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Summary. Medical studies often collect physiological and/or psychological measurements over time from
multiple subjects, to study dynamics such as circadian rhythms. Under the assumption that the ex-
pected response functions of all subjects are the same after shift and scale transformations, shape-
invariant models have been applied to analyze this kind of data. The shift and scale parameters pro-
vide efficient and interpretable data summaries, while the common shape function is usually modeled
nonparametrically, to provide flexibility. However, due to the deterministic nature of the shift and scale
parameters, potential correlations within a subject are ignored. Furthermore, the shape of the com-
mon function may depend on other factors, such as disease. In this article, we propose shape-invariant
mixed effects models. A second-stage model with fixed and random effects is used to model individ-
ual shift and scale parameters. A second-stage smoothing spline ANOVA model is used to study po-
tential covariate effects on the common shape function. We apply our methods to a real data set to
investigate disease effects on circadian rhythms of cortisol, a hormone that is affected by stress. We find
that patients with Cushing’s syndrome lost circadian rhythms and their 24-hour means were elevated
to very high levels. Patients with major depression had the same circadian shape and phases as nor-
mal subjects. However, their 24-hour mean levels were elevated and amplitudes were dampened for some
patients.

Key words: Biological rhythm; Repeated measures data; Self-modeling nonlinear regression model; Semi-
parametric nonlinear mixed effects model.

1. Introduction
Biological rhythms are fundamental to living matter from
subcellular particles to the human organism (Wever, 1979).
For example, it is known that hormone cortisol levels peak
in the morning and decrease to substantially lower levels
late at night. Recent advances have shown the importance
of these rhythms for everyday life, in health, as well as in
disease (Kupfer, Monk, and Barchas, 1988; Reilly, Atkinson,
and Waterhouse, 1997). Information on biological rhythms
has been applied to almost every field of clinical and labora-
tory medicine (Hayes, Pauly, and Reiter, 1990; Touitou and
Haus, 1992; Redfern and Lemmer, 1997).

Medical researchers are often interested in circadian
rhythms: a cyclical variation in the intensity of a metabolic or
physiological process with a period of about 24 hours. Exper-
iments are typically conducted in such a way that variables of
interest are measured several times during a time period, say,
24 hours, from a group of normal (or sick) human subjects
(or animals). The problems of interest are: 1) do circadian

rhythms exist? and 2) do demographic (e.g., age, sex), en-
vironmental (e.g., time-zone transition, workload), and med-
ical, physiological or psychological (e.g., depression, stress)
variables affect circadian rhythms, and if so, how?

In an experiment to study immunological responses in
humans, blood samples were collected every two hours for
24 hours from 9 healthy normal volunteers, 11 patients with
major depression and 16 patients with Cushing’s syndrome.
These blood samples were analyzed for parameters that mea-
sure immune functions and hormones of the hypothalamic-
pituitary-adrenal (HPA) axis (Kronfol et al., 1997). In this
article, we will concentrate on cortisol. Figure 1 presents the
observed concentrations (ug/dl) of the cortisol on a log scale
from the nine healthy subjects.

It is well known that many hormones vary in a circadian
pattern (Kronfol et al., 1997; Wang and Brown, 1996). Since
the 24-hour periodicity is entrained, the cycle length is fixed.
The common practice is to fit a single sinusoidal function
to each subject (Monk, 1982; Cugini et al., 1990; Prins and
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Figure 1. Plots of cortisol concentration on the log scale and fitted curves for normal subjects. Circles are observa-
tions. Solid lines represent fits from model (11). Dotted lines represent fits from model (8). Subjects’ IDs are shown in the
strip.

Hecquet, 1992). Problems with this approach are: (a) the
pattern over time may not be symmetric; that is, the peak
and nadir may not be separated by 12 hours and/or the am-
plitude and width of the peak may differ from those of the
nadir, (b) sometimes there are local minimum and maximum
points (Wang and Brown, 1996). It has been recognized that
the sinusoidal function is too restrictive and “rhythms with a
shape closely approximating a cosine curve are uncommon”
(Reilly et al., 1997, p. 151). Thus, “other statistical methods
must have preference which do not precondition any definite
rhythm shape” (Wever, 1979, p. 20).

Although adding harmonics can improve the fit, it is diffi-
cult to decide how many harmonics to include in the model,
and the results are difficult to interpret. From Figure 1, one
can see that the data are noisy and it is difficult to iden-
tify patterns among subjects. Average measurements of all
subjects are often plotted against time to find a common fea-
ture. Such a procedure may produce artifacts when subjects
have different phases, means, or/and amplitudes (Reilly et al.,
1997).

The goal of this article is to propose a new class of flexible
methods and demonstrate their applications. In Section 2,
we review the shape invariant models and introduce shape

invariant mixed effects models. Analyses of the cortisol data
are presented in Section 3. We conclude with discussions in
Section 4.

2. Shape-Invariant Mixed Effects Models
2.1 Shape-Invariant Model for Circadian Rhythms
Wang and Brown (1996) developed a flexible shape-invariant
model (SIM) using a periodic spline function as the common
curve, and modeled individual variations by 24-hour means,
phases, and amplitudes. More precisely, they assumed that

yij = µi + αif(tij − τi) + εij , i = 1, . . . ,m; j = 1, . . . , ni,

(1)

where m is the total number of subjects, ni is the number of
observations for subject i, yij is the response of ith individual
at the jth time point tij , µi is the 24-hour mean of the ith
individual, αi > 0 is the amplitude of the ith individual, and
0 ≤ τ i < 1 is the phase (horizontal shift) of the ith individual.
For simplicity, the 24-hour period is transformed into [0,1].
εij ’s are random errors and εij

iid∼ N(0, σ2).
The function f in (1) is the common circadian shape

function. It is a periodic function with period one. For
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identifiability of model (1), it is also assumed that the integral
of f equals zero and supt∈[0,1] |f(t)| = 1. Specifically, let

W 0
2 (per) =

{
f : f and f ′ are absolutely continuous,

∫ 1

0

(f ′′(t))2 dt < ∞,

∫ 1

0

f(t) dt = 0, f(0) = f(1),

f ′(0) = f ′(1)

}
(2)

be the reproducing kernel Hilbert space of cubic splines on the
circle, without the constant term (Wahba, 1990). The model
space for f in (1) is

M =
{
f ∈ W 0

2 (per) : sup
t∈[0,1]

|f(t)| = 1
}
. (3)

The SIMs have also been applied to areas such as human
growth (Stutzle et al., 1980), spirometry, spectrophometric,
and sensitometric analyses (Lawton, Sylvestre, and Maggio,
1972), bioassay (Guardabasso, Rodbard, and Munson, 1987),
curve registration (Ramsay and Li, 1998), and metabolism
(Altman, 1996). The advantage of model (1) is that no spe-
cific form has been assumed for the common function; it is
only assumed to be periodic and smooth, and its shape is de-
cided by the data. Therefore, the model is very flexible. Note
that the sinusoidal function is a special case of model (1),
with f(t) = sin 2πt. The periodic spline function in model (1)
reduces to a sinusoidal function if the extra flexibility is not
warranted by data. Observations will be pooled from all sub-
jects to estimate this shape function. Parameters of interest
to scientists (24-hour mean, amplitude, and phase) remain
the same as those in a sinusoidal model. However, model (1)
has the following drawbacks: (a) the parameters µi, αi and
τ i in model (1) were assumed to be fixed effects. As a con-
sequence, observations from the same subject were assumed
to be independent; (b) besides the nonparametric function f,
the number of parameters equals 3m + 1, which increases
with the number of subjects. This may adversely affect the
estimation and inference for the parameters under the com-
mon experimental situation that the number of subjects is
large and the number of observations for each subject is small;
(c) it is difficult to investigate covariate effects on parameters
and/or the common curve. Ad hoc second-stage analyses are
often used to investigate covariate effects. In the next section,
we use mixed effects models for the parameters and smooth-
ing spline ANOVA models for the common curve to overcome
these problems.

2.2 Shape-Invariant Mixed Effects Models
We will construct a two-stage model. At the first stage, we
assume the same model as (1) and rewrite it as

yij = φ1i + exp(φ2i)f(tij − alogit(φ3i)) + εij ,

i = 1, . . . ,m, j = 1, . . . , ni. (4)

Note that the exponential transformation is used to force the
amplitude to be positive and the inverse logistic transforma-
tion, alogit(x) = exp(x)/(1 + exp(x)), is used to force the

phase to be inside the interval [0,1]. We will allow random er-
rors within a subject to be correlated: εi = (εi1, . . . , εini

)T ∼
N(0, σ2Λi). Thus, model (4) itself is more general than the
classical SIM (1).

Let φi = (φ1i, φ2i, φ3i)
T . Denote zi as the covariate vector

of subject i. At the second stage, between-subject differences
are modeled using covariate information with the following
linear model (Lindstrom and Bates, 1990):

φi = Aiβ + Bibi, bi
iid∼ N(0, σ2D), (5)

where β is a p-vector of fixed population parameters, bi is a
q-vector of random effects associated with subject i, and Ai

and Bi are 3 × p and 3 × q design matrices determined by
the covariate vector zi. More complicated models, such as the
nested model in Section 3, may be used.

Covariate effects on the circadian shape function can be
modeled using a smoothing spline ANOVA (SS ANOVA)
decomposition

f(z, t) = µ + f1(z) + f2(t) + f12(z, t), (6)

where µ is a constant, f 1 and f 2 are the main effects of covari-
ates z and t, respectively, and f 12 is the interaction between
z and t. Note that z could be a vector of covariates. Thus,
further SS ANOVA decompositions may be constructed for f 1

and f 12. What model space and SS ANOVA decomposition to
use for f depends on the domains of z and t, prior knowledge,
constraints for identifiability, and purpose of the analysis. See
Wahba (1990) and Gu (2002) for details about SS ANOVA
decompositions.

Equations (4), (5), and (6) altogether define a shape-
invariant mixed effects model (SIMM). Interpretations of
the parameters remain the same. Correlation within a sub-
ject is modeled with random effects and random errors. Co-
variate effects on parameters and/or the common curve are
part of the model. The awkward constraint for identifiability,
supt∈[0,1] |f(t)| = 1, can be dropped by removing a constant
term from the fixed effect of φ2i.

Lindstrom (1995) extended the SIM by including random
shift and scale parameters. She used a free-knot spline with
a fixed number of knots to model the common curve. Our
second-stage models are more general. The second-stage SS
ANOVA model (6) for the common function is especially new.
Our procedure allows data to mold the shape of the common
curve. For simplicity, our methods are presented using peri-
odic splines. It is straightforward to generalize these methods
to the setting of general smoothing splines (Wahba, 1990).

2.3 Estimation, Inference, and Software
Because f interacts with parameters (fixed or random) in a
nonlinear manner, estimation is complicated. Ke and Wang
(2001) developed estimation methods for semiparametric non-
linear mixed effects models (SNM). Since the SIMM is a spe-
cial case of the SNM model, the methods developed for SNM
models can be used.

We now briefly describe these methods for SIMMs. Con-
sider a SIMM (4) with an SS ANOVA model (6) for f and a
second-stage model (5) for φi’s. Let a vector θ contain all pa-
rameters in Λi’s and D. We need to estimate parameters β,
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σ2, and θ, the nonparametric function f and its components
µ, f 1, f 2, and f 12, and random effects bi’s. Let N =

∑m

i=1 ni,
yi = (yi1, . . . , yini

)T , η(φi, f ; zi, tij ) = φ1i + exp(φ2i)
f(zi, tij − alogit(φ3i)), and ηi(φi, f) = (η(φi, f ;zi, ti1), . . . ,
η(φi, f ;zi, tini

))T . Let

L(β, f,θ, σ2) = (2πσ2)−
mq+N

2 |D|−m
2

(
m∏
i=1

|Λi|−
1
2

)

×
∫

exp[−g(b)/σ2] db,

be the marginal likelihood based on the SIMM, where b =
(bT1 , . . . , bTm)T , and

g(b) =
1

2

m∑
i=1

[
(yi − η(Aiβ + Bibi, f))TΛ−1

i

× (yi − η(Aiβ + Bibi, f)) + bTi D
−1bi

]
.

Ke and Wang (2001) used Laplace’s method to approximate
the log likelihood l(β, f , θ, σ2) = log(L(β, f , θ, σ2)), because
the integral with respect to the random effects b is usually in-
tractable. For fixed β, f, θ, and σ2, we estimate random effects
b by the minimizer b̃ of g(b). Applying Laplace’s method for
integral approximation, we approximate l(β, f , θ, σ2) by

l̃(β, f,θ, σ2)

= −N

2
log 2πσ2 − 1

2

m∑
i=1

(
log |Λi| + log |I + Z̃T

i Λ−1
i Z̃iD|

)

− 1

2σ2

m∑
i=1

[
(yi − ηi(Aiβ + Bib̃i, f))TΛ−1

i

× (yi − ηi(Aiβ + Bib̃i, f)) + b̃
T

i D
−1b̃i

]
, (7)

where Z̃i = ∂ηi(Aiβ + Bibi, f)/∂bTi |bi=b̃i
. For fixed b̃, σ2,

and θ, we estimate β and f as minimizers of the approximate
penalized log likelihood

−l̃(β, f,θ, σ2) + Nλ1J1(f1) + Nλ2J2(f2) + Nλ12J12(f12),

where J1(f 1), J2(f 2), and J12(f 12) are penalties for nonpara-
metric components in (6), and λ1, λ2, and λ12 are smoothing
parameters. Denoting the solutions to (7) as β̃ and f̃ , and
plugging them into the approximate log likelihood, we then es-
timate σ2 and θ as the maximizers to the profile log likelihood
l̃(β̃, f̃ ,θ, σ2). Estimates of b, β, f, θ, and σ2 can be calculated
by iterating the above process until convergence. Further sim-
plifications for each step can be found in Ke and Wang (2001).
Data-adaptive criteria, such as generalized cross-validation,
unbiased risk, and restricted maximum likelihood, are used
to estimate the smoothing parameters (Ke and Wang, 2001;
Wang, 1998).

Wang and Ke (2002) developed a user-friendly S-Plus pack-
age, ASSIST, for fitting many spline based models. One func-
tion, snm, is designed for fitting general SNM models. Thus,
this function can be used to fit SIMMs. This package is
available at http://www.pstat.ucsb.edu/faculty/yuedong/
research. Programs used for fitting the hormone data are
shown in the manual of this package.

Exact inference is difficult, due to the complicated relation-
ship between f and parameters. We use conditional inference.
Inference for f conditional on the estimated parameters was
described in Ke and Wang (2001). Inference for parameters
conditional on the estimate of f can be conducted as follows:
when f is fixed, the SIMM reduces to a nonlinear mixed ef-
fects model. Thus, standard methods such as the t-test based
on equation (7.20) in Pinheiro and Bates (2000) can be used.
The residual degrees of freedom are adjusted to reflect the
cost for estimating f.

3. Data Analyses
The data set obtained from the experiment described in Sec-
tion 1 contains the following variables: ID of subjects, time
when measurements were taken, cortisol concentrations on log
scale (named as horm), and subject group (normal, depression,
Cushing’s syndrome). For simplicity, the time variable of a
24-hour period is transformed into [0,1]. Observations are
shown in Figures 1, 2, and 3 as circles.

We first fit the following SIMM for each group

yij = β + b1i + exp(b2i)f(tij − alogit(b3i)) + εij ,

i = 1, . . . ,m, j = 1, . . . , ni, (8)

where the fixed effect β represents 24-hour mean of the
population, the random effects b1i, b2i, and b3i represent
the ith subject’s deviation of 24-hour mean, amplitude, and
phase. We assume that f ∈ W 0

2(per) and bi = (b1i, b2i, b3i)
T iid∼

N(0, σ2D), where D is an unstructured positive-definite ma-
trix. The assumption of zero population mean for amplitude
and phase parameters takes care of potential confounding
between amplitude, phase, and the nonparametric common
function f in a natural way. In terms of notation in model (5),
we have Ai = (1, 0, 0)T and Bi is a 3 × 3 identity matrix.

The fits are shown in Figures 1, 2, and 3 as dotted lines. The
estimated common functions are shown in Figure 4, together
with their 95% Bayesian confidence intervals.

Observations close in time from the same subject may be
correlated. We fit model (8), with random errors within each
subject modeled by a first-order autoregressive structure. The
estimated lag 1 autocorrelation coefficients are small. Esti-
mates of other parameters remain the same. Therefore, ran-
dom errors are assumed to be independent in the remaining
of this section.

From Figures 3 and 4, it is apparent that the common func-
tion for the Cushing’s syndrome group is almost zero, which
indicates that circadian rhythms were lost for patients with
Cushing’s syndrome. The absence of a circadian rhythm has
been considered as hallmark of the diagnosis of Cushing’s
syndrome (Boyar et al., 1979; Liu, Kazer, and Rasmussen,
1987). Unlike normal subjects, patients with Cushing’s syn-
drome fail to decrease cortisol secretion in the late evening.
Therefore, the measurement of elevated late-evening cortisol
is a very simple and useful way to screen patients for Cushing’s
syndrome (Raff, Raff, and Findling, 1998; Castro, Elias, and
Quidute, 1999). It has also been noticed that some patients
with Cushing’s syndrome still demonstrate circadian rhythms
(Refetoff et al., 1985; Tourniaire, Chalendar, and Rebbatu,
1986). Figure 3 suggests that cortisol levels of patients 3044
and 3069 may still have circadian rhythms.
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Figure 2. Plots of cortisol concentration on the log scale and fitted curves for patients with major depression. Circles are
observations. Solid lines represent fits from model (11). Dotted lines represent fits from model (8). Subjects’ IDs are shown
in the strip.

We now compare patients having major depression with
normal subjects. We will first investigate potential effects
of depression on the shape function. We find that these
two groups had the same shape function, which allows us
to further investigate potential effects of depression on the
parameters.

The shape functions for the normal and depression groups
are similar (Figure 4). We now test the hypothesis that the
shape functions of these two groups are equal. We achieve
this by fitting data from these two groups simultaneously.
Consider the following model

yijk = βk + b1i(k) + exp(b2i(k))f(k, tijk − alogit(b3i(k))) + εijk,

i = 1, . . . ,m, j = 1, . . . , nik, k = 1, 2, (9)

where k represents group with k=1 and k=2 correspond-
ing to depression and normal groups, respectively, fixed effect
βk is the population 24-hour mean of group k, random ef-
fects b1i(k), b2i(k), and b3i(k) represent the ith subject’s de-
viation of 24-hour mean, amplitude and phase. Note that
subjects are nested within group, which is reflected in our
notations. We allow different correlation structures for the
random effects in each group. That is, we assume that bi(k) =
(b1i(k), b2i(k), b3i(k))

T iid∼ N(0, σ2Dk), where the Dk’s are un-
structured positive-definite matrices. We assume different
common functions for each group. Thus, f is a function of
both group (denoted as k) and time (denoted as t). We
model the group effect using a one-way ANOVA model with
model space R2 and the time effect, using a periodic spline
model with model space W 0

2(per), where R2 is the Euclidean
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Figure 3. Plots of cortisol concentration on the log scale and fitted curves for patients with Cushing’s syndrome. Circles
are observations. Dotted lines represent fits from model (8). Subjects’ IDs are shown in the strip.

two-space. That is, we assume that f ∈R2 ⊗W 0
2(per). Writing

R2 = {1} ⊕ {g :
∑2

k=1 g(k) = 0}, where {1} = {g : g(1) = g(2)}
is the subspace of constant functions, we have the following
SS ANOVA decomposition

R2 ⊗W 0
2 (per) = W 0

2 (per) ⊕

[{
g :

2∑
k=1

g(k) = 0

}
⊗W 0

2 (per)

]
,

or equivalently,

f(k, t) = s(t) + ss(k, t), (10)

where s(t) is the main effect of time, and ss(k, t) is
the interaction between group and time. It is easy to see
that the hypothesis H0 : f(1, t) = f(2, t) is equivalent to
H0 : ss(k, t) = 0.

The estimated smoothing parameter for the interaction
term ss(k, t) is large, which means that the interaction is
small. In fact, ss(k, t) is essentially zero: the estimates are
on the magnitude of 10−6, while the posterior standard devi-
ations are on the magnitude of 10−4. Therefore, we conclude
that normal subjects and patients with major depression have
the same shape function. This result confirms the assumption
made in Wong et al. (2000), which was based on plots rather
than on a formal test. Note that the classical methods based
on a sinusoidal function implicitly assume the same shape
functions for different groups. Thus, these methods cannot be
used to test such a hypothesis, and there is no test available
in the literature.

Under the assumption of one shape function for both
groups, we now can investigate differences of 24-hour mean,
amplitude, and phase between these two groups. For this
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Figure 4. Solid lines are estimates of the common functions and dotted lines are 95% Bayesian confidence intervals. The
left three panels are estimated common curves for the normal, depression, and Cushing’s syndrome groups respectively. The
right panel is the estimated common curve in model (11).

purpose, we consider the following model

yijk = βk + b1i(k) + exp(b2i(k) + d1 × I[k=2])

× f(tijk − alogit(b3i(k) + d2 × I[k=2])) + εijk,

i = 1, . . . ,m, j = 1, . . . , nik, k = 1, 2, (11)

where β2 − β1, d1 and d2 measure the differences of 24-hour
mean, amplitude and phase between the normal group and
the depression group.

Estimates of β2 − β1, d1 and d2 are −0.2724 (SE = 0.1311,
p-value = 0.0389), 0.2350 (SE = 0.0767, p-value = 0.0024),
and 0.0299 (SE=0.0916, p-value=0.7441), respectively.
Standarded errors and p-values are calculated based on the t-
test described in Section 2. We conclude that the differences of
24-hour mean and amplitude are significant, while the differ-
ence of phase is not. We refit model (11) without the d2 term.
The fits are shown in Figures 1 and 2 as solid lines.
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Figure 5. Plot of the estimated 24-hour mean levels against amplitudes. Normal subjects, patients with major depression,
and patients with Cushing’s syndrome are marked as n, d, and c, respectively. Dotted lines represent partition of three groups
based on the tree method.

The right panel of Figure 4 shows the estimated common
function and its 95% Bayesian confidence intervals from the
final model. Data from these two groups are pooled to es-
timate the common function. Thus, the Bayesian confidence
intervals are narrower.

Figure 5 shows the estimated 24-hour mean levels plotted
against the estimated amplitudes. The amplitudes for patients
with Cushing’s syndrome are adjusted to have the same scale
as those for normal subjects and patients with major depres-
sion. We conclude that for patients with Cushing’s syndrome,
24-hour means were elevated to much higher levels. Circadian
rhythms were lost except for patients 3044 and 3069. For pa-
tients with major depression, 24-hour means were elevated.
However, their amplitudes were similar to those of normal
subjects, except for patients 115 and 116, whose 24-hour mean
levels and amplitudes were closer to those of patients with
Cushing’s syndrome. The statistically significant differences of
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the amplitudes between the normal group and the depression
group are mainly caused by these two patients. The highly
elevated cortisol levels and waning circadian rhythms in these
two patients may suggest that their conditions were worse,
and that further medical tests are necessary to check if they
have Cushing’s syndrome.

Based on a different study, Wong et al. (2000) concluded
that 30-hour mean cortisol levels were significantly elevated in
patients with melancholic depression. They did not compare
the differences of amplitudes. Our results are consistent with
those in Wong et al. (2000).

Figure 5 shows a negative relationship between the
24-hour mean and amplitude. The estimated correlations be-
tween b1i(k) and b2i(k) are −0.786 for the depression group
(k = 1) and −0.531 for the normal group (k = 2). This indi-
cates that the negative correlation between the 24-hour mean
and the amplitude exists not only at the group level, but also
at the subject level. The difference in correlations may be used
to investigate physiological changes (Tsaneva, Topalova, and
Beraha, 1990).

4. Discussion
This article presents a flexible and coherent approach to inves-
tigate covariate effects on circadian rhythms. As in the classi-
cal ANOVA, we decompose the multivariate function f(k, t)
into its main effects and interactions. The original hypothe-
sis is transformed into one on the interaction component. In
general, this technique can be used to test differences between
two functions (Härdle and Marron, 1990; Wang and Ke, 2002).
The second stage SS ANOVA model (6) is defined for general
z. For example, letting z = (gender, age), we can investi-
gate gender and age effects on circadian rhythms (Cauter,
Leproult, and Kupfer, 1996). For our specific application, we
concentrated on circadian rhythms. The models and methods
developed in this article can be applied to ultradian and in-
fradian rhythms too. If the period is not fixed and unknown,
a scale parameter can be added to model (4).

It is noted that symptoms suggesting the presence of Cush-
ing’s syndrome are not pathognomonic. Thus, diagnosis may
be nonspecific (e.g., obesity, hypertension, menstrual irreg-
ularity, and glucose intolerance; Orth, 1995). Plots such as
Figure 5 may be helpful in improving the precision of diag-
nosis and/or to further cluster patients into groups. A simple
classification by the tree method (Breiman et al., 1984) is pre-
sented in Figure 5 as dotted lines. It uses the 24-hour mean
only, and classifies a subject as normal, depression, and Cush-
ing’s syndrome if his 24-hour mean is below 1.64, above 1.64
but below 1.87, and above 1.87, respectively.

Besides cortisol, the experiment also measured many other
variables, such as CD4 and the hormone ACTH. The methods
in this article can be used to investigate disease effects on
circadian rhythms for all these variables. It can also be used
to investigate the possible association between variables such
as ACTH and cortisol (Wang, Guo, and Brown, 2000), and
disease effects on the association (Wong et al., 2000).
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Résumé

Des études médicales recueillent souvent des mesures physi-
ologiques et/ou psychologiques au cours du temps à partir de
nombreux de sujets dans le but d’étudier la dynamique tel que
les rythmes circadiens. Sous l’hypothèse que les fonctions de
réponse attendues pour tous les sujets sont les mêmes après les
décalages et transformations d’échelle, les modèles de forme
invariante ont été utilisé pour analyser ce type de données.
Le décalage et les paramètres d’échelle sont des résumés des
données efficaces et interprétables, tandis que la fonction de
forme commune est modélisée classiquement de manière non
paramétrique pour fournir de la flexibilité. Cependant, en rai-
son de la nature déterministe du décalage et des paramètres
d’échelle, les corrélations potentielles intra-sujet sont ignorées.
En outre, la forme de la fonction commune peut dépendre
d’autres facteurs comme la maladie. Dans ce papier, nous
proposons la forme des modèles à effets mixtes de forme in-
variante. Un modèle à 2 étapes à effets fixes et aléatoires est
utilisé pour modéliser le décalage individuel et les paramètres
d’échelle. Une deuxième étape utilise un modèle d’ANOVA de
lissage par splines pour étudier l’effet potentiel de covariables
sur la fonction de forme commune. Nos méthodes ont été ap-
pliquées à un jeu de données réelles qui étudie les effets, sur les
rythmes circadiens du cortisol, une hormone liée stress. Les
résultats montrent que les patients atteints du syndrome de
Cushing ont perdu les rythmes circadiens et leurs moyennes
à 24 heures sont élevées à de très hauts niveaux. Les patients
atteints de dépression majeure possèdent les mêmes formes et
phases circadiennes que des sujets normaux. Cependant, leurs
niveaux moyens à 24 heures sont élevés et les amplitudes ont
été diminuées pour quelques patients.
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