B.2.1 Prediction assertions e e e
B.2.2 Contexts e

vi

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6

4.1

4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
5.5

5.6

5.7

6.1
6.2
6.3

7.1
7.2
7.3
7.4

Performance specification L Lo o o L 10
Performance specification modified for training i1
Feature selection heuristic in the context of SCA 13
Graphical depictionofrules Lo Lo oL oo 14
Graphical depiction of rules with alternate feature ordering 15
Final graphical depictionof rules oo oL 15
Relationship of Avg. rule specificity to number of training instances (cong. voting

dataset). L. e 21
Relationship of accuracy to rule specificity (cong. voting dataset). 22
Performance and runtime improvement over multiple trials. 23
Performance as a function of feature selection strategy (cong. voting dataset). 24
Prediction accuracy. o o v i i i i e e e e e e e e e e e e 26
Learning rate (cong. voting dataset). L. L L 27
Generic performancemodel L L Lo . 30
Practice effect in terms of response timeo o oL 31
Linear vs. non-linear learning rates, 34
Learning rates as a function of category complexity 35
Learning rates as a function of category level with equal number of training instances

perlevel L 41
Learning rates as a function of category level with equal number of training instances

PEr CAteZOTY & i o i e i e 42
Trace of extensional errors e 44
Performance comparison of swapping strategies on Type II categories 48
Advice—driven feature selection Lo Lo L. 51
Theory—driven feature selection 52
SCA’s essential structural properties L. 57
Architectural constraints and their dependencies. Section $.4. 58
Functional goals and their dependencies. 59
Behavioral properties and their dependencies 60

Vil

List of Tables

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2

Training and testing data for typicality effects 32
The effect of typicality on error rate and response time 33
Stimuli learned with different strategies o 000000 37
Effects of stimulus type and strategies on human subjects 37
Effects of stimulus type and strategieson SCA 38
Models and the phenomena they address o 000 44
Training and testing data for inter-category typicality 53
Inter-category typicalityeffects o oL 53

viii

Chapter 1

INTRODUCTION

In this thesis, I present a computational model of human category learning. In particular, it is a
model of a human performing a supervised learning task in an experimental setting. In a sense, it is
a very modest endeavor, especially when one considers the wide variety and complexity of learning
that people do in almost every situation they experience. For example, they can learn complex
procedural tasks, such as in sports or in the performing arts. They can also learn a language, and
with that skill, learn complex declarative knowledge from instruction and reading.

In performing the supervised learning task, the subject receives examples of objects consisting of
distinguishing features, (e.g. round, blue, and striped), and is told the category for each object. From
the examples, the subject learns to predict categories of unclassified examples. Although the task
of learning artificial categories of objects made of abstract features certainly pales in comparison to
the vast varieties of learning humans perform on a daily basis, people can and do perform the tasks
of simple learning experiments, and, despite their simplicity, these tasks require cognitive abilities
fundamental to many learning tasks. First of all, subjects must learn incrementally, i.e. they often
see only one learning example at a time. Secondly, they must be able to recover from mistakes.
Finally, they must be sensitive to the frequencies of learning examples. Subjects’ behavior, defined
in terms of accuracy, learning rate, and response time, are sufficiently complex so as to remain
a challenge for comprehensive computational modeling. Many models exist for isolated tasks and
types of behavior, but to date, there are no models that cover more than a handful of the results
from supervised learning experiments. Furthermore, previously posited models have been developed
outside the context of any larger, coherent system which covers the whole range of cognition.

The challenge is to create a model such that it not only covers a broad range of behavior, but
also sits within the confines of a more general and comprehensive theory of cognition. The work
in this thesis goes after this challenge, by developing and evaluating a process model of supervised
category learning. For evaluating the model, I cite three principles that process models must at least
obey:

Principle 1 The model must be functionally motivated.

Principle 2 The behavior of the model must replicate the behavior of subjects performing the same
task.

Principle 3 The model must function within a coherent framework motivated by functionality and
general cognitive phenomena.

The first two principles are well entrenched within cognitive science while the third is now
emerging. Despite their acceptance, I make all three explicit and further elaborate on them so that
the model can be explicitly evaluated on these terms.

1.1 Functionality

The model is expected to be functionally motivated. Assuming human cognition is a product of
competitive evolution, any learning strategy must be justified by its functional advantages. There
should not be extraneous modules or strategies which provides no conceivable advantage to task
performance. One example is an attentional mechanism which focuses on some features of an object
at the expense of other features. While the addition of such a mechanism may make the model’s
behavior correspond better to human behavior, the mechanism’s plausibility should be in doubt
unless there is reasonable evidence that the mechanism either improves performance or economizes
processing resources.

In presenting the model, design decisions are presented in terms of their functional advantage. For
my learning task, functionality can be measured as performance along the dimensions of accuracy,
response time, learning rate, noise tolerance, and required computational resources. Determining
the functional advantage of a specific design decision is currently more of an art rather than a science
because of the potential interactions between different components of a model and the diversity of
tasks a human must perform. The approach taken here calls for locally motivating each module in
explaining its functional role. Shortcomings of this approach are balanced by empirically evaluating
the model in terms of performance, showing that it is competitive compared to existing machine
learning systems.

1.2 Replicating human behavior

Replicating human behavior is probably the most common guiding principle in cognitive science.
There are many ways external behavior expresses itself in supervised learning tasks. In this thesis, I
focus on three dimensions of behavior: accuracy, response time, and acquisition rate. An example of
human behavior on all three dimensions is typicality effects. Humans learn to classify typical exam-
ples (i.e. examples that are most similar to other examples in the same category) more accurately,
with faster response times, and with less training examples.

The claim is that the model covers a significant subset of known human phenomena that no
other model does. In particular, it exhibits several response time behaviors which few other models
adequately address. Furthermore, these models are limited in breadth and have not addressed the
other phenomena discussed in this thesis.

The model is intended as a process model and thus offers a mechanistic theory of human learning.
Furthermore, the model addresses behavior at what Newell calls the cognitive band [Newell, 1990].
This band includes behavior occurring between the range of 100 milliseconds to 10 seconds. At
this level, the goal of modeling behavior is not only to explain human actions, but also to explain
the timing of those actions. The process model gives a strong account of timed behavior since it
is formulated in terms of sequences and iterations of well-specified mechanisms. In this case, the
process is described in terms of sequences of abstract mechanisms operating at approximately 50
milliseconds. This figure is not an arbitrary parameter. Instead, it has been empirically ascertained
in other models [Wiesmeyer and Laird, 1990; John, 1988] and is consistent with timing constraints
afforded by the brain’s neural hardware [Newell, 1990]. Thus the model offers an account of response
times varying on the order of 100 milliseconds or more. This is appropriate for modeling behavior
at the cognitive band (100 ms - 10 sec). In the case of category learning, human response times
are between 1 and 10 seconds depending on the stimuli, and vary by hundreds of milliseconds as a
function of typicality [Rosch et al., 1976b].

1.3 Fit within a unified theory of cognition

Finally, an effective learning capability does not act in isolation. Ultimately it interacts with other
cognitive capacities in delivering a full interactive autonomous system. It must also be grounded in
the computational resources afforded by the human brain. A unified theory of cognition (UTC), as
embodied in the form of an architecture, posits what these resources are. They are characterized as

a set of mechanisms that are capable of supporting intelligent behavior. The approach to following
this principle thus uses a cognitive architecture to guide the model’s design. The architecture of my
choice, Soar, is a candidate for a unified theory of cognition and has already proven itself with many
diverse tasks [Newell, 1990].

The assumption is that, by having a UTC guide the model’s design, the resulting model is
an embodiment of a more plausible theory. The extent to which the model is more plausible is
determined by the extent to which the properties of the UTC mechanisms are the same properties
of the human mind. In the case of Soar, we know that at least three general properties must be the

same:

Computationally tractable. Soar’s fundamental mechanisms are computationally feasible.
Special attention has been given so that the architecture can run in real time for an extensive
amount of time and acquire an extensive amount of knowledge [Doorenbos et al., 1992; Tambe

and Newell, 1988].

Well-defined. Just as the mind is well-defined in terms of a biological realization in the brain,
so is the Soar architecture in terms of a computer implementation.

Globally evident in behavior. Some behavioral phenomena are empirically evident across
a wide variety of tasks. Newell (1990, p. 227) presents a list of human behavior that also agree
with the characteristics of Soar.

It is also a reasonable assumption that the following properties are generally shared:

¢ General-purpose. Soar’s mechanisms are all strongly motivated by their ability to support

a wide variety of tasks. Certainly, at least some of the brain’s architectural mechanisms are
general purpose, as evidenced by the wide variety of human capabilities at the cognitive band.
The existence of task-specific mechanisms is also not plausible given the timing disparity
between the high speed of task-specific hardware-supported capabilities and the slower speed
of behavior at the cognitive band. Finally, it is unlikely that hardware-supported mechanisms
exist which, when composed with other mechanisms, only support a limited range of tasks.
For example, it is doubtful that humans have special hardware for computing floating point
arithmetic which can then only be applied to balancing checkbooks.

Integrated. Soar’s mechanisms do not operate in isolation. Rather, they share common data
structures and mesh together in performing a variety of tasks. It is likely that the mechanisms
afforded by the brain are also well integrated. If not, costly operations for decoding and
recoding data structures are required in order to share knowledge across mechanisms.

Functional. Soar’s fundamental mechanisms are fully motivated by their functionality. There
are no non-functional entities in the architecture. Just as functionality is a useful constraint
for cognitive models, so is it for architectural mechanisms.

1.4 Organization of dissertation

The remainder of the dissertation focuses primarily on the presentation and evaluation of the model.
The dissertation’s chapters are structured as follows:

e Chapter 2 discusses in greater detail the supervised learning task that the model addresses.

The chapter places the task in the context of other systems performing the same task and
other related tasks.

e Chapter 3 presents the model. Here I also describe how the UTC (Soar) theory shaped its

design and how the model is significantly different from previous approaches.

e Chapter 4 evaluates the model in terms of functional performance. An empirical comparison

is made with two other machine learning approaches.

Chapter 5 evaluates the model in terms of replicating human behavior. Qualitative compar-
isons are made with results from psychological experiments.

Chapter 6 presents future research directions. In particular, there is a focus on resolving
problems with the current model. Some promising solutions and preliminary evaluations are
discussed.

Chapter 7 summarizes the contributions and implications of the thesis.

Appendix A describes in greater detail how the model’s design arises from the Soar archi-
tecture.

Appendix B presents a formal specification of the concepts represented by the model.

Chapter 2

THE SUPERVISED LEARNING
TASK

My model performs a supervised learning task. The system is presented with training examples,!
described in terms of attributes and symbolic values, and a category label. The task is then to
predict the category for future examples that do not have the label. For example, the following
series of training examples may be presented to the system:

{shape:spherical, color:blue, texture:smooth, size:small; category:ball}
{shape:oblong, color:red, texture:smooth, size:medium; category:ball}
{shape:spherical, color:blue, texture:smooth, size:large; category:globe}

These are training examples since they include both the object description and the category.
With these examples, the system learns to predict categories when given only an object description,
such as

{shape:spherical, color:green, texture:smooth, size:medium}

Here the system might respond with the category ‘ball’.

Supervised learning from examples has been a popular task for many machine learning systems;
these include systems based on discrimination trees [Quinlan, 1986; Breiman et al., 1984; Schlimmer
and Fisher, 1986; Utgoff, 1988], logical concept descriptions [Michalski, 1983], artificial neural nets
[Rosenblatt, 1962; Rumelhart et al., 1986b), genetic classifiers [Holland and Reitman, 1978], and
stored instances [Aha et al., 1991]. Likewise, work in psychology has produced models based on
similar representations including discrimination nets [Feigenbaum and Simon, 1984], rules [Anderson
et al., 1979], neural nets [Kruschke, 1990; Gluck and Bower, 1988a] and instances [Medin and
Schaffer, 1978; Hintzman, 1986].

I further constrain the task so that the learning must be incremental. Informally, this means
that the model can perform (i.e. predict categories for unlabeled examples) at intermediate stages
of learning. This fulfills a psychological behavioral constraint in that humans incrementally learn
throughout their lives.) :

Technically any learning system can be trivially modified to pass as an incremental learner
given this informal definition. All that is required is that the system save all training examples
and then recompile its prediction procedure whenever new training examples are presented. In
order to exclude approaches that require a ridiculous expense of computational resources every time
additional training examples are provided, I present a more formal definition.

Definition 1 A learning system is incremental if it can perform at any intermediate stage of learn-
ing and if the processing of a training ezample has a constant time complezity, i.e. O(1), with respect
to the total number of training examples already encountered.

1The terms example, instance, and object are used interchangeably in this dissertation.

Loosely stated, an incremental learning system does not require an increasing amount of com-
putational time as more examples are encountered. This definition excludes approaches that must
recompile their prediction procedure upon the introduction of every new training example. In clar-
ifying the definition, I note that the constant time complexity is with respect to the total number
of training examples already encountfered. This does not mean that the processing of a training
example will always take the same time. Some examples may require more processing time than
others. In these cases, the processing time may be a function of some other factor such as typicality
or description size. The definition only excludes the case where processing time grows with the
amount of experience.

This is an important functional constraint on behavior since it recognizes the advantage of not
having to require more computational resources to learn as more knowledge is acquired. When
considering that a human may encounter millions (if not billions) of learning examples, we can
safely presume that human learning must at least approach this constraint.

The requirement that the model learns incrementally constitutes a real-time constraint on train-
ing examples. Similarly, the task also demands a real-time constraint on performance. The model
must be able to respond with a category in a reasonable amount of time. For the psychological
experiments with which I compare the model’s behavior, subjects typically have only a couple of
seconds to respond.

This specific supervised learning task does not include all of the complexities that a human can
face in learning. For example, in most real-world learning situations, the object that is serving as a
training example must be separated from the background of the total environment. For my model,
examples and labels come pre-identified and symbolically encoded. Also, the model’s examples
are represented by flat symbolic structures, whereas many more complex tasks require numeric and
structured object descriptions. However, even with these simplifications, there are no comprehensive
models that cover a broad range of human learning for these tasks, and clearly, humans can and do
perform these tasks. Many psychological experiments make the same representational assumptions,
and despite the simplification, many interesting robust learning phenomena are still observed.

Another consideration is that learning with flat, symbolic structures can still serve in learning
with more complicated representations. Indeed, methods exist that convert numeric data to symbolic
representations that can then be used with purely symbolic learning approaches [Fayyad, 1991] and
approaches to learning structured objects could rely on learning composites of flat representations.
Finally, the choice of defining the model within the context of a unified theory helps us understand
how a simple, “trivial” task can rely on more general cognitive mechanisms.

2.1 Relation to Unsupervised Learning

There exist other tasks which are directly related to supervised learning. In unsupervised learning,
training instances are object descriptions with no separate category label. Although a category label
may be included in the object description, it does not take on a special status as being the feature
which the model must be able to predict. Usually, the immediate goal is to organize the examples
into conceptual clusters. Examples of these systems in machine learning include Cluster/2 [Michalski
and Stepp, 1983], COBWEB [Fisher, 1987], UNIMEM [Lebowitz, 1987), AutoClass [Cheeseman et
al., 1988}, CYRUS [Kolodner, 1983], and WITT [Hanson and Bauer, 1989]. Models from psychology
include Anderson’s rational model [Anderson, 1991} and Ahn and Medin’s two-stage model [Ahn
and Medin, 1992]. Except for AutoClass and the two-stage model, all of these learn incrementally
and thus require occasional dynamic structural re-organizing as new examples are encountered.
For the unsupervised systems, the end-task is usually not to simply cluster examples. Rather,
the ultimate goal is to use the conceptual organization to predict the values of features missing
from test examples [Fisher, 1987; Anderson, 1991]. The process is simple. When given an object
description with a missing feature, the system places the object in the best cluster. Once the
object has been categorized, the system checks other examples in the same cluster for their values
of the missing feature. The system predicts the prevailing value in the cluster. By presenting
training examples whose descriptions include the category name, an unsupervised learning system

can predict categories for examples missing the category name. Thus, unsupervised learning systems
can perform the supervised learning task.

From the perspective of the end-task, the only critical difference between supervised learning
and unsupervised learning is that a supervised learning system is trained to predict one particular
feature (e.g. the category name) whereas an unsupervised learning system is trained with the future
goal of being able to predict any feature which might be missing from a future example.

The conceptual clustering paradigm is not the only means of learning to predict any feature. For
example, auto-associative nets [Rumelhart et al., 1986a] perform the same task without explicitly
clustering training examples. Furthermore, any supervised learning strategy can be trivially adapted
to perform unsupervised learning, by applying the learning strategy to each feature in the training
example. Certainly this strategy is a far less economical means of organizing conceptual information.
However, the computational complexity is only increased as a function of the number of features in
object descriptions and not in terms of the number of categories or the number of examples.

2.2 Relation to other tasks

For this thesis, supervised learning is a naming task. That is, the goal is to name the category
(or any other feature that the model is instructed to learn). There are other category-based tasks
that the model I present does not address. These include verifying category membership, producing
an example of a category, judging the goodness of category membership, and verifying taxonomic
relationships. All of these require extensions to the basic model and thus a thorough treatment is
not provided. However, Chapter 6 discusses architecturally motivated extensions of the model that
address each of these tasks.

2.3 Relation to Learning Theory

Recently, the supervised learning paradigm has received some attention in the theoretical learning
community. Despite the contributions to defining what is learnable [Valiant, 1984], the role of
inductive bias [Mitchell, 1990; Haussler, 1988], and how to quantify bias [Vapnik, 1982], the work is at
best tangential to the work of this thesis. First of all, the assumptions of the task differ significantly.
The theoretical work assumes a non-incremental learning protocol with training data that is noise-
free [Haussler, 1988] whereas the task defined for this thesis requires an incremental learning model
that can learn from data with at least some noise (as humans clearly can). Secondly, and more
importantly, the theoretical contributions do not (and perhaps cannot) help determine whether a
particular inductive bias is a good bias. The problem of determining a useful bias is perhaps more
of an empirical issue, dependent upon the structure of the world rather than a theoretical result.
The work in this thesis addresses this problem, of identifying a good bias, by understanding and
modeling learning biases present in human behavior.

Chapter 3

DESCRIPTION OF THE
MODEL

In this chapter, I describe a rule-based model of supervised category learning. An emphasis is placed
on the model’s process, including how the model retrieves rules for category prediction and how the
model acquires new rules to improve prediction accuracy and speed. The model specification is
precise enough to realize a computational implementation. However, amidst the implementational
details, I focus on a set of cardinal structural properties, which represent long-term design commit-
ments. It is essentially these properties that fit within a unified theory of cognition and account for
the model’s interesting behavior.

The supervised learning model can be described in two parts. The first part is the basic mecha-
nism that learns and retrieves prediction rules. The prediction rules test for specific attributes and
values in examples. A rule that matches an example predicts a category. The second part learns
heuristics guiding the selection of which attributes and values should be tested by the prediction
rules. A rough analogy of this separation can be made with decision trees [Quinlan, 1986] where
the decision tree representation corresponds to the rule learning and retrieval mechanism, and the
splitting rule corresponds to feature selection learning. This section separately describes both parts
of the model. The rule learning and retrieval mechanism, called SCA (symbolic concept acquisition),
is the major novel contribution of this work. However, in order to empirically evaluate SCA, I also
present the second mechanism, which is required to functionally complete the model.

For now, I describe SCA outside the context of Soar (the UTC). However, later in the chapter,
I discuss how Soar has motivated the design of SCA and how the structural design of SCA differs
from previous approaches. Appendix 7 describes the Soar implementation of SCA in more detail.

3.1 Rule retrieval and acquisition

3.1.1 Representing concepts as rules

In general terms, SCA is a symbolic rule-based system, that incrementally acquires prediction rules
as it is trained. At first, SCA learns very general rules that test only a few features (attribute-value
pairs) of an example, but as learning progresses, more specific rules are acquired that test more and
more features. Thus, there may be many rules of different levels of specificity (and correctness) that
predict the same category. In trying to predict the category of an example, SCA attempts to find
the most specific prediction rules that match the example.

The examples SCA accepts for prediction are described in terms of symbolic attributes and
values. For example, an example may be described as follows:

{shape:spher‘ical, color:blue, texture:smooth, size:small}

Upon receiving an example, whether it be for prediction or training, SCA internalizes the ex-
ample description. In order to distinguish between an example presented to SCA and the internal
representation of the example, I use brackets in depicting the internal representations:

[shape:spherical, color:blue, texture:smooth, size:smalll

SCA’s rules test for features and predict categories. Some are very general (for the following
examples, the attribute names are omitted):

[spherical] --> predict category:ball
[spherical] --> predict category:globe

Others are more specific:

[spherical, red] --> predict category:ball
[spherical, blue] --> predict category:globe
[spherical, red, smooth] --> predict category:ball

3.1.2 Predicting with rules

As would be expected, the more specific prediction rules are more likely to be correct, and thus for
prediction, SCA attempts to find the most specific rule that matches the example description. In
particular, the process takes the example description and then checks if there are any rules that
match all of its features. If none exist, it then removes a feature from the example description and
checks if there are any matches on all of the remaining features. In the example, the description
might be modified by removing the texture attribute giving:

[shape:spherical, color:blue, size:small]

This process of removing a feature and then checking for a match continues until either at least
one prediction rule matches or until there are no features left. If no rules match, then no prediction
can be made until more prediction rules are learned. If a single rule matches, then its prediction is
made. In our example, after removing the size attribute, the system would predict category: globe.
If several competing rules match at the same time, the system arbitrarily guesses from among one
of the competing predictions.

Many concept acquisition systems use rules to encode their knowledge about concepts and some
have a bias toward picking more specific rules. Independent of learning, how and why is SCA’s
representation of concepts different?

First, SCA’s search from specific to general can be controlled by knowledge which determines
which feature to remove next, so that the determination of specificity is not purely syntactic, and
is itself subject to learning. Second, even though SCA maintains a large set of prediction rules at
various levels of specificity, the computational resources required to match an example at a given
level of specificity against all rules is constant. All of the description’s features must match exactly
for a rule to apply, so that a simple hashing scheme! can be used for rule indexation. Thus, this
avoids the rule-utility problem [Minton, 1988] where match time grows with the number of rules in
memory. The total amount of time taken to perform a prediction is only influenced by the number
of attributes that need to be abstracted in order to find a match, and as we shall see, as more rules
are learned, the number of abstractions will actually decrease, thus decreasing the time required to
perform a prediction. This computational efficiency comes at some price, for there is no guarantee
that SCA will find the most specific rule in its rule-base that can match the current example. A
more specific rule may be overlooked if the order of feature removal is different from when the rule
was learned.

Figure 3.1 provides the specification of the performance process written in pseudocode. Here
the function Predict is passed a set of features serving as the example description. The example
description D is incrementally stripped of its features until a match is found. The function recall
returns the predictions of all rules whose conditions match its argument.

1 Hashing is a common technique for efficiently accessing a data object. On average, access time is constant with
respect to the number of stored objects [Aho et al., 1974).

define Predict (D)
do
set R = recall(D)
if size(R) > O then
set Match = true
set p = choose element from R
else
set D = D - Select_Feature(D)
until Match or size(D) = 0

return(p)
end Predict

Figure 3.1: Performance specification

3.1.3 Rule acquisition

When learning rules, SCA accepts an example description that includes a category label, and attempts
to make a prediction for the example using the procedure described above. In contrast to prediction,
during learning the search does not necessarily stop with the first-matched rule. Instead, search
continues until a matching-prediction rule makes the correct prediction, or until no features are left
in the example description. With a match and a correct prediction, the system has thus discovered
prior experience that supports the current training example. The training example now serves as
new knowledge for adding an additional rule.

For acquiring a new rule which represents a compromise between previously acquired knowledge
and the knowledge implicit in the training example, SCA follows a simple strategy. It acquires a new
rule whose conditions include all of the features that matched (or no features if no match occurred)
plus the feature that was last removed before the search stopped. The prediction of the new rule is
the correct category given by the training example, which also had been confirmed by the matching
rule.

Let us use the training example ball: {spherical, blue, fuzzy, small} as an example of
how a new rule is acquired. First, the description [spherical, blue, fuzzy, small] is processed
in search for a category prediction. Given current feature ordering heuristics, ‘small’ is removed and
then ‘fuzzy’. The description [spherical, blue] matches a prediction rule. However, this rule
predicts ‘globe’—the wrong category. Search continues by removing ‘blue’. Finally, the description
[spherical] matches a correct rule and search stops. A new rule is constructed and added to
memory:

[spherical, blue] --> predict category:ball

With the acquisition of this new rule, there are now two competing rules with these attributes
at this level of specificity. Should both of these rules match during performance, a guess is required
in order to make a prediction. Typically, however, the acquisition of this new rule is merely an
intermediate step towards the acquisition of still more specific ones. Eventually, with enough training
examples, sufficiently specific rules are acquired so that conflicts among them become quite rare.

Figure 3.2 provides the specification of the performance process modified for training. I have
added the store function which saves new rules whose conditions include the previous example
description, D’.

Learning using this method is incremental. The computational effort to process a training ex-
ample does not increase with the number of previously learned rules, but on average, will decrease,
as fewer and fewer abstractions need to be performed before a correct prediction can be found and
a single new rule is added to memory.

The choice of adding only one rule with only one more feature in the condition represents a com-
promise between previously obtained knowledge and the knowledge implicit in the newly presented

10

define Train(D,c)
set D’ =D
do
set R = recall(D)
if ¢ in R or size(D) = 0
set Match = true
Bet p=c
store(D’ --> ¢)
else
set D’ =D
get D = D - Select_Feature(D)
until Match or size(D) = O

return(p)
end Train

Figure 3.2: Performance specification modified for training

training example. Should the previously obtained knowledge be incomplete, 1.e. the prediction con-
ditions do not include all relevant features, the addition of a new rule with an extra feature in the
condition helps complete the system’s knowledge. On the other hand, should the knowledge implicit
in the training example be irrelevant (due to spurious correlations) or incorrect (due to noise), the
addition of only one more rule with only one additional conditional feature allows room for error re-
covery as more examples are experienced. Error recovery automatically occurs with the presentation
of additional training examples which incrementally lead to rules more specific than the incorrect
ones. The number of correct instances required to successfully ‘mask’ the incorrect rule is at least
two: one example to acquire a rule with the same conditions and an additional example to acquire
a rule with an additional feature in the conditions. More examples may be required depending
on the distribution of feature combinations and the consistency of the feature selection heuristics.
By searching through the rule space from the most specific rule to the more general ones, the first
matched rule is typically the correct rule.

I have yet to explore intermediate alternatives such as adding a rule with two additional features
or adding several different rules each with one additional feature. The performance of these alternate
strategies are still open to further research. However, empirical studies have ruled out the extreme
alternative, which adds rules of all levels of specificity for each presented training example. Findings
indicate that this approach learns at the same rate (with respect to the number of training examples)
but with significantly worse accuracy.

3.2 Feature selection

As noted earlier, the effectiveness of this approach depends on the order in which features are removed
from the example description. Ideally, all the relevant attributes should be in the conditions of the
acquired rules. Thus a good heuristic would remove the irrelevant features first so that rules with
relevant features in their conditions can be successfully indexed. If relevant attributes are removed
from the description before a match occurs, the quality of the category prediction will certainly
suffer. In addition, if the selection of attributes during training trials is inconsistent, the learning
rate of more specific rules will suffer. Rule retrieval using one feature selection heuristic will fail to
retrieve rules learned under a different heuristic. Thus, the ideal search heuristic should be stable
across training trials.

Despite SCA’s dependency on a reasonable selection heuristic, SCA’s performance degrades only
in terms of learning rate as the choice of attribute removal suffers. In the case where irrelevant
attributes are kept in the example description at the expense of having relevant ones removed, SCA
will still be able to make good predictions once specific enough rules have been learned that include

11

both the irrelevant and the relevant rules. The stability of the order in which attributes are removed
is also important. Erratic selection of attributes will slow the progression of learning specific rules.
This is because the rule search may overlook a specific rule if the order of feature removal was
different when the rule was acquired. However, after enough training examples, specific rules are
still acquired.

In considering the qualities of a good feature selection heuristic, I now describe a simple strategy
for learning heuristics which interacts with the rule retrieval process. Ultimately, this particular
strategy will be used in evaluating SCA as it compares to human behavior. In the next chapter, I
will discuss alternate strategies and their functional tradeoffs.

Upon finding a match, the system can seize the opportunity to evaluate the relevance of the
matching features. Since a good set of relevant features should minimize the number of conflicting
predictions, a simple heuristic can evaluate the quality of the match based on this the number. For
example, let us assume the system matches an object description with the following features:

shape: spherical color: blue texture: smooth
predicts ‘ball’ ‘globe’

Thus, the number of conflicting predictions with the matched values is 2. This ‘match evaluation’
serves as a means of quantifying the effectiveness of the match. A lower number indicates a better
quality match. However, whenever a match occurs, it is not clear which of the features contributed
towards the evaluation. For example, of the features that matched, perhaps the shape is the only
diagnostic feature. Perhaps shape is always a diagnostic feature. Or, it may only be diagnostic when
the shape is spherical, or when the shape is spherical and the color is blue. In general, it is difficult to
know which attributes under what context contributed to the result. Since it is not computationally
feasible to record statistical counts of match evaluations under all contexts (the number of contexts
grows exponentially with the number of features), I resort to a reasonable heuristic.

I propose two possibilities that approximate an attribute’s relevance, but at minimal computa-
tional cost. The first averages the match evaluations by attribute, independent of context. The
second keeps averages by the attribute’s values. The first approach captures generalities that exist
for an attribute, but fails to capture specific cases where the attribute may only be relevant when it
has a specific value. For example, the ‘by attribute’ approach can learn that color as an attribute is
often irrelevant, but fail to learn that certain particular colors are often relevant. In contrast, the ‘by
value’ approach can learn that particular colors are relevant but fail to learn that color in general is
irrelevant. Martin and Billman (1991) argue that people generalize across attribute values and that
this strategy has functional advantages. I follow this functional route of averaging matching evalua-
tions by attribute. Thus, when SCA must remove an attribute (preferably the least relevant) from
an example during its search for a matching rule, the feature with the highest average of conflicting
predictions is removed first. Averaging the match evaluation across many predictions increases the
model’s immunity to spurious inconsistencies while also stabilizing the order of feature removal.

Figure 3.3 provides the specification of the ‘by attribute’ selection heuristic in the context of
SCA. This algorithm maintains the average number of conflicting predictions for each attribute, and
is the strategy that I will use for modeling human behavior in Chapter 5. After recalling a set of
predictions, Update is called with the current example description and the number of predictions. For
each feature, the number of predictions is averaged into previous updates indexed by the feature’s
attribute name. For feature selection, the feature with the largest average, again indexed through
attribute name, is returned. The process of updating evaluation averages is consistent with the
model’s ability to learn incrementally since the computational cost of each update is constant with
respect to the number of previous updates.

3.3 An extended example
Let us now go through an extended training trial where the feature selection order changes. In doing

so, I will consider simple object descriptions of three attributes. To start, we will assume that the
system guesses that the initial ordering of feature removal (from least relevant to most relevant) is

12

define Train(D,c)
set D? =D
do
set R = recall(D)
if ¢ in R or size(D) = 0
set Match = true
set p = ¢
store(D’ -=> ¢)
Update(D,size(R))
else
set D’ =D
set D = D - Select_Feature(D)
until Match or size(D) = 0

return(p)
end Train

define Update(D,s)
for each d in D
Update_Avg(Attribute(d),s)
end Update

define Select_Feature(D)
set d such that Get_Avg(Attribute(d)) =
Max(Get_Avg(Attribute(D)))
return(d)
end Select_Feature

Figure 3.3: Feature selection heuristic in the context of SCA

texture, color, shape. With this order, the following training examples are presented to SCA
(boldfaced values represent values matched in a previously learned rule):

[

. {oblong, red, smooth; ball}

(]

. {spherical, blue, smooth; globe}

w

. {spherical, blue, smooth; ball}

>

. {spherical, blue, smooth; globe}
5. {spherical, red, fuzzy; ball}

6. {spherical, blue, smooth; globe}

Presented one at a time, these training examples incrementally create the following rules (the
number of the example corresponds to the number of the rule it created):

1. [oblong] =>ball

2. [spherical] =>globe

3. (spherical] =ball

4. [spherical, blue] =>globe
5. [spherical, red] =ball

6. [spherical, blue, smooth] =>globe

13

globe °

“mooth texture
ball5 .
color
ball ball, globe * +
oblong spherical shape

Figure 3.4: Graphical depiction of rules

Figure 3.4 is a graphical depiction of these rules as viewed from the current feature removal
order (texture, color, shape). Each solid dot represents a prediction rule where the prediction
is the category next to the dot and the the rule’s conditions are all the attribute values connected
below the dot. The superscripts on the predictions correspond to the rule and example numbers.
The process searches from top to bottom in finding the most specific rule. For example, with the
performance instance of {spherical, red, smooth}, rule 5§ would first match, after the texture
attribute (smooth) is removed from SCA’s internal representation of the object.

Figure 3.4 only represents one feature ordering. If after the sixth training example, the feature
ordering changes to texture, shape, color, then Figure 3.5 depicts the same set of rules. Rules
1, 2, and 3 are not accessible under the new ordering, since SCA’s internal representation would
never fully match these rules with this order of removal. But rules 4, 5, and 6 are still accessible
since their conditions contain both attributes whose order has changed. Thus, reordering attribute
removal does not necessarily invalidate all previously learned rules.

With the new ordering, our example continues with two additional training instances:

7. {oblong, red, fuzzy; ball}
8. {oblong, red, smooth; ball}
leading to the acquisition of these two rules:

7. [red] =ball

8. [red, oblong] =ball

Figure 3.6 is the graphical depiction of rules learned under the second feature ordering.

3.4 SCA in the context of previous work

Though SCA shares a few properties with other models, it is more of a direct consequence of applying
the constraints of the Soar architecture. It is primarily these constraints that distinguish SCA from
all other models. In this section, I review these constraints and. their consequences on SCA’s design.
This serves the purpose of highlighting SCA’s distinguishing characteristics which are contrasted
with the design of other models of concept acquisition.

14

globe

Xar
smooth texture
spherical spherical shape
color
Figure 3.5: Graphical depiction of rules with alternate feature ordering
6
globe
smooth texture
oblong spherical spherical shape
)
ball —
color

Figure 3.6: Final graphical depiction of rules

The Soar architecture, a candidate unified theory of cognition, is a system of mechanisms that
applies knowledge, represented as productions,? in creating intelligent behavior. The choice of
mechanisms has led to some universal constraints within which a large diverse set of human behavior
has been modeled [Lewis et al., 1990; Newell, 1990]. Likewise. these constraints apply to SCA and
thus intrinsically shape the structure of the model. The major constraints of the architecture (and
therefore the distinguishing characteristics of SCA) can be summarized as follows.

1. Knowledge is encoded as rules.

2. A task is performed by applying a linear sequence of discrete, deliberate operations on a
temporary declarative representation.

3. A rule in long-term memory is only accessed by its successful match of working memory

2In this dissertation, the terms production and rule are used interchangeably. In other contexts, the term production
implies additional processing constraints which I make explicit here.

15

contents (i.e. rules cannot be directly examined).

4. All learning is the result of performance in application of prior knowledge (explanation-base
learning).

5. Once a new rule is acquired, it is never lost.

6. Rule matching occurs over a fully symbolic representation.

The second and third constraints distinguish Soar (and SCA) from many other “rule-based”
systems. For Soar, problem solving does not have direct access to its rules, as they are not declarative
structures whose contents can be examined and modified. A production is only accessed when its
conditions match the contents of working memory. In effect, in order to seek out knowledge in
long-term memory, the system must deliberately alter its working memory contents “in search” for
the knowledge represented procedurally as productions. This contrasts with other rule-based systems
whose learning mechanisms can directly examine and modify their rules [Dejong and Mooney, 1986;
Anderson, 1983; Holland and Reitman, 1978]. This constraint may seem unnecessarily restrictive;
however, by limiting the means in which productions are accessed, the architecture can incorporate
efficient match strategies whose matching cost do not significantly degrade as more productions are
acquired [Forgy, 1982; Doorenbos et al., 1992].

Not only do the above constraints serve in defining SCA’s distinguishing characteristics, they
also motivate several design decisions. For example, the Soar architecture prohibits the possibility
of directly removing incorrect rules as a means of error recovery (Constraint 5). Thus SCA takes an
alternate approach by first learning general rules and thereafter incrementally acquiring more specific
ones. Since SCA probes for more specific rules first, recovery occurs by eventually learning more
accurate specific rules. The older inaccurate ones will be successfully masked from performance.

This same strategy delivers frequency effects without keeping any explicit frequency counts,
weights or probabilities (Constraint 6). For example, consider the situation where SCA is presented
with a ball but incorrectly told it was a ‘can’. SCA would acquire a general rule classifying the
object as a ‘can’. However, upon receiving several correctly classified examples of balls, it would
eventually acquire more specific rules that override the incorrect one. In short, a rule’s specificity is
an implicit measure of how many examples of one category SCA has encountered.

This approach starkly distinguishes SCA from other production-based models. The ACT model
of schema abstraction [Anderson et al., 1979] is similar to SCA in that it encodes conceptual knowl-
edge disjunctively distributed in the form of productions. However, it first acquires specific pro-
ductions while incrementally generalizing them to create new, less specific ones. Furthermore, it
maintains a weight with each production in order to keep track of the production’s utility. The
weight serves as a guiding factor in whether the production will apply. Like SCA, the specificity of
the rule is also important in determining whether a production should apply. However, specificity
is explicitly calculated and directly factored into the production’s probability of being applied. In
contrast, SCA indirectly factors in specificity during performance through a serially ordered search
in long-term memory.

The classifier model [Holland and Reitman, 1978] is another production-based model. Their
system also uses several parameters in keeping track of a production’s utility. The learning of new
productions is not directed in a certain way as in SCA (general to specific) or ACT (specific to
general). Instead, the set of productions are incrementally modified by genetic operators with the
directed goal of optimizing prediction accuracy. In contrast to the third architectural constraint, the
genetic operators have direct access to the rule base allowing an unconstrained set of possibilities for
rule modification. For performance, a series of productions may apply as determined by the their
strengths.

In neither the ACT model nor the classifier model does prediction performance depend on a series
of deliberate choices. In contrast, SCA requires a series of control decisions that guide which features
are relevant to a prediction (Constraint 2). This arises from how problem solving is approached in
Soar, where task performance is guided by deliberate decisions, i.e. decisions that bring to bear
all pertinent knowledge within the system. Even though the feature selection learning mechanism

16

is not compatible with the sixth constraint, it suggests one type of knowledge useful in guiding
feature selection. That deliberation plays a role in induction is consistent with a later observation by
Anderson where he suggests, “there is evidence that the generalizations people form from experience
are subject to strategic control” [Anderson, 1987, p. 205]. Thus he questions whether induction is
truly an automatic process, as implied by the ACT model.

In related work, Billman and Heit’s CARI [Billman and Heit, 1988] learns prediction rules whose
construction are guided by a technique they call focused sampling. Focused sampling is similar
to the feature selection heuristic described here. In their application, however, focused sampling
was limited to the construction of rules with only one feature in the rule’s condition. ALCOVE
[Kruschke, 1991] is an example of a connectionist model of human categorization that has applied
this heuristic. Here the heuristic is implemented by weighting the focused features proportionally
higher.

Perhaps EPAM [Simon and Feigenbaum, 1964; Feigenbaum and Simon, 1984)] is most similar
to SCA in that it conforms to most of Soar’s architectural constraints. EPAM is a fully symbolic
discrimination net which discriminates between concepts by focusing on the minimal number of
features needed to distinguish between concepts. Like SCA, EPAM incrementally learns more spe-
cific discriminations. The critical difference is that EPAM fixes which features the model should
discriminate on first. For SCA, feature selection always remains a deliberate choice. Moreover, the
knowledge a system brings to bear in making a deliberate choice need not be limited to heuristics
directly guided by empirical success. Other types of knowledge include partial domain theories and
knowledge arising from verbal instruction. In principle, these types of knowledge, also represented
as productions, can apply to the decision making process. Further research should address the issue
of how these other types of knowledge arise and how they influence the induction process. Also,
it remains an open issue if the feature selection mechanism can be implemented within Soar’s con-
straints. In Chapter 6, I describe a pilot implementation that meets these constraints and present
some preliminary results.

Another way to compare systems is to examine the context in which the system learns from
a training example. The ACT model and classifier model learn by trying to predict the category
of a training example. Learning occurs by adjusting production parameters depending on whether
the prediction is correct or not. Similarly, feed-forward connectionist networks (e.g. backprop nets
[Rumelhart et al., 1986b] and the configural-cue model [Gluck and Bower, 1988a]) learn by adjusting
connection weights after making predictions on a training example. SCA also learns by trying to
perform on a training example using prior knowledge. However, SCA’s learning is ezplanation-based
where prediction continues until the correct prediction is made. Learning occurs by summarizing
the experience of making the correct prediction (Constraint 4).

Exemplar-based models contrast with the above approaches of learning through performance.
Examples of these models are the Medin and Schaffer’s Context Model [Medin and Schaffer, 1978],
Hintzman’s MINERVA models [Hintzman, 1986} and Aha’s instance-based learning model [Aha,
1989]. These models learn by storing the training examples. For performance, classification is
determined by the classifications of all stored examples, weighted by their similarity to the queried
example. Implicit with these models is the assumption that humans can internalize an entire example
representation independent of prior learning. In contrast, SCA acquires rules that approach the
content of an exemplar only after encountering the same example (or similar ones) several times.

Other models combine several of the above approaches. ALCOVE [Kruschke, 1990] employs
a feed-forward connectionist network organized to represent entire examples. One of its learning
mechanisms learns by adjusting weights searching to minimize error. A second learns attentional
weights for focusing on incoming features. COBWEB [Fisher, 1988] also represents entire examples.
The model provides an efficient indexing strategy by organizing examples hierarchically. For both
training and performance, the hierarchy, composed of abstract descriptions represented by attribute-
value probabilities, is descended, placing the new description so as to maximize feature prediction.
For performance, prediction is based off of the best matching concept in the hierarchy. For training,
the new example is incorporated into the hierarchy by either updating a previous concept description
or by creating a new description. Furthermore, operators may directly modify the hierarchy in order
to maximize the ability to make correct feature predictions.

17

In this section, I have claimed that the Soar architecture has placed constraints on SCA’s struc-
tural design. It is these constraints and their consequences that distinguish SCA’s design from other
models. SCA’s learning of incrementally more specific rules is one such consequence. Another con-
sequence is that instead of using explicit frequency counts associated with prediction rules, SCA
relies on search procedures that manifest many of the desired effects captured by frequency counts.

18

Chapter 4

SYSTEM BEHAVIOR AND
EMPIRICAL EVALUATION

4.1 Introduction

In this chapter, I explore the learning behavior and performance of SCA as an incremental su-
pervised learning algorithm. In the previous chapter, the presentation is oriented as a model of
human category acquisition designed within the context of Soar. Here, however, I present the SCA
algorithm separate from the Soar context, as a novel algorithm with interesting learning behaviors
that distinguish it from previous approaches within the machine learning paradigm. Furthermore,
I demonstrate SCA’s promise as a powerful learning approach in terms of accuracy, noise tolerance
and learning rate.

Empirically evaluating SCA’s performance also motivates its plausibility as a cognitive model.
In the last chapter, SCA’s design was explained in terms of how the model fufills its learning task.
In other words, the functionality of the design components were locally motivated. Here, the model’s
functionality is evaluated globally by comparing its learning characteristics with machine learning
systems primarily engineered for performance.

Traditionally, supervised learning algorithms in machine learning have taken three approaches
to representing concepts. The first approach seeks a compact symbolic representation that covers
the concept’s positive examples while excluding negative examples. Searching for a parsimonious
concept representation as an approach is defended by Blumer et al. (1987) and underlies the working
principles of many supervised learning systems. These include decision trees [Quinlan, 1986], which
search for the smallest tree that covers the training examples, and the STAR methodology [Michalski,
1983], which seeks the simplest logical formula as represented in disjunctive normal form.

The second approach saves classification examples instead of maintaining a compact explicit
concept definition. In categorizing a new example, the algorithm seeks a similar, previously classified
example. This approach places a burden on the system to correctly index the appropriate pre-
classified example in memory. Example systems include a nearest neighbor method [Aha, 1989], and
COBWESB [Fisher, 1987], which indexes instances through a concept hierarchy constructed by an
unsupervised clustering strategy. Also, in contrast to many examples using the first approach, both
of these systems use probabilities or weights which quantify a matching metric by which search for
the best exemplar is guided. '

The third approach also does not keep an explicit concept definition. It differs from the sec-
ond group, however, in that it does not maintain the integrity of individual training examples.
The primary examples of this approach are the artificial neural network models [Rosenblatt, 1962;
Rumelhart et al., 1986b; Kohonen, 1982]. Concept representations are distributed across a network
of excitory and inhibitory connections. Learning occurs by incrementally adjusting weights in or-
der to minimize the prediction error on training examples. Evolutionary systems similarly alter
their conceptual representation as they search for the representation that minimizes prediction error

19

[Booker et al., 1989; Holland and Reitman, 1978].

The approach described here does not conform to any of these three approaches. SCA is a
symbolic rule-based system, but it does not try to maintain a compact explicit concept definition.
Neither does it keep whole training instances for future classification. And, rather than explicitly
adjusting the concept representation to minimize error, it incrementally acquires new prediction
rules by applying previous rules in ezplaining the training example’s classification. SCA represents
each concept with many rules. At first, the rules are very general, but as learning progresses, more
specific rules are acquired. For category prediction, SCA searches for the most specific prediction
rules first before accessing more general ones.

In the next section, I discuss some of SCA’s learning behaviors that result from its design.
These behaviors are general consequences independent of the feature selection strategy. In the
following section, I describe alternate feature selection strategies and their consequences. Finally,
with a different, more computationally intensive feature selection strategy, I make some empirical
comparisons with other established concept acquisition systems in order to demonstrate SCA’s
effectiveness as an approach to concept acquisition.

4.2 Behavior

Here I discuss the behavioral consequences of SCA’s design. Because the specificity of SCA’s rules
has important consequences on response time and accuracy, I first review how SCA learns specific
rules and their resulting impact.

As SCA learns, it gradually acquires more specific rules. Figure 4.1 shows how more specific rules
are matched through the course of learning. These results were obtained by running SCA on the
congressional voting data set.! This dataset contains the voting records of congress representatives
on a selected set of issues. Each issue serves as a feature attribute with the possible values of yes,
no or unknown (presumably including absences and abstentions). The task is to learn to predict the
party affiliation of a representative when given only the voting record. In estimating the dataset’s
difficulty, Paxton (1990) reports of two supervised learning systems, MARTIAN [Paxton, 1990] and
STAGGER [Schlimmer, 1987), which, at asymptotic performance, were both able to successfully
predict party affiliation 90% of the time.

In Figure 4.1, the x-axis specifies the number of encountered training instances. After intervals
of twenty training instances, the system made predictions on a set of test instances. The y-axis
specifies the average specificity, in terms of features matched, of the indexed prediction rules for the
test set. Clearly, as more instances are encountered, the specificity of the match increases. This is to
be expected, since SCA always learns a new rule whose conditions include one more feature than the
rule that matched the training instance. Figure 4.2 shows the relationship between rule specificity
and prediction correctness. Using data from the same run of Figure 4.1, the prediction accuracy was
calculated according to rule specificity. The x-axis specifies the specificity of the indexed prediction
rules, which is the number of features in the matching rule. The y-axis specifies the accuracy, i.e. the
percentage that the rule of this specificity predicted correctly. Roughly, the more specific the rule is,
the more likely the prediction will be correct. This observation helps us understand SCA’s external
properties which I now explain.

SCA has three behavioral consequences that are indepeadent of the attribute selection heuristic
choice. They are 1) learning often improves over multiple exposures of the same training data, 2)
computational expense lessens through the course of learning and 3) the algorithm has a built-in
tolerance for noise.

Often one pass through a training set is sufficient for SCA to acquire rules specific enough to make
reasonably accurate predictions. Typically, however, running it over the same dataset continues to
improve performance. Figure 4.3, shows the effect on accuracy by exposing a small training dataset
multiple times. This dataset was a set of stimuli used in an experiment discussed in the next
chapter (see Table 5.3 for the list of instances), but the phenomena exemplified here is typical of all

L All of the datasets used in functionally evaluating SCA can be obtained from the University of California-Irvine
dataset depository.

20

6—
5-
e
©
®
£
“ 4T
o
=
5]
G -
& 3
w
o
g 4
<
2—
1 +——
0 20 40 60 80 100 120

Number of training instances

Figure 4.1: Relationship of Avg. rule specificity to number of training instances (cong. voting
dataset).

datasets, provided they are not too easy. The x-axis specifies the number of times the training set
was presented to SCA. The right side of the y-axis (graphed as the gray line) specifies the prediction
accuracy on a test set. The graph shows how accuracy improved over multiple exposures to the same
dataset. The improvement is due to the system’s having learned some more specific rules containing
relevant features not previously included from the first training cycle.

The same figure also shows SCA’s computational runtime in relation to the number of exposures.
The left side of the y-axis (graphed as the solid line) specifies the average runtime per testing instance
in terms of a machine-internal time unit. Clearly runtime decreases with learning. Recall that SCA
searches for specific rules first before it tries to match a more general rule. Runtime is thus inversely
proportional to the specificity of the matched rule. If specific rules can be found in memory, response
time is faster. After many training trials, more specific rules have been acquired, causing runtime
to be faster.

Instrinsic to its design, SCA tolerates noise. In understanding its noise resilience, SCA can be
thought of as a competition model where conflicting rules compete in making the category predic-
tion. Because SCA searches for the most specific rule first, it is the most specific rule which wins
the competition. Presumably, during training, the system encounters more correct instances than
incorrect ones. The correct rules thus contribute to the learning of rules that are more specific than
prediction rules formed from incorrect instances. Typically, correct predictions result despite there
being many incorrect rules (rendered benign by their lack of specificity) in memory. Later in this
chapter, empirical comparisons are made with other systems demonstrating SCA’s noise tolerance.

21

100
90 1
» <
Y
£
3
- 80 A
c
Y
O
o
)
a 4
70 4
60 v T v T v T T T ¥ T v 1
0 2 4 6 8 10 12

Rule specificity

Figure 4.2: Relationship of accuracy to rule specificity (cong. voting dataset).

4.3 Search control

In the last chapter, I described a strategy for learning the order in which features should be abstracted
out of the object description first. The selection decision is described as a deliberate process upon
which many knowledge sources can be brought to bear. The selection strategy of the previous
chapter is but one such knowledge source, based upon the number of conflicting predictions. It
is a data-driven knowledge source since it is ultimately derived from knowledge acquired from the
training data.

The power of the method described in the last chapter is limited since it must rely on a sporadic,
low resolution evaluation stemming from prediction performance. However, this chapter emphasizes
the performance of SCA when used with a powerful feature selection strategy. The goal is to motivate
SCA’s functionality when given one or several selection strategies. To demonstrate this, I compare
SCA’s performance with other machine learning systems. These systems are primarily designed
for performance, outside the context of any architectural or cognitive constraints. Without such
constraints, they are free to invest more computational resources to the storing and processing of
category examples. Likewise, in comparing SCA to these systems, I present an alternative selection
strategy that performs better, but at the cost of requiring more computational resources.

What constitutes an effective method of feature selection? As noted earlier, the ideal strategy
removes the most irrelevant features from the object description first, thus leaving the more diagnos-
tic features for prediction. Also, it is important that the method is consistent with the selection. By
consistent, I mean that the order of feature removal makes only relatively small changes in feature
removal order from trial to trial. If the order changes often, rules generated by a previous ordering
become inaccessible to retrievals controlled by a radically different ordering. Small, local changes
minimize the problem of accessibility if changes are made between features that are already included

22

500 - - 100

300 +

200 -

Accuracy
(percent correct)

- 60

Response time
(machine-dependent units)

0 T T T T T 50
0 1 2 3 4 5

Number of training cycles

Figure 4.3: Performance and runtime improvement over multiple trials.

in the rules’ conditions or if they are between features that are all excluded from the rules’ condi-
tions. Furthermore, a stable feature ordering quickly acquires specific rules since more specific rules
are acquired in the context of accessing previously learned rules.

To illustrate the consequences of feature selection consistency, let us consider an example. To
start, let us assume that the respective order of feature removal is rigidity, texture, color, then shape.
The following rules could plausibly be acquired after encountering several examples:

[spherical] --> predict category:ball

[spherical] --> predict category:globe

[spherical, red] --> predict category:ball
[spherical, blue] --> predict category:globe
[spherical, red, smooth] --> predict category:ball

Given the object [spherical, red, smooth, soft], the removal order would successful match the
last rule in the list and thus retrieve the prediction for ball. Furthermore, if the two neighboring
features shape and color were changed in the ordering (resulting in the order rigidity, texture, shape,
color), the same rule would match immediately after rigidity is removed from the object description.
In contrast, if shape was swapped with rigidity—a radical change with a result ordering of shape,
texture, color, rigidity; none of the rules could match the object description. This is because as soon
as shape is removed from the object description, none of the rules’ conditions could match.

With the consequences of feature removal orderings in mind, let us now look at the performance
of different order strategies. Figure 4.4 reports some empirical results comparing different feature
selection strategies. From a dataset of 335 examples, 235 examples were randomly chosen and
ordered for training and the 100 remaining were randomly ordered for testing. This procedure was
repeated 50 times, each time with differently selected and ordered training and testing sets. The
graph presents accuracy means inside a 95% confidence interval.

23

100 -

g
90 - L
g i
0y
3] 80 A
e
=3
184
(3
< .
70 -
60 1 1 i 1
Random Stable Random Predictive Impurity

Strategy

Figure 4.4: Performance as a function of feature selection strategy (cong. voting dataset).

For now, let us consider the results of the first two strategies in the figure. The simplest strategy
is choosing features at random. For each example, a feature ordering is randomly and dynamically
assembled. The feature removal order for one example could be radically different for the next. The
second strategy also uses a random ordering. However, the same random ordering is kept through
the entire data set. This is the stable random strategy since the same ordering is consistently used
from one example to the next. The first strategy does poorly since it slowly acquires more specific
rules. Furthermore, it does not necessarily access the most specific that it has required. In contrast,
the stable random strategy is guaranteed to access the most specific applicable rule since the ordering
is the same as when the rules were learned.

The third strategy is the prediction-based ‘by attribute’ evaluation method proposed in the last
chapter. This method used the number of conflicting predictions as feedback in evaluating the rele-
vance of each matched attribute. In this case, it only performs insignificantly better than the stable
random strategy. Eventually, this method finds a good ordering of features but with a cost. In order
to find a good ordering, the strategy must experiment with different features with which it receives
a crude evaluation based upon the number of conflicting predictions. A good evaluation may be the
result of having one good feature in the conditions, of having several good features in the conditions,
or of simply not having yet encountered an example of a contrasting category stored with these
features. After many trials and much experimentation, evaluation averages become significantly
useful in ordering the features. The inconsistency of exploration initially hurts performance in the
same way that the random strategy does. In the long term, however, the acquired ordering would
aid in the learning of new categories.

The fourth strategy independently calculates an impurity measure for each attribute. These
measures capture the amount of information gain for category prediction when given the value of
an attribute. In particular, the entropy gain used with ID3 [Quinlan, 1986] was chosen. Pilot

24

experimentation did not reveal significantly different results using other impurity measures.

Equation 4.1 is the formal specification of the measure used with the fourth strategy. N is the
number of categories. With V values for attribute A, k;j; is the number of examples in the jth
category with the ith value for attribute A. For this formula, the measure is inversely correlated
with the attribute’s relevance. Thus, SCA abstracts out the attributes with the highest measure
first.

O>|°'J

\%4 N
E(A):-—-Z ZE{— SL (4.1)

Because SCA is an incremental learner, counts for each variable must be updated with each new
training example. Furthermore, the measure must be recalculated for an attribute every time one
of its variables is updated. The maintaining of the impurity measure thus comes at an additional
computational expense, where the additional expense is proportional to the number of all values
associated with every attribute in the object description. Figure 4.4 shows that there is a benefit
with the expense. The use of an impurity measure produces significantly better performance than
the other strategies.

4.4 Empirical comparisons

SCA’s performance was compared with two machine learning systems, ID3? and COBWEB.3 The
implementations of both of these systems contain no explicit mechanisms for handling noise. While
implementations for handling noise exist [Quinlan, 1986; Fisher, 1989], these are not used since
the goal is to understand learning properties inherent to the model’s design. It is also important
to realize that both COBWEB and SCA are incremental learners, whereas ID3 is not. For all of
these studies, ID3 had access to all training examples throughout the construction of its conceptual
representation.

The results were obtained using the congressional voting dataset* with the same methodology
described in the last section (randomly choosing 235 training instances and 100 testing instances).
In order to illustrate the systems’ tolerance to noise, the procedure was also repeated with the
introduction of noise in the training data. In particular, 10% of the training examples were randomly
selected and then corrupted with the wrong categorization.

Figure 4.5 shows the results of the comparison. For the uncorrupted training set, little if any
significant difference exists between the three systems. For the noisy training set, however, SCA
performs better than the other systems. Since the error bars of SCA and ID3 overlap, a two sample,
lower-tail z test was performed revealing a significant difference with o = 0.01 (2 = —2.509).

Both ID3 and COBWEB suffer a 10% decrement in performance. The reason is that both
systems tend to fit the training data to the extent that wrongly classified examples are incorporated
into their concept descriptions. In other words, they overfit the data. ID3 continues to learn new
discrimination conditions as long as it fails to accurately classify all of its training examples. In
the case of noisy examples, it must use irrelevant conditions in order to fit the noisy examples.
COBWESB hierarchically organizes its concept structure with training examples represented at the
leaves of the hierarchy. If 10% of the training examples are incorrectly classified, then 10% of the leaf
nodes will have object descriptions with the wrong classification. As a result, roughly an additional
10% of the test examples will be incorrectly classified.

Unlike ID3, SCA does not update its concept representation in order to classify correctly all
training instances. Rather, with each new training example for which the most specific applicable
rule does not correctly classify it, SCA retrieves the most specific rule that does correctly classify

2] used a version of ID3 that built a binary tree, implemented by John Paxton [Paxton, 1990]. Fayyad (1991)
reports that a binary tree is superior to the standard implementation.

3The tested implementation was COBWEB/3, obtained from NASA Ames Research Center.

*In addition to the congressional dataset, pilot experimentation revealed all three systems easily learning the
mushroom dataset and COBWEB performing marginally better than ID3 and SCA on the soybean dataset [Miller
and Laird, 1992].

25

100 +

95]
] Z : g
90 - 8 No noifse
&] ¢ With 10% nolse
] {
3
8 g5
<] {
] 4
80 - i
75 1 1 L
SCA COBWEB D3
System

Figure 4.5: Prediction accuracy.

it and builds a new rule that is slightly more specific (i.e. one feature more specific in the current
implementation).

SCA’s tolerance for noise comes at a price. Its learning rate is significantly slower than ID3 and
COBWEB. The learning strategies of these systems aggressively fit the training data and thus can
learn much faster. Figure 4.6 reports the results of an example run showing the incremental perfor-
mance at several stages of learning. Both ID3 and COBWEB achieve near asymptotic performance
with only a small number of training examples. In constrast, SCA requires many training exam-
ples before its rules are specific enough to achieve asymptotic performance. Furthermore, initial
performance is particularly poor, as it is still learning a good feature selection order.

The trade-off between noise tolerance and learning rate has significance outside of this work.
Other empirical studies [Shavlik et al., 1991; Fisher and KcKusick, 1989; Mooney et al., 1989] have
shown that the backpropagation algorithm as applied to an artificial neural net tolerates noise well
in comparison to ID3. However, backpropagation requires considerable more time and training
examples before asymptotic performance is achieved. In some cases, the total required training time
can be several orders of magnitude greater than that of ID3. Perhaps SCA is a compromise between
these two learning paradigms. Based on Figure 4.6, it appears that SCA requires at most one order
of magnitude more training examples than ID3 while also showing a better tolerance for noise, but
perhaps not to the extent that backpropagation can.

4.5 Summary

In this chapter, I highlighted SCA’s key behavioral characteristics. An emphasis was given to
functional properties in order motivate SCA as a model of human learning. Chief among these
properties are 1) learning often improves over multiple exposures of the same training data, 2)
computational expense lessens through the course of learning and 3) the algorithm has a built-in
tolerance for noise. All of these are consequences of SCA’s design independent of any particular
feature selection strategy.

SCA’s functionality is further supported by comparing it to other machine learning systems which
have been specifically engineered for performance. The goal was not to show that it is superior to

26

) ;
2 1
S :
o 604 *
c { ! ——B8— (COBWEB
S |03
Cq_, ; oo s SCA
404 ;
|
8
20 T T T T
0 100 200

Number of training instances

Figure 4.6: Learning rate (cong. voting dataset).

other systems. Rather, I simply emphasized that the design, when coupled with a reasonably
powerful feature selection technique, is competitive. Nevertheless, in the case of noise tolerance,
this goal was surpassed. SCA, without the benefit of probabilistic matching or statistical pruning

techniques, was found to perform significantly better than the other systems.

27

Chapter 5

REPLICATING HUMAN
BEHAVIOR

In this chapter, I describe some phenomena manifested by humans in learning categories and evaluate
how well the model replicates this behavior. Much of the model’s behavior can be attributed to SCA,
the rule acquisition and retrieval component of the model. Indeed, previous work [Miller and Laird,
1991] reports how SCA with hand-coded feature selection heuristics models some typicality effects
and exhibits a reasonable distribution of extension errors. In this thesis, the results are generated
from SCA working with the ‘by attribute’ selection heuristic described in Chapter 3 and cover a
much broader set of phenomena. However, much of the model’s behavior is still explained through
SCA’s learning properties.

The aim is a broad covering of major robust phenomena found within the psychological literature.
Coverage is limited to qualitative fits. Quantitative fits make stronger assumptions about the input
to the model (e.g. number of features, amount of noise, structure of features) whereas qualitative
predictions are preserved provided that the qualitative relationships in the model’s input are the
same received by the actual human process. Previous approaches to quantitative fitting may have
addressed these problems by adjusting parameters in order to obtain the best fit. Some examples are
connectionist models, which have parameters specifying learning rate [Kruschke, 1990] and exemplar-
based models, which often have parameters controlling similarity calculations [Medin and Schaffer,
1978]. However, the use of parameters can be a difficult enterprise when it comes to showing that
fits to human data are an intrinsic property of the model and not a product of having the right
parameters and settings. By presenting SCA as a parameter-free model, qualitative behavioral
distinctions clearly come from the model. Future work could address quantitative fits through
expansion of the model’s scope and use of well-motivated parameters.

Using qualitative distinctions, SCA addresses a range of phenomena along the dimensions of
response time, accuracy, and learning rates. Because SCA requires varying amounts of time in
searching for category predictions, a natural target is phenomena manifested by response time,
i.e. the time required for the model to make a prediction given an instance. This explanation of
response time differences distinguishes SCA, as a process model, from other approaches. For other
phenomena, I choose those that have been useful in distinguishing among previous theories. For
example, ALCOVE [Kruschke, 1991], a hybrid of connectionism and exemplar-based learning, targets
behavior for gating categories versus condensation categories. This phenomenon distinguishes it from
previous exemplar-based approaches and parallel connectionist approaches. Likewise, exemplar-
based models target behavior for linearly versus non-linearly separable categories in distinguishing
them from prototype-based approaches. I also present some findings on basic-level superiority, a
phenomenon that SCA does not adequately address. Certainly, many more diagnostic phenomena,
exist. However, the research achieves the primary goal of illustrating how my approach exhibits some
reaction time effects which others do not while also presenting results modeling other diagnostic
effects.

28

5.1 Response time

The amount of time a person takes to predict an instance’s category can vary as a function of
several factors (e.g. typicality). Here the claim is that many category learning strategies do not
require varying amounts of time and thus the human data on response time is quite revealing of the
process underlying performance. Furthermore, I assert that SCA does conform with some of the
interesting data while also making a novel prediction.

SCA, the rule acquisition portion of the model, does not use weights, similarity measures, fre-
quency counts or probabilities. Instead it relies on deliberate search that orders access to prediction
rules of varying degrees of accuracy. As a consequence, the time required for performance is not
constant. Furthermore, because SCA learns by performing on training instances, the time required
to process a training instance covaries with the time it would take to process it as a test instance.
Despite the varying response time, SCA lies within the definition of an incremental learner. This
definition requires that the learning system take at most a maximum amount of time which does
not increase with the number of training examples. In conforming to the definition, we see that re-
sponse time for SCA is bounded by a constant proportional to the number of features in an instance
description. However, this is only an upper bound and is independent of the number of instances
encountered.

SCA is unique in making many response time predictions because the algorithm is fully defined
thereby specifying which processes occur in parallel (e.g. production matching) and which are per-
formed serially (e.g. deliberate search). Furthermore, these procedural design decisions have been
motivated through functional and architectural constraints and not as an ad hoc need to fit the
human data.

In contrast, the many learning theories that use explicit numerical representations do not commit
to an algorithmic procedure describing how the quantitative data is processed. For example, the
context model [Medin and Schaffer, 1978] mathematically defines the probability a stored instance
will be retrieved in making a category prediction. While the probability calculation is dependent
on the similarity of all instances in both contrasting categories, the model does not commit to how
this information is gathered and processed. Similarly, ALCOVE [Kruschke, 1990] mathematically
defines probabilistic, causal relationships between connections in its artificial neural net, without
committing to a process that implements them.

The process specification is critical in addressing response time issues such as whether one type
of instance is processed faster than another type or whether process time decreases as a category
is mastered. For analysis I can nevertheless speculate on a reasonable implementation and analyze
its implications. Moreover, after carrying out these speculations, I maintain the claim that there is
no obvious reason why models that maintain explicit numerical information should deliver varying
response times.

My contention is that models using quantitative representations suggest implementations which
require the same amount of performance time for each instance. Consider Figure 5.1. In many ways,
this is a generic characterization of performance for many of the theories cited in Chapter 3. In the
preliminary stage, individual pieces of evidence are computed in parallel. Ultimately, however, the
pieces of evidence must be brought together to a decision process where they are summed or filtered
in order to produce one unique prediction. For exemplar-based models, similarity measures of stored
examples constitute individual pieces of evidence. These measures are summed in order to produce a
prediction. For feed-forward connectionist nets, the generic model is re-applied for each layer in the
net, with the number of layers fixed in advance. A simple production-based model has productions
matching in parallel and the central mechanism filters out the production with the highest strength
or best match. For all cases, it is most plausible that the individual pieces of evidence are computed
in parallel. If this were not the case, performance would seriously degrade as more knowledge is
acquired (e.g. as an exemplar-based model stores more examples).

How long should it take the decision process to sum up or filter out the evidence? The most
naive implementation would serially run through each computed piece of evidence either summing
them or searching for that with the highest weight. This strategy would require a time in proportion
to the size of the evidence, where the size of the evidence is the number of contributing factors

29

Evidence] \

Evidence o
2 ————a! Decision

Evidence — ————» Prediction
3 Process

Evidence /
n

Figure 5.1: Generic performance model

(e.g. number of total instances stored, number of matching productions, or the number of input
connections). A more sophisticated strategy could perform local decisions and using these results in
producing more global decisions. This strategy would require a time in proportion to the log of the
size of the evidence. Finally, there are conceivable mechanisms that could perform the decision in a
constant amount of time. For all of these cases, however, the amount of required time is constant
with respect 1o the type of instance being classified. Moreover, it may be the case that, for even
the naive strategy, the process is so simple and therefore fast enough that differences in externally
measured response times go undetected.

The above argument is by no means a formal proof that these models cannot have implemen-
tations that predict varied response times as a function of instance type. This generic model is
perhaps an oversimplification and may miss some additional sophisticated features of some mod-
els. For example, the classifier model may require several serial production matches which vary on
factors other than the production set size. Furthermore, I have only examined the most obvious
implementations for the generic model.

More sophisticated ones probably exist, perhaps by only examining a subset of the total evidence
where the size of the subset would vary for different instances. For example, random walk models
incrementally accumulate evidence and make a decision once a satisfactory threshold of certainty
is achieved [Ratcliff and Murdock Jr., 1976; Ratcliff, 1978]. However, a full account would need to
develop the following:

e Describe mechanisms that calculate and report pieces of evidence at varied times.
e Account for the mechanisms’ plausibility.

e Show how the decision procedure working with incremental evidence accumulation (as con-
strained by the evidence calculating mechanisms) is consistent with human response times.

e Show how the decision procedure remains consistent with other human data (e.g. effects on
accuracy and learning rates).

Thus, a random walk implementation could conceivably account for response time data. Never-
theless, further research is still required, filling in the necessary details, before such an account can
be seriously evaluated.

SCA, on the other hand, is a radical departure from the generic model. Rather than considering
all evidence at one critical juncture, SCA serially and systematically probes production memory.
The sequence of operations guiding search are of varying length, lending to a varied response time.
Other models deviating from the generic model are the classifier model, COBWEB, discrimination
nets and ‘settling’ nets [Schyns, 1991] which I discuss later in the following sections.

30

Response time
(machine-dependent units)

zm] L]] Rl
0 1 2 3 4 s

Number of training cycles

-

Figure 5.2: Practice effect in terms of response time

5.1.1 Practice effect

As discussed in the Chapter 4, performance time decreases as SCA masters category prediction.
Using the same resuits from that chapter, Figure 5.2 shows SCA’s computational runtime in relation
to the number of exposures. The y-axis specifies the average runtime per test instance in terms of
a machine-internal time unit.

Of the reviewed models, only Holland and Reitman’s model predict a similar improvement in
response time performance through the course of learning [Holland and Reitman, 1978]. They
report that over the course of learning, less production applications are required before predicting
the category. This is the result of rules receiving greater feedback when less applications are required.
Greater feedback comes with less rule applications because the overall feedback is shared with less
rules.

Models that conform to the generic model do not experience this improvement of performance.
Moreover, discrimination nets and COBWEB do not either, as learning for both of these mod-
els increases the depth of their conceptual structures, thus requiring more time to descend them.
While Schyn’s (1991) application of a Kohonen net does not report an increase in response time
performance, it is conceivable that the model would exhibit a speed-up over the course of learning.

5.1.2 Typicality effects

People have a general understanding that some objects are more typical instances of categories than
other objects. These instances have particular properties as well as particular behavioral effects
relative to less typical members. A good example of the general phenomenon is the comparison of
a robin and a penguin inside the bird category. Generally, the robin is considered a more typical
bird. While this does not mean that a robin is more of a bird than a penguin is, it appears that
typicality plays a role in how categories are processed. Several behavioral effects occur which vary
as a function of an instance’s typicality [Rosch, 1978]. These are 1) typical instances are generally
processed faster than less typical ones, 2) typical instances lead to fewer errors in category prediction
and 3) typical instances are frequently given as an example to a category. These results have led
scientists to believe that categories do not have sharp, strongly defined boundaries. Instead, category
membership is thought to lie on a continuum.

Several approaches have addressed this apparent ‘fuzziness’ of category boundaries. These include
fuzzy sets [Zadeh, 1965] or frequency distributions [Fisher, 1987; Lebowitz, 1987], but, as Bergadano

31

Table 5.1: Training and testing data for typicality effects

Attributes Similarity | Typicality
Category | D1 D2 D3 D4 D5 Score Group
A 1 0 0 1 1 12 Low
A 1 1 0 0 0 12 Low
A 0 1 0 0 1 14 Mid
A 0 0 0 1 0 14 Mid
A 0 O 0 0 1 16 High
A 0 0 0 0 0 16 High
B 0 1 1 0 0 12 Low
B 0 0 1 1 1 12 Low
B 1 0 1 i 0 14 Mid
B 1 1 1 0 1 14 Mid
B 1 1 1 1 0 16 High
B 1 1 1 1 1 16 High

et al. (1992) point out, once a system has explicitly defined a measure for category membership,
category membership once again has a “fixed, well defined meaning.” Rather than speculate on
whether SCA’s approach captures the spirit of fuzzy category membership, a more objective position
can be taken by focusing on how well the external behavior of the model fits the external behavior
of humans.

This differs from many previous approaches that make response time predictions based on an
internal matching metric. For example, COBWEB shows a correlation between typicality (as de-
termined by response time) and the degree of match to one of the system’s internally represented
concepts [Fisher, 1988]. COBWEB does not address whether there exists a process that would im-
plement the model while also producing varied response times in accordance with the match metric.
Moreover, none of the models conforming to the generic model implementation could model these
response times.

One exception is the application of a Kohonen net [Schyns, 1991] where the response times are
strongly modeled in that the system actually requires different amounts of time to process instances
of different degrees of typicality. The varied response time results from a ‘settling’ process, which
is a search for a stable state influenced by bottom-up constraints of the unsupervised Kohonen net
and top-down constraints of a supervised learning component.

Because the supervised learning task only requires the category name to be predicted from the
training example, the third effect (giving a typical instance as an example) does not apply. However,
response times and error rates do apply to the task.

To test the model’s behavior on instances with different degrees of typicality, it is presented
with an artificial dataset (i.e. a set of artificial stimuli). Typicality can be defined by determining
an instance’s similarity to the other instances in the same category. Rosch, Simpson and Miller
[Rosch et al., 1976b] show in several experiments how response times and errors vary in accordance
to this metric. In particular they report that humans categorize the more typical instances with
faster response times and less errors. Table 5.1 shows the stimuli used for testing typicality effects.
For this data, there are two categories: A and B. For each category there are six instances, each
with five attributes. Each of the attributes can have only two values: 0 or 1. These values serve
as symbolic representations of features (e.g. color, shape, size, efc.) that humans perceive when
undergoing a categorization experiment. A given instance has a similarity score that is the sum of
how many features the instance shares with the other instances in the same category. This is the
same definition of typicality as in the Rosch et al. study. Based on this score, the typicality is rated
as low, middle, or high.

In testing the model, I presented the data for five training cycles while interleaving performance

32

Table 5.2: The effect of typicality on error rate and response time

[Typicality group l Error rate [Response time l

Low 12.0% 92.1
Mid 8.2% 76.5
High 5.6% 65.7

trials (predicting the category name) after each training cycle. This process was done fifty times!
and the results were then averaged. Table 5.2 shows the results. The response time is a machine-
dependent measure that allows comparisons across typicality groups. Even though error rate as a
function of typicality is not very diagnostic of many categorization models, it has been included for
the sake of completeness. Here the error rate is the average percent of incorrect category guesses.
The results, in accordance with human behavior, indicate a faster response time and a lower error
rate for the more typical instances.

The model’s typicality effects are a result of how SCA incrementally acquires new prediction
rules. New prediction rules result by first matching a training instance with an already existing
prediction rule and then adding a new feature to the matching rule’s conditions. Training instances
with a high typicality are more likely to match more features, thus creating more specific rules. An
instance will match a more specific rule faster because SCA searches for the most specific prediction
rules first. A specific rule match is also more likely to be correct because it has a higher probability
of including more relevant features in its conditions.

The typicality effects that the model exhibits should be further qualified. For the results pre-
sented here, typicality is defined as the total similarity of an instance with other instances in the
same category. In addition to this intra-category typicality, Rosch and Mervis (1975) report inter-
category typicality where typicality is defined by the degree of contrast of competing categories.
The model would have difficulty in predicting faster response times for instances with high inter-
category typicality. Whether an instance is close to a contrasting category makes no difference in
SCA’s response time. This is because SCA, in searching from the most specific to less specific, stops
searching as soon as it finds a prediction; having a slightly less specific rule predicting a contrasting
category has no bearing on the response time.

The design choice of having SCA perform a simple search from specific to general is perhaps at
fault in its failure to account for inter-typicality resonse time. This design decision is also the least
motivated. It is not the consequence of any architectural constraints, nor is it functionally motivated.
However, a search from general to specific is not a plausible strategy either. This approach would
not successfully predict the practice effect nor the intra-category typicality effect, as its behavior
would be similar to a discrimination net. Instead, I am currently exploring more sophisticated
approaches that would start with specific rules, but would continue search with different feature
orders if conflicting rules are first retrieved. Chapter 6 describes a preliminary implementation that
does account for inter-category typicality.

5.1.3 Response time for training

With SCA, process time not only varies for performance; it also varies in the time required to process
a training example. Furthermore, because the model learns new productions by correctly performing
on a training instance, the same response time differences hold for training instances as they do for
performance. To my knowledge, no experimental study confirms or refutes this result, and thus it
serves as a novel prediction for human learning.

1Unless otherwise indicated, averaging the results over fifty trials was more than sufficient for achieving the signif-
icance necessary for all of the qualitative comparisons in this chapter.

33

100 9
90
Q 80
&
8 i
=
Y
o 70 1
5
a
—8— linear
60 4 ~~#%~- Non-linear
50 T T T T T 1
¢} 1 2 3 4 S 6

Number of training cycles
Figure 5.3: Linear vs. non-linear learning rates

5.1.4 Asymptotic performance

One aspect of the model is its asymptotic performance on all of these datasets. Eventually, given
enough repetitions, the prediction rules’ conditions will include all of the features found in the
instance. At this point, the distinction in response time behavior as a function of typicality is lost.
In practice, however, if real instances contain many features, this asymptote in performance may
never be reached leaving typicality distinctions intact. Chapter 6 discusses other possible solutions
to this problem.

5.2 Linear separability

In previous studies, the relative difficulty of learning linear and non-linear category structures has
been used to diagnose the underlying human process [Medin and Schwanenflugel, 1981; Kruschke,
1991]. Since SCA represents categories in terms of many prediction rules, its concept representation
power is ultimately equivalent to that of exemplar-based models. Thus, unlike prototype models
and single-layer nets, it is not limited to linearly bound concepts. Furthermore, because the feature
selection heuristic evaluates feature relevance in conjunction with other features included in the
match, the learning rate of non-linear categories is often the same as a linear category set.

Medin and Schwanenflugel (1981) report a set of experiments where subjects learned linear and
non-linear category sets at roughly equal rates. For comparison, I have tested my model with the
stimuli from that paper (from the first experiment). The model was executed with five training
cycles interleaved with performance runs after each training cycle. This process was repeated fifty
times with the results averaged by cycle number. Figure 5.3 shows the learning rates of both sets.
The x-axis indicates the number of times the training set was presented to the model. The y-axis
indicates the accuracy (in terms of percent correct) of the model performing on the dataset after
the given number of training cycles. The graph indicates the model learning the two category types
at roughly the same rate, thereby replicating the Medin and Schwanenflugel result.

5.3 Learning relevant feature dimensions

Recall that SCA learns general rules first and then gradually acquires more specific rules. This
learning strategy makes a strong prediction that in general SCA will learn categories defined by a

34

100 1
90 1
80

S

“l: <

[

o

S 707

c

@

O

o

&
60 1
50

3
o 4

Number of training cycles

Figure 5.4: Learning rates as a function of category complexity

small number of features faster than categories defined by many features.

Shepard, Hovland and Jenkins (1961) report several experiments that reveal the effect the number
of defining features has on human learning rates. They tested humans on six different category types.
Of the types, Type I, Type II and Type VI were tested extensively.? The Type I categories were
simply defined by one feature. Type II categories were defined with an exclusive-or logic using two
features. Type VI categories required three features in order to correctly guess the category. Of
these three types, Shepard et al. report that subjects learned Type I the fastest, Type II next, and
Type VI the slowest.

Using the same stimuli from these experiments, I compare the model’s performance with the
experimental results. Again, the model was executed with five training cycles interleaved with
performance runs after each training cycle. This process was also repeated fifty times with the
results averaged. Figure 5.4 shows the model with the equivalent behavior.

A more general version of this phenomenon is discussed in Kruschke (1991). Learning a category
defined by one feature is referred to as gating whereas learning a category defined by several features
is called condensation. Kruschke reports that gating is an easier task than condensation and claims
this is a robust phenomenon for human category learning. Furthermore, he includes results showing
that the back propagation model [Rumelhart et al., 1986b] and the configural-cue model [Gluck and
Bower, 1988a] do not make predictions favoring the gating task. Models which learn and evaluate
features in parallel would have extreme difficulty favoring the gating task.

Kruschke’s ALCOVE (Kruschke, 1990] successfully models the gating versus condensation dis-
tinction by incorporating an additional module that selectively learns to attend to relevant features.
In contrast, SCA’s bias towards gating is a direct consequence of initially learning general rules.
While SCA also has a module for guiding feature selection, it is inherent to the rule learning perfor-
mance system. Models which do not learn to attend to selective features, such as the other models
presented in this paper, may have difficulty accounting for this distinction in learning rates.

In addition to previously replicated phenomena, SCA makes one novel prediction with the Shep-
ard et al. categories. Let us consider the learning curve of Type VI categories in Figure 5.4. Even
after two training cycles, SCA is still performing at chance, t.e. at essentially 50%. This behavior is a
consequence of the model’s learning properties interacting with the difficulty of Type VI categories.
In order to guess these categories at an accuracy rate greater than 50%, all features must be consid-

2Because Types III, IV and V were tested with fewer subjects with quite erratic results, learning curves for each
of these types were not presented in their report.

35

ered in making the prediction. Thus, for SCA to perform above chance, it must have acquired some
rules whose conditions include all three features. However, the acquisition of such rules is delayed by
two factors. Firstly, SCA incrementally acquires more specific rules through multiple exposures to
the stimuli. Secondly, the acquisition of more specific rules is retarded through inconsistent feature
selection. Learning Type VI categories invariably leads to inconsistent feature selection since the
prediction feedback for rules of one or two features is always poor. Thus, SCA is continually selecting
alternate feature orderings in an attempt to achieve better feedback.

This prediction distinguishes SCA from essentially all other models. While most models learn
Type VI categories with the most difficulty, they do not predict performance to be at chance for
the first several training cycles. The reason is they all allow the possibility (perhaps the probability
is very low) of factoring in all three features into the concept definition, even during the earliest
stages of learning. For example, ALCOVE, while it has attentional focusing governed by weights,
still factors in all features. The attentional weights are never zero; otherwise the model could not
learn to optimize the weights. Thus, even though some features are more weakly represented than
others, enough conceptual information has been acquired to predict correctly at a rate greater than
50%.

There is some evidence that SCA’s prediction is correct. While Shepard et al. (1961) do not
report error percentages, Anderson (1991) reports some unpublished human data {Nosofsky and
Gluck, 1989] that shows performance relative to chance. Here subjects learning Type VI categories
perform at less than or equal to chance through the first two blocks (two epochs per block) of
training. Unfortunately the data is sketchy and there is no confidence interval for the error rate.
Thus the evidence is only suggestive and the prediction still remains to be confirmed.

5.4 Role of strategies

Medin and Smith (1981) report some experimental results that can simultaneously test several
structural properties of SCA. In particular, the results report the effect of some individual stimuli
on response time and error, and the effect of instructed strategy on response time and error. Subjects,
divided in three groups, were all trained on the stimuli presented in Table 5.3. Furthermore they were
all told they need to learn how to categorize each stimuli into one of the two categories. Subjects
in the first group were not given any particular strategy or hint on how to learn the categories.
Subjects in the second group were instructed to pay particular attention to one attribute (referred
to as D3 in Table 5.3). Furthermore they were informed that this feature is particularly diagnostic
for determining the correct category, but that they would also have to learn exceptions. Subjects
in the third group were instructed to learn the categories by garnering a “general impression” of
both categories. For all three groups, training proceeded by making subjects first guess the category
and then receiving feedback as to whether the guess was correct. Training continued until either
a subject successfully completed a pass where all categories were correctly named or the subject
completed 32 passes through the stimuli.

After training, the subjects were required to fulfill several performance tasks, of which one task
tested errors rates and response times (the subjects were told their responses were being timed)
on the original stimuli. Table 5.4 presents human response times (in seconds) and error rates for
subjects’ performance according to learning strategy. For this task, several interesting results were
statistically significant:

e Overall, stimulus 7 was easier to classify than stimulus 4 in terms of error rate and
response times. This result is interesting since stimulus 4 is closer to the central tendency
of category A (all 1’s) than stimulus 7. On the other hand, there are two other stimuli (15
and 4) in A which differ from 7 by only one feature whereas there is only one stimuli (7) that
is closely similar to 4.

e The strategy impacted the subject’s average performance. On average, subjects in
the prototype group performed the worst in terms of response time and accuracy. Subjects

36

Table 5.3: Stimuli learned with different strategies

Attributes
Category No. [D1 D2 D3 D4
A 4 1 1 1 0
A 7 1 0 1 0
A 15 1 0 1 1
A 13 1 1 0 1
A 5 0 1 1 1
B 12 1 1 0 0
B 2 0 1 1 0
B 14 0 0 0 1
B 10 0 0 0 0

Table 5.4: Effects of stimulus type and strategies on human subjects

Rule-plus-

Stimulus | Standard Exception Prototype

Number | RT ER | RT ER | RT ER
4 1.11 .05 | 1.27 .03 |192 .07
5 134 .14 (161 .11 |2.13 .18
7 1.08 .03 121 .01 |1.69 .04
13 1.27 .09 {187 .15 212 .14
15 1.07 .02 |131 .01 |154 .07

2 1.30 .12 ({197 .20 | 191 .12
10 1.08 .03 |142 .02 }164 .03
12 137 .19]158 .10 1229 .16
14 1.13 .06 | 134 .04 |185 .06
M 1.19 .08 [151 .07 | 1.90 .09

in the default group had the fastest response times while subjects in the rule-plus-exception
group had the least errors.?

e The strategy impacted the relative difficulty of some stimuli. Stimuli 13 and 2 are
exceptions to the hint given in the second group. These were the hardest to learn for subjects
in this group. For subjects in the other groups, stimuli 5 and 12 were at least as hard to learn
as stimuli 13 and 2.

These three major results from the timed performance task are also consistent (in terms of the
relative difficulty of the stimuli) with error rates that occurred during learning and during an untimed
transfer task performed immediately after learning.

Medin and Smith were able to fit the context model [Medin and Schaffer, 1978} to account for
these results. One aspect of this model affords the assignment of attentional weights corresponding
to each feature. By assigning a different set of weights for each strategy, the model can account
for the differences in performance for each strategy. The weights are thus parameters which the
researchers select in order to minimize the performance difference between the model and human
subjects.

The human data on timed categorization can also be compared with SCA’s behavior. The task
is particularly appropriate for several reasons. First, it was a timed task where subjects generally

3Medin and Smith do not report whether these pairwise differences were significant.

37

Table 5.5: Effects of stimulus type and strategies on SCA

Rule-plus-

Stimulus | Standard Exception Prototype

Number | RT ER | RT ER | RT ER
4 0.16 .04 0.09 .01 }0.78 .10
5 0.61 .11 j0.19 .02 |1.14 .15
7 0.13 .01 {0.06 .00 |0.77 .08
13 0.63 .11]0.62 .11 |1.11 .14
15 0.15 .00 {0.09 .00 | 0.82 .07

2 0.73 .21 0.61 .13 125 .22
10 0.18 .00 j0.13 .01 095 .09
12 0.73 .21 1027 .03 123 .20
14 048 04 |0.18 .01 | 120 .14
M 042 .08 025 .04 1.03 .13

responded within 1-3 seconds, approximately corresponding to SCA’s time band. Second, the task
was a category naming task, as opposed to a category verification task. Furthermore, SCA, as defined
within the context of a UTC, is committed to how strategies can impact its performance. For the
most part, SCA is an automatic process which acquires new rules as it guesses what category an
object belongs to. Deliberate control is only granted to feature selection, and thus feature selection
is the only process that is penetrable by additional knowledge, including strategic advice. Therefore,
it is reasonable to assume that the strategic advice directly affects how features are selected.

When considering SCA within the context of Soar, each advised strategy suggests a particular
feature selection implementation for SCA:

e Default strategy. In this case, no strategic advice was given to subjects. This suggests the
standard feature selection strategy (using averaged feedback based on conflicting rules) that
is used in all other simulations in this chapter.

¢ Rule-plus-exception strategy. Here the subjects were instructed to focus on the third
feature and then learn exceptions. SCA can follow this advice to the extent that it always
primarily focuses on the third feature, i.e. it always removes other features from the internal
representation first. However, the model does not afford the possibility of deliberately learning
exceptions. Rather, it must learn exceptions by learning more specific rules. The simplest
approach is to focus randomly on features in learning more rules.

e Prototype strategy. For this strategy, subjects were asked to garner a general impression
of the category. Ideally, this would mean that the learner would focus equally on all features
at the same time. However, this is not possible for SCA; initially, until rules with multiple
features are learned, focus on only one feature is possible. In order to comply best with the
strategic advice, SCA must choose to focus randomly in learning rules.

Each of these versions of SCA was trained on-the stimuli presented in Table 5.3. After training
through five passes of the stimuli set,* the model completed the performance task. The results in
Table 5.5 are averages of 10,000 runs. The error figure is the fraction of times the model guessed
wrong in categorization. The response time is the average number of iterations of feature removal
before a prediction rule matched. The number of runs was sufficient in attaining a 95% confidence
interval of £0.01 for both error and response time.

SCA’s behavior is consistent with the statistically significant results reported in Medin and Smith.
I will discuss these points one by one. But first, let us review how accuracy and response time can

4 At this point, error rates were roughly the same as the human data.

38

vary. Accurate performance is the result of matching rules whose conditions 1) have discriminating
features and 2) have many features (more specific rules). Feature selection strategies that focus on
discriminating features produce rules with discriminating conditions. Strategies that consistently
focus on features in the same order (i.e. stable strategies) acquire and access more specific rules.
Furthermore, stimuli that share combinations of features with stimuli in the same category also lead
to the acquisition and access of more specific rules. Fast response time is the result of matching
specific rules. Discriminating features do not play a direct role in response time for SCA.
With these general performance characteristics, the specific results and their reasons are:

e Overall, stimulus 7 was easier to classify than stimulus 4 in terms of error rate
and response times. Stimulus 7 shares more combinations of features with other stimuli in
the same category than 4. Thus, more specific rules match the stimulus, resulting in fewer
errors and faster response times.

¢ The strategy impacted the subject’s average performance. The prototype strategy
(SCA randomly chooses features) is an inconsistent strategy that does not always focus on
discriminating features. Thus, this strategy results in poor performance, in terms of both
accuracy and response time. The other two strategies are both moderately consistent in
selecting features. The rule-plus-exception strategy always keeps the same feature in the
object description, with the rest chosen randomly. The default strategy experiments with
feature selection orderings, but then somewhat stabilizes as good ones are found. Similarly,
both strategies generally choose discriminating features.

e The strategy impacted the relative difficulty of some stimuli. The most problematic
stimuli for the rule-plus-exception strategy are those which are exceptions to the rule (nos. 13
and 2), whereas, for the default model, these are just as difficult as two other stimuli (nos. 5
and 12). SCA’s rule-plus-exception strategy has difficulty with the exceptions because it is
primarily focusing on the least diagnostic feature for these stimuli.

In further evaluating the models’ fits to human performance, the degree of difficulty (according to
error rate) was ranked, by strategy, for both the human data and the models’ data. Using a Pearson
correlation coefficient, a quantitative measure of correlation ranging from 1 (perfectly correlated)
to -1 (perfectly inversely correlated), the ranking of the human data was compared to the ranking
of SCA’s data. The coefficients for the default, rule-plus-exception, and prototype strategies were
respectively .941, .966, and .790. As a point of reference, the coefficient between human data
with the default strategy and human data with the rule-plus-exception strategy was .836. Thus,
SCA’s rule-plus-exception model was a better predictor of human behavior for this strategy than
was human behavior under the default strategy. On the other hand, the coefficient of human data
between the default and prototype strategies was .912 (compare to .790 for SCA), suggesting the pure
random strategy does not strongly account for aggregate human data. Without analyzing individual
performances, the reason is not clear. It may be the case that some of the subjects disregard the
advice, thus producing an aggregate result lying between the behaviors of the two versions of the
model. Or possibly, subjects are mixing strategies during learning and performance. The extended
response of the prototype suggests that this hypothesis is plausible. In any case, despite the pure
random strategy failure to account strongly for the difficulty ranking, it nevertheless suggests why
the prototype strategy is inferior in performance (in terms of both error rate and response time)
than the other strategies.

Another point of reference for comparing the ranking correlations between SCA and human data
is the ranking correlations between the human data performing the speeded task and human data
performing unspeeded task with the same stimuli. In addition to the speeded classification task,
Medin and Smith had subjects perform classification where the responses were not timed. The
tested stimuli were the same used in the speeded task, but also included 7 additional stimuli which
the subjects did not see during training. Taking the 9 that were seen during training, their ranks
were compared with those for the stimuli’s ranks in the speeded task. The correlation coefficients
(by respective strategy) were .727, 916, and .929 (as compared to .941, .966, and .790 for SCA).

39

Thus, for the default and rule-plus-exception strategies, SCA served as a better predictor on speeded
classification than human data from the otherwise identical task of untimed classification.

For further evaluation, SCA’s behavior was compared with the subjects’ performance on the
untimed classification task. As previously mentioned, the task included stimuli not present during
training. The learning experiment was repeated for all three strategies. After 4 training cycles,®
SCA was tested in its ability to predict the categories for all 16 stimuli (9 seen during training,
plus 7 novel stimuli). Averages of error rates were taken from 10,000 runs for each strategy. The
resulting ranking correlation coefficients were respectively .841, .867, and .644 for the default, rule-
plus-exception, and prototype strategies. As a benchmark, Medin and Smith were able to fit the
context model in achieving respective coefficients of .90, .98, and .96.

The apparent success of the context model relative to SCA is misleading. By choosing appropriate
feature attention weights, Medin and Smith demonstrate how the context model is consistent with
human learning for all three learning strategies. The use of these parameters played a critical role in
the context model’s fit. Medin and Smith report, “The parameter constraints are fairly tight in that
values more than a few percentage points away yield substantially poorer fits for both [the context
and prototype] models.”

SCA takes a further step by having a priori commitments to where and how strategic advice
should alter the acquisition process. In particular, the model, as it is part of a larger comprehensive
theory, is more constrained in how different strategies could be implemented. It thus makes stronger
predictions since it does not have as many degrees of freedom afforded by parameters.

Another consideration is that SCA is not as well suited to model untimed responses as timed
responses. The timed responses took approximately 1 to 3 seconds. This falls well within the time
constraints of SCA’s process in the context of the Soar architecture. Presumably, for the untimed
task, subjects deliberated longer with their response. The extended deliberation time allows people
more flexibility in the strategies they use, and thus allows them to deviate more from the default
process shaped by architectural constraints {[Huffman et al., 1993].

5.5 Basic level superiority

Some categories are more general than others and often are supersets of other categories. For
example, the furniture category is a superset of the chair category. Furthermore, the chair category
is a superset of the rocking-chair category. As we can see, words can have different levels of specificity.
The categories at the basic level usually occur somewhere in the middle of the different levels of
specificity. The category referred to by ‘chair’ is a good example. Categories at the basic level have
been identified as having the highest level category inclusion where the objects in the category still
share many features [Rosch, 1978].

In this section I review the model’s learning behavior as a function of the level of the category
being learned. Two reported phenomena are relevant to the supervised learning task. First, children
learn basic level categories before learning categories at other levels [Rosch et al., 1976a]. Secondly,
queries for basic level categories have a faster response time [Rosch et al., 1976a; Murphy and Smith,
1982).

In testing the model, I ran it on the data (from experiment 1) used in Murphy and Smith (1982).
As they point out, it is not possible to evenly compare learning rates of categories at different levels
of specificity. If the number of training instances per level are held constant, then categories at the
superordinate level receive more training instances per category. On the other hand, if the number
of training instances per category are held constant, then the subordinate group of categories have
an advantage in that they receive more instances across their level.

Murphy and Smith ran a experiment favoring the superordinate group (holding the number of
instances per level constant). Despite the advantage that the superordinate set has over the basic
set, they reported faster response times and lower error rates at the basic level (the difference in
error rates, however, were not significant). Giving the same advantage to the superordinate group,

® As before, training stopped when error rates approximated those of the human subjects. It is not clear why
subjects performing the untimed task did worse than when they were (knowingly) being timed.

40

o £ o e
90 -
80 -
o
Q) -
<
[-
(&)
(] 70 i
=
G-) -y
bt
&) - —8— Subordinate
) weg—— Basic
- ~~ -~ Syperordinate
50 A
40 T : | | | |
0 | o i) ; 6

Number of training cycles
(16 instances per level in one cycle)

Figure 5.5: Learning rates as a function of category level with equal number of training instances
per level

I ran the model on their data. Figure 5.5 shows the learning rates at the different levels. Faster
response times closely correlated with the faster learning rates.

The model’s predictions differ from the Murphy and Smith results in that the superordinate
level has slightly fewer errors than the basic level. The discrepancy may originate in the difference
of tasks that the human subjects are performing versus the model’s task. In their experiment, the
subjects are given the category name and then the testing instance. The subjects must then indicate
whether the instance belongs to the category by answering true or false. The model, on the other
hand, is given the instance and must predict the category. Thus, the model confronts a more difficult
task for categories at lower levels of generality because it must guess from more possibilities. There
remains the challenge of extending the model to perform the recognition task.

For completion, I also present the same results however evening out the number of training in-
stances per category (Figure 5.6). In this case, the basic level has, on average, the highest accuracy.
I cannot claim that normalizing the results in this manner necessarily compensates for the discrep-

ancy in tasks. However, I do claim that the model predicts a basic-level superiority under qualified
conditions.

The basic-level superiority the model exhibits stems from the model’s tendency to favor categories
with a higher degree of intra-category similarity. Recall from the typicality results that similarity

41

1CC 4
1CC.C 1

SC 4
G8.CH

8C A
$6.C

== Subordinate

Percent correcl
Percent correct

crseedbess Basic / —&— Basic
1 eveeweeees Superordinate
7¢ 4 54.C /
J/
6C T T Y v M ' Gz.C Y T T T T 1
[1 2 3 < S 6 ¢ 1 z 3 < s €
Aumber of training cycles Aumber of training cycles
(Four instances per category in one cycle) (Eight instances per category in one cycle)

Figure 5.6: Learning rates as a function of category level with equal number of training instances
per category

between instances leads to faster construction of more specific rules and thus prediction is faster
and more accurate. The favoring of categories with a high amount of intra-category similarity puts
superordinate categories at a disadvantage in relation to the more specific category levels. However,
this disadvantage is not enough to compensate for the superordinate advantage of receiving twice
the number of training instances per category as reported in Figure 5.5. When the number of
instances per category are held constant, the basic level has the superior learning rate. It still
holds an immediate advantage over the subordinate categories. This result is due to the fact that
subordinate categories require more predictive features in the prediction rules in order to accurately
differentiate between the many specific categories.

The model’s explanation of basic-level superiority is consistent with Gluck and Corter’s (1985).
They claim that categories at the basic level maximizes the metric category utility. Category utility
can be understood as a tradeoff between cue validity (feature predictiveness) and category validity
(intra-category overlap of features). Of the models compared in this paper, only COBWEB addresses
basic-level superiority. COBWEB [Fisher and Langley, 1990] explicitly uses this metric in forming
its internal concept representation. This approach enables COBWEB to make correct response time
predictions based on its matching metric. As with the typicality effects, COBWEB depends on an
unspecified implementation in order for this internal metric to manifest itself as response time. On
the other hand, SCA does not explicitly calculate cue and category validity. However, these factors
indirectly influence SCA’s varying ability to learn categories at different levels and with different
response times.

5.6 Practice effect

The model also manifests a practice effect for accuracy that is rarely explicitly described in the
psychology literature. In examining the various learning rate figures of the last several sections
(see also Figure 4.3 and its explanation), we see a steady increase in performance as the model
is repeatedly trained on the same data set. The primary reason for this is SCA’s conservative
incremental learning of more specific rules, one feature at a time. Also, the feature selection heuristic
plays a role as its selection order stabilizes.

The practice effect is an important distinction between the model and other symbolic approaches.
For example, exemplar-based models that acquire and keep whole examples for classification cannot
show a practice effect by repeating the same training examples.® To what extent the practice effect

6 Exemplar-based models with a device that probabilistically stores example descriptions or even partial descriptions

42

exhibited by the model mirrors behavior in people is still open for more experimental research, both
with human subjects and the model.

5.7 Underextensions in early language acquisition

The extent to which the learning process used by people in controlled experiments is the same
process applied in everyday situations remains an open issue. Thus, there is the possibility that
a model which successfully explains behavior in an experimental setting may not apply in a more
natural setting. To a certain degree, I have guarded against this possibility by focusing on behavioral
phenomena that is evident across a wide range of experimental paradigms. Typicality effects are one
example, which have been observed in several tasks (e.g. category naming, membership verification,
taxonomic relationships) using a variety of stimuli (e.g. faces, alphanumeric characters, stick figures,
geometric objects). Another means of securing external validity is to observe learning in more
natural settings. Here I apply some general principles obtained by observing children acquiring
word categories.

One early theory of lexical acquisition is the semantic feature hypothesis [Clark, 1973], which
Carey (1982) later described as component-by-component acquisition. This theory hypothesized
that children learn word categories by initially acquiring incomplete definitions with only one or
a few defining features. Over time, the word definition is completed by incrementally adding the
remaining required features. While the theory made strong predictions and seemed to explain
overextensions in early language acquisition, the theory was criticized on the grounds that it was
limited to learning ‘classical’ concepts, thus failing to capture family resemblance concepts [Carey,
1982], and could not account for underextensions present in early language learning [Reich, 1976;
Dromi, 1987].

An underextension is the failure to apply a known word to a subset of the word’s referents. In the
case of word production, underextension occurs when the child fails to utter the word even though it
is known that the child has produced the word before but in a more limited context. The semantic
feature hypothesis does not predict underextensions since, by having only a subset of the required
defining features, the concept definition is overly general in the early stages of learning. Thus, under
this hypothesis, initial definitions would overextend words as opposed to underextending them.

SCA is similar to the semantic feature hypothesis since it incrementally acquires new rules
that incorporate more features into their conditions. However, it does not share the same pitfalls.
Because many rules represent a concept, it can extensively represent concepts learnable by instance-
based models, including family resemblance categories. The SCA model does not uniquely predict
overextensions in the early stages of learning. Indeed, underextensions are frequently common. Even
if rules are overly general, there is no guarantee that they will be accessed. Rules that were learned
under a certain feature selection ordering are not necessarily accessed by retrieval using a different
feature selection ordering.

SCA can account for underextensions in another way. The supervised task as described so far
is essentially a forced-choice task. That is, in order to maximize performance, the best strategy is
to always pick the prediction that is most likely to be correct. In the case where several conflicting
prediction rules match, SCA has no means of deciding which prediction is best. Yet, guessing is
a better strategy than predicting nothing at all. Thus, SCA randomly chooses among one of the
conflicting predictions. Learning categories may not always be a forced-choice task. For example,
as children learn their first words, rather than always guessing a word of whose category they are
unsure, they may prefer to say nothing at all.

In demonstrating how SCA can underextend categories in the initial stages of learning, I report
an experiment [Miller and Laird, 1991] which used a version of SCA that, instead of always guessing,
makes no prediction whenever conflicting rules matched. In this experiment, we can trace extensional
errors by testing performance on one category of objects. Here training instances drawn from several

do show practice effects. Non-functional devices such as these may be plausible since they could account for possible
computational limitations of the architectural hardware. However, my research methodology of only using functional
devices places an emphasis on explaining human shortcomings in terms of performance tradeoffs (e.g. noise tolerance
vs. learning rate) within the constraints of the computational resources afforded by a unified theory of cognition.

43

O Percent underextended U Percent Ovarshadowed APercent correct
4 . A o - A A Iy 2 A A A A

100

Extension results
[¢,]
o

0 2 4 6 8 10 12 14 16 18 20 22
Number of training instances

Figure 5.7: Trace of extensional errors

Table 5.6: Models and the phenomena they address

Phenomena
Gating | Typicality | Typicality | Practice | Practice | Non-hnear | Strategy | Basic-level
Model bias (RT) (Error) (RT) (Error) learning effects effects
SCA X X X X X X X
ACT X
ALCOVE X X X
Classifier X X
B X X X
Configural-cue
Context X X X X
Schyns’ X X X

categories are given one at a time. Between each training instance, a set of testing instances, all from
the same category, are run on the system. Figure 5.7 shows the results of the trace. Here we sec
an initial onslaught of underextensions and overextensions before correct predictions dominate. The
category is considered underertended whenever the system fails to make a prediction. The category
is overshadowed by another category whenever a wrong response is given for the category we are
testing. These are examples of overextensions of the other learned categories which are not being
tested during performance runs. The particular conclusion that can be drawn from this figure it
that several initial underextensions result from the model even though the system starts by learning
more general productions first. This is the result of several general conflicting rules matching at the
same time.

5.8 Summary of models and known phenomena

Table 5.6 reviews the models and documented phenomena discussed in this chapter. The concluding
chapter reviews all phenomena that SCA has addressed including novel predictions.

Throughout I have attempted to speculate as to whether a particular model would either predic
or be consistent with a particular phenomenon. This is always a difficult endeavor. First of all
relevant process details may be missing in the model’s description. Secondly, fitting the mode
to the data may require searching for the optimal set of parameters. Finally, there remains the
possibility that I have misunderstood or been unaware of certain subtleties in the model’s desigr
and behavior.

44

In Table 5.6, I refrain from any speculation. Rather, I simply note with an ‘X’ as to whether
the model has explicitly addressed the phenomenon in a previous publication. In many cases, it
is conceivable, and in some cases probable, that an untested model would adequately address a
phenomenon, either as it is, or with minor modifications. For example, probably all of these models
exhibit typicality effects in terms of error rate.

It is also the case that some of these models address some human phenomena which I do not
discuss in this dissertation. While I have focussed on effects that result as a function of instance and
category structure, others have addressed effects that arise from varying the frequency and order
of training examples. For example, the ACT model has addressed the effect of blocking similar
examples together during training [Elio and Anderson, 1984]. Also, the Configural-cue model [Gluck
and Bower, 1988b] and ALCOVE [Kruschke, 1990) have successfully modeled some base-rate effects
as determined by the frequency of certain training examples.

45

Chapter 6

EXTENSIONS AND
MODIFICATIONS

In this chapter, I discuss SCA’s limitations while offering possible directions in which they may be
overcome. Some of these limitations are direct consequences of applying the constraints of Soar.
In these cases, I discuss these consequences and suggest how performance could be improved if the
constraints were relaxed. Other limitations are the result of design decisions motivated by their
simplicity. For these latter cases, I discuss more sophisticated approaches that may overcome the
limitations of the original design.

Generally, the model’s limitations can be organized into three kinds: performance limitations,
behavior replication limitations and task limitations. Performance limitations address degraded
performance in terms of response time, learning rate and prediction error. Behavior replication
limitations address phenomena which the model fails to replicate. Task limitations address the
narrowness of supervised learning and difficulties in integrating the model with other tasks.

These types of limitations correspond well to the three motivating principles, namely and respec-
tively, functionality, fit to human data and fit to architectural constraints. While the correspondence
to the first two principles are transparent, the last requires further explanation. If the architecture
supports a unified theory, its constraints may provide directions to extending the theory to new
tasks. Moreover, a task implementation that is well integrated with the architecture’s assumptions
provides links with other implementations constrained by the same assumptions.

Amidst all of the proposed research directions in this chapter, one preliminary design seems
the most promising. This new model, introduced as SCA-2, has a more sophisticated search strat-
egy while also employing a fully symbolic feature selection learning mechanism. Its design can be
motivated in terms of performance, human data, and architectural constraints.

6.1 Improving performance

The Soar architecture has placed constraints on the computational resources that can be used by the
model. Without the addition of other knowledge sources already compiled for immediate retrieval, it
is doubtful if performance can be much increased when given the time frame of 1-2 seconds for each
example. However, in some cases, it may be possible to improve performance on some dimensions
at the cost of performance along other dimensions. In this section, I propose alternate design routes
that yield some functional advantages at the expense of other performance dimensions.

First, I explore the possibility of a fully symbolic feature selection mechanism. I will demonstrate
that this approach has performance advantages for simple concept structures whose objects are
described with only a few features. However, for larger object descriptions, the problem may be
intractable with the same mechanism. Second, I question the design decision of always learning a new
rule with every new training instance. Learning new, more specific rules that mask already adequate
rules may be a waste of memory. On the other hand, knowing when to stop learning could have a

46

high overhead cost that mitigates the advantage of the saved memory space. Third, I suggest the
possibility of maintaining more prediction information such as the use of explicit frequency counts,
thus allowing a more informed prediction. However, keeping additional information has added time
and storage cost and may require the relaxation of some architectural constraints. Finally, I describe
how other knowledge sources could be integrated into SCA, but with the added expense of searching
and compiling the knowledge sources.

6.1.1 Stabilizing feature selection order

Pilot work in understanding feature selection techniques indicates a trade-off between two extreme
strategies (see Section 4.3). The random strategy randomly determines a feature order which is
then consistently used through all training and performance trials. Because of its stable ordering of
features, more specific rules are quickly learned, thus producing a quick learning rate in the short
term. The ezperimental strategy (i.e. the one presented with the model) experimentally chooses
different orderings during training in search of a good feature ordering. At first, because of its initial
instability, many general rules with different feature orderings are acquired. Furthermore, during
performance, the search may miss the most specific rule because the ordering changed after the rule
was acquired. Nevertheless, the experimental strategy ultimately leads to a better ordering than
what the random strategy yields on average. Therefore, in the long-term, the experimental strategy
has a better prediction accuracy. Moreover, the ordering learned with the experimental strategy
transfers to the learning of other categories, for which there would be no instability and it would
clearly dominate the random strategy.

Is there a means of combining the advantages of both strategies while minimizing the disad-
vantages? One promising route of exploration constrains ordering experimentation to only local
reorderings, thus minimizing the instability. Upon finding that one abstraction ordering led to con-
flicting predictions, this strategy would modify the ordering, so that the last removed feature is
swapped with the feature that would have been removed next. For example, consider the case where
attributes are ordered for abstraction as follows: color, size, texture, shape. After abstracting
out color and size from the object description, let us assume that two conflicting rules match the
object’s texture and shape. Using the conflict as a heuristic that the ordering is wrong, size and
texture are swapped in the abstraction ordering, producing the new ordering as follows: color,
texture, size, shape. At most, only the order of two neighboring attributes is changed with one
training example.

The swapping heuristic can be further improved by immediately probing what predictions are
made with the new ordering. If the inclusion of the new feature (and the exclusion of the last matched
feature) also retrieves conflicting predictions, then the new proposed ordering has a dubious benefit.
In this case, the old ordering is kept.

On the other hand, if the probe retrieves no predictions, there is not enough evidence to decide
if the new ordering is better. Without good evidence that the alternate ordering is better, the best
design would keep the current ordering in order to preserve stability. However, since the alternate
ordering may be potentially better, saving the rule learned under the alternate ordering may provide
the necessary favoring evidence with a future example.

Finally, if the additional probe retrieves one unique and correct prediction, this suggests that
the alternate ordering is superior to the current one, and the ordering is thus changed. Whether a
more specific rule should be learned with the new ordering needs to be investigated further.

The probing strategy can also be applied to performance. If the initial ordering leads to a con-
flicting prediction, the strategy temporarily swaps the ordering, further probing for a non-conflicting
prediction. The ‘swap and probe’ strategy can be viewed as deviation from the ‘specific to general
search’ strategy: once a match is found, the strategy undergoes a limited hill-climbing search.

In obtaining a preliminary assessment of this local swapping strategy, several modified versions
were tested against the original experimental strategy. Data from the six category types [Shepard
et al., 1961] were used in the evaluation. Three different swapping strategies were used. The SCA-
Swap strategy applied the swapping strategy to the training trials. The SCA-Swap’ strategy applied
swapping to training and performance. Both the SCA-Swap and SCA-Swap’ learned a more specific

47

100

90 -
80 -
L d
193
o .
o
O 70 =
o SCA
g - =esew SCA-Swap
O JURSE S _ .
G 60- Sca-Swap
A —— SCA-2
50 -
40 1 !] i 1
0 1 2 3 4 5

Training cycles

Figure 6.1: Performance comparison of swapping strategies on Type II categories

rule for every training example. The SCA-2 version swapped for training and performance, but it
did not take the additional time to learn a more specific rule when a permanent order change was
made.

Depending on the category type, the swapping strategy performed either the same or significantly
better than the experimental strategy. Type II was one category structure with the new proposed
strategies performing significantly better than the original experimental strategy. Figure 6.1 presents
the results, within a 95% confidence internal of 2%, for this type. All three modified versions
performed much better than the original. In addition, the swapping during performance clearly
aided in the superior performance for SCA-Swap’ and SCA-2. The strategy of not acquiring a new,
more specific rule whenever a permanent swap is made, did not seem to hurt the performance of
SCA-2 in comparison to SCA-Swap’.

These results require a cautionary note. They are only preliminary and the functional advantage
may not be evident in a broader range of applications, including transfer to novel instances and
especially instance descriptions with many features. Nevertheless, these findings demonstrate a
promising direction in which further inquiry is certainly warranted. They also demonstrate that a
purely symbolic strategy may be sufficiently effective in learning a category’s relevant features.

48

6.1.2 Imposing a learning criterion

By default, it has been assumed that, with each training example, SCA acquires a new rule, whose
conditions are one feature more specific then the previously matched rule, until all possible features
are included in the rule’s conditions.

Extreme variants on this assumption are not reasonable. On one end, SCA could only learn
more specific rules when it cannot discriminate the training example from contrasting categories.
This essentially constitutes the strategy of a discrimination net. However, this approach fails to
capture implicit frequency information in the rules since the mapping of one learned rule to every
training instance is lost. We have also seen in Section 4.4 that this approach is less tolerant of noise
than SCA’s current implementation. On the other extreme, it is unreasonable for SCA to learn
the maximally specific rule immediately. This strategy would carry no predictive transfer to other
similar examples during performance.

Still, less extreme variants on the current implementation present interesting directions for future
research. For example, there may be times when one training instance should lead to the acquisition
of several rules. Another possibility is that, at some point, a sufficient sampling of training instances
has been encountered, and further learning is not needed. The imposition of a learning criterion for
when learning should cease might have functional advantages, as it would save storage space while
still preserving the frequency information implicit in the rules. Future work would have to address
what the criterion should be and if and how performance could be efficiently monitored in order to
determine when the criterion is reached. It may be the case that the overhead of monitoring success,
while also estimating future success, may exceed the benefit of imposing such a criterion.

6.1.3 Maintaining frequency counts

Whenever SCA reached conflicting predictions, it either has to guess among them or return no
response at all. For example, when given the instance {blue, spherical, fuzzy} search may lead
to the two prediction rules, [blue, spherical] =>‘ball’ and [blue, spherical] =>‘globe’. Which should
be the predicted category, ball or globe? It probably is the case that one of the categories has been
associated with blue, spherical objects more than the other. For example, perhaps it has encountered
the instance {blue, spherical, smooth} three times for ‘globe’ and only once for ‘ball’. However,
based on the information that was stored, the only thing we know for sure is that both categories
have at least once been associated with blue, spherical objects, and twice with either blue or spherical
objects, depending on the feature selection.

Basing the prediction off of stored frequency counts is an alternative to random guessing. Ideally,
the model would keep counts of how many blue, spherical objects classified as a globe and classified
as a ball that have been encountered. As stands, this strategy is unreasonable since it requires that
all pertinent rules are sought out and updated. A more reasonable approach only updates the rule
that would be accessed anyway, i.e. the rule that verifies the prediction.

This approach of counting the times a rule is accessed is easily implemented in an unconstrained
programming language with only a constantly bounded time cost and linearly bounded storage cost
with respect to the number of rules, and thus does not add to the system’s overall complexity. Nev-
ertheless, Soar’s architectural constraints rule out any feasible implementation. Since the strategy
must continually revise the contents of rules in long-term memory, the model would have to contin-
ually perform an error recovery routine that would disable the old rule and then enact a new one
with an updated access count. While Soar has no native quantitative processing mechanisms, there
exist feasible implementations of symbolically encoding rule frequencies. However, the time cost of
error recovery would prohibit a Soar implementation that would behave within the 1-2 second time
frame as required by the task.

6.1.4 Integrating other knowledge sources

For SCA, feature selection is a deliberate decision, meaning that any source of knowledge is poten-
tially relevant to the selection. In the evaluation of SCA, the knowledge sources for feature selection

49

were data-driven, that is, they were derived from the training examples. For performance evalua-
tion, a statistical entropy measure was calculated directly from the examples, independent of SCA’s
application of rules. For evaluating the fit to human data, statistical averages of prediction conflicts
for each attribute were calculated. In both cases, the quantitative information ordered attribute
relevance.

In this section, I suggest alternatives to data-driven heuristics. In these cases heuristic knowledge
is derived from other sources such as advice from a tutor or from domain knowledge. In addition
to the functional advantage, it is well documented that humans apply these kinds of knowledge in
constraining concept definitions [Lakoff, 1987; Rips, 1989; Schank et al., 1986; Murphy and Medin,
1985). However, for both of these examples, knowledge is often represented qualitatively. In the case
of advice, the tutor might point out certain features, suggesting that they are somehow relevant to
the category’s conceptual definition. For domain knowledge, the learning agent may have some causal
knowledge connecting features to common actions and results. A critical problem with integrating
different knowledge sources is their representations can be incompatible. Even when knowledge
representations have quantitative components (e.g. fuzzy logic [Zadeh, 1965] and certainty factors
[Shortliffe, 1976]), the quantitative knowledge is not compatible with the representation acquired
through data-driven sources.

In order to integrate knowledge sources within the context of SCA, decision preferences from the
different sources must be commensurable. The data-driven knowledge source applied to SCA ranks
feature preferences with an averaged quantitative measure, thereby producing a linear ordering. In
contrast, advice-driven or theory-driven knowledge sources produce a partial ordering. When pref-
erence conflicts exist, how should they be resolved? Which knowledge source should take priority?
The data-driven knowledge may be overly general, or it may have been inaccurately biased to spu-
rious correlations. Perhaps the data-driven knowledge should then take the least priority. On the
other hand, the tutor’s advice may be wrong, or there may be errors in the domain knowledge.

Resolving the incompatibilities of different knowledge sources remains an open research issue.
One direction, suggested in the previous section, has the data-driven knowledge only make conser-
vative changes to an existing feature selection order. Conservative, infrequent changes in ordering
are made on the occurrence of conflicting predictions. While this policy provides a stable ordering,
it may require large amounts of training to correct a poor initial ordering.

One way to remedy the problem of having a poor initial ordering is to apply ordering constraints
from other knowledge sources before learning from any examples. The data-driven policy then makes
conservative changes to the ordering only when the heuristic suggests that the current ordering is
inadequate. In the next sections, I propose how knowledge from advice and theory is accessed and
applied to the selection process.

Induction constrained by advice

The SCA model suggests that people do not directly learn prediction rules from verbal advice.
Instead, the advice influences feature selection which indirectly guides which predictions rules will
be acquired and accessed. In Section 5.4, SCA’s rule-plus-exception model made use of a heuristic
based upon advice. However, this simulation did not address the issue of how this procedural
heuristic is acquired from a declarative representation obtained through advice.

SCA, within the context of Soar, makes a deliberate decision by allowing relevant knowledge
(represented as productions) to apply. If the knowledge that can immediately apply is not sufficient
to make a decision, Soar automatically creates a subgoal for resolving the decision impasse (see
Appendix A). At this point, additional search for knowledge takes place in order to resolve the
impasse.

Figure 6.2 presents an example of selecting a feature biased by advice. We presume a tutor
has instructed to focus on the object’s shape and that this knowledge can be retrieved so that
it is declaratively represented in working memory. By retrieving this knowledge within a feature
selection subgoal, its application decides to keep the attribute of shape in the object description and
therefore prefers abstracting out the other features. Unless other knowledge is available to constrain
the decision, one of the remaining features would be chosen at random. Issues for further research

50

impasse for feature selection

prefer abstraction

solid i) . o
concave focus on concavity? objectdeseription o of color, rigidity — g

concave :
small or size

white

Figure 6.2: Advice—driven feature selection

include integrating natural language understanding with the construction and retrieval of knowledge
preferring certain features over others.

In a sense, the above procedure is trivial. However, its ‘triviality’ depends on the model’s a prior:
commitment to deliberate feature selection. Augmenting any other model with a similar strategy
would be an arbitrary extension unless it also fixed a priori constraints on what decisions could be
deliberately controlled.

Induction constrained by domain knowledge

The second strategy for acquiring control knowledge for abstraction operators takes an explanation-
based approach, requiring the use of goals, theories and beliefs. As with applying knowledge obtained
through advice, causal knowledge can have a similar impact in deciding the relevance of features.
Features that have immediate consequences on whether the agent’s goals can be achieved may also
be considered the most relevant in forming categories. Usually, the causal knowledge, as represented
as productions in Soar, is not immediately accessible in declarative form [Rosenbloom and Aasman,
1990] and may require extensive search through the additional creation of impasses and subgoals.
Further research needs to develop the processes in which causal knowledge is represented, retrieved,
and compiled for future use.

Figure 6.3 provides an example of this last strategy at work. We have presented a description
of a cup with the goal of learning the word. So far, no rules have matched the current object
description. Because of the impasse at recognition, an abstraction operator must be chosen. Let us
assume that the system already considers shape and texture to be relevant (either an innate bias
or learned from previous experience). This leaves a choice between color and size. In this example,
the color attribute is removed from the object description. The modified object description is then
processed through the domain theory. Included with the object description is the context and the
goal of drinking. Because color is an irrelevant attribute for fulfilling the goal, the domain theory
is still able to explain how the object fulfills the goal. On the other hand, the size attribute affects
the goal’s fulfillment and consequently the domain theory cannot explain how the object is used
for drinking since the object description lacks this feature. This comparison reveals that the color
attribute should be abstracted out of the object description.

6.2 Expanding coverage of human behavior

In the presentation of the model, several inconsistencies with human data were noted. First, the
model fails to predicts typicality effects at asymptotic performance. Second, the model does not
predict response time effects as a function of inter-category typicality. In the following subsections,
I address these two problems. The goal is to establish research directions that resolve these issues
without compromising the model’s functionality nor its fit within Soar.

Finally, the model does not predict accuracy or response time effects as a function of categorical
level (basic-level effect). In Section 5.5, I suggest the discrepancy between the relative rate in which

51

impasse for feature selection

/

solid It)
abstract out color - solid > prefer abstraction -

concave concave of color
small small
white

goal-oriented
domain theory

Figure 6.3: Theory—driven feature selection

SCA learns superordinate categories and that in which people learn them could possibly be accounted
by the difference in tasks. For the Murphy and Smith (1982) experiments people were performing
a category verification task whereas SCA performs a category naming task. By extending SCA to
perform category verification, we can test this theory. At the end of this chapter, I propose research
directions in which SCA could be extended to perform this task.

6.2.1 Asymptotic response time and typicality

As pointed out earlier in the thesis, eventually, given enough repetitions, the prediction rules’ condi-
tions will include all of the features found in the instance. At this point, the distinction in response
time behavior as a function of typicality is lost. Whether this also occurs in humans has not been
thoroughly investigated. However, Murphy and Smith (1982) report differences in asymptotic re-
sponse times as a function of category level. Presumably, the situation is the same for typicality.

For improving performance, I suggested that the imposition of a learning criterion might have
some functional advantages. If such an implementation is functionally feasible, it would leave asymp-
totic response times intact. Once the learning criterion is reached, the specificity of the system’s
rules become fixed. Thus less specific rules would still match less typical instances.

6.2.2 Inter-category typicality

Another problem with SCA is its inability to explain response time differences as a function of inter-
category typicality. As explained earlier, this is because SCA, in searching from the most specific
to less specific, stops searching as soon as it finds a prediction; having a slightly less specific rule
predicting a contrasting category has no bearing on the response time.

The key to explaining response time differences lies in the varying likelihoods of conflicting
predictions as a function of inter-category typicality. An instance which shares many features with
instances from a contrasting category is more likely to retrieve conflicting category predictions.
However, this observation, by itself, does not account for response time differences. Rather, an
account of varying response times must motivate the need for additional computational resources
for the low typicality cases.

Investing in additional computational resources for resolving conflicting prediction can be moti-
vated in two ways. First of all, this situation presents the opportunity of refining feature selection
knowledge. Secondly, for performance, further search may retrieve a non-conflicting prediction, thus
increasing accuracy. Both of these ideas have been incorporated in SCA-2, already presented as a
means of improving performance. SCA-2 uses the opportunity of a conflicting prediction to explore
better feature orderings. For performance, upon retrieving conflicting predictions, it further probes
for a non-conflicting prediction.

52

Table 6.1: Training and testing data for inter-category typicality

Attributes Overlap | Typicality
Category | D1 D2 D3 D4 D5 Score Group
A 0 0 0 0 0 13 Low
A 0 0 0 0 1 13 Low
A 0 1 1 1 0 9 Mid
A 0 1 1 1 1 9 Mid
A 0 2 2 2 0 5 High
A 0 2 2 2 1 5 High
B 1 0 0 0 0 - -
B 1 0 0 0 1 - -
B 1 0 1 1 0 - -
B 1 0 1 1 1 - -
B 1 2 0 1 0 - -
B 1 2 0 1 1 - -
Table 6.2: Inter-category typicality effects
Accuracy Steps Swaps

Model | Low Mid High | Low Mid High | Low Mid High

SCA [8%% 91% 92% | 2.55 256 2.48 | - - -
SCA-2 | 72% 93% 99% | 1.52 158 1.53 [12% 10% 3.9%

In order to obtain a preliminary assessment of the impact of varying levels of inter-category typ-
icality on SCA-2’s performance, both SCA and SCA-2 were tested on a data-set where all instances
had the same intra-category typicality but different levels of inter-category typicality. Table 6.1
describes the data-set. Category A consists of examples of different levels of inter-category typical-
ity. The overlap score is the number of features the instance shares with all of the instances in the
contrast category. The overlap score is the inverse of inter-category typicality. Category B serves as
the contrast category.

Table 6.2 presents results comparing SCA and SCA-2. Both models are compatible with human
behavior for accuracy, where accuracy is better for higher typicality. However, SCA-2 makes a larger
distinction between the typicality levels. The average number of steps is also included. This is the
number of feature abstractions required before a prediction rule matches. This figure does not count
the possible swap. Neither model has any significant differences between the different typicality
levels. The swap statistic is the percentage of times an additional probe is made by swapping
features. Here there is a significant difference between the category levels. If backtracking takes a
significant amount of time, SCA-2 reaction times would be consistent with human behavior.

6.3 Extending to other tasks

The supervised learning, as described here, consists of predicting the category name given an object
description. Despite the narrowness of the task, supervised learning is a powerful faculty since it can
learn to predict any missing feature provided that it was explicitly trained to do so. Nevertheless,
humans routinely perform other category-based tasks which utilize knowledge acquired through su-
pervised learning. These include verifying if a instance is classified correctly, expressing the goodness
of category membership, producing an example of a category, and verifying taxonomic relationships.

Here, 1 address these tasks and offer directions on how they may be realized given SCA and

53

its instantiation in the Soar architecture. For all of these tasks, I suggest how the performance of
these tasks arise out of the design structures and representations that already exist within SCA and
Soar. As a result, the proposed theories often contrast with more traditional approaches that build
explicit declarative data structures for fulfilling the task. While none of the forthcoming theories
are specified to the extent that they can be readily implemented, their theoretical content suffices
to make some empirically testable predictions.

Finally I address feature selection. Even though I have specified and used an implementation
that performs this aspect of the supervised learning task, this implementation does not conform to
Soar’s constraints. In the last subsection, I discuss how a Soar implementation could be extended
to perform data-driven feature selection.

6.3.1 Concept verification

I have described SCA in the context of a naming task. That is, for performance, the goal is to name
the correct category given an unclassified object description. In contrast, the concept verification
task requires the agent to verify the correctness of a classification. Thus, when given an object
description and a category, the agent determines whether the object belongs to the category. For
example, when presented with the object {spherical, blue, smooth, medium} and the category
‘globe’, the agent must indicate if the classification is correct, perhaps by answering ‘true’ or ‘false’.

How could a SCA-consistent model perform this task? The most straight-forward model would
simply perform the naming task and then compare the prediction with the given category. If the
prediction and the given category are the same, then the model responds affirmatively, otherwise
negatively.

Applying the naming task to the verification task is not the most functionally motivated method.
Consider the case where multiple predictions are made. For naming, SCA must arbitrarily choose
one of them. For verification, the arbitrarily chosen prediction is compared with the given cat-
egory, ignoring all predictions that were equally consistent with the object description. A more
sophisticated approach would compare the given category to see if it is consistent with any of the
predictions.

Applying SCA to the verification task using the consistency approach makes a prediction on
how humans would perform the task. In particular, it suggests that humans, when given an object
description and category, are more likely to affirmatively verify its membership than they would
name the same category, given the same object description unclassified. For example, when shown
a small spherical object, people are more likely to confirm that it is a ball than they would freely
name it as such.

6.3.2 Expressing goodness of membership

Not only are typical instances classified faster and with less errors, people tend to consider them good
examples. For example, when presented with the object {spherical, blue, smooth, medium} and
the category ‘globe’, people can verbally express, perhaps on a scale from 1 to 10, how well the object
exemplifies the concept of ‘globe’, and, if this object is fairly similar to many other objects previously
classified as ‘globe’, they will highly rate this example as a good member of the concept.

Given people’s ability to verbally express an example’s typicality, the verbal process must have
some access to the model’s typicality rating. In SCA typicality is the degree of match (i.e. the
number of features that matched the prediction rule) which is directly available in working memory.
Verbal processes can have direct access to this knowledge. The procedure seems trivial. However, as
with advice-driven learning, its ‘triviality’ depends on the model’s a priori commitment to explicitly
controlling which features are matched.

6.3.3 Producing an example of a category

When given only a category name, people can describe an example belonging to the category [Rosch,
1978]. For example, when given the category ‘globe’, people may describe the object {spherical,

54

blue, smooth, medium}, particularly if this object is fairly similar to many other objects previously
classified as a globe. The critical question is whether the knowledge acquired by SCA can be applied
to producing category examples. The answer is ‘yes’ but with difficulty. However, with practice, the
task becomes easier.

The knowledge acquired by SCA takes the form of prediction rules whose conditions are partial
object descriptions and whose actions are category predictions. In the context of Soar, these rules are
productions to which problem solving does not have direct access. They must be accessed through
a constructive generate and test strategy. For example, let us suppose that the following rules have
been acquired by SCA through supervised learning:

1. [oblong] =ball

2. [spherical] =globe

3. [spherical] =-ball

4. [spherical, blue] =>globe

5. [spherical, red] =ball

6. [spherical, blue, smooth] =>globe
7. [red] =ball

8. [red, oblong] =ball

SCA can not examine these rules directly. Instead, it must generate object descriptions and
test if any rules match that predict ‘globe’. This scheme thus requires knowledge that can be
used to construct object descriptions composed from a basic set of primitives. However, the search
for an object description need not be random. It can start by guessing only one feature. In this
case, feature selection heuristics may suggest starting with shape. It may first guess oblong and
cubical, before generating spherical, at which point Rule 2 matches. Next, the strategy may try
to add color to the object description. It may guess several colors before generating blue, which
causes Rule 4 to match. Eventually, it generates and adds smooth causing Rule 6 to match. It
may continue generating additional features and adding it to the object description, or it might
backtrack by deleting some features and adding others. Further research would have to address
when to backtrack and when the generated object description is sufficiently specific that search
should stop. ‘

Despite the use of general rules in guiding the construction process, the generate and test strategy
is expensive. Without backtracking, the cost is proportional to the number of possible values for
each attribute. If extensive backtracking is used, the problem becomes intractable. Two learning
devices could reduce the computational expense. First, the process can learn which attribute values
are most common and generate those first. Second, the process of generating object descriptions
can be compiled into new rules for future object recall. By generating descriptions within subgoals
created by Soar, the architecture can automatically learn new recall rules through its native learning
mechanism, chunking. Thus the generate and test process becomes easier with practice.

6.3.4 Taxonomic relations between concepts

Given two categories, humans can usually say whether one is a subclass of another. For example,
given the categories airplane and jet, most people would be able to say that a jet is a type of airplane.
Traditional models of this task organize concepts as explicit hierarchies [Collins and Quillian, 1969;
Conrad, 1972]. In this case, the relationship between the concepts of jet and airplane is represented
as an explicit directional link indicating that a jet is an airplane.

In developing SCA, no provisions have been made for organizing concepts in explicit taxonomic
hierarchies. The claim is that explicit relationships do not necessarily exist by virtue of knowing
the concepts. Rather, explicit hierarchies only arise through deliberate problem solving where the
task requires explicit connections to be made. Thus, in some circumstances, SCA may competently

55

process the concepts of jet and airplane in isolation without explicitly representing the former as
being a subclass of the latter.

Nevertheless, using knowledge acquired by SCA, Soar could verify taxonomic relationships as
humans can do. A simple strategy has Soar creating a typical example from the subclass concept.
The example is then checked for membership with the superclass concept. As with learning to
produce an example of a category, the task is difficult at first. But with practice, Soar chunks over
the process, thereby creating an explicit connection between concepts.

Because SCA does not perforce organize concepts hierarchically, it is not constrained to repre-
senting concepts in a tree. Instead, the implicit conceptual structure is a dynamic process depending
on task goals and their focusing influence on different features of the object description. This sug-
gests that the role of different concepts for a certain instance is not strictly limited to describing the
instance at different levels of abstraction. Different concepts for the one instance can also describe
different aspects of the instance even if the concepts do not have any direct taxonomic relationship.

In returning to the airplane example, SCA suggests that the concept of an airplane is not simply
an abstract description of a jet. Rather, both the concepts of jet and airplane place a different
focus on a instance’s representation. An airplane focuses on the vehicle’s ability to fly and carry
passengers, whereas a jet primarily focuses on the vehicle’s speed and its role with commercial
airlines. The context provides the focus and thus the appropriate feature selection. With different
feature selection orderings that depend on the context, SCA can consistently and flexibly represent
both concepts.

Another example is the so-called ambiguous classification of a tomato as either a fruit or a
vegetable. Citations of this example have been used to motivate the use of probabilities in order to
capture the different ways in which the concept lies within a taxonomic hierarchy [Anderson and
Murphy, 1986). Rather than having a tomato being probabilistically categorized as either a fruit
or a vegetables, the SCA framework implies that the taxonomic relationship is context-dependent.
Feature selection is a deliberate process and can thus depend on the context. The botanical context
emphasizes features such as seeds, their location, and the type of plant from which it comes. In
this context, the tomato is unambiguously a fruit. In the context of food, features such as taste
and nutrition are emphasized. Here, the tomato is clearly a vegetable. Models that impose a
hierarchical structure have difficulty with these kinds of relations and thus must resort to probabilistic
representations. The SCA framework dynamically constructs the taxonomic relation, affording the
flexibility of context-dependence. As a consequence, SCA predicts that people should have little
difficulty verifying similar relations whenever they are strongly situated within a disambiguating
context.

6.3.5 Feature selection

The two data-driven feature selection learning strategies with which SCA was evaluated required the
continuous updating of conflicting prediction averages indexed by attribute name. These types of
learning strategies are not compatible with Soar, being a fully symbolic architecture with no direct
access to long-term memory.

One solution is to keep feature learning knowledge in working memory instead of trying to
continually update the knowledge in long-term memory. This approach would predict disastrous
consequences if the learning process was abruptly interrupted—here the feature selection knowledge
would be lost, thus requiring a trial and error process of recovering the knowledge by probing
prediction rules in long-term memory. This approach also fails to address how people learn categories
whose training instances are presented intermittently over a long period of time.

Perhaps an alternate is SCA-2. SCA-2 uses a fully symbolic feature ordering which is only
modified approximately ten percent of the time (see swaps in Table 6.2). Critical remaining issues
concern how the feature ordering is represented in Soar’s long-term memory and how the ordering
knowledge is modified.

56

Chapter 7

CONCLUSION

There are no perfect models. At best one can only approximate the process that underlies a set
of natural phenomena. To the extent that the model is a good approximation, it provides insight
into the natural processes’ structural properties, their relationship in a larger system, and their
behavioral consequences. The model also serves as a foothold for future research. Improvements to
the model emerge out of additions and modifications to the existing version. Model development is
thus an evolutionary path, eventually leading to better approximations of natural processes.

I have described SCA, a model for human category learning. Amidst the implementational
details, SCA is distinguished by a particular handful of structural properties, listed in Figure 7.1.
These are essential properties on which the successful evaluation of SCA depends. In a sense, these
lay out a class of models, of which I have constructed and evaluated one implementation. More
sophisticated models in this class probably exist, possibly including models which can represent
structured object representations instead of the flat feature structures described in this dissertation.
Thus the essential properties depict a set of least commitments constraining the construction of
future models.

With SCA’s essential properties, I have shown how they extend from the constraints of a unified
theory (Figure 7.2), how they contribute to the model’s functionality (Figure 7.3), and how they
yield behavior consistent with a diverse set of human phenomena (Figure 7.4—the last two are
novel predictions). Furthermore, in Chapter 6, I have laid out directions for extending additional
capabilities within the UTC, for increasing the model’s performance, and for expanding the model’s
coverage of documented human phenomena.

e Distributed, rule-based representation. A concept is represented by a distributed set of rules
(productions). Section 3.1.1.

¢ Full symbolic matching of rules with parallel retrieval. Rules fully matching the internal
symbolic object description are retrieved in parallel, within constant time. Section 3.1.2.

o Serial search. Rules that do not fully match the internal representation are retrieved with a serial
search. Section 3.1.2.

o Search from specific to general. The serial search pattern tries to retrieve specific rules first.
Section 8.1.2.

¢ Deliberate feature selection controlling search. All relevant knowledge is potentially brought
to bear in guiding the serial search. Sections 3.4 and 4.3.

o Learning specific rules from general rules. New, more specific rules are acquired from applying
more general rules. Section 8.1.9.

Figure 7.1: SCA’s essential structural properties

57

e Distributed, rule-based knowledge.

o Symbolic retrieval (full-matching).

e Serial application of discrete deliberate operations.
o Non-examinable rules.

¢ Learning determined by performance in application of prior knowledge (explanation-
based learning).

e Monotonic learning.

Distributed rule—based representation |f -{ Distributed rule—based knowledge l

Foll symbolic maiching ofrales || Symoblic retrieval (full-matching) |
; etrieval
with parallel retriev Serial application of discrete deliberate operations |

Non—examinable rules l

[Search from specific to general
l Deliberate feature selection controlling search
| Leaming specific rules from general rules |

<>
/‘\

=1 Monotonic leaming |

Leaming determined by performance in application
of prior knowledge

Figure 7.2: Architectural constraints and their dependencies. Section 3.4. .

Constructing the model out of mechanisms posited by a unified theory of cognition is also a
major contribution of the thesis. Not only has the UTC been useful in constructing SCA, but this
methodology also contributes to our understanding of Soar as a UTC. SCA provides a window as
to how Soar’s mechanisms, operating at the order of 10 milliseconds, can be composed to explain
behavior operating on the order of 1 second. For example, we have seen how constant-time fully
symbolic rules can be applied in producing flexible, noise-tolerant behavior with varied error rates
and response times conforming to human behavior.

By keeping SCA’s essential properties, improvements can be sought by experimenting with al-
ternate implementations. These properties serve as a set of constraints for the future construction
of models. As long the main properties remain intact, modifications will not adversely affect our ac-
complishments. Also the structural properties need not be lumped into one monolithic set. Certain
properties or combinations of properties have particular consequences or fit particular constraints
(see dependencies in Figures 7.2, 7.3, and 7.4). For example, as depicted in Figure 7.4, response
time effects are consequences of a serial search, the order of the search, and the order in which rules
are learned. By understanding these dependencies, we can predict the consequences when modifying
key properties. When constructing a new model with some new properties, we know that, for the
remaining previous properties, the accomplishments that depended on them will be preserved in the
new model. Thus we can usefully bias the search for newer and better models.

58

¢ Concept expressiveness. SCA can represent a diverse set of concept structures including non-linear
categories and family resemblance categories. Sections {.4, 5.2, and 5.7.

e Incremental learning. The time required to process a training instance has a constant bound with
respect to number of previous encountered training examples. Definition 1 and Sections 3.1.1 and
5.1.

¢ Real time response. SCA reliably responds within seconds under the timing constraints of Soar’s
architectural mechanisms. Sections 1.2, 3.1.1, and 5.1.

e Noise tolerance. SCA’s performance gracefully degrades in the presense of noise. Section {.4.

e Bias from goals, beliefs and theories. SCA allows the possibility for goals, beliefs and theories
in guiding object classification. Sections 5.4 and 6.1.4.

Distributed rule~based representation l\
Full symbolic matching of rulcs Concept expressiveness I

with parallel retrieval Incremental learning I

Real time response l

[Search from specific to general JL

| Noise tolerance]

[Deliberate feature selection controlling search !

ﬁ Bias from goal, beliefs and theories J

| Leamning specific rules from general rules |

Figure 7.3: Functional goals and their dependencies.

59

e Gating bias. SCA learns categories defined by a few features (e.g. Type I) faster than categories
defined by several features (e.g. Type II or Type VI categories). Section 5.3.

o Typicality effect (rt). SCA responds faster for objects which are more similar to other objects in
the same category. Section 5.1.2.

e Typicality effect (accuracy). SCA predicts more accurately for objects which are more similar to
other objects in the same category. Section 5.1.2.

e Practice effect (rt). With practice, the time to respond decreases. Section 5.1.1.

e Practice effect (accuracy). With practice (even with the same training examples), accuracy im-
proves. Section 5.6.

¢ Learning non-linear categories. SCA learns some non-linear category structures as fast as linear
categories. Section 5.2.

o Effect of strategies. SCA predicts how some kinds of strategic advice effects prediction performance.
Section 5.4.

o Initial guessing of Type VI categories. For category structures defined by multiple features, SCA
requires several training cycles before prediction performance is better than chance. Section 5.3.

¢ Training response time. Response time for training on an instance correlates with the response
time for predicting with the instance. Section 5.1.3.

" Distributed rule-based representation

Full symbolic matching of rules
with parallel retrieval

Search from specific to general Learning non-linear categories |

Deliberate feature selection controlling search ; ﬁi Effect of strategies]

| Learning specific rules from general rules |

i Initial guessing of Type VI categories]

l Training response time |

Figure 7.4: Behavioral properties and their dependencies

60

Appendix A

SCA Implementation in Soar

In Chapter 3, I first discussed SCA independent of the Soar architecture. I then motivated the design
of SCA in terms of Soar by describing the major architectural constraints and how SCA conformed
to them. My presentation strategy had the advantage of being able to construct principle abstract
characteristics of the model, so that I could more easily describe their architectural relationship
and their functional and behavioral consequences. However, in so doing, I have neglected several
technical details required for implementing SCA within the problem solving and learning mechanisms
supported by Soar. While some of these details are independent of SCA’s principle structural
properties, they are necessary in achieving a working implementation in Soar. Here I present some
additional details of one working implementation of SCA in Soar [Miller and Laird, 1991].

Problem solving in Soar [Laird et al., 1987] consists of the sequential selection and application of
operators to a representational state within a problem space. Both the selection and application of
operators is determined by the knowledge represented in a long-term recognition memory encoded as
productions. Learning involves the construction of new productions, called chunks, which summarize
the results of a subgoal. A chunk in Soar is similar to an operationalized result in explanation-based
learning [Mitchell et al., 1986; Dejong and Mooney, 1986]. Subgoals are born out of impasses caused
by conflicting knowledge or a lack of knowledge. Subgoaling relies on additional knowledge to
consider the alternatives, often requiring further search. During subgoaling, the system may try out
the alternatives or it may recast the problem. Once the subgoal resolves the problem that caused
the impasse, the architecture traces back through the conditions that led to the impasse’s resolution.
Using these conditions, a new production is created that summarizes the subgoal’s result so that, in
analogous applications, the summarizing information is retrieved. This avoids the impasse and thus
the costly search encountered when the chunk was first created.

In the above learning scenario, no new knowledge is actually acquired. Instead, the knowledge in
the problem space has been partially operationalized in that an increase in efficiency has occurred.
In contrast, new knowledge can be acquired only through learning by instructions or by inducing
knowledge from examples observed in the external environment. This latter type of learning is often
called knowledge-level learning [Dietterich, 1986]. Previous work with Soar has made knowledge-
level learning technically feasible [Rosenbloom et al., 1988]. This approach, called data-chunking, is
a precursor to the work presented here.

The design of SCA is the direct result of applying Soar to the concept prediction task. Here
Soar’s explicit goal is to predict the category name of the incoming object description. Category
prediction rules serve as task knowledge which may be immediately applicable in fulfilling the task’s
goal. When no such knowledge is immediately applicable, an impasse results. In this case, subgoaling
relies on additional knowledge by modifying the object description so that more general rules may
apply. This is accomplished by selecting and then applying an operator that removes a feature
from the object description. Selecting an operator is a deliberate act, i.e. all applicable knowledge
(represented as productions) are brought to bear in the operator’s selection. If this knowledge is
insufficient or inconsistent, an impasse will result setting up the subgoal of resolving the selection
tie or conflict. Further deliberation may resolve the impasse which may include look-ahead search,

61

retrieving strategic advice, and retrieving relevant domain knowledge. If all else fails, an operator
can always be selected at random.

Once an operator is selected and applied by modifying the object description, a prediction rule
may apply, thereby fulfilling the task goal. If not, impasses and subgoaling continues until a pre-
diction rule does apply. Chunking, the experienced-based learning mechanism, automatically learns
by summarizing the results from resolving the impasse. In this case, it learns a more specific rule
based upon the conditions of the rule that matched and the feature that was last removed from the
object description.

One critical technical detail is the means in which more general rules are inhibited until the
object description only includes features in the rule’s conditions. For example, let us consider the
situation where the current object description has the representation [blue, spherical, smalll
and one of the prediction rules has the condition [blue]. Normally, a Soar production fires whenever
its conditions fully match any part of the representation in working memory. Thus the more general
production would fire before the other two features are deliberated removed from the object descrip-
tion. There are several ways to inhibit these productions from firing prematurely, without making
any changes to the architecture. One simple approach requires representing object descriptions as a
linked list of features. Provided that features are listed in a canonical order and that the last feature
is marked as being the last in the list, the only production that fires will be the one whose conditions
include all of the features in the list. More general productions will not fire until the appropriate
features are first deliberately removed from the linked list. Other possible ways of implementing
this kind of restricted match include placing explicit negations in productions’ conditions, explicitly
marking features as ‘irrelevant’ and then matching the irrelevant markings, and constructing new
symbols representing combinations of features. A remaining challenge is to develop restricted match
technique for more complex object representations.

The above set of implementational details have led to one successful implementation of SCA.
Others probably exist. Possible deviations include different uses of goals and impasses and alternate
implementations of restricting production matching. A future research issue involves understanding
and implementing alternate methods which could incorporate more sophisticated object represen-
tations. As long as a new method adhered to SCA’s general properties, the resulting model would
still possess the same functional and behavioral properties I have identified in this thesis.

62

Appendix B

Formal specification of a concept

This appendix provides a formal definition of a concept as implemented by the SCA model. This
formal specification is not a process model in the sense that SCA is a “strong” cognitive model,
and thus does not make process-dependent predictions such as typicality effects in terms of response
time.

Here, a concept is defined in terms of a set of prediction assertions and a coniezt. The constructs
have intuitive mappings to SCA. A prediction assertion described here functions as a prediction
rule in SCA. A contert maps to feature selection since it constrains which prediction assertions are
applicable to the object description.

B.1 Object descriptions
Object descriptions consist of attributes predicated by values. We denote a list of m attributes:
Ay, Agy . Ap
Each attribute Ax can be predicated by one of n, values denoted:
Ve, Vo2, oo, Ven,

Object descriptions consist of a subset of attributes predicated by values where 0 <= m and

iz F iy
A!'x(vt'x,jx)s Al'a(vt'z.ja)i .- "Al'o(Vt'o.J'o)

Since the name of the value implies the attribute, attributes with specified values can simply be
noted as:

V;‘,,j,, Viz.jw .- "Vio.ia

Typically, in our examples, we list attributes and values by their names instead of indexing
them. An example list of attributes may be texture, color, shape, rigidity and size. An example list
of possible values for texture may include fuzzy, smooth, rough, pebbled. Here’s an example object
description:

Texture(fuzzy), Color(red), Shape(spherical), Size(small)
or simply:

fuzzy, red, spherical, small

63

B.2 Concept definition

A concept definition is defined by a contezt and a set of prediction assertions. Given an object
description, the concept definition produces the category of the object.

B.2.1 Prediction assertions

Prediction assertions consist of a condition-prediction pairing of the form:
<condition; prediction>

The condition part is identical to the object description construction. The prediction part is a
concept label. The following are several examples of prediction assertions:

<smooth, red, spherical; ball>

<fuzzy, blue; ball>

<smooth, red; ball>

<smooth, blue; globe>

<smooth, blue, large; globe>

<smooth, blue, large, spherical; ball>

Definition 2 Prediction assertion p is consistent with object description d if for every value v in
the condition of p (written v €, Cond(p)), v is also in d.

For example,

<smooth, blue; globe>

<smooth, blue, large; globe>

<smooth, blue, large, spherical; ball>
<smooth, soft; sponge>

are all consistent with
smooth, blue, large, spherical, soft

Definition 3 The consistency set of a set of prediction assertions P and an object description d
is the set of all the prediction assertions in P that are consistent with d.

Definition 4 For prediction assertions p and ¢, Cond(p) C, Cond(q) if, for every d with which ¢ is
consistent, p is also consistent. Also, Cond(p) C, if Cond(p) C, Cond(q) and Cond(p) # Cond(q).

Examples:
p = <smooth, blue; globe>
q = <smooth, blue, large, spherical; globe>
8 = <smooth, blue, large, spherical; ball>

Cond(p) C, Cond(q)
Cond(q) C, Cond(s)

Note that the relation, C,, imposes a partial order on prediction assertion conditions.

Definition 5 Given the consistency set Q taken from a set of prediction assertions P and an object
description d, the prediction set of P and d, denoted II(P, d), ts the set

{plp € Q A—~3[z € Q]Cond(p) Cp, Cond(z)}

64

Intuitively, the prediction set is the most specific set of prediction assertions from P that are
consistent with d. For example, for the following prediction assertions and object description,

<smooth, red, spherical; ball>
<fuzzy, blue; ball>

<smooth, red; ball>

<smooth, blue; globe>

<smooth, large; globe>

<smooth, large, spherical; ball>
<smooth, soft; sponge>

smooth, blue, large, spherical, soft
the resulting prediction set is

<smooth, large, spherical; ball>
<smooth, soft; sponge>

B.2.2 Contexts
Contexts are used to reduce the prediction set to a smaller size, often to one unique prediction.
Definition 6 Given a set of atiributes A, a contezt C is a total order, <., on A.
Example:
texture <. shape <. size <. rigidity <. color

Definition 7 Given an object description d, a set of prediction assertions P, and a context C, the
defining assertion(s), denoted Def(d,P,C), is

H(P,d)N{p|V[v,w € Av €g dAw & dlv <. w}
The context thus constrains which attributes are used in reducing the size of the prediction set.

Definition 8 If there is only one defining assertion, the concept for d, as defined by P and C, is
that assertion’s prediction. If there is more than one defining assertion, the concept is undefined.!

The defining assertion using the examples from Definition 5 is
<smooth, large, spherical; ball>

Thus, the concept is ball.

1For computer simulations emulating a forced-choice task, the model must randomly choose one of the defining
assertions.

65

Bibliography

[Aha et al, 1991] D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning algorithms.
Machine Learning, 6:37-66, 1991.

[Aha, 1989] D. W. Aha. Incremental, instance-based learning of independent and graded concept
descriptions. In Proceedings of the Sizth International Workshop on Machine Learning, pages
387-391, 1989.

(Ahn and Medin, 1992] Woo-Kyoung Ahn and D. L. Medin. A two-stage model of category con-
struction. Cognifive Science, 16:81-121, 1992.

[Aho et al., 1974] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Com-
puter Algorithms. Addison-Wesley Publishing Company, Reading, Massachusetts, 1974.

[Anderson and Murphy, 1986] J. A. Anderson and G. L. Murphy. Psychological concepts in a parallel
system. Physica, pages 318-336, 1986.

[Anderson et al., 1979] J. R. Anderson, P. J. Kline, and C. M. Beasley, Jr. A general learning
theory and its application to schema abstraction. The Psychology of Learning and Motivation,
13:277-318, 1979.

[Anderson, 1983] J. R. Anderson. The Architecture of Cognition. Harvard University Press, Cam-
bridge, Massachusetts, 1983.

[Anderson, 1987] J. R. Anderson. Skill acquisition: Compilation of weak-method problem solutions.

Psychological Review, 94:192-210, 1987.

[Anderson, 1991] J. R. Anderson. The adaptive nature of human categorization. Psychological
Review, 98:409-429, 1991.

[Bergadano et al., 1992] F. Bergadano, S. Matwin, R. S. Michalski, and J. Zhang. Learning two-
tiered descriptions of flexible concepts: The POSEIDON System. Machine Learning, 8:5-43,
1992.

[Billman and Heit, 1988] D. Billman and E. Heit. Observational learning from internal feedback: A
simulation of an adaptive learning method. Cognitive Science, 12:587-625, 1988.

[Blumer et al., 1987] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam’s razor.
Information Processing Letters, 23:377-380, 1987.

[Booker et al., 1989] L.B. Booker, D.E. Goldberg, and J.H. Holland. Classifier systems and genetic
algorithms. Artificial Intelligence, 40:235-282, 1989.

[Breiman et al., 1984] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Re-
gression Trees. Wadsworth, Monterey, CA, 1984.

[Carey, 1982] S. Carey. Semantic development: the state of the art. In E. Wanner and L. R. Gleit-
man, editors, Language Acquisition: The State of the Art, pages 347-389. Cambridge University
Press, New York, 1982.

66

[Cheeseman et al., 1988] P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor, and D. Freeman.
AutoClass: A baysesian classification system. In Proceedings of the Fifth International Conference
on Machine Learning, pages 54-64, 1988.

[Clark, 1973] E. V. Clark. What’s in a word? on the child’s acquisition of semantics in his first
language. In T. Moore, editor, Cognitive development and the acquisition of language. Academic
Press, New York, 1973.

[Collins and Quillian, 1969] A. M. Collins and M. R.. Quillian. Retrieval time for semantic memory.
Journal of Verbal Learning and Verbal Behavior, 8:240-247, 1969.

[Conrad, 1972) C. Conrad. Cognitive economy in semantic memory. Journal of Ezperimental Psy-
chology, 92:149-154, 1972.

[Dejong and Mooney, 1986] G. Dejong and R. Mooney. Explanation-based learning: An alternative
view. Machine Learning, 1:145-176, 1986.)

[Dietterich, 1986] T. G. Dietterich. Learning at the knowledge level. Machine Learning, 1:287-316,
1986.

[Doorenbos et al., 1992] R. Doorenbos, M. Tambe, and A. Newell. Learning 10,000 chunks: what’s
it like out there. In Proceedings of the National Conference on Artificial Intelligence, 1992.

[Dromi, 1987] E. Dromi. Early Lezical Development. Cambridge University Press, New York, 1987.

[Elio and Anderson, 1984] R. Elio and J. R. Anderson. The effects of information order and learning
mode on schema abstraction. Memory and Cognition, 12:20-30, 1984.

[Fayyad, 1991} U. M. Fayyad. On the induction of decision trees for multiple concept learning. PhD
thesis, The University of Michigan, 1991.

[Feigenbaum and Simon, 1984] E. A. Feigenbaum and H. A. Simon. Epam-like models of recognition
and learning. Cognitive Science, 8:305-336, 1984.

[Fisher and KcKusick, 1989] D. H. Fisher and K. B. KcKusick. An empirical comparison of ID3 and
Back-propagation. In Eleventh International Joint Conference on Artificial Intelligence, pages
788-793, 1989.

[Fisher and Langley, 1990] D. Fisher and P. Langley. The structure and formation of natural cate-
gories. Technical Report RIA-90-02-15-1, NASA Ames Research Center, 1990.

[Fisher, 1987] D. H. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine
Learning, 2:139-172, 1987.

[Fisher, 1988] D. H. Fisher. A computational account of basic level and typicality effects. In Pro-
ceedings of the Seventh National Conference on Artificial Intelligence, pages 233-238, 1988.

[Fisher, 1989] D. H. Fisher. Noise-tolerant conceptual clustering. In Eleventh International Joint
Conference on Artificial Intelligence, pages 825-830, 1989.

[Forgy, 1982] C. L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence, 19:17-37, 1982.

[Gluck and Bower, 1988a] M. A. Gluck and G. H. Bower. Evaluating an adaptive network model of
human learning. Journal of Memory and Language, 27:166-195, 1988.

[Gluck and Bower, 1988b] M. A. Gluck and G. H. Bower. From conditioning to category learning:
An adaptive network model. Journal of Ezperimental Psychology: General, 117:227-247, 1988.

[Hanson and Bauer, 1989] S. J. Hanson and M. Bauer. Conceptual clustering, categorization, and
polymorphy. Machine Learning, 3:343~372, 1989.

67

[Haussler, 1988] D. Haussler. Quantifying inductive bias: AI learning algorithms and Valiant’s
learning framework. Artificial Intelligence, 36:177-221, 1988.

[Hintzman, 1986] D. L. Hintzman. Schema abstraction in a multiple-trace memory model. Psycho-
logical Review, 93:411-428, 1986.

[Holland and Reitman, 1978] J. H. Holland and J. S. Reitman. Cognitive systems based on adaptive
algorithms. In D. A. Waterman and F. Hayes-Roth, editors, Pattern-directed Inference Systems,
pages 313-329. Academic Press, New York, 1978.

[Huffman et al., 1993] S.B. Huffman, C.S. Miller, and J.E. Laird. Learning from instruction: A
knowledge-level capability within a unifed theory of cognition. In Proceedings of the 15th Annual
Meeting of the Cognitive Science Soctety, 1993.

[John, 1988] B. E. John. Contributions to Engineering Models of Human-Computer Inieraction.
PhD thesis, Carnegie-Mellon University, 1988.

[Kohonen, 1982] T. Kohonen. Self-organized formation of topologically correct feature maps. Bio-
logical Cybernetics, 43:59-69, 1982.

[Kolodner, 1983] J. L. Kolodner. Maintaining organization in a dynamic long-term memory. Cog-
nitive Science, 7:243-280, 1983.

[Kruschke, 1990] J. K. Kruschke. ALCOVE: A connectionist model of category learning. Research
Report 47, Cognitive Science Program, Indiana University, 1990.

[Kruschke, 1991] J. K. Kruschke. Dimensional attention learning in models of human categorization.
In The 13th Annual Conference of the Cognilive Science Society, 1991.

[Laird et al., 1987] J. E. Laird, A. Newell, and P. S. Rosenbloom. Soar: An architecture for general
intelligence. Artificial Intelligence, 33:1-64, 1987.

[Lakoff, 1987] G. Lakoff. Women, Fire and Dangerous Things. The University of Chicago Press,
Chicago, 1987.

[Lebowitz, 1987] M. Lebowitz. Experiments with incremental concept formation: Unimem. Machine
Learning, 2:103-138, 1987.

[Lewis et al., 1990] R. L. Lewis, S. B. Huffman, B. E. John, J. E. Laird, J. F. Lehman, A. Newell,
P. S. Rosenbloom, T. Simon, and S. G. Tessler. Soar as a unified theory of cognition: Spring 1990.
In Proceedings of the 12th Annual Conference of the Cognitive Science Society, pages 1035-1042,
Cambridge, MA, 1990.

[Martin and Billman, 1991] J. D. Martin and D. O. Billman. Variability bias and category learning.
In Machine Learning: Proceedings of the Eighth Internation Workshop, pages 90-94, 1991.

[Medin and Schaffer, 1978] D. L. Medin and M. M. Schaffer. Context theory of classification learn-
ing. Psychological Review, 85:207-238, 1978. ’

[Medin and Schwanenflugel, 1981] D. L. Medin and P. J. Schwanenflugel. Linear separability in
classification learning. Journal of Ezperimental Psychology: Human Learning and Memory, 7:355-
368, 1981.

[Medin and Smith, 1981] D. L. Medin and E. E. Smith. Strategies and classification learning. Jour-
nal of Experimental Psychology: Human Learning and Memory, 7:241-253, 1981.

[Michalski and Stepp, 1983] R.S. Michalski and R. E. Stepp. Learning from observation: conceptual
clustering. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learning:
An Artificial Intelligence Approach, pages 331-363. Morgan Kaufmann, Los Altos, CA, 1983.

68

[Michalski, 1983] R. S. Michalski. A theory and methodology of inductive learning. Artificial Intel-
ligence, 20:111-161, 1983.

[Miller and Laird, 1991] C. S. Miller and J. E. Laird. A constraint-motivated model of concept
formation. In The 13th Annual Conference of the Cognitive Science Society, pages 827-831, 1991.

[Miller and Laird, 1992] C. S. Miller and J. E. Laird. A simple symbolic algorithm for incremental
concept acquisition. Technical Report CSE-TR-153-93, Department of Electrical Engineering and
Computer Science, The University of Michigan, 1992.

[Minton, 1988] S. Minton. Quantitative results concerning the utility of explanation-based learning.
In Proceedings of the National Conference on Artificial Intelligence, pages 564-569, 1988.

[Mitchell et al., 1986] T. M. Mitchell, R. M. Keller, and S. T. Kedar-Cabelli. Explanation-based
generalization: A unifying view. Machine Learning, 1:47-80, 1986.

[Mitchell, 1990} T. M. Mitchell. The need for biases in learning generalizations. In J. W. Shavlik
and T. G. Dietterich, editors, Readings in Machine Learning, pages 184-190. Morgan Kaufmann,
San Mateo, CA, 1990.

[Mooney et al., 1989] R. Mooney, J. Shavlik, G. Towell, and A. Gove. An experimental comparison
of symbolic and connectionist learning algorithms. In Eleventh International Joint Conference on
Artificial Intelligence, pages T75-780, 1989.

[Murphy and Medin, 1985] G. L. Murphy and D. L. Medin. The role of theories in conceptual
coherence. Psychological Review, 92:289-316, 1985.

[Murphy and Smith, 1982] G. L. Murphy and E. E. Smith. Basic-level superiority in picture cate-
gorization. Journal of Verbal Learning and Verbal Behavior, 21:1-20, 1982.

[Newell, 1990} A. Newell. Unified Theories of Cognition. Harvard University Press, Cambridge, MA,
1990.

[Nosofsky and Gluck, 1989] R. M. Nosofsky and M. A. Gluck. Adaptive networks, exemplars, and
classification rule learning. Paper presented at the 30th annual meeting of the Psychonomic
Society, Atlanta, 1989.

[Paxton, 1990] J. T. Paxton. Martian: A Concept Learning System. PhD thesis, The University of
Michigan, 1990.

[Quinlan, 1986] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.

[Ratcliff and Murdock Jr., 1976] R. Ratcliff and B. B. Murdock Jr. Retrieval processes in recogni-
tional memory. Psychological Review, 83:190-214, 1976.

[Ratcliff, 1978] R. Ratcliff. A theory of memory retrieval. Psychological Review, 85:59-108, 1978.

[Reich, 1976] P. A. Reich. The early acquisition of word meaning. Journal of Child Language,
3:117-123, 1976.

[Rips, 1989] L. J. Rips. Similarity, typicality and categorization. In S. Vosniadou and A. Ortony,
editors, Similarity and analogical reasoning, pages 21-59. Cambridge University Press, Cambridge,
1989.

[Rosch and Mervis, 1975] E. Rosch and C. B. Mervis. Family resemblances: Studies in the internal
structure of categories. Cognitive Psychology, 7:573-605, 1975.

[Rosch et al., 1976a] E. Rosch, C. B. Mervis, W. D. Gray, D. M. Johnson, and P. Boyes-Braem.
Basic objects in natural categories. Cognitive Psychology, 8:382-439, 1976.

69

[Rosch et al., 1976b] E. Rosch, C. Simpson, and R. S. Miller. Structural bases of typicality effects.
Journal of Ezperimental Psychology: Human Perception and Performance, 2:491-502, 1976.

[Rosch, 1978] E. Rosch. Principles of categorization. In E. Rosch and B. B. Lloyd, editors, Cognition
and Categorizalion, pages 27-48. Erlbaum, Hillsdale, NJ, 1978.

[Rosenblatt, 1962] F. Rosenblatt. Principles of Neurodynamics. New York, Sparten, 1962.

[Rosenbloom and Aasman, 1990] P. S. Rosenbloom and J. Aasman. Knowledge level and inductive
uses of chunking (EBL). In Proceedings, Eighth National Conference on Artificial Intelligence,
pages 821-827, 1990.

[Rosenbloom et al., 1988] P. S. Rosenbloom, J. E. Laird, and A. Newell. The chunking of skill and
knowledge. In B. A. G. Elsendoorn and H. Bouma, editors, Working Models of Human Perception.
Academic Press, London, 1988.

[Rumelhart et al., 1986a) D. E. Rumelhart, G. E. Hinton, and J. L. McClelland. A general frame-
work for parallel distributed processing. In D. E. Rumelhart and J. L. McClelland, editors, Parallel
Distributed Processing: Ezplorations in the Microstructure of Cognition, Volume I, pages 318-362.
The MIT Press, Cambridge, MA, 1986.

[Rumelhart et al., 1986b] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal
representations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel
Distributed Processing: Ezplorations in the Microstructure of Cognition, Volume 1, pages 318-362.
The MIT Press, Cambridge, MA, 1986.

[Schank et al., 1986] R. C.Schank, G. C. Collins, and L. E. Hunter. Transcending inductive category
formation in learning. Behavioral and Brain Sciences, 9:639-686, 1986.

[Schlimmer and Fisher, 1986] J. C. Schlimmer and D. Fisher. A case study of incremental concept
induction. In Proceedings of the Fifth National Conference on Artificial Intelligence, pages 115-
121, 1986.

[Schlimmer, 1987] J. C. Schlimmer. Incremental adjustment of representations for learning. In
Proceedings of the Fourth International Workshop on Machine Learning, pages 79-90, 1987.

[Schyns, 1991] P. G. Schyns. A modular neural network model of concept acquisition. Cognitive
Science, 15:461-508, 1991.

[Shavlik et al., 1991] J. W. Shavlik, R. J. Mooney, and G. G. Towell. Symbolic and neural learning
algorithms: An experimental comparison. Machine Learning, 6:111-143, 1991.

[Shepard et al., 1961] R. N. Shepard, C. I. Hovland, and H. M. Jenkins. Learning and memorization
of classifications. Psychological Monographs: General and Applied, 75(13):1-41, 1961.

[Shortliffe, 1976] E. H. Shortliffe. Computer-based medical consultations: MYCIN. American Else-
vier, New York, 1976.

[Simon and Feigenbaum, 1964] H. A. Simon and E. A. Feigenbaum. An information processing
theory of some effects of similarity, familiarization, and meaningfulness in verbal learning. Journal
of Verbal Learning and Verbal Behavior, 3:385-396, 1964.

[Tambe and Newell, 1988] M. Tambe and A. Newell. Some chunks are expensive. In Proceedings of
the Fifth International Conference on Machine Learning, 1988.

[Utgoff, 1988] P. E. Utgoff. ID5: An incremental ID3. In Proceedings of the Fifth International
Conference on Machine Learning, pages 107-120, 1988.

[Valiant, 1984] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27:1134-1142,
1984.

70

[Vapnik, 1982} V. N. Vapnik. Estimation of Dependencies Based on Empirical Data. Springer, New
York, 1982.

[Wiesmeyer and Laird, 1990] M. Wiesmeyer and J. Laird. A computer model of 2d visual attention.
In The Twelfth Annual Conference of the Cognitive Science Society, pages 582-589, 1990.

[Zadeh, 1965] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338-353, 1965.

71

NNNNNNNNNNNNNNNNNNN

IR

3 9015 03126 3034

