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SUMMARY. As a result of previous large, multipoint linkage studies there is a substantial amount of existing
marker data. Due to the increased sample size, genetic maps estimated from these data could be more
accurate than publicly available maps. However, current methods for map estimation are restricted to data
sets containing pedigrees with a small number of individuals, or cannot make full use of marker data that
are observed at several loci on members of large, extended pedigrees. In this article, a maximum likelihood
(ML) method for map estimation that can make full use of the marker data in a large, multipoint linkage
study is described. The method is applied to replicate sets of simulated marker data involving seven linked
loci, and pedigree structures based on the real multipoint linkage study of Abkevich et al. (2003, American
Journal of Human Genetics 73, 1271-1281). The variance of the ML estimate is accurately estimated, and
tests of both simple and composite null hypotheses are performed. An efficient procedure for combining map
estimates over data sets is also suggested.
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mation.

1. Introduction

Unlike physical maps, which are based on sequence data, ge-
netic maps depend on the stochastic process of inheritance.
From one generation to the next, exactly half of a parent’s
genetic information is passed to its offspring. The genetic ma-
terial that resides on a parental chromosome tends to be inher-
ited as one contiguous piece. However, any chromosome in an
offspring may be a mosaic of the homologous chromosome pair
in the corresponding parent. The change points (if any) along
the offspring chromosomes are known as crossovers. Consider
the genetic material at two different markers or loci along
a single offspring chromosome. The recombination rate be-
tween these markers is the probability that an odd number of
crossovers occurs in this region. If this probability is less than
1/2, the two markers are said to be linked. In this article, it
is assumed that crossovers occur along an offspring chromo-
some according to a Poisson process with rate 1 per Morgan
(Haldane, 1919). By convention, the term Morgan denotes a
unit of genetic distance. A genetic map specifies the order of a
set of linked markers or linkage group and the genetic distance
between each adjacent pair.

This article assumes that genotypic data are observed at
some (possibly all) markers of an ordered linkage group on
some (possibly all) members of a collection of pedigrees. This
reduces genetic map estimation to the estimation of the vec-
tor of genetic distances between each pair of adjacent mark-
ers. Furthermore, if the crossover process is modeled as a i-

2
thinned point process, then the recombination rate between
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two markers is an increasing function of the corresponding
genetic distance (Mather, 1938). For a characterization of the
point processes in this class, which includes the Poisson pro-
cess, see Yannaros (1988). Hence, maximum likelihood (ML)
estimation of the genetic map is equivalent to ML estimation
of the corresponding vector of recombination rates, referred
to hereafter as the map.

Despite these simplifying assumptions, the estimation of
genetic maps from arbitrary pedigree data is often compli-
cated. For example, when only some members of an extended
pedigree are sampled across several markers, existing meth-
ods cannot compute the maximum likelihood estimate (MLE)
of the genetic map. For data sets containing extended pedi-
grees, the program CRIMAP (Lander and Green, 1987) can
be used to estimate the map. The resulting estimator is not
the MLE, nor is it unbiased. The program avoids computa-
tional bottlenecks by ignoring allele frequencies and by ig-
noring information where there are genotype data that are
missing. It implements a method that resembles the expec-
tation maximization (EM) algorithm (Dempster, Laird, and
Rubin, 1977) and the most recent documentation can be
found at http://linkage.rockefeller.edu/soft/crimap/.
In the context of ML estimation, current methods (Elston
and Stewart, 1971; Lathrop, Lalouel, and White, 1986; Lander
and Green, 1987; Gudbjartsson et al., 2000) are limited to
data sets containing pedigrees with a small number of indi-
viduals, or to data sets with a small number of polymorphic
loci.
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Genetic maps are an integral part of several statistical
methods that are commonly used to find disease genes. For
example, a large collection of statistical methods known as
multipoint linkage analysis is often used to locate disease genes
relative to a genetic map of DNA markers. These methods
typically assume that the marker recombination rates are
known, when in fact, they are estimated from data. This
leads to map misspecification that can have a negative im-
pact on subsequent inference about the location of disease
genes (Halpern and Whittemore, 1999; Daw, Thompson, and
Wijsman, 2000). Therefore, improved map estimates should
facilitate the discovery of disease genes by reducing map
misspecification.

In this article, an ML method for making inference about
the genetic map is proposed. It is not limited to the analysis
of data sets containing pedigrees with a small number of in-
dividuals. In particular, the method can be used to analyze
the data that are typically found in large, multipoint linkage
studies. Such data sets may contain several thousand meioses
with individuals typed across multiple markers of known or-
der, but have missing data. An analysis of these types of data
sets has the potential to yield more precise estimates than the
published maps of either Marshfield (Broman et al., 1998) or
deCODE (Kong et al., 2002). The method combines Markov
chain Monte Carlo (MCMC) (Metropolis et al., 1953), Monte
Carlo expectation maximization (MCEM) (Guo and Thomp-
son, 1994), and stochastic approximation (SA) (Robbins and
Monro, 1951) to find the MLE of the map. An MCMC like-
lihood ratio estimator is developed for testing both simple
and composite null hypotheses, and a procedure for combin-
ing map estimates over data sets is suggested. The proposed
method is applied to simulated data involving 2201 meioses
in 110 pedigrees with as many as seven generations. The map
and pedigree structures used to simulate the data are based on
the large, multipoint linkage study of Abkevich et al. (2003).
For these data, exact computation of the MLE is infeasi-
ble. The proposed method is implemented in the program
LM_MAP and uses the libraries/structure of the MORGAN
2.7 software. It will be made publicly available through the
scheduled release of MORGAN 2.8, which uses the same
libraries/structure as MORGAN 2.7. The MORGAN soft-
ware is maintained at http://www.stat.washington.edu/
thompson/Genepi/MORGAN/Morgan.shtml.

2. Methods
2.1 Probability Models for Pedigree Data

Calculating the probability of data observed on a pedigree is
essentially a missing data or latent variable problem, and com-
putational difficulties arise due to the fact that many members
are related. Formally, a pedigree is a data structure that spec-
ifies the genealogical relationships of a set of individuals. The
gender of each individual is also specified. Consider ¢ ordered
loci along a chromosome and a collection of pedigrees contain-
ing a total of m parent—child transmissions or meioses. Define
the latent variable Sj; as the meiosis indicator (Thompson,
2000):

1, if the DNA transmitted in the ¢th meiosis at the
Si; = jth locus is the parent’s paternal copy,

0, otherwise.
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Unconditionally, each Sj; is either zero or one with probability
% for all 7 and j. Group the m meioses into two sets, F and M.
Let the set F contain the meioses that occur in females (i.e.,
mothers), and let the set M be defined similarly for males.
Let n; and p; be the female and male recombination rates
between loci j and j + 1, respectively. Then,

n; = P(Sk’j 75 Sk,j+]), VkeF
tj = P(Sk; # Skjn), VkeM,

for all j =1,...,£ — 1. Define n = (m1,...,me-1) and p =
(1, .-, phe—1). Define S = {5, ;} as the matrix of meiosis in-
dicators. Let G denote the genotypic data observed on some
(possibly all) members of each pedigree across some (possibly
all) loci. The likelihood of ¢ = (n, u) is

L(¢) = P4(G) = Y P4(G,S). (1)
S

The exact computation of L(¢) for marker data collected
in large linkage studies is often infeasible due to the num-
ber of terms involved in the summation in (1). However, in
such cases it is possible to compute the joint probability of
the meiosis indicators and the data. Under the assumed Pois-
son process model for crossovers, recombination events in dis-
joint intervals are independent. Hence, the inheritance vectors
(Se1,---,Se) are first-order Markov along the chromosome,
where So; = (S1,5,--,Sm;)T forall j=1,...,¢ Thus, Py(S)
factors into

-1

P(Su) [] Ps, (Sejin18). (2)

j=1

Let G,; denote the genotypic data at locus j, and assume
that in the population an individual’s genotype at locus j is
independent of that at j/, for any two loci j and j' # j. Under
this assumption, the conditional distribution of G,; given the
remaining genotypes and S, only depends on S,;. Thus, the
observed data G and latent variable S form a hidden Markov
model, and Py(G, S) factors into

¥4 -1
PS.) [[P(Ges 18 ) ][ Poy(Sesir1S). (3)

The expression in (3) can be computed for large data sets
containing extended pedigrees and an arbitrary number of
polymorphic loci (Thompson, 2000).

2.2 Finding the MLE

The combination of two stochastic algorithms, MCEM (Guo
and Thompson, 1994) and SA (Robbins and Monro, 1951),
is used to estimate the MLE(¢). A brief description of EM
(Dempster et al., 1977) is given before introducing MCEM.
Likewise, a brief description of SA is given before introduc-
ing the proposed stochastic optimization hybrid (SOH) al-
gorithm, which exploits the strengths of both MCEM and
SA. Let ¢© be a point in the interior of the parameter
space. To apply the EM algorithm the following recursion is
implemented:

E-step: Compute Q(¢;¢™) = E o {log P4(G,8) |G},
M-step: Set ¢") = argmax Q(¢; ™).
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Under mild conditions (Wu, 1983), the sequence {¢"} n =
0, 1,... converges to a local maximum or stationary point.
In particular, if L(¢) is unimodal, convergence to the MLE is
assured. While the convergence is only linear, in practice the
sequence tends to move very quickly to some small neighbor-
hood of the MLE. Moreover, the ascent property

L(¢!™) > L(¢™™)

is guaranteed. However, when data are collected on mem-
bers of large, extended pedigrees, the E-step is infeasible.
In such situations an MCMC estimate of Q(¢; ¢™) is pos-
sible using an MCMC sampler developed by Heath and
Thompson (1997). This sampler generates realizations of S
from P,(S|G). MCEM is a stochastic version of EM that
replaces the deterministic E-step by an MCMC estimate. A
serious drawback of the MCEM algorithm is that for a fixed
Monte Carlo sample size there is an upper bound on the preci-
sion of any MCEM estimator. However, when the Monte Carlo
sample size is allowed to increase with each iteration, MCEM
tends to possess the ascent property in the early stages of
the algorithm with high probability (Caffo, Jank, and Jones,
2005).

Originally, the SA algorithm was invented for the purpose
of finding the MLE when the support of the likelihood func-
tion is one dimensional. It was extended to the multidimen-
sional case by Nevel’son and Has’minski (1973) and Gu and Li
(1998). Gu and Kong (1998) developed further improvements
to allow for the joint estimation of the MLE and its variance.
In general, all versions of SA exploit the fact that

E4{V log Py(G,S)| G} = Vog L(9).

Suppose that {Sl(”), e Sk(”)} is a set of dependent realiza-
tions from P, (S|G). Define the sequence {¢™} by the re-
cursion
1 E
¢ =gl 4y, I > VP, (G,8:™). (1)

t=1

Under certain conditions on the sequence {y,I'"'} and the
function log L(¢), the sequence ¢(™ converges to the MLE (see
Nevel’son and Has’minski, 1973 and Younes, 1999 for details).
For example, if {~,} is of the form (¢ + np)~!, ¢ > 0, p >
0, I is positive definite, and L(¢) is unimodal with a unique
maximum, then the sequence defined by (4) converges to the
MLE for all £ > 0. In the current implementation, p = 1, k=
10, and the value of ¢ is random, with distribution depending
on the conditional distribution S given G.

Let 0 < T} < oo and 0 < Ty, < oo be integers, constant
or random with finite variances. The SOH algorithm consists
of T) MCEM steps, followed by T» SA steps. The MLE is
approximated by ¢T1*72) | where T, and T, are random stop-
ping times based on the percent change in successive esti-
mates. Specifically, SA is initiated when the percent change
in each component of successive MCEM updates is less than
20%. Similarly, SA is terminated when the percent change in
each component of successive SA updates is less than 1%. In
practice, MCEM is relatively insensitive to the choice of ¢,
but may take a long time to converge. By contrast, practi-
cal convergence of SA is much more sensitive to the choice of
starting position but rapid convergence of SA tends to occur
whenever the starting position is close to a local maximum of
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L(¢). By combining both algorithms, the SOH algorithm is
able to generate reliable estimates of the MLE. In addition,
an MCMC estimate of the variance of the MLE follows from
the Louis missing information principle (Louis, 1982):

~V2log L(¢) = —E4{V’logP,(G,S) |G}
— Vary{VlogP,;(G,S) | G}. (5)

2.3 Combining Map Estimates

A reasonable way to combine map estimates across data sets
is to average them with weights that vary inversely in propor-
tion to their variance. Consider the restricted model P.(G)
indexed by 7 € {¢ : n = p}. Let 7 be the MLE(7) and define
the jth interval as the region between markers j and j + 1.
Let N; denote the effective number of meioses in the jth inter-
val (Edwards, 1976), and define N; as the ratio of 7;(1 — 7;)
to Var(7;). An estimate of N; follows from 7; and the es-
timate of Var(7;) based on (5). For a given linkage group,
consider a collection of map estimates (#(,... 7)) each
derived from different data sets (G, ..., GW) with G ~
P, forr=1,...,R. Let N]m be the estimated number of ef-
fective meioses for the jth interval based on the rth data set.
Define the set of weights A = {A;,.} by
X

Nip = —
Jr R

>

s=1

Yg, 7. (6)

For each j, the weights (Aj1,...,\jp) vary inversely in pro-
portion to the variance of ?J(-T). The composite map estimate

7= (%,...,7e_1) defined by

R
%j:ZAJ'T%J(T), j:1>-"7£_1
r=1

is the weighted average of R map estimates. Furthermore,
an estimate of N; relative to the jth interval of the composite
map estimate is Z N;”, for r=1,..., R. This follows from the
weights defined in (6), and from the use of N;T) as an estimate
of NJ(-T) in the computation of Var(7;). In addition, the gender-

specific analog of N; follows from the estimation of (5) under
the full model. Hence, the construction of a composite gender-
specific map estimate is straightforward.

2.4 Hypothesis Testing

While it is well known that for certain regions of the human
genome the genetic maps of men and women differ (Broman
et al., 1998; Matise et al., 2003), there are regions where the
pattern and intensity of the differences are less clear. The sta-
tistical significance of the difference between male and female
maps is rarely tested. For any nested pair of the following
parameter spaces, the proposed method can test the corre-
sponding statistical hypothesis:

Koy:{¢:n=p=1"}
Ki:{o:n=n"p=p},
Ky :{¢:n=p},

K3 : {¢ : unconstrained},
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Figure 1. The label o;(3;) denotes the recombination rate
of the jth interval for the sex-averaged map denoted a(3). A
conceptual example of the jth sequence {v;; : 4 =0, 1,...,5}
of length D = 5 that connects «; and 3; is depicted.

where 7%, n*, and p* are fixed sex-averaged, female, and male
maps, respectively. Models K; and K, are used when test-
ing a specific sex-averaged map versus a general sex-averaged
map. Models K, and K; are used when testing a general sex-
averaged map versus a general sex-specific map.

For ease of exposition, consider again the restricted model
P.(G), and let «, 8 be two sex-averaged maps with a # (.
The likelihood ratio formula

_ L(o) P (G, S)

e = 1G5 =gy of 0
(Guo and Thompson, 1994) leads immediately to MCMC es-
timation of LR(a, B). Let T(®#) be the usual MCMC estima-
tor of LR(c, 8). When Pz(S|G) is close to proportional to
P.(G, 8S), accurate estimates of the LR(c, 3) based on T(*:#
are easily obtained. However, when « and 3 are points of
maxima under competing models, the two distributions may
not be close to proportional and reliable MCMC estimation of
LR(c, B) based on T'*#) may be computationally prohibitive.

A simple and effective solution is obtained as follows: Let
{(vj0,---,v;p)} be a set of £ — 1 monotonic sequences, where
each sequence has length D. Let the set satisfy a; = vjp,
and B; = vj for j = 1,...,£ — 1. Thus, the jth sequence
connects the jth components of 8 and «; D does not depend
on j. Moreover, the vector vog = (V1,4,- -, V(-1),q) IS a sex-
averaged map between v =  and v.p = a. Define

DL p(dr,dr)

(e} —
wee =11 (®)
d=0
where the superscripts d+ 1,d, and d* denote v,(gi1), Ved,
and Veg: = %(V.(d+1> + veg), respectively. In addition, when
a; < f3; the ending terms of the jth sequence are chosen to
concentrate near «; (see Figure 1). The estimator Wieh) s
a better estimator of LR(a, 8) than T(*%) when Pg(S|G) is
not close to proportional to P, (G, S).

If « = 7 and 8 = 7y, then 2log W(®) is a, consistent MCMC
estimator of the likelihood ratio test (LRT) statistic for testing
K, versus K,. Estimators for testing hypotheses based on
any of the other nested models are constructed in a similar
fashion.

3. Applications
3.1 Description of Simulations

Multiple sets of simulated genotypic data are analyzed to as-
sess the performance of the proposed method. The same sex-
averaged map denoted 7y, and the same pedigree structures
are used for all simulations. A single replicate contains the
data simulated at seven polymorphic markers for each of 1900

731

individuals comprising 110 pedigrees. The pedigree structures
are based on the large, multipoint linkage study of Abkevich
et al. (2003). The sex-averaged map is based on the Marshfield
map of chromosome 12. For each locus, the number of alleles
and their frequencies are based on information taken from the
Duke Center for Human Genetics, and 2% of the genotypes
in each replicate are masked. A total of 500 replicates are
simulated.

To examine the large-scale effects of different levels of miss-
ing data, the complete marker data for some individuals in
each replicate are masked. The individuals are chosen in a
manner consistent with the actual pattern of missing data
in the large linkage study of Abkevich et al. (2003). Under
Scheme A, the marker data for 38% of the individuals are
masked. Under Scheme B, the marker data for an additional
16% are masked. Two different models for marker allele fre-
quencies are considered: Model p,: assumes that allele fre-
quencies are known; Model p: estimates allele frequencies from
the available data. For each model, the SOH algorithm is used
to estimate the map. Additionally, the program CRIMAP is
used to estimate the map; CRIMAP does not use any model
for allele frequencies.

3.2 Results

To assess the quality of the variance estimator based on (5),
and to examine the sensitivity of the confidence intervals
to the assumption of normality, all 500 replicates are used
to estimate the following coverage probabilities: 95%, 90%,
80%, 50% (see Table 1). Specifically, Model p, is used to es-
timate 7 for each replicate. Then, the components of 7 are
used as point estimates to construct confidence intervals for
the corresponding components of 7. In general, the estimated
coverage of each confidence interval is close to its expected
coverage. Inspection of Table 1 across both missing data lev-
els A and B shows that the confidence intervals are slightly
conservative.

The quality of an estimator is often assessed through its
root mean square error (RMSE). In Table 2, the estimated

Table 1
For each component of T, the estimated percent coverage of the
confidence interval based on all 500 replicates is shown. The
corresponding standard errors are estimated separately for
each replicate. Schemes A and B have 38% and 54% missing
data, respectively.

Theoretical % coverage

Interval 95 90 80 50

Scheme A 1 97.0 93.6 84.8 56.2
2 98.0 94.2 86.8 53.8

3 97.0 93.2 82.0 51.6

4 96.6 93.0 81.8 52.0

5 96.0 91.2 82.4 51.0

6 98.0 93.6 85.0 56.2

Scheme B 1 96.8 94.0 86.2 54.6
2 97.8 94.0 85.0 54.8

3 96.2 90.8 83.6 53.2

4 97.6 92.6 79.4 51.2

5 96.0 91.4 84.0 53.0

6 97.8 93.2 85.0 53.2
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Table 2
For each component of T and across both levels of missing data, the estimated RMSE x 10* for three
competing estimators is shown. Schemes A and B have 38% and 54% missing data, respectively. The
corresponding estimate of absolute bias (similarly scaled) is shown in parentheses.

Interval Model py Model p CRIMAP
Scheme A 1 165.49 (18.56) 168.00 (16.15) 321.65 (180.85)
2 90.13 (12.72) 90.62 (13.20) 163.83 (98.93)
3 97.18 (16.04) 97.78 (15.71) 201.89 (153.75)
4 68.52 (8.02) 67.88 (6.92) 119.57 (80.37)
5 88.04 (11.64) 88.00 (11.77) 147.12 (80.43)
6 102.47 (4.83) 101.56 (6.74) 197.76 (133.82)
Scheme B 1 205.34 (48.38) 209.07 (51.01) 754.33 (536.78)
2 105.42 (18.11) 104.56 (19.38) 342.61 (250.98)
3 112.08 (19.48) 111.72 (19.51) 431.62 (383.04)
4 78.17 (12.81) 79.17 (12.76) 221.02 (178.50)
5 100.76 (15.63) 102.58 (15.06) 311.38 (215.23)
6 124.65 (11.50) 127.04 (11.53) 427.46 (315.00)

RMSE(7) for each component of 7 is shown across both levels
of missing data using Model p,, Model p, and CRIMAP. For
these data, the components of the CRIMAP estimator show
an increase in their estimated absolute bias relative to the
corresponding components of the ML estimators. In fact, the
estimated bias of the CRIMAP estimator is negative for all
components across both schemes. Furthermore, an increase
in the amount of missing data appears to have a larger effect
on the CRIMAP estimator than it does on either of the ML
estimators. For these data, the ML estimation of the map was
insensitive to assumptions about the allele frequencies.
Typically, only one data set is available for any real analy-
sis. Therefore, a single replicate is analyzed at both levels of
missing data using Model p,. The estimated 95% confidence
interval for each component of 7 and its corresponding esti-
mated number of effective meioses per interval are shown in
Table 3. Also shown in Table 3 are the 95% confidence in-
tervals for n and p. The confidence intervals under Scheme B
are wider than those under Scheme A on account of the ad-
ditional missing data. Inspection of each Nj across different
schemes shows that these data contain more information than

do the data that were used to construct the Marshfield map
(188 meioses). By contrast, these data and the data used by
deCODE (1257 meioses) may contain similar amounts of in-
formation, at least under Scheme A. However, by combining
map estimates from different data sets, an increase in accu-
racy and precision over that of the deCODE map is assured.

An advantage of an ML approach is that hypothesis testing
follows immediately from standard likelihood theory. Under
Schemes A and B, the empirical distribution functions of the
LRT statistics for testing a given (Kj) against an unspecified
(K3) sex-averaged map and the composite null hypothesis (K3)
against a general sex-specific map (K3) based on 200 replicates
are examined (data not shown). For the regions of most inter-
est (i.e., the right-hand tails of the distribution), there is close
agreement between each empirical distribution and its limit-
ing chi-squared distribution. As an example, consider testing
at the 5% a-level. The estimated size for testing the simple
null is 5.5% and 3.5% under Schemes A and B, respectively.
Similarly, the estimated size for testing the composite null is
7.5% and 4.0% under Schemes A and B, respectively. Addi-
tionally, the power for testing the composite null is estimated

Table 3

The 95% confidence intervals for the components of T, n, and p, along with estimates of the
sex-averaged effective number of meioses per interval. Schemes A and B have 38% and 54%
missing data, respectively. All estimates are based on the analysis of a single replicate.

To T N; n m
Scheme A 0.201 (0.165, 0.245) 389 (0.090, 0.252) (0.132, 0.316)
0.083 (0.069, 0.109) 792 (0.031, 0.135) (0.051, 0.147)
0.137 (0.117, 0.159) 1055 (0.086, 0.182) (0.095, 0.191)
0.059 (0.039, 0.068) 927 (0.017, 0.085) (0.019, 0.087)
0.074 (0.061, 0.096) 877 (0.036, 0.123) (0.041, 0.128)
0.113 (0.072, 0.114) 717 (0.036, 0.146) (0.050, 0.146)
Scheme B 0.201 (0.155, 0.244) 313 (0.115, 0.401) (0.045, 0.270)
0.083 (0.067, 0.119) 491 (0.053, 0.183) (0.009, 0.155)
0.137 (0.120, 0.171) 732 (0.084, 0.202) (0.083, 0.201)
0.059 (0.046, 0.078) 828 (0.025, 0.113) (0.011, 0.079)
0.074 (0.064, 0.109) 625 (0.045, 0.163) (0.029, 0.117)
0.113 (0.105, 0.167) 472 (0.079, 0.258) (0.042, 0.183)
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from 200 replicates simulated under the alternative hypothe-
sis of unequal male and female maps. Specifically, the female
genetic map is 1.4 times that of the male genetic map. The
estimated power at the 5% a-level is 61%.

4. Discussion

The proposed method makes efficient use of marker data typ-
ically found in a large linkage study. This is evidenced by
the much lower sampling variance of each ML estimator as
compared to the sampling variance of the CRIMAP estima-
tor. The estimated absolute bias for each component of the
map is close to zero for each ML estimator (see Table 2),
which strongly suggests that the SOH algorithm accurately
estimates the MLE. The general agreement between the esti-
mated coverage probability of each confidence interval and its
expected value suggests that the variance of the MLE is accu-
rately estimated within each replicate (see Table 1). Moreover,
if map estimates are combined over studies, in the manner
suggested by (8), improved map estimates are assured.

For most MCMC analyses of genetic data, achieving re-
liable estimates in a practical amount of time is not trivial.
However, the time required for these analyses is not unreason-
able. Using an Intel(R) Xeon(TM) CPU 2.80 GHz processor
with a Linux operating system, the time required to estimate
(7, Var(7), N;) under Scheme A was approximately 20 min-
utes. Approximately 10% more time is needed to generate the
corresponding sex-specific estimates. The time required to es-
timate the LRT statistics for the simple and composite null
hypotheses is approximately 40 minutes. The time needed for
any analysis under Scheme B is roughly 50% greater than the
time required for the corresponding analysis under Scheme A.
In general, 1000 MCMC realizations correspond to approxi-
mately 3.5 minutes of CPU time.

For each component of 7, the variance attributable to
MCMC error and random fluctuations in the initial map
are estimated from independent MCMC analyses of the
same replicate. For each component, the variance due to
the stochastic nature of the algorithm is an order of magni-
tude less than the corresponding estimate of statistical vari-
ance, which suggests that reliable estimation of the MLE is
achieved. Moreover, when analyzing data sets where exact cal-
culation of the MLE is possible, the SOH algorithm converges
to the MLE (data not shown). Relative to map estimation,
this suggests that the LM sampler (Heath and Thompson,
1997) mixes adequately over the constrained space of inher-
itance patterns. However, more MCMC is needed to obtain
accurate coverage probabilities. A preliminary investigation
suggests that the differences between the estimated and ex-
pected coverage probabilities (Table 1) do decrease as the
amount of MCMC effort increases.

For ease of presentation, considerable attention is given to
the problem of making inferences about the sex-averaged map.
However, the proposed method also makes analogous infer-
ences about the sex-specific map. In particular, the SOH al-
gorithm accurately estimates 7, and & under the full model,
which allows for general  and p (data not shown). To some
extent, this is implicit in the computations used to estimate
the size of the LRT for testing the composite null (7.5% and
4.0% at the 5% a-level). When estimating the power—61% at
the 5% a-level for a sex-specific ratio of 1.4—the estimation
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of 7 and i under the full model is also required. Moreover,
since the total length of the female genome is estimated at
1.65 times that of the total male genome (Kong et al., 2002;
Matise et al., 2003), it is likely that the power to detect a
difference between male and female maps in a given region
will be high, provided that data sets have a similar amount of
information. When the alternative hypothesis is a sex-specific
map with a sex-specific ratio of 1.65, the estimated power
to detect unequal male and female maps at the 5% a-level
is near 1.0 (data not shown). However, due to the computa-
tional demands needed for accurate estimation of the LRT
statistics, these estimates of size and power are only based on
200 replicates each.

When data are missing, the estimated recombination rate
in one interval will depend on the estimated rates in other
intervals. Depending on the pattern and the strength of these
associations, it may be desirable to analyze many markers
jointly. When analyzing many markers simultaneously (pos-
sibly hundreds), the likelihood surface may be multimodal.
As such, it is important to explore the complete likelihood
surface. An option in the current implementation of the al-
gorithm is to choose the MLE from a set of candidate ML
estimates, each of which is generated from a separate run of
the SOH algorithm. The choice is made based upon a series
of likelihood ratio estimates as in (8).

Two implicit assumptions of the proposed method are a
known marker order and the absence of genotyping errors. A
consequence of the first assumption is that it may be inap-
propriate to analyze regions of the genome where the order of
markers is in question (e.g., regions where markers are sep-
arated by little or no recombination). By contrast, the sec-
ond assumption—that the marker data are observed with-
out error—is almost always violated. Worse yet, undetected
genotyping errors tend to result in map expansion (Buetow,
1991; Goldstein, Zhao, and Speed, 1997). To address problems
associated with genotyping error, several have developed er-
ror detection methods (Ehm, Kimmel, and Cottingham, 1996;
Stringham and Boehnke, 1996; Douglas, Skol, and Boehnke,
2002), and genotyping error models have been incorporated
into the analysis of pedigree data (Sobel, Papp, and Lange,
2002). Currently, we are developing methods that incorporate
genotyping error models into map estimation.

In this article, considerable attention is given to the impor-
tant problem of map estimation. In fact, we have successfully
applied the SOH algorithm to a real data set involving 143
pedigrees and 17 polymorphic loci on chromosome 4 (Sieh
et al., 2005). However, the SOH algorithm and the likelihood
ratio estimator in (8) are not specific to the problem of map
estimation. In principle, the proposed method is applicable
to a wide variety of inference problems in structured stochas-
tic systems involving latent variables (“hidden states”) and
missing data.

ACKNOWLEDGEMENTS

This work was supported by National Institutes of Health
Genome Training Grant HG00035-10 and Grant GM-46255.
We are grateful to Dr Ellen Wijsman for providing many help-
ful comments, and to Dr Victor Abkevich for providing in-
valuable information regarding the pedigree structures of his



734

recent linkage study. We also thank the referees for their in-
sightful comments.

REFERENCES

Abkevich, V., Camp, N. J., Hensel, C. H., et al. (2003). Pre-
disposition locus for major depression at chromosome
12q22-12q23.2. American Journal of Human Genetics 73,
1271-1281.

Broman, K. W., Murray, J. C., Sheffield, V. C., White, R. L.,
and Weber, J. L. (1998). Comprehensive human genetic
map: Individual and sex-specific variation in recombina-
tion. American Journal of Human Genetics 63, 861-869.

Buetow, K. H. (1991). Influence of aberrant observations
on high-resolution linkage analysis outcomes. American
Journal of Human Genetics 49, 985-994.

Caffo, B. S., Jank, W., and Jones, G. L. (2005). Ascent-based
Monte Carlo expectation—maximization. Journal of the
Royal Statistical Society, Series B 67, 235-251.

Daw, E. W., Thompson, E. A., and Wijsman, E. M. (2000).
Bias in multipoint linkage analysis arising from map mis-
specification. Genetic Epidemiology 19, 366—380.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Max-
imum likelihood from incomplete data via the EM algo-
rithm (with discussion). Journal of the Royal Statistical
Society, Series B 39, 1-37.

Douglas, J. A., Skol, A. D., and Boehnke, M. (2002). Proba-
bility of detection of genotyping errors and mutations as
inheritance inconsistencies in nuclear-family data. Amer-
ican Journal of Human Genetics 70, 487-495.

Edwards, J. H. (1976). The interpretation of lod scores in
linkage analysis. Human Gene Mapping 3, 289-293.
Ehm, M. G., Kimmel, M., and Cottingham, R. W. J. (1996).
Error detection for genetic data, using likelihood meth-
ods. American Journal of Human Genetics 58, 225-234.

Elston, R. C. and Stewart, J. (1971). A general model for the
analysis of pedigree data. Human Heredity 21, 523-542.

Goldstein, D. R., Zhao, H., and Speed, T. P. (1997). The ef-
fects of genotyping errors and interference on estimation
of genetic distance. Human Heredity 47, 86—100.

Gu, M. G. and Kong, F. H. (1998). A stochastic approxima-
tion algorithm with Markov chain Monte Carlo method
for incomplete data estimation problems. Proceedings of
the National Academy of Sciences of the United States of
America 95, 7270-7274.

Gu, M. G. and Li, S. (1998). A stochastic approximation al-
gorithm for maximum likelihood estimation with incom-
plete data. Canadian Journal of Statistics 26, 567-591.

Gudbjartsson, D. F., Jonasson, K., Frigge, M. L., and Kong,
A. (2000). Allegro, a new computer program for multi-
point linkage analysis. Nature Genetics 25, 12-13.

Guo, S. W. and Thompson, E. A. (1994). Monte Carlo es-
timation of mixed models for large complex pedigrees.
Biometrics 50, 417-432.

Haldane, J. B. S. (1919). The combination of linkage values
and the calculation of distances between the loci of linked
factors. Journal of Genetics 8, 229-309.

Halpern, J. and Whittemore, A. S. (1999). Multipoint linkage
analysis. A cautionary note. Human Heredity 49, 194—
196.

Biometrics, September 2006

Heath, S. and Thompson, E. A. (1997). MCMC samplers
for multilocus analyses on complex pedigrees. American
Journal of Human Genetics 61, A278.

Kong, A., Gudbjartsson, D. F., Sainz, J., et al. (2002). A high-
resolution recombination map of the human genome. Na-
ture Genetics 31, 241-247.

Lander, E. S. and Green, P. (1987). Construction of mul-
tilocus genetic linkage maps in humans. Proceedings of
the National Academy of Sciences of the United States of
America 84, 2363—-2367.

Lathrop, G. M., Lalouel, J. M., and White, R. L. (1986). Con-
struction of human genetic linkage maps: Likelihood cal-
culations for multilocus analysis. Genetic Epidemiology
3, 39-52.

Louis, T. A. (1982). Finding observed information using the
EM algorithm. Journal of the Royal Statistical Society,
Series B 44, 98-130.

Mather, K. (1938). Crossing-over. Biological Reviews of the
Cambridge Philosophical Society 13, 252—292.

Matise, T. C., Sachidanandam, R., Clark, A. G., et al. (2003).
A 3.9-centimorgan-resolution human single-nucleotide
polymorphism linkage map and screening set. American
Journal of Human Genetics 73, 271-284.

Metropolis, N.; Rosenbluth, A. W., Rosenbluth, M. N., Teller,
A. H., and Teller, E. (1953). Equations of state calcula-
tions by fast computing machines. Journal of Chemical
Physics 7, 277-318.

Nevel’son, M. and Has'minski, R. Z. (1973). An adap-
tive Robbins—Monro procedure. Automation and Remote
Control 34, 1594-1607.

Robbins, H. and Monro, S. (1951). A stochastic approxima-
tion method. Annals of Mathematical Statistics 22, 400~
407.

Sieh, W., Basu, S., Fu, A., Rothstein, J., Scheet, P., Stewart,
W., Sung, Y., Thompson, E., and Wijsman, E. (2005).
Comparison of marker types and map assumptions using
MCMC-based linkage analysis of COGA data. BioMed
Central Genetics 6(suppl. 1), S11.

Sobel, E., Papp, J. C., and Lange, K. (2002). Detection
and integration of genotyping errors in statistical ge-
netics. American Journal of Human Genetics 70, 496—
508.

Stringham, H. M. and Boehnke, M. (1996). Identifying marker
typing incompatibilities in linkage analysis. American
Journal of Human Genetics 59, 946-950.

Thompson, E. A. (2000). Statistical inferences from genetic
data on pedigrees. NSF-CBMS Regional Conference Se-
ries in Probability and Statistics Volume, 6th edition.
Beachwood, Ohio: Institute of Mathematical Statistics.

Wu, C. F. J. (1983). On the convergence properties of the EM
algorithm. Annals of Statistics 11, 95-103.

Yannaros, N. (1988). On Cox processes and gamma renewal
processes. Journal of Applied Probability 25, 423-427.

Younes, L. (1999). On the convergence of Markovian stochas-
tic algorithms with rapidly decreasing ergodicity rates.
Stochastics and Stochastics Reports 65, 177-228.

Received June 2005. Revised November 2005.
Accepted November 2005.



