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Summary. Wang, Ke, and Brown (2003, Biometrics 59, 804–812) developed a smoothing-based approach
for modeling circadian rhythms with random effects. Their approach is flexible in that fixed and random
covariates can affect both the amplitude and phase shift of a nonparametrically smoothed periodic function.
In motivating their approach, Wang et al. stated that a simple sinusoidal function is too restrictive. In
addition, they stated that “although adding harmonics can improve the fit, it is difficult to decide how
many harmonics to include in the model, and the results are difficult to interpret.” We disagree with the
notion that harmonic models cannot be a useful tool in modeling longitudinal circadian rhythm data.
In this note, we show how nonlinear mixed models with harmonic terms allow for a simple and flexible
alternative to Wang et al.’s approach. We show how to choose the number of harmonics using penalized
likelihood to flexibly model circadian rhythms and to estimate the effect of covariates on the rhythms. We fit
harmonic models to the cortisol circadian rhythm data presented by Wang et al. to illustrate our approach.
Furthermore, we evaluate the properties of our procedure with a small simulation study. The proposed
parametric approach provides an alternative to Wang et al.’s semiparametric approach and has the added
advantage of being easy to implement in most statistical software packages.
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1. Introduction
The development of flexible models for characterizing circa-
dian rhythms in longitudinal data is an important problem
in biology and medicine. We commend Wang, Ke, and Brown
(2003) for the development of a flexible semiparametric model
for analyzing longitudinal circadian rhythm data. Specifically,
they proposed that the effect of covariates and individual ef-
fects (random effects) alter the circadian rhythm by chang-
ing the amplitude and phase shift but not the shape of the
pattern. They proposed a two-stage random effects model
whereby in the first stage,

yij = φ1i + exp(φ2i)f(tij − alogit(φ3i)) + εij , (1)

where i = 1, . . . ,m, j = 1, . . . , ni ,m is the number of individ-
uals, ni is the number of observations for the ith individual,
alogit(x) = exp(x)/(1 + exp(x)), and tij is the time of the jth
observation on the ith subject. In addition, the error terms εij
are assumed Gaussian with mean zero and variance σ2. Wang
et al. (2003) proposed that in the second stage,

φi = Aiβ + Bibi, where bi i.i.d. ∼ N(0,D), (2)

where φi = (φi1, φi2, φi3)
′, β is a p-dimensional vector of

fixed-effect parameters, bi is a q-dimensional vector of ran-
dom effects associated with individual i which has mean zero
and variance D, and Ai and Bi are 3 × p} and 3 × q design
matrices. Wang et al. (2003) illustrated their methodology
with the comparison of circadian rhythms in cortisol lev-

els between small groups of depressed (n = 11) and normal
(n = 9) patients with 12 equally spaced follow-up measure-
ments over a 24-hour period. When modeling each of the two
groups separately, the design matrix Ai can be specified as
Ai = (1, 0, 0)′. For fitting a model in which the overall mean,
amplitude, and phase shift can vary by group,

Ai =




1 G 0 0

0 0 G 0

0 0 0 G


 , (3)

where G is an indicator variable for group. For both mod-
els, Bi is a 3 × 3 identity matrix corresponding to a single
random intercept for the overall mean, amplitude, and phase
shift.

This two-stage approach generalizes the earlier, more sim-
plified fixed-effects approach by Wang and Brown (1996) in
which separate models were fit for each individual’s data and
these estimates were subsequently summarized across indi-
viduals. Wang et al. (2003) developed a framework for a for-
mal two-stage approach for modeling longitudinal circadian
rhythm data. Their methodology uses nonparametric estima-
tion of the underlying function f, which involves maximizing
a penalized likelihood to determine the degree of smoothing
required for a particular data set. The authors use conditional
t-tests for testing group differences in circadian rhythms,
which condition on the choice of f as well as the variance
estimates of the random effects and residual variance (Wang,
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Figure 1. Circadian rhythms represented by f with harmonic models. (A) and (B) show two-harmonic models, while (C)
and (D) show three-harmonic models. Patterns are generated as f (t) = A × cos(2π(t + B)) + C × cos(4π(t + D)) + E
× cos(6π(t + F )), where for (A): A = 1, B = 0.7, C = 0.5, D = 0.7, E = 0, F = 0, for (B): A = 0.4, B = 0.5, C = 1,
D = 0.2, E = 0, F = 0, for (C): A = 1, B = 0, C = 0.3, D = −0.5, E = 0.5, F = −0.5, and for (D): A = 1, B = −0.5,
C = 0.6, D = 0, E = 1, F = 0.

1998). Wang and Ke (2002) developed the software package
ASSIST for fitting these models.

Wang et al. (2003) stated that the sinusoidal curves are
too restrictive for describing complex circadian patterns and
stated that “although adding harmonics can improve the fit,
it is difficult to decide how many harmonics to include in
the model, and the results are difficult to interpret.” In this
article, we show how parametric models can be used for mak-
ing appropriate inferences when analyzing circadian rhythm
longitudinal data. In Section 2, we demonstrate how non-
linear mixed models with harmonic terms can be used to
flexibly fit circadian rhythms to longitudinal data. We an-
alyze the cortisol data presented by Wang et al. (2003) with
the parametric modeling approach in Section 3. In Section
4, we show using simulations that valid inferences can be
made in small samples with this parametric approach. In
Section 5, we contrast the parametric and semiparametric
approaches.

2. Nonlinear Mixed Models with Harmonic Terms
An important feature of Wang et al.’s approach is the shape-
invariant nature of how covariates and random effects affect
the underlying circadian rhythm. Model (1) can be developed,
where instead of nonparametrically estimating f, as is done by
Wang et al. (2003), we parametrically model f with a series of
harmonic terms to flexibly characterize the circadian pattern.
Specifically, the function f can be parameterized as

f(t) =

K∑
k=1

βk cos{2kπtij + θk − alogit(φ3i)}, (4)

where tij is in fractions of a day ranging from 0 to 1 start-
ing at midnight, and where K is the number of harmonics,

where a large K results in a very flexible circadian rhythm
at the expense of estimating additional parameters. The pa-
rameters β1, β2, . . . ,βK , θ1, θ2, . . . , θK characterize a flexi-
ble circadian rhythm. Although we agree with Wang et al.
(2003) that a single harmonic term is very restrictive, a model
with three harmonics can very flexibly describe most circadian
rhythms. Figure 1 shows a series of circadian patterns with
K = 2 and K = 3. The figure demonstrates the wide range
of circadian patterns which can be characterized with a few
harmonics.

Model (1) with f parameterized by (4) can be fit with var-
ious nonlinear mixed modeling software routines. We use the
nlme procedure in R (Venables et al., 2004) or S-plus (2001),
which uses methodology developed by Lindstrom and Bates
(1990) for parameter estimation. The Appendix provides an
example of code for fitting these models in R.

Wang et al. (2003) proposed a penalized-likelihood
approach for choosing the smoothing parameter in their semi-
parametric approach. Similarly, we propose choosing the num-
ber of harmonics using a penalized likelihood method such as
either the Akaike information criterion (AIC) (Akaike, 1973),
where AIC(p) = −2 logL + 2p and p is the number of model
parameters, or the Bayesian information criterion (BIC)
(Schwartz, 1978), where BIC(p) = −2logL + p log(

∑m

i=1 ni).
Since f is very flexible with three harmonics, in most situ-
ations, we recommend choosing between one, two, or three
harmonics.

An assumption for both the semiparametric and paramet-
ric shape-invariant models is that the underlying shape of the
circadian rhythm does not vary across groups. Wang et al.
(2003) proposed an informal test for comparing the shapes of
the circadian rhythms between normal and depressed groups.
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Furthermore, they stated that methodology based on a sinu-
soidal function cannot be used to test this assumption. Con-
trary to their statement, we show that a test comparing the
shapes of the curves in different groups can be formulated for
the parametric model. In model (1), we compare f(t) given by
(4) with f(t) given by

f(t) =

K∑
k=1

[β1k cos{2kπtij + θ1k − alogit(φ3i)}

+β2kG cos{2kπtij + θ2kG− alogit(φ3i)}], (5)

where β21 = θ21 = 0, and G is a group indicator. This can
be tested with a likelihood-ratio test of whether θ2k = 0 and
β2k = 0 for k = 2, 3, . . . ,K in (5). We show in Section 4 that
this likelihood-ratio test has the correct type I error rate in
small samples.

Assuming the scale-invariant model, for the two-group com-
parison in the cortisol example (normal versus depressed pa-
tients), we propose choosing the number of harmonics based
on minimizing either the AIC or BIC for K = 1, 2, or 3 har-
monics. Inferences on group differences can be made using
the chosen model with conditional t-tests. For the two-group
comparison, the conditional t-test, which is conditional on es-
timates of the random effects and residual error variances,
takes the form of the estimated fixed-effect parameter divided
by its standard error. A rule for determining the appropri-
ate degrees of freedom for the conditional t-test is given by
Pinheiro and Bates (2000). The t-test is provided in both the
R and S-plus software package. We evaluate the properties of
this approach with simulations in Section 4.

In the next section, we fit the harmonic models to the cor-
tisol circadian rhythm data presented by Wang et al. (2003)
and compare inferences with those made with the semipara-
metric approach.

3. Analysis
We fit the harmonic models to the cortisol data presented
by Wang et al. (2003). Initially, we fit the model (1) with
f(t) given by (4) to the depressed and normal groups sepa-
rately. We fit these models with one, two, and three harmon-
ics. For the depressed group, AIC was 269.1, 242.3, and 244.9
for models with one, two, and three harmonics, respectively.
For the normal group, AIC was 222.9, 175.9, and 179.9 for
models with one to three harmonics. For a model with no
group effects on the combined data, AIC was 481.4, 408.3,
and 412.0 for models with one to three harmonics. Thus, AIC
was minimized for models with two harmonics for the de-
pressed, normal, and combined groups. The BIC, which tends
to favor simpler models than AIC in data sets with many ob-
servations, was also minimized with two-harmonic models for
each group separately as well as for the two groups combined
(data not shown). Figure 2 shows estimates of f obtained us-
ing two harmonics in each group as well as the combined
group. Ninety-five percent confidence intervals were obtained
by the bootstrap. The forms of the circadian patterns are sim-
ilar to those presented in Figure 4 of Wang et al. (2003), but
the range of f appears to be attenuated relative to their fig-
ures. A comparison of AIC and BIC between the harmonic
models and the semiparametric models proposed by Wang

et al. (2003) favors the parametric models for the normal,
depressed, and combined groups. For example, the AIC and
BIC for the semiparametric model fit to the normal and de-
pression data combined were 417.7 and 477.1, respectively.
This can be compared with the parametric model with two
harmonics, which resulted in an AIC and BIC of 408.3 and
450.0, respectively.

We tested whether the shape-invariant assumption between
the normal and depressed groups is reasonable. We chose two
harmonics for testing for an interaction, since this was the
number of harmonics which minimized both the AIC and
BIC for the normal, depressed, and combined groups. The
likelihood-ratio test comparing f(t) given by (4) and (5) (with
K = 2, the likelihood-ratio test statistic has a chi-square dis-
tribution with 2 degrees of freedom) was significant (P =
0.043), suggesting that there is some evidence for a different
shape between groups. Although statistically significant, the
difference in the form of the pattern appears small, so we
proceeded to fit the shape-invariant model.

We fit model (1) with Ai given by (3), Bi being a 3 ×
3 identity matrix, and f given by (4) with K = 1, 2, and 3
harmonics.

The model can be written similarly to equation (11) in
Wang et al. (2003),

yijk = τk + b1i + exp
(
b2i + d1 × I[g=2]

)
× f

{(
tij − alogit

(
b3i + d2 × I[g=2]

))}
+ εijk, (6)

where g = 1 and 2 for the depressed and normal groups,
respectively. In addition, (b1i, b2i, b3i) ∼ N(0, D), where
τ 2 − τ 1, d1 and d2 measure the difference of 24-hour mean, am-
plitude, and phase between the normal and depressed groups,
respectively.

Similar to models for individual and combined groups, the
function f was best fit with two harmonics; the AIC for mod-
els with one to three harmonics was 483.1, 412.4, and 416.1.
In addition, f with K = 2 minimized the BIC. Therefore, we
made inference using (4) with K = 2. In contrast to the find-
ings of Wang et al. (2003) using the semiparametric approach,
we did not find significant differences between the normal and
depressed groups using the harmonic model. The estimate of
τ 2 − τ 1 was −0.210 (SE = 0.158, t212 = −1.33, P = 0.18),
the estimate of d1 was 0.116 (SE = 0.142, t212 = 0.82, P =
0.42), and the estimate of d2 was 0.060 (SE = 0.139, t212 =
0.43, P = 0.67). These estimates were obtained with K = 2;
however, very similar inferences were obtained when fitting
models with K = 3 or 4. Additionally, we fit a two-harmonic
model which included an indicator of group as a random effect
in addition to including group as a fixed effect. This model
allowed for a different variance structure in the random effects
across groups. Inferences on group differences with this more
complex model were nearly identical to the previously stated
results (data not shown).

The approximately 12% (exp(d̂1) = 1.12) increase in am-
plitude for the normal group compared with the depressed
group is consistent with apparent differences between the
two circadian rhythms observed in Figure 2. Our results dif-
fered from those by Wang et al. (2003), who showed highly
significant group differences. However, there were some puz-
zling inconsistencies in their data analysis that we could not
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Figure 2. The solid lines are the estimates of f, and the dashed lines are the pointwise 95% confidence intervals for the
normal (n = 9), depressed (n = 11), and combined (n = 20) groups. Confidence intervals are constructed using the bootstrap
(520 samples) with the percentile method.

reconcile. Specifically, they estimated that the amplitude was
26% (exp(0.2350) = 1.26) larger in the normal group than
in the depressed group, yet Figure 4 in Wang et al. (2003)
appears to show that the depressed group has a larger ampli-
tude than the normal group. Unfortunately, we were unable
to reproduce Wang et al.’s results on group differences since,
for this case, we had technical difficulties with ASSIST in the
current version of either R or S-plus.

In Section 4, we evaluate the statistical properties of the
harmonic models.

4. Simulation Results
In this section, we evaluate the statistical properties of our
procedure for testing for interaction between groups (test of
whether the scale-invariant model is appropriate) and for es-
timating group differences using the scale-invariant harmonic
model. The simulations are based on the data structure (num-
ber of follow-up times and number of patients in each group)
of the cortisol data set comparing the normal (n = 9) and
depressed (n = 11) groups.

In the data analysis, we tested for an interaction between
groups using two harmonics (K = 2), since this was the
number of harmonics that minimized AIC and BIC for both

groups separately as well as the combined group. To evalu-
ate the statistical properties of the interaction test, we sim-
ulated circadian rhythm data with f identical to Figure 1A
and the variance matrix for the random effects D being a
diagonal matrix with the diagonal elements given by 0.04,
0.01, and 0. In addition, we simulated data with d1 =
d2 = (τ 1 − τ 2) = 0 and σ2 = 0.16. We estimated the percent-
age of times that the likelihood-ratio test (chi-square with 2
degrees of freedom) resulted in a P-value less than or equal to
0.05. With 2000 simulated realizations, the empirical type I
error rate was 0.059 (SE = 0.005) for a 0.05 level test. Thus,
the interaction test appears to have a nearly correct type I
error rate in small samples like the cortisol data set.

We examined the statistical properties of the parametric
scale-invariant model, focusing on estimating d1, with 2000
simulations. We evaluated the properties for two procedures
for estimating d1. First, we assumed that we knew that two
harmonics was the correct number of harmonics. The average
d1 was −0.0004, which was very close to the simulated value of
zero. The average asymptotic standard error was 0.077, which
was close to the Monte Carlo standard deviation of 0.080. In
addition, the estimated type I error rate for the conditional
t-test (estimated parameter over SE following a t-distribution
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with 212 degrees of freedom) of whether d1 = 0 was 0.063
for a 0.05 level test. This slight inflation of the type I error
rate was reduced to 0.048 when we doubled the sample size
from 20 to 40 patients (18 and 22 normal and control patients,
respectively). Thus, for a known fixed number of harmonics,
estimation and testing on group differences have good prop-
erties. In the second approach, we estimated the number of
harmonics by fitting a parametric scale-invariant model with
either one, two, or three harmonics. We then chose the model
with the smallest AIC and used this model for inference. As
with the fixed known number of harmonics, the average d1 was
nearly zero (−0.0004) and the average model-based standard
error and MC standard deviation were almost identical (0.077
and 0.080, respectively). In addition, the estimated type I er-
ror rate for the conditional t-test of whether d1 = 0 was 0.064
for a 0.05 level test. This slight inflation of the type I error
rate was reduced to 0.049 when we doubled the sample size.
Thus, estimating the number of harmonics on combined data
does not appear to influence the quality of our inferences with
the parametric scale-invariant model.

5. Discussion
Others have proposed harmonic models for analyzing circa-
dian rhythm time-series data (Greenhouse, Kass, and Tsay,
1987, among others). This note described how to use nonlin-
ear mixed models with harmonic terms to compare the circa-
dian rhythms between groups of longitudinal data. We show
that contrary to statements by Wang et al. (2003) that har-
monic models are inflexible and do not provide a rich enough
framework for analyzing longitudinal circadian rhythm data,
a nonlinear mixed model with harmonic terms provides a flex-
ible framework for analysis. These nonlinear mixed models are
simple to fit in statistical packages such as R and S-plus. Al-
though the semiparametric method of Wang et al. (2003) is
very attractive, we felt it important to emphasize that simpler
methods could be used for this problem.

Wang et al. (2003) mentioned that choosing the number
of harmonics is difficult and the models are difficult to inter-
pret. We showed how choosing the number of harmonics can
be done using penalized-likelihood techniques such as AIC
and BIC. Further, appropriate inference on group differences
can be made using standard nonlinear mixed modeling soft-
ware with a penalized-likelihood approach. It is true that it is
difficult to infer any physical meaning to the harmonic terms
in any of our models. However, in fitting the scale-invariant
harmonic models (1) and (6), the harmonics are used only as a
method for flexibly modeling the underlying circadian pattern
f. We do not interpret the harmonic terms. In this way, our
harmonic approach is similar to Wang et al.’s semiparametric
approach where the underlying circadian pattern f is modeled
with cubic splines which themselves are difficult to interpret.
Furthermore, we wish to emphasize the relationship between
using penalized-likelihood approaches for choosing the num-
ber of harmonics in parametric models and for choosing the
smoothing parameter in semiparametric models using either
cross-validation or penalized likelihood. Both approaches at-
tempt to minimize the inherent trade-off between bias and
variance in estimating f.

Both the semiparametric and parametric models use non-
linear mixed modeling procedures which rely on approximate

inference (Pinhero and Bates, 2000). Although limited, our
simulations show that these approximations work well in our
setting. Unfortunately, no simulations were provided for the
semiparametric approach.

The data analysis and simulations suggested that har-
monic modeling of f was a viable alternative to semipara-
metric modeling. However, as in many nonlinear regression
problems, the algorithm may be sensitive to starting values.
We suggest choosing different starting values to assure that
a global maximum of the likelihood is achieved. Occasion-
ally, the nlme routine in R did not converge. This usually
occurred when fitting higher order harmonic models in which
an estimated βk coefficient was close to zero and there was
little information for estimating the corresponding scale pa-
rameters θk . The likelihoods from iteration to iteration were
nearly identical, yet the parameter estimates did not meet
the rigid convergence criterion set as a default in nlme. This
problem has been discussed in a nonlinear regression context
by Gallant (1977). We recommend choosing less rigid con-
vergence requirements or setting a maximum large number
of iterations to solve this problem. There was little discus-
sion by Wang et al. (2003) about the importance of choosing
starting values and the potential for convergence problems.
We suspect that the semiparametric models may also be sen-
sitive to starting values and occasionally have convergence
problems.

Our analysis of the cortisol data led to different inferences
than those reported for the semiparametric approach by Wang
et al. (2003). In contrast to the semiparametric approach,
we found no significant differences in the circadian rhythms
between normal and depressed groups using the parametric
shape-invariant model. For a number of reasons, we favor
conclusions with the parametric approach over those using
the semiparametric approach. First, the reported parameter
estimates for the shape-invariant model in Wang et al. (2003)
were inconsistent with the estimated circadian rhythms pre-
sented in their Figure 4. The model suggested that the normal
group has a larger amplitude than the depressed group, yet
the figure indicated the reverse. This suggests that there may
be a problem in Wang et al.’s analysis of the depression data
or in the ASSIST code. An investigation of these inconsisten-
cies in the data analysis by Wang et al. (2003) would be very
useful. Second, as reported in Section 3, the parametric mod-
els had smaller AIC and BIC than the semiparametric mod-
els. Although one needs to cautiously interpret these results
since there may be a problem with the ASSIST software, these
findings suggest that the parametric models may describe the
data better than the semiparametric models. Third, our sim-
ulations showed that the harmonic models have good statisti-
cal properties for small data sets such as the cortisol example.
No simulations were reported by Wang et al. (2003) for their
semiparametric approach.

We compliment Wang et al. (2003) for providing a com-
prehensive package (ASSIST) for fitting their proposed semi-
parametric models (Wang and Ke, 2002). However, we found
numerous technical difficulties in reproducing the results in
their paper using the implementation on the current versions
of S-plus and R. For example, we were unable to reproduce
the fit of their scale-invariant model in R because pdStrat is
unavailable in R. An advantage of the parametric approach
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is that it is easy to implement in most statistical software
packages.
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Appendix

R Code to Fit Nonlinear Mixed Model with Harmonic Terms
The following code was used to fit the parametric scale-
invariant model with group effects to the cortisol data set
where f(t) is characterized with two harmonic terms

Out < −nlme(conc ∼ (A+exp(B) ∗
(C ∗ cos(2 ∗ pi ∗ (time + D + exp(E)/(1 + exp(E))))

+F ∗ cos(4 ∗ pi ∗ (time + G + exp(E)/(1 + exp(E)))))),

data = dataset, fixed = list(A ∼ Group,B + E ∼ −1

+Group,C + D + F + G ∼ 1),

random = A + B + E ∼ Group|ID,

start = c(1.8, .2, .1, .2, .5, .1, .2, .1),

control = list(maxIter = 100, returnObject = T)).

(A.1)

The authors replied as follows:

We agree with Drs Albert and Hunsberger that harmonic
models can be a useful tool in modeling circadian rhythm
data. The following discussion provides more comparisons be-
tween the parametric and nonparametric models.

Parametric versus nonparametric models. It is reasonable
to assume that the common shape function f in model (1)
of Albert and Hunsberger (2005) is periodic and smooth.
Naturally, f can be modeled parametrically using harmonics
(Albert and Hunsberger, 2005)

f(t) =

K∑
k=1

βk cos(2πkt + θk). (1)

The order K is unknown in practice. Thus one needs to select
K using a model selection procedure. An alternative nonpara-
metric approach is to assume that f belongs to the follow-
ing infinite dimensional periodic spline model space (Wahba,
1990; Gu, 2002; Wang, Ke, and Brown, 2003)

W 0
2 (per) =

{
f : f and f ′ are absolutely continuous,

f(0) = f(1), f ′(0) = f ′(1),∫ 1

0

f(t) dt = 0,

∫ 1

0

(f ′′(t))2 dt < ∞
}
. (2)

For equally spaced designs, the periodic spline estimate is
essentially a low-pass filter: components at frequency k are
down-weighted by a factor of 1 + λ(2πk)4, where λ is a
smoothing parameter. Consequently, selecting an order K for
the harmonic model (1) may be viewed as hard thresholding
and selecting the smoothing parameter for the periodic spline
may be viewed as soft thresholding. See Wahba (1990) and
Wang (2004) for details.

Selection of the tuning parameters K and λ are the key
to success of the parametric and nonparametric models. Our
original statement, “Although adding harmonics can improve
the fit, it is difficult to decide how many harmonics to in-
clude in the model,” was prompted by the lack of research for
selecting K. We commend Albert and Hunsberger for the de-
velopment of penalized likelihood model selection methods.
We agree with the authors that a parametric model should
be used when it fits data appropriately. In fact, there are sev-
eral other parametric models proposed in the literature for
modeling different forms of circadian rhythms (Batschelet,
1981; Ruf, 1996). Rather than developing methods for a
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specific form of circadian rhythm, our nonparametric proce-
dure in Wang et al. (2003) can adopt various forms of circa-
dian rhythms. The philosophy of the nonparametric procedure
is to let the data speak for themselves. The family of harmonic
parametric model (1) with K = 1, 2, and 3 as suggested in
Albert and Hunsberger (2005) may still be restrictive for cer-
tain forms of circadian rhythms. Even if one decides to use
model (1), the nonparametric methods can be used as diag-
nostic tools to check the appropriateness of these parametric
models. Specifically, using different reproducing kernels as in
Gu (2002, p. 122), one can test the hypothesis that f has the
form (1) for any K using methods in Wang et al. (2003). This
can be easily implemented using our R function snm. The
nonparametric methods can also be used to suggest possible
families of parametric models when it is unclear which one to
use.

The parametric model is simple. However, when K ≥ 2, it
is not necessarily easier to fit a parametric model using the
nlme function because more terms will have to be included
in the formula, and more initial values will have to be de-
termined and may lead to numerical instability. As noted by
the authors the estimate of the phase parameter θk is unstable
when the coefficient βk is close to zero. Strictly speaking, θk is
unidentifiable when βk = 0. The chance of having at least one
very small coefficient increases as K increases. Combining all
harmonics together as a nonparametric function f, our func-
tion snm is just as easy to implement as the nlme function (see
the R code in the Appendix). The common shape function f
is often treated as a nuisance parameter. We are interested
in the whole function rather than coefficients βk and θk. Im-
portant parameters, 24-hour mean, amplitude, and phase, are
the same for both parametric and nonparametric models with
the same interpretations.

To summarize, both parametric and nonparametric models
have their advantages and limitations. They complement each
other.

ASSIST package and data analysis. Conclusions in Wang
et al. (2003) were based on the following model

yijk = βk + b1i(k) + exp
(
b2i(k) + d1 × I[k=2]

)
× f

(
tijk − alogit

(
b3i(k) + d2 × I[k=2]

))
+ εijk,

i = 1, . . . ,m, j = 1, . . . , nik, k = 1, 2, (3)

where k represents the group with k = 1 and k = 2 corre-
sponding to depression and normal groups, respectively, β2 −
β1, d1, and d2 measure the differences of 24-hour mean, ampli-
tude, and phase between the normal group and the depression
group, and f ∈W 0

2(per). Random effects b1i(k), b2i(k), and b3i(k)

represent the ith subject’s deviation of 24-hour mean, ampli-
tude, and phase. Note that subjects are nested within group,
which is reflected in our notation. Since covariance structures
for normal group and depressed group were different, we as-

sumed that bi(k) = (b1i(k), b2i(k), b3i(k))
T iid∼ N(0, σ2Dk), where

Dk’s are unstructured positive-definite matrices. Model (3)
requires 12 parameters for the covariance matrices D1 and
D2. Model (7) in Albert and Hunsberger (2005) has a dif-
ferent covariance structure for random effects: it assumes six
random effects for some subjects with an unstructured covari-
ance matrix. Therefore, model (7) in Albert and Hunsberger
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time time
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Figure 1. Solid lines are estimates of the common functions
and dotted lines are 95% Bayesian confidence intervals. The
left and right panels are estimated common curves for the
normal and depression groups, respectively.

(2005) requires 21 parameters for the covariance matrix of
random effects.

Nonefficient parameterization in model (7) of Albert and
Hunsberger (2005) was due to a limitation of the current ver-
sion of nlme. We first developed the ASSIST package under
S-Plus 3.4 and subsequently switched to R (Wang and Ke,
2002). We fitted model (3) using the function snm in the
ASSIST package under S-Plus 3.4. To allow different corre-
lation structure for each strata (group), we used the pdStrat

class in the nlme package. Unfortunately, this class of covari-
ance structures is currently not available in the new R version
of nlme. Hopefully, the pdStrat class will be available in the
future (communication with Professor Bates).

For model (3), estimates of β2 − β1 and d1 are −0.2724
(SE = 0.1311, p-value = 0.0389) and 0.2350 (SE = 0.0767,
p-value = 0.0024). For comparison, we also fit a reduced model
of (3) with the same covariance structure for both groups
(i.e., D1 = D2). The R code for fitting this reduced model is
shown in the Appendix. Estimates of β2 − β1 and d1 based
on the reduced model are −0.2593 (SE = 0.1440, p-value =
0.0733) and 0.2153 (SE = 0.1122, p-value = 0.0562), respec-
tively. Comparing to the estimates in Albert and Hunsberger
(2005), which were based on model (1) with K = 2 and the
same covariance structure for both groups, it is clear that the
resulting different conclusions are caused by the combination
of a nonparametric model for f and covariance structure. More
flexibility for the nonparametric f and covariance structure
makes the absolute value of estimates a little bit larger and
the SEs smaller. Note that conclusions based on our reduced
model agree with those in Albert and Hunsberger (2005).

Which model to choose is, however, a more difficult ques-
tion. We used the REML method (the default of snm) to fit
model (3). The REML score is not comparable with the likeli-
hood used in Albert and Hunsberger (2005). We note that the
likelihood (or REML score) in both nlme and snm are approx-
imated values. It is unclear how good these approximations
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are. In addition, the degrees of freedom for nonparametric
models may not be directly comparable with those for para-
metric models. Therefore, direct comparisons between para-
metric and nonparametric models using AIC and BIC need
to be taken with a grain of salt. We also note that the sam-
ple size is relatively small, which makes it difficult to reach a
definite conclusion.

We thank the authors for pointing out an apparent in-
consistency between Figure 4 and conclusions in Wang et al.
(2003). Plots in Figure 4 are indeed wrong due to a bug in
the intervals function. The bug is now fixed and the cor-
rected plots are shown in Figure 1. The conclusions based on
model (3) remain the same.
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Appendix

R Code
The following code was used to fit model (3) with the same
covariance structure for both groups.

snmfit<− snm(conc∼b1+exp(b2)*f(time-alogit(b3)),

func=f(u)∼list(periodic(u)), data=cort.nordep,

fixed=list(b1∼Group, b2+b3∼-1+Group),

random=b1+b2+b3∼1, groups=∼ID, method="ML",

spar="m", start=c(1.9, -0.3, 0, 0),

control=list(prec.out=0.005, converg="PRSS"))
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