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ABSTRACT

A theoretical investigation is described which analyzes the effect
of an inhomogeneous sheath on the surface currents excited on an infinitely
long, perfectly conducting, circular cylinder immersed in an isotropic
collisionless, compressible plasma by plane electromagnetic (EM) and
electrokinetic (EK) waves incident at an arbitrary angle with respect to
the cylinder axis. The linearized fluid equations are used in the analysis,
with the inhomogeneous sheath taken to extend a finite distance into the
plasma from the cylinder surface, on the order of 10 electron Debye
lengths, beyond which the plasma is uniform. The numerical results for
the surface currents obtained from the inhomogeneous sheath analysis
are compared with those obtained when the sheath is replaced by a free-
space region, called the vacuum sheath. It is found that for EM wave
incidence, the surface currents are practically independent of the sheath
and the finite plasma temperature. For EK wave incidence, the sheath has
an attenuating effect on the currents produced, compared with the sheathless
case, with the attenuating effect of the vacuum sheath being greater than

that of the inhomogeneous sheath.
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1. Introduction

The effect of a finite plasma temperature (warm plasma, as op-
posed to the zero temperature or cold plasma) on the propagation of electro-
magnetic (EM) waves in a plasma medium is a subject which is of current
interest. In the case of the cold plasma the effect of the plasma on the EM
wave may be wholly accounted for by a suitable permittivity which is a
function of the plasma parameters. The warm plasma can however, sup-
port in addition to the EM wave, an electron pressure wave, or the electro-
kinetic (EK) wave. This EK wave may couple to the EM wave in regions of
plasma inhomogeneity and at bounding surfaces of the plasma, so that the
plasma permittivity for the EM wave is by itself no longer sufficient to
determine the effect of the plasma on EM waves propagating in it. The EM
and EK waves may also be coupled by external magnetic fields and non-linear
effects. The coupling mechanisms to be considered in this paper will be those
due to gradients in the static electron number density (inhomogeneity coup-
ling), and to plasma boundaries (boundary coupling).

The specific problem to be considered is an investigation of the
surface currents which are excited on an infinitely long, circular, per-
fectly conducting cylinder by plane EM and EK waves. There are two reasons
for this interest in the surface currents. (1) It is of value to determine
whether it may be feasible to detect the presence of the EK wave in the
plasma by a measurement of the surface current it may excite on the cylin-
der. Since the EK wave itself has no magnetic field, it can only excite a
surface current as a result of coupling to the EM wave. (2) Also of in-
terest is the effect of coupling to the EK wave on the currents excited

by the EM wave. The EK wave can, for example lead to coupling between



the transverse-electric (TE) and transverse-magnetic (TM) polarizations
of the EM wave scattered from a cylinder in a warm plasma, whereas
such coupling does not occur in the cold plasma. The relative influence
of inhomogeneity coupling and boundary coupling on the currents due to
both the EK and EM wave will be examined, as well as the effects of the
various plasma parameters.

The linearized hydrodynamic equations will be used to account for
the medium behavior of the plasma, together with Maxwell's equations.
While the frequency range over which the hydrodynamic approach is relia-
ble is confined to a rather narrow interval about the electron plasma fre-
quency, it is sufficient for the present problem. We are concerned in the
analysis with frequencies (f) above the plasma frequency (fP) and below the
frequency where Landau damping becomes important, roughly N2 fP, since
the hydrodynamic approach does not account for Landau damping. The num-

erical results will be presented for N=fP/f=0. 7 only because of the time

consuming nature of the calculations.

2. Formulation of the Problem

We take the infinitely long, perfectly conducting, circular cylinder
to be oriented with its axis coincident with the z-axis of the cylindrical co-
ordinate system ( p, ¢ ,2z). The cylinder is allowed to acquire its floating
potential in the plasma, i.e., its potential is determined by the plasma
parameters such as electron temperature and ion mass, so that the net
current flowing to it is zero. As a result, the cylinder has a negative po-
tential with respect to the plasma, and an inhomogeneous sheath forms about

it in which there is a defeciency of electrons. This inhomogeneous sheath



extends out into the plasma, for practical purposes, up to 20 electron
Debye lengths (D/l) from the cylinder surface, beyond which charge neu-
trality is nearly restored. Consequently, as shown in Fig. 1, the plasma
is divided into 2 regions. In the outer region, p > s, the plasma is taken
to be spatially uniform, while the region between the sheath-uniform plasma
interface (sheath interface) and cylinder surface, c< o < s, comprises the
inhomogeneous sheath, which is thus taken to be of finite thickness. Be-
cause of the axial and azimuthal symmetry, the static sheath variables are
functions of the radiusp only. We will, for purposes of comparison, pre-
sent some results for the case where the sheath region is replaced by a
free-space layer, which separates the cylinder from the uniform plasma.
This will be called the vacuum sheath model, and the situation where the
sheath is of zero thickness will be called the sheathless case.

The equations from which the time-varying or dynamic field quanti-
ties in the plasma will be obtained are the usual linearized hydrodynamic and
Maxwell's equations. These equations, after separation of variables and
with an eimt time dependence, lead to the following set of first order, ordin-

ary differential equations (Miller and Olte, 1966D).

[1a] o' = iwe B+ %Hr(lz) »1er® _ 1 og
[1b] Hflq))' - iwe Er(lz) - %HEICP) -1 % Hflp) - if Oy
[lc] Hflz)‘ O Er(lcp) + 1ip Hp ) -1 %Qn

[1d] Er(lp)i - - % El’(lp) v 1 20 4 Er(lz) + o An
[1e] 2 Lal™ 1 2P e e

[15] 2 . 1 MONNC



NORMAL CROSS - SECTION OF CYLINDER

f

DIRECTION OF INCIDENT PLANE WAVE

Fig. 1. Normal cross-section of the cylinder.
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The subscript n, an integer, is the azimuthal separation constant, 3
is the z separation constant, the prime denotes differentiation with respect to
the radial variable, and the superscript denotes the field component. The
time varying electric and magnetic fields and electron velocity are represent-
ed by E, H, and V respectively, the static electric field and electron number

density are given by Eo and n_s and Q is related to the time varying electron

number density n, by

[1i] Q- vy

n1

Finally, -e and m are the electron charge and mass, V. is the rms electron
velocity, and €6 and b, are the permittivity and permeability of free space.
We may note that a closed form solution to the system of equations [1] is

in general not possible for EO # 0, i.e., in the sheath. Analytic solu-

tions exist of course for the uniform plasma.



In order to complete this set of equations, we require a description
for the static sheath from which n and Eo are found, as well as the fields
of the incident plane wave and the boundary conditions to be applied. We

obtain Eo and nO as follows:

[2a] 'Eo= - Vo,

2o oo | 2]
[2¢] o ‘:Eglot‘gl:\/ 'r%' 11_22]

[2d] n__ exp €0,
(0] (o]0 [mr—

with ¢ the cylinder potential from an expression due to Self (1963), M a

©
1]

o}
]

parameter which will have a value of 2 for the numerical results to be pre-
sented, k Boltzmann's constant, T the electron temperature, m, the ion
mass and noo the static electron density in the uniform plasma. A dis-
cussion of the applicability of using [2] to describe the static sheath is given
by Miller (1966) and so will not be pursued here.

The fields of the incident and scattered waves in the uniform plasma
can be obtained from potentials (Hansens' method) involving Fourier series
of cylindrical Bessel functions and Hankel functions of the second kind re-
spectively. We decompose the incident and scattered EM waves into the

(z) (z) _ o

transverse electric (TE),E*”" = 0,and transverse magnetic (TM) H
polarizations, and use the subscripts e,m and p to differentiate quantities
associated with the TE, TM and EK waves respectively. In the results to
follow, the incident plane waves will have unit potential amplitude. The
boundary conditions required to be satisfied at the sheath interface are con-

tinuity of the tangential electric field, the tangential magnetic field, the

normal electron velocity and the time varying electron density. At the

6



cylinder surface, the tangential electric field is required to be zero due

to the infinite conductivity of the cylinder. These requirements produce 8
scalar boundary condition equations, while 9 such equations are necessary,
since in addition to the 6th order differential equation [1], the scattering
coefficients of the TE, TM and EK waves in the uniform plasma are requir-
ed. The one remaining boundary condition to be used will be an admittance
relation between the normal electron velocity and time varying electron
number density at the cylinder surface, of the kind introduced by Cohen

(1962). These boundary conditions may be expressed in separated form as, at

p = s: _
[3a] L= l:(?n) plasma (]En) sheath== =0
[3b] Lx [(I;In) plasma (H) sheathv =0
[3¢] ,f,) . [Y,n) plasma ) (Yn) sheath | 0
[3d] (Qn) plasma ) (Qn) sheath ;0
and at p = c:

[4a] px (En) sheath ~ 0

[" 4b] » -(yn) sheath = YB(Qn) sheath

where YB is the surface admittance. In solving [1], we eliminate the
Fourier scattering coefficients of the fields in the uniform plasma, and so
reduce the number of scalar boundary condition equations above from 9 to
6 equations involving the 6 field quantities whose derivatives appear in [1].

It may be observed in [4b] that for zero surface admittance (Y = 0), the

B
electrons are elastically scattered from the cylinder surface, a situation
described in acoustics as a hard boundary. If on the other hand, the sur-

face admittance is infinite, then all the incident electrons are absorbed, a

situation which is referred to as a soft boundary. Since there is no coupling



between the EM and EK waves at a soft boundary (Miller and Olte, 1966a),

the latter case is of interest since then the surface currents excited by the

EK wave will be due to inhomogeneity coupling alone. The hard boundary
however leads to surface currents excited by the EK wave due to both in-
homogeneity and boundary coupling. Consequently, a comparison of results
for both the hard and soft boundaries allows us to obtain an idea of the relative
importance of the inhomogeneity and boundary coupling mechanisms between
the EK and EM fields.

This set of boundary condition equations together with the differential
equations [1] constitute the problem to be solved. Note that the surface cur-
rents, the quantities of primary interest, are obtained from the tangential
magnetic field at the cylinder surface. In the next section we discuss briefly

the method of solution.

3. Method of Solution

a.General Discussion

The set of ordinary first order differential equations [1] together
with the scalar boundary conditions [3] and [4] applied at the cylinder sur-
face and sheath interface constitutes a two-point boundary value problem,
as opposed to the initial value problem where the boundary condition equa-
tions are applied at a single value of the independent variable. While the
initial value problem may be handled in a relatively straightforward way
numerically, the boundary value problem is considerably more involved.
This is because in the initial value problem the information required to
calculate the starting values of all the dependent variables is given at a
single point. Consequently, the differential equations can be used to evaluat

the derivatives there and the integration is started by a standard technique



such as Runge-Kutta, for example, and the unique solution which satisfies

the boundary conditions is obtained. In the boundary value problem how-

ever, there are fewer boundary condition equations than dependent variables
at any one boundary. As a result, no matter at which boundary the integration
is begun, there is insufficient information to determine the starting values

of all the dependent variables at that boundary. This missing information

is contained in the boundary condition equations at the second boundary,

which cannot be utilized however until the integration has been carried out

to the second boundary.

This difficulty is overcome in a straightforward way, at the expense
of a considerable increase in computer time compared with the initial value
problem. The procedure followed is to divide the dependent variables into
two sets. The variables in the first set, equal in number to the number of
boundary condition equations at the boundary A where the integration is
started, are the "known'' variables, whose starting values are determined
from the boundary condition equations. The variables in the second set are
the '""'unknown' variables, and are assigned arbitrary starting values in order
to begin the integration. Denote the known variables by Yo i=1, ..., J
and the unknown variables by X i=1, ..., I where J + I is the total number
of dependent variables. The set of differential equations [ 1] then constitute a
transformation relating the derivatives fi’ i=1, ..., I+J of the dependent

variables to the dependent variables themselves, as

I+J
[5] [e)= I Ty(e) 7 (o)

where Tij ( p) is determined explicit ly' by the differential equation and

zi(p)=xi(p) ;i=1,‘ R |

yi_I(p); i=1+ 1, e ey I+J



The boundary condition equations at the starting boundary A may be written

J+1
[6a] 5,(A) = % AJz(A) =1, ..., J

j=i
where Si(A) is the contribution of the source, if any, (in our case, the in-
cident wave) at boundary A. Similarly at the boundary B where the integration

is terminated

J+1I
[6b] Si(B)- E_: BJz(B) 1, ..., 1

i=i
where the total number of scalar boundary condition is thus equal to the
number of first order differential equation to be solved. Thus [6a Jprovides
a relationship from which the J known variables yi(A) can be found in terms
of the I unknown variables xi(A) at the starting boundary A.

We also observe that the starting values of all the derivatives f.(A)

at boundary A may be written in terms of the x, (A) From [6a] we get

[ 7a] y(A)- (suz B e )5 1 ;
where
855 7 Ay, 41
i, j=1, ..., J
3, =(a)~!

and?%_ijis the JxI submatrix of Aijwhich remains after removing aij

~e

A..=A.. i=1, ..., d
1] 1]
j=1, ..., 1
Then using [ 5 Jand [7a] we obtain
I 1 1
[7b] f,(A) = X T (A) X; (A) +5, (A)i=l, ..., I+J
j:
' ——
with Tij (A) = (A) - 21 121 tlk (A) a Alj
! _d J -
S, (=5 § 8 T, 5 (@)

10



wheretij=Ti’ 4T i=1, ..., I+J
i=1, , J
T..=T.. i=1, , I+ J
ij ij
i=1 ..., 1

We note that in obtaining the starting values of the derivatives
fi(A) from [7b] , the boundary condition equations [6g are satisfied regard-
less of the values assigned to the Xi(A)' The problem now is to find the cor-
rect starting values for the Xi(A) which lead to the unique solution that will
satisfy [6b] as well as [6a]. The correct starting values Xi(A) which result
in satisfying both [6a] and [6b] are obtained as follows:

First choose a set of values Xij(A) for X, at A, with j = 1, denoting
this to be the first set of X, to be so specified. It follows that [7Tb] can be

written for the starting values Fij(A) in the form

I '
F..(A) = T. X, . (A); i=1, ..., I+J
1‘_J( ) k2=1 ik kJ( ) ;=1

+S;(A)

The integration can now be carried out to boundary B where the values
zZ (B)and F i (B) are obtained. Unless our choice for X, (A) has
been extremely fortuitous, however, [6b] will not be satisfied by the value
of Zil(B) which results.

If we now repeat this process with other sets of values Xij(A)’ j=2
I and form the linear combination

)

Zi(B) =j§1 Cjzij(B) ;i=l, ..., I+ J
then [6b] provides the I equations from which the Cj can be found. Thus
I _— .
8a] Cj:iél Mjisj B); =1 ..., 1

11



where

I+J

[8b] M;; = §1 BJk kB
and M.. = (M) .-.
Ji Ji

The correct starting values of X at boundary A are then given by

I
[9] Xi(A) =§1 Cinj(A)
and the unique solution to the problem may be obtained by a final
t
integration using [7b] but now with S; (A) —> Si' (A) 2 Cj’

or a combination of the previously calculated values Zij( o)

I
[10] Zi (p):jzélcjzij(p)

In most problems of interest, such as scattering by an obstacle or
the radiation from a source, one of the source vectors Si(A) or Si(B) will be
zero. It may be convenient to integrate in the direction which makes Si(B)=O.
In that case [8] will not be applicable. If, however, one integration is per-
formed with the Xi(A):O’ which as shown by [v7b] is not a trivial case, since

Si(A) is then non zero and we denote this integration with j=o, then

I
[11] =) M, s (B)
J i=1 jiti
I+J
where Si (B) = - le BlJZJO(B)

The cJ are then found in terms of Z (B) Since Z jo (B) is proportional
to the source strength Si(A) at A, we see that the cj obtained are proportional
to Si(A)’ in a similar fashion to [8] where the Cj are proportional to Si(B)'
The j sets of starting values Xij(A) may be chosen arbitrarily with
the restriction that
; o JX (A)=0
have only the tr1v1a]l solution aJ 0. This requirement that the Xij (A) be

linearly independent follows from [ 8b ] that the matrix Mij have are inverse.
12



A disadvantage of the numerical solution of the boundary value
problem compared with the initial value problem is thus seen to be the nec-
essity for performing the numerical integration of the J + I differential
equation a total of I + 1 times. (I times are required to evaluate cj and the
last time is required for the final answer.) The computation time is thus
made at least I + 1 times as great for the former problem. Consequently,
it is advantageous to begin the integration at the boundary where I has the
smaller value.

It is also apparent for a given integration step-size, that the results
obtained for the boundary value problem cannot be expected to be as accurate
as those obtained for the initial value problem. This is due to the fact that
the accuracy of the starting values xi(A) is dependent upon the precision
with which the I integration can be performed and the matrix [8b] inverted.
While each individual integration can be performed with the same relative
accuracy, the errors accumulate in the matrix inversion and this can in some
cases lead to errors in the Cj coefficients of much larger magnitude than

those arising from the integration.

b. Application to the Problem Under Consideration
If the scattering coefficients for the fields in the uniform plasma are

~ eliminated in the boundary condition equation [ 3], the sheath field quantities

(z)

E(p)’ E((p )’ E(Z), Q , H(CP)
n n n n

n n

and H are the only dependent variables ap-

2

pearing in them. There will then be three boundary condition equations at
each boundary, so that I =J = 3 regardless at which boundary the integration

were used as the set of

> >

begins. Thus the variables E;P), E;CP) and E;Z)

known variables, while Qn’ H;CP ) and H;Z) were the unknown variables.

13



A 4th order Runge-Kutta method was used to obtain the first three
points in the solution. Then a 4th order predictor-corrector method due to
Hamming (see Ralston, 1965, p. 189) was utilized, to continue the integra-
tion. At each integration point, an estimate of the error bound associated
with each variable was obtained as discussed by Ralston (1965, p. 203). If
the error bound associated with any variable was found to be larger than the
desired minimum accuracy, there were two options which could be followed.
The predictor-corrector routine could be iterated, as many times as nec-
essary to decrease the error-bound below the desired level, assuming the
iterated values converged, or the integration step-size could be decreased.
It was found that if one iteration of the predictor-corrector routine was in-
sufficient to produce the desired decrease in the error, it was more effic-
ient to halve the integration step-size. This involves again using the Runge-
Kutta method to set up the required values of the variables for the predictor-
corrector routine for the new step size. If on the other hand, all of the
error bounds were smaller than the maximum desired accuracy, then for
reasons of economy, the step-size was doubled. Othérwise, the integration
step-size was left unchanged.

The integration routine was programmed so that the integration could
“be started at either the sheath interface or cylinder surface. Some calcula-
tions were carried out with the cylinder potential @C = 0, i.e. the sheath-
less case, in order to compare the accuracy of the numerical integration
with the analytic solutions that can be obtained in this case (Miller and Olte,
1966a). It was found that the numerical integration produced results for the
surface current in agreement with the analytic solution to 3 or 4 significant

figures when the integration was begun at the sheath interface, for an EK

1k



wave at an angle of incidence Qi = 9° measured from the positive z axis.
This accuracy could be obtained for sheath thicknesses on the order of
lODz or less, so that the results to be presented are restricted to sheaths
no thicker than 10D,.

When the integration was begun at the cylinder surface however, the
numerical integration results for the surface current were generally unre-
liable. This occurs since the EM fields, for this angle of EK wave incidence,
are evanescent, decaying exponentially with increasing radius, and the inte-
gration, in order to accurate, should proceed in the direction of increasing
field magnitude. For EM wave incidence, and for EK wave incidence at an
angle such that radially propagating EM fields are produced, the integration
could be begun at either the sheath interface a cylinder surface with 3 to 4
figure agreement with the analytic solution.

The most obvious set of starting values Xij(A) is the identity matrix.
However, it was found in practice that the error-bounds associated with the
variables with a starting value of zero were generally larger than that of

the variable with the starting value of unity. This may indicate that it is

(9)

n equal to 0 at

not physically realistic for example, to have both Qn and H
the starting boundary. Thus the matrix of starting values Xij(A) used had
2's on the diagonal and 1's elsewhere. The matrix Mij was inverted in
double precision (16 places) to obtain the Cj' The final values for the field
variation in the sheath was obtained from [10], i.e., by storing the results
of each separate integration. This was done, rather than performing the
integration a final time, since the values for cj are less accurately known

than the Zij(p ), so that the errors in the final Zi( p) are kept on the order of

the errors in the Cj rather than becoming further increased as a result of the

15



final integration. This also shortens the computation time by eliminating
the final integration step.
4. Numerical Results

a. Incident EK Wave

In figs. 2 and 3 are shown the magnitudes of the ¢ and z compon-

() (z)

ents of surface current excited by the EK wave, Kp and Kp , for an angle

of incidence Gi of 9° and a sheath thickness X, of 5 Dz . There are two
curves on the graphs, one each for the soft and the hard boundary. The
vertical scale is amperes/cm and the horizontal scale, showing the azimuthal
angle ¢, runs from 0° to 180° only, since the currents are symmetric in ¢.
The cyiinder potential is -5. 34 volts, corresponding to a mercury plasma
(mi=200 atomic mass units) for electrons at a temperature of 104 oK, and
the parameter M for the static potential, has a value of 2. The incident
wave frequency f is 1 Ge/s and the plasma frequency fP is 0.7 Ge/s
(N = fP/f = 0.7). For purposes of comparison, Figs. 4 and 5 show K;@),
and K(Z) obtained from the vacuum sheath analysis for the same parameter
values as figures 2 and 3 for various vacuum sheath thicknesses.

It may be seen in Figs. 2 and 3 that the current magnitude of K;Z)
for the hard boundary is similar to that for the soft boundary but roughly a
factor of two larger, while KI()CP) shows more variation between the hard and
soft boundaries in the behavior as a function of o - As a matter of fact, KI(DCP)
for the soft boundary exceeds that for the hard boundary near the back of
the cylinder. We might conclude from these curves that the contribution to
the surface current excited by the EK wave due to the boundary and inhomo-

geneity coupling are of nearly the same magnitude. It should be noted in this

regard, that the spatial distribution of ny is the sheath is dependent upon the

16



HARD BOUNDARY

10°
SOFT BOUNDARY
E
(3]
~
o
5 10°°
a
£
A
:-g".a N=0.7
_x c=0.2cm
B X=10
ei =Qo
'0'7 N
ol | | I |
0] 45 90 135 180
igb (degrees)
Fig. 2: The magnitude of Kéq’) as a function of azimuthal angle @ for

the inhomogeneous sheath model, with X = 5 and o = 9°,
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Fig. 3: The magnitude of KI()Z) as a function of azimuthal apgle o for

the inhomogeneous sheath model, with X = 5 and gl =9°,
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value of YB. Consequently, the contributions of both the inhomogeneity
coupling and boundary coupling to the EK surface current are dependent

upon Y., so that it is difficult to determine more accurately their relative

B,
importance in this role.

A comparison of the inhomogeneous sheath currents of Figs. 2 and
3 with the corresponding vacuum sheath currents of Figs. 4 and 5 reveals

(Z)'

some similarity in the results, especially for Kp The z component of
current for the inhomogeneous sheath (Fig. 3) varies with azimuthal angle

¢ in a way very similar to the sheathless case of Fig. 5, though having a
fnagnitude somewhere between the X = 0 and X = 5.case of the vacuum sheath
currents. In the case of the ¢ component of current, the ¢ variation of the
current for the two sheath models is somewhat different, though the inhomo-
geneous sheath current magnitudes again lie roughly between the vacuum
sheath results for X = 0 and X = 5. These observations are substantially

in agreement with results presented by Miller and Olte (1966b) for normal
EK wave incidence on an inhomogeneous sheath, in that the inhomogeneous
sheath currents for either the hard or soft boundary can be approximated
quite well from the vacuum sheath model if the sheath thickness X is regard-
ed as a parameter.

Figure 6, which shows the magnitude of K:)Z) for the inhomogeneous
sheath model, with the same parameter values as for the previous graphs,
but with the sheath thickness X = 1ODJZ , further illustrates this equivalence
between the results of the vacuum sheath and inhomogeneous sheath currents.
A comparison of Figs. 3 and 6 shows that the current magnitude for the hard
boundary and the 10D, inhomogeneous sheath fluctuates more with azimuthal

f
angle ¢ and is larger toward the back of the cylinder, than that for the 5D,
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thick inhomogeneous sheath, while those for the soft boundary are quite
similar. It may also be seen, in comparing Figs. 5 and 6, that the 2D,

thick vacuum sheath and 10D£thick hard boundary, inhomogeneous sheath
current magnitudes are very similar, as are the soft boundary inhomo-
geneous sheath and the 5D}Z thick vacuum sheath currents of the same figures.

The final graphs of this series, Figs. 7 and 8, show the magnitude

of

KE()Z) only, from the inhomogeneous sheath model for a sheath 5D£ thick,

and the vacuum sheath model for various sheath thicknesses, for an angle

(o)

of incidence e-i = 45°. We note in Fig. 7 that, as in the case of Kp for
o 1. 90, the soft boundary current exceeds that for the hard boundary to-
wards the back of the cylinder. Consequently, it appears that boundary
and inhomogeneity coupling are of nearly the same importance. In comparing
the inhomogeneous and vacuum sheath currents of Figs. 7 and 8 the inhomo-
geneous sheath currents are generally bracketed between the X = 2 and
X = 5 currents for the vacuum sheath.
b. Incident EM Wave

Since the currents excited by the EM wave on a cylinder which is
small in diameter compared with the wavelength vary in a regular way with

azimuthal angle ¢, the situation of interest here, we present only the maxi-

mum value of the current magnitude obtained from the ¢ variation as a func-

tion of angle of incidence, in Fig. 9. The TE and TM currents are denoted

()

o and Krr(1 ) . Results from both a vacuum sheath of

respectively by K
0 and IODjz thickness and an inhomogeneous sheath 2OD£ thick are shown in
Fig. 9 when the difference between them are large enough to resolve graphi-
cally. The other parameter values are the same as those in previous graphs.
We see in Fig. 9 that only the TM wave produces currents which are appre-

ciably affected by the presence of the sheath. It is interesting to observe

that the vacuum sheath of 10D£ thickness appears to approximate the 20D£
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thick inhomogeneous sheath quite well, at least as far as the surface current
produced by the TM wave is concerned. It should also be noted that the ¢
component of TM current, Krflq) ),. is increased by the sheath, compared with
the sheathless case. This occurs because while the TM wave excites no
component of current on an infinitely conducting cylinder in free space, both
the sheath vacuum and inhomogeneous and finite plasma temperature cause
its excitation. Thus increasing the sheath thickness can result in an increase
of Kirclp ).

Finally, it should be mentioned that the vacuum sheath calculations
were performed for EM wave incidence, for the additional case of the cold
plasma, i.e., T = 0, with changes on the order of 0.1 per cent or less oc-
curring in the current magnitudes compared with the warm plasma results
shown in Fig. 9, except for Kirclp ). For vacuum sheath thicknesses greater
than about 2D j, Kirclp) was similarly unaffected by setting T = 0, but as the

)

vacuum sheath thickness was decreased towards zero, Kfi became pro-
gressively smaller, becoming zero for X = 0 since then both of its excitation
mechanisms are absent. We should note that for EM wave incidence, the
cold plasma situation is the same as representing the vacuum sheath-uniform

plasma interface as a soft boundary, since then the EM wave does not couple

to an EK wave.

c. Comparison of EM and EK Currents

It should be recalled that the currents presented above are for the
case of unit amplitude incident plane waves. One reasonable criterion for a
comparison of the currents produced by the EM and EK waves would seem
to be that when their power flow densities are equal. As discussed by

Miller and Olte (1966a), the power flow density in the EK wave of potential

27



amplitude A equals that in an EM wave of potential amplitude V! when
p e

. . v .
vi-Z JE Vv
3 L
where v, is the velocity of light in free space.
For the parameter values used here, this reduces to

vi=332x102 V!

p e

If we use this equal power flow criterion, we see that the EK currents pre-
sented in Figs. 2-8 must be reduced by almost 2 orders of magnitude before
they can be compared in amplitude with the EM currents of Fig. 9. The
)

result is that only KS} of the EM currents is less than any of the EK cur-
rents, while the other EM current components are an order of magnitude or
more larger than the EK currents. Consequently it appears that it would be
difficult to measure the current produced by an EK wave in the presence of an
EM background, an observation reached earlier by Miller and Olte (1966a)
on the basis of the vacuum sheath analysis.
5. Comments and Conclusions

One of the most interesting aspects of the work reported here con-
cerns a comparison of the inhomogeneous sheath and the vacuum sheath
results. It was pointed out by Miller (1966) that linear increases in the
vacuum sheath thickness beyond some minimum thickness on the order of
2D£ , lead to exponential decreases in the surface current excited by the
EK wave at oblique incidence on the infinite cylinder. This decrease in
the current due to the EK wave is caused by the evanescent EM fields which
it excites at the vacuum sheath-uniform plasma interface. One drawback of
the vacuum sheath model is however, that the plasma in reality extends to

the surface, with the result that any screening effect of the real sheath may

be exaggerated by the vacuum sheath model.
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As we have seen in the results presented above however, the
vacuum sheath model can produce results for the surface currents for ob-
lique EK wave incidence in good agreement with those of the inhomogeneous
sheath models used, for a vacuum sheath thickness on the order of one-fifth
to one-half the inhomogeneous sheath thickness. The equivalent vacuum
sheath thickness is found to depend upbn the cylinder surface admittance
used in the inhomogeneous sheath calculations. For EM wave incidence,
the equivalent vacuum sheath thickness appears to be about one-half the
inhomogeneous sheath thickness. It thus appears that, despite its obvious
physical shortcomings, the vacuum sheath model can serve auseful purpose
in finding the-surface currents excited by EM and EK waves on a plasma-
immersed obstacle.

Perhaps the most significant finding of the inhomogeneousA sheath
results for EK wave incidence, is the relatively small dependence of the
current on the surface admittance of the cylinder, showing that the boundary
coupling and inhomogeneity coupling mechanisms are of nearly the same
importance in converting the incident EK wave to a scattered EM wave. This
is important since the hard boundary is an admitted oversimplification for
representing the interaction of the electrons moving under the influence of
the wave electric fields in the plasma with the cylinder surface. The effect
of the sheath and coupling to the EK wave has been found to have a small
influence on the surface currents excited by the EM wave. An area for
further investigation would be comparison of the scattering cross-section
of plasma-immersed obstacles for the vacuum sheath and inhomogeneous

sheath models, especially for an incident EM wave.
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