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Self-assembly of amyloid beta into fibrillar plaques
is characteristic of Alzheimer’s disease and oligo-
mers of this peptide are believed to be involved in
neurodegeneration. Natural organic dyes, such as
congo red and curcumin, bind tightly to amyloid
beta and, at higher concentrations, block its self-
assembly. The ability of these molecules to pre-
vent amyloid accumulation has generated interest
in understanding which of their structural features
contribute to inhibitory potency. In general, amy-
loid beta ligands tend to be flat, planar molecules
with substituted aromatic end groups; however, a
comprehensive structure-activity study has not
been reported. To better understand these ligands,
we surveyed the effect of three prominent fea-
tures on inhibition of amyloid aggregation: the
presence of two aromatic end groups, the substi-
tution pattern of these aromatics, and the length
and flexibility of the linker region. We found that
modification of any one of the modules has pro-
found effects on activity. Further, we report that
the optimal length of the linker lies within a sur-
prisingly narrow regime (6-19 A). These results
offer insight into the key chemical features
required for inhibiting amyloid beta aggregation.
In turn, these findings help define the nature of
the docking site for small molecules on the amy-
loid beta surface.
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The aggregation of amyloid beta (Af) peptide has been implicated
in the pathology of patients with Alzheimer's disease (1-3). AfS
peptides are typically 39-42 residues long and, in vitro, they will
spontaneously self-assemble into fibrillar and oligomeric structures
that are reminiscent of material isolated from the diseased brain
(4-9). Recent evidence points to oligomers as the key neurotoxin

206

(10-12) and, thus, significant efforts have been placed toward iden-
tifying small, drug-like molecules that block early stages of amyloid
self-assembly (13-16). X-ray diffraction, electron microscopy, and
solid-state NMR studies suggest that A multimers are stabilized
by hydrophobic and hydrogen-bonding interactions within the
f-sheets that form their core (17-22). Although this general model
is well supported, a detailed molecular understanding of the key
toxin remains elusive. Thus, the structure-guided design of small
molecules that disrupt the forces favoring A self-assembly has
been challenging.

One approach to identifying potent inhibitors is to pattern them
after naturally occurring compounds. Organic dyes, such as congo
red (CR), chrysamine G (CG), and curcumin, bind with high affinity
to Ap (23-27). Additionally, curcumin, an abundant component of
the plant turmeric that is used in the curry spice of the same name,
has been shown to inhibit AB(1-40) fibril formation and lower its
toxicity (26,28). Interestingly, curcumin, CR, and CG all share a simi-
lar chemical scaffold; they contain two substituted aromatic groups
separated by a rigid, planar backbone (Figure 1A). Consistent with
the importance of this core, several groups have reported that other
roughly curcumin-like ligands are also inhibitors of A aggregation
(29-38). Despite these advances, the structure—activity relationships
that define potent ligands have not been systematically explored.
We hypothesize that a better understanding of the modules neces-
sary for activity would facilitate creation of new inhibitors. In turn,
these insights might reveal the key elements of the amyloid surface
that are required for its aggregation and toxicity.

To identify the chemical features most important for inhibition, we
have constructed a library of small molecules. To simplify the study,
we have focused on molecules that resemble curcumin and CR;
thus, benzothiazoles and related molecules, which are believed to
bind a site on the AS surface distinct from where CR interacts,
were not included (39). This collection consists of both known cur-
cumin-inspired ligands and novel synthetic compounds that we
generated to test the contribution of specific substructural ele-
ments. Collectively, this library addresses three components pre-
dicted to impact activity (Figure 1B). First, we hypothesized that the
chemical scaffold of curcumin, containing two aromatic end groups,
is optimal for inhibition and the A; component addresses whether
compounds that lack the second aromatic group retain activity. Sec-
ondly, we predicted that substitutions on the phenyl groups are
essential to activity; therefore, the R, study addresses the effect of
altering the hydrogen-bonding properties of these substitutions.
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Figure 1: The structural components of natural amyloid beta
(Ap) ligands. (A) Chemical structures of curcumin and related com-
pounds. (B) The structural elements common to curcumin-like amy-
loid ligands. These features are shown in relation to a schematic
Ap surface to illustrate how these different components may con-
tribute to molecular recognition.

Finally, the R; study examines the effects of linker length and
flexibility. Overall, we show that modest changes in any of the A,
R,, or R components have profound effects on activity. This finding
emphasizes the strict requirements for inhibition and these con-
straints lend themselves to a general model of inhibition by curcu-
min and related ligands.

Methods and Materials

General

All chemical reagents were purchased from Sigma-Aldrich (St.
Louis, MD, USA) and were used without purification. Library mem-
bers whose synthesis is not described below were purchased from
Sigma-Aldrich. Solvents were purchased from Thermofisher Corp.
(Waltham, MA, USA). All mass spectrometry analysis was carried
out on a Waters LCT Electrospray-TOF instrument in positive ion
mode (Waters, Milford, MA, USA). NMR spectra were recorded on
a Bruker Avance DRX500 NMR Spectrometer running TOPSPIN 1.3
Software (Bruker, Billerica, MA, USA). Yields and purities for each
compound are summarized in Table 1.

Synthesis
Compounds 6 and 7 were prepared via an aldol reaction based on
previous findings (40). Briefly, acetophenone (5 mmol) was added to
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10 mL 9:1 ethanol:water and stirred at 0 °C for 10 min. About
25 mmol NaOH was added and the reaction was allowed to stir for
another 10 min at 0 °C. 5 mmol of the appropriate aldehyde was
added and the reaction proceeded for 17 h at room temperature.
Each reaction was extracted twice with dichloromethane (DCM) and
brine addition. Products were characterized by mass spectrometry
and NMR. The 4-hydroxy-3-methoxy benzaldehyde (vanillin)-based
chalcone (6) afforded a brown oil (yield 14%) at a >95% purity [exact
mass calculated for CigHq405: 254.3, observed (M + H): 255.1,
100%]. The 3-hydroxybenzaldehyde-based chalcone (7) formed a light
brown solid (yield 17%) at a >95% purity [exact mass calculated for
Cy5H120,: 224.3, observed (M + H): 225.1, 100%].

Compounds 11-14 were prepared via amide coupling of ferulic
acid (5) and various diamines. Synthesis was patterned after the
approach of Spasova et al. (41). Ferulic acid [(E)-3-(4-hydroxy-3-
methoxyphenyl)prop-2-enoic  acid; 3 mmol] was dissolved in
6-10 mL 1:1 dimethylformamide:DCM, followed by the addition of
triethylamine (0.75 mmol). The reaction was allowed to stir for
10 min at 0 °C. N-Hydroxybenzotriazole (3 mmol) and N,\-diisopro-
pylcarbodiimide (8 mmol) were added directly to the mixture. About
1.5 mmol of A-methylmorpholine dissolved in DCM (2 mL) was
added and stirred at 0 °C for another 7 min. 0.75 mmol of either
ethylenediamine, diaminobutane, diaminooctane, or m-xylylene-
diamine was dissolved in 2-3 mL DCM and slowly added to the
reaction mixture. The reactions proceeded at room temperature for
23 h (ethylenediamine, diaminobutane, and diaminooctane reactions)
or 46 h (m-xylylenediamine reaction), after which 1 eq. of 5% NaH-
C0O; was added. Upon agitation, an orange to brown solid precipi-
tated. In each case, the solid was obtained by filtration and
washed with cold water. Each solid was then dissolved in a 1:1
methanol/DCM mixture, and precipitated a second time with brine.
Filtration of this solid yielded the final products. Compounds
11-14 were characterized by mass spectrometry and 'H-NMR.

Compound 11 (2£.2'F)-N,N-(ethane-1,2-diyl)bis(3-(4-hydroxy-3-meth-
oxyphenyl)prop-2-enamide) (yield 16%): Exact mass calculated for
CyoHpaN,0g: 412.4, observed (M + Na*) 4351 (20%). "H-NMR
(500 MHz; DMS0), 6 3.28 (s, 4H), 6 3.80 (s, 6H), 5 6.43 (d, 2H), 6 6.78
(d, 2H), 6 6.98 (d, 2H), 6 7.10 (s, 2H), 6 7.33 (d, 2H), 6 8.1 (s, 2H).

Compound 12 (2£,2’£)-N,N-(butane-1,4-diyl)bis(3-(4-hydroxy-3-meth-
oxyphenyl)prop-2-enamide) (yield 15%): Exact mass calculated for
CasHagNoOg: 440.2, observed (M + Na®): 4632 (100%). 'H-NMR
(500 MHz; DMSOQ), 6 1.47 (s, 4H), 6 3.17 (s, 4H), 6 3.78 (s, 6H), &
6.39 (d, 2H), 6 6.73 (d, 2H), 6 6.93 (d, 2H), 6 7.06 (s, 2H), 6 7.29 (d,
2H), 6 7.98 (s, 2H).

Compound 13 (2E2’A-N,N-{octane-1,8-diyl)bis(3-(4-hydroxy-3-meth-
oxyphenyl)prop-2-enamide) (yield 8%): Exact mass calculated for
CogHasN,0g: 496.3, observed (M + Na*) 519.2 (100%). "H-NMR
(500 MHz; DMSQ), 6 1.29 (s, 8H), 6 1.44 (s, 4H), 6 3.14 (s, 4H),
0 3.78 (s, 6H), 6 6.38 (d, 2H), 6 6.74 (d, 2H), 6 6.94 (d, 2H), 6 7.06
(s, 2H), 6 7.28 (d, 2H), 6 7.91 (s, 2H).

Compound 14 (2£2’E-N,N-(1,3-phenylenebis(methylene))bis(3-(4-
hydroxy-3-methoxyphenyl)prop-2-enamide) (yield 19%): Exact mass
calculated for CygHpgN,Og: 488.5, observed (M + Na*): 511.1
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Table 1: Structure—activity relationships library: compounds tested for inhibition of amyloid beta aggregation
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?ICs value reported by Masuda et al. (35).
®|Csy value reported by Lee et al. (32).

“Compound labeled NA were purchased from Sigma and used without further purification.

(100%). 'H-NMR (500 MHz; DMSO0), 6 3.78 (s, 6H), & 4.37 (s, 4H),
0 6.47 (d, 2H), 6 6.75 (d, 2H), ¢ 6.95 (d, 2H), 6 7.08 (s, 2H), 6 7.17
(d, 2H), 6 7.22 (s, TH), 6 7.29 (t, 1H), 6 7.35 (d, 2H), o 8.47 (t, 2H).

Compound 15 (2£2°£)-1,1"-(1,3-phenylene)bis(3-(3,4-dimethoxyphe-
nyl)prop-2-en-1-one) was formed via an aldol reaction. 1,3-Diacetyl-
benzene (1.4 mmol) was added to 25 mL ethanol and stirred for
10 min at 0 °C. 14.4 mmol NaOH was added and the reaction stirred
for another 10 min at 0 °C. 8.3 mmol of 3,4-dimethoxybenzaldehyde
(veratraldehyde) was added and the reaction proceeded at room tem-
perature for 13 h. About 5 mL water was added to promote precipita-
tion of a yellow solid. The mixture was vacuum-filtered and washed
with cold water to afford a bright yellow solid (yield 42%) of 80%
purity. The product was characterized by mass spectrometry and
NMR. Exact mass calculated for CygH,506: 458.2, observed (M + H):
459.2 (100%). "H-NMR (500 MHz; DMSQ), & 3.82 (s, 6H), & 3.87
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(s, 6H), 0 7.03 (d, 2H), 0 7.16 (d, 2H), 6 7.44 (d, 2H), o 7.56 (d, 2H),
07.76(s, TH), 07.79(d, 1H), 6 7.91 (d, TH), 6 8.41 (d, 2H).

Compound 17 (1,3-bis(3,4-dimethoxystyryl)benzene) was prepared
according to Lee et al. (32). Briefly, 1,3-bis(diethoxyphosphinylmeth-
yl) benzene was synthesized according to Plater and Jackson (42).
0.7 mmol of 1,3-bis(diethoxyphosphinylmethyl) benzene was resus-
pended in 50 mL of anhydrous tetraydrofuran. 2.0 mmol of sodium
t-butoxide was added and the reaction stirred at 0 °C for 20 min.
Veratraldehyde (3.6 mmol) was then added and the mixture was
allowed to stir for another 45 min at room temperature. About
50 mL of chilled water was then slowly added over 10 min, and
the reaction stirred for a final 30 min at room temperature. The
final mixture was extracted twice with ethyl acetate, and washed
once each with 5% NaHCOs, then brine. A crude column purifica-
tion was performed in 50:50 ethyl acetate:hexanes to yield three
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separate fractions. A white solid precipitated from the first fraction
and was filtered and washed with ethyl acetate (yield 25%). The
final white powder was characterized by mass spectrometry and
NMR. Exact mass calculated for CogHps04 402.2, observed
(M + Na*): 425.2 (100%). NMR spectra were in agreement with
previously published results (32).

Defining linker length and flexibility

Linker length was quantified by summing the bond lengths accord-
ing to the following values: C-C, 1.54 A; C=C, 1.34 A; C-0, 1.43 A,
and C-N, 1.47 A (43). Linker flexibility is not based on dynamic sim-
ulations but simple quantification of sp® carbons. Curcumin can be
depicted as either a f-diketone or enol form. The f-diketone pre-
dominates in aqueous environments (44). Based on this finding, we
have roughly approximated curcumin as having a single sp*-hybrid-
ized carbon center.

Amyloid  preparation

Amyloid f(1-42) peptide was purchased from AnaSpec (San
Jose, CA, USA). A 1 mg sample of peptide was dissolved in
200 uL hexafluoroisopropanol (HFIP) and aliquoted to obtain
0.1 mg stocks. Hexafluoroisopropanol was removed under nitrogen
to provide a thin film. Stocks were stored at —30 °C until
ready-to-use. Immediately prior to the start of the experiment, an
aliquot was first fully resuspended in DMSO followed by PBS
(pH 7.4) to a final concentration of 25 um (10% final DMSO
concentration). Aliqouts were then sonicated for 1 min at room
temperature and immediately dispensed into 96-well plates (see
below).

Thioflavin T assay
Inhibition of AB(1-42) aggregation was measured using a Thioflavin T
(ThT)-binding assay. Stocks of each compound (10 mm) were prepared
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in DMSO and 1 ul of each was added to the wells of black, opaque
Corning 96-well plates such that the final solvent concentration was
10%. Compounds were tested over a broad concentration range
(1 nmto 100 um) using 8-11 concentration points. Each concentration
was prepared in independent triplicates and a solvent control was
included. 9 ul of 25 um AfB(1-42) sample (see Af preparation above)
was added to each well and the samples mixed by gentle tapping.
Plates were covered to minimize evaporation and incubated in the
dark at room temperature for 46—48 h with no agitation. After the
incubation period, 200 uL of 5 um ThT in 50 mm glycine (pH 8.0) was
added to each well. Fluorescence was measured on a SpectraMax
M5 (Molecular Devices, Sunnyvale, CA, USA) multi-mode plate reader
with excitation and emission wavelengths at 446 nm and 490 nm,
respectively. Data were fit by nonlinear regression analysis using
GRAPHPAD PRISM software.

Results and Discussion

To establish the contribution of each structural module to activ-
ity, we assembled a collection of compounds that resemble por-
tions of the curcumin scaffold. Some of these molecules were
gathered from the literature and others were built from simple
components in a 'bottom—up' synthetic approach (Figure 2). We
envisioned that this library could be used to address the three
prominent structural features, A;, A, and Rs; which are observed
in naturally occurring ligands. To resolve the contribution of
these features, comparisons were made between compounds
that, as best as possible, isolate a single chemical signature
while retaining the character of the remaining two. To test the
activity of compounds in this collection, we employed the well
known ThT assay; this dye is fluorescent in the presence of Af
aggregates and it is commonly used to characterize inhibitors
(45,46). In these experiments, we examined the half-maximal con-
centration (ICsg) required and expressed these values as relative
potency (1/1Csg). By comparing the potency of various library
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H,CO H H3C ethanol/water H3CO x
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n =4 (Compound 12)
n =8 (Compound 13)
© 0 o} o
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Figure 2: Synthesis of curcumin mimetics. (A) Addition of acetophenaone to vanillin (1) in basic conditions afforded the aldol condensation
product (6). (B) Amide coupling of ferulic acid (5) to alkyl diamines provided the desired compounds (11-13). (C) Similarly, compound (15)
was synthesized via aldol condensation by the addition of excess 3,4-dimethoxybenzaldehyde to diacetylbenzene.
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members, we hoped to provide insight into the relative impor-
tance of the different structural features.

R; component: compounds lacking a second
terminal aromatic group do not inhibit Ap
aggregation

Curcumin is composed of two relatively polar aromatic groups con-
nected by a rigid linker. Thus, in our first experiments, we asked
whether both aromatic groups were required for activity. Using the
ThT assay, we found that simple compounds with a single aromatic
group (1-5) did not decrease aggregation of 25 um AB(1-42), even
at high (500 um) concentrations (Table 1). Conversely, curcumin
inhibits Ap aggregation (ICsq: approximately 10 um), consistent with
previous findings (26,28). These data demonstrate that compounds
lacking a second phenyl are less potent inhibitors of aggregation.

R> component: substitutions on the aromatic
end groups are important for activity

Curcumin contains a 3-methoxy-4-hydroxy substitution pattern on
its aromatic end groups. Similarly, CR displays sulfonic acids in an
equivalent position and CG has pendant carboxylates. Thus, we
were interested in learning if polar, hydrogen-bonding groups are
required. To test this hypothesis, the activities of compounds
15-17 were assayed. Compound 16 has the same substitution
pattern as curcumin, and, similarly, inhibits aggregation with an
ICsq value of 0.5 um (32). Compound 17 is identical to 16 except
that it displays a 3,4-dimethoxy pattern and, interestingly, it has
no activity when tested at concentrations up to 100 um (Figure 3).
To further explore this requirement, we assembled compound 15
by a dual aldol condensation (Figure 2). This molecule has a
chemical scaffold that resembles curcumin, except that it

0.18
o o
H,CO ~ OCH
o16] ™ -
HO~ Curcumin ~oH
0 0]
0.141.co g - ocH,
H.CcO™ ‘ ‘ ‘ SOCH,
o 0424 N
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3
2 0.1
Q
=
-
z 0.08 1
-]
2
o
A« 0.06
0.04 1
0.02
0
Curcumin 15"

lacks the hydroxyl substitutions and, like compound 17, it is also
inactive (Figure 3). Thus, these results suggest that aromatic sub-
stitutions capable of taking part in hydrogen bonding are impor-
tant for activity. This finding might have been predicted by the
invariance of these groups in the natural amyloid ligands; how-
ever, these studies demonstrate that these groups serve a func-
tional role and are neither coincidental nor present solely for
improved aqueous solubility.

Several other known inhibitors support these observations; com-
pound 9, with two hydroxyl substitutions, blocks Af aggregation
(ICso = 10 um; 36,37) and compound 10 has also been shown to
significantly reduce fibril formation (35). Together, the results of the
R, study suggest that the aromatic end groups require one or more
polar, hydrogen bonding substitutions for optimal inhibition of Af
aggregation.

R3: component: length and flexibility of the
linker region define inhibitory capacity

Linker length

The distance between the terminal aromatic regions of curcumin,
CR, and CG are all strikingly similar. Based on this observation,
we hypothesized that the length of the linker would be impor-
tant for activity. To test this idea, we compared the potency of
a series of ligands that vary in linker length. To systematically
assess the effect of this feature, we constructed a series of
ferulic acid dimers. Ferulic acid (5) was used because it contains
the same 3,4-substitution pattern as curcumin and, to sample a
range of lengths, compounds 11-14 were synthesized via amide
coupling of 5 to alkyl diamines containing two, four, or eight

X O )
2.54

Potency 1/IC 5y (um1)
&

0.5

s

16" 17

Figure 3: Hydroxy substitutions on the aromatic end groups are required for inhibition. Dimethoxy-substituted compounds (15 and 17) did
not inhibit aggregation as well as those with hydroxy substitutions. Potency values (1/1Csq) were calculated from eight concentrations of com-
pound (up to 100 mm) against 25 Ap(1-42). Each concentration was plated in triplicate and error is expressed as standard deviation. Asterisk

(*) indicates ICsq is >100 um. TICsq value reported by Lee et al. (28).

210

Chem Biol Drug Des 2007; 70: 206-215



carbons (Figure 2). Purified yields ranged from 8% to 19% and
these coupling efficiencies were primarily limited by the poor
solubility of ferulic acid and the resulting dimers. Despite these
modest vyields, this synthetic method provided sufficient material
to explore the effects of linker length on potency.

Interestingly, of the four compounds in this series, only the ethyl-
diamide dimer (11), with a linker length of approximately 16 A,
had appreciable activity (ICsg = 91 um). Compounds 12-14, with
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linkers ranging from 19 to 26 A displayed no activity when tested
up to 100 um (Figure 4). These results suggest that the activity of
curcumin-like compounds is restricted to those with a length of
roughly 16-19 A or shorter. To examine the lower limit, we synthe-
sized compounds 6 and 7 using an aldol condensation (Figure 2).
Both these compounds have linkers of approximately 6 A and they
each failed to inhibit fibril formation when tested up to 100 pm.
Interestingly, both compounds meet the requirements proposed by
the R; and R, studies, but their activity appears to be limited by
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0.100+ HOOH HOOH
= ’ HO \ /
IE
3 __
8 0.080
Q
s
7
& 0.060-
2
o]
o
0.040 |
i - g
H,CO \ OH el “A N ANJK/A(;EOCHS
0.020 | ]Q/\)L b oo
HO OH
0.000 +—=— ; ; ; ; I—H-—-—-—
1* 5* 6* 9 107  Curc 11 12 13 14*
30 9
-8
25
c
[=]
<]
20 —6 §
==0— | ength ”%
< —8— Flexibility 5 5
= P
E’ 15 4 g
S L4 é
2z
10 3 =
Qo
x
[
5_
1
0+ 0

i 5 6 9 10 Cuc 11 12 13 14

Figure 4: Linker length and flexibility define a narrow region of optimal potency. (A) Linker length and flexibility strongly influence
potency. A narrow range of linker length and flexibility defines the optimal window for amyloid beta (Af) inhibition (shaded region). Represen-
tative chemical structures are shown, and all compounds were tested up to 100 mm against 25 pum AB(1-42) in triplicate. Error is expressed
as standard deviation. Asterisk (*) indicates ICsg is >100 mm. 1Csq value reported by Masuda et al. (31). (B) Quantitative comparison of linker
length and flexibility. Linker length (blue) and flexibility (green) are compared. Compounds with optimal activity are in the shaded region.
Activity decreases when linker is too short, too long, or too flexible. See Methods and Materials for quantitation methods.
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their short lengths. Inhibition returned in compounds with lengths
of approximately 8-10 A, as shown by compounds 9 and 10 (35).
Based on these results, we propose a lower constraint of approxi-
mately 6-8 A Thus, by creating and testing curcumin-like com-
pounds of varying lengths, we identified upper and lower bounds
(Figure 4, shaded region).

Linker flexibility

The notably rigid quality of natural AS ligands led us to predict
that flexibility might also influence activity. To facilitate this anal-
ysis, relative flexibility was approximated by comparing the total
number of freely rotating sp®-hybridized carbons within the back-
bone. For example, compound 11 contains two such carbons and
is therefore less rigid than curcumin. As mentioned above, this
compound inhibits Af aggregation (ICso = 91 um), although the
potency is weak. Increasingly flexible compounds, such as the
butyl-diamide dimer (12) with four sp>-hybridized carbons, had no
activity. Conversely, rigid molecules, including 9 and 10, are

good inhibitors (35). These findings suggest that the linker has a
low tolerance for mare than one or two sp-hybridized carbons.

During the course of these experiments, we noticed that length and
flexibility are not independent variables. For example, the meta-
xylene-based dimer (14) has a rigid backbone with only two sp®-
hybridized carbons, yet, its long linker length appears to prevent
this molecule from inhibiting aggregation. Moreover, compounds 6
and 7 are rigid, but the backbone of these molecules is only about
6 A; thus, they do not meet the length requirement. Together, we
conclude that both the length and flexibility of the linker region
strictly define the activity of curcumin-like amyloid inhibitors (Fig-
ure 4).

Conclusions and Future Directions

Striking structural similarities are readily observed in naturally
occurring amyloid ligands, such as curcumin, CR, and CG; however,

(A) Features important for activity of curcumin-inspired A ligands

R, Substructure;
a hydroxyl sub-
stitution on the

aromatic end group
is necessary
for inhibition

R ; Substructure; linker length
and flexibility are limited to a
narrow regime; approximate
optimal length lies between

8 A and 16 A;inclusion of
2-3freely rotatable carbons
centers is not well tolerated

R; Substructure;
a second terminal
phenyl group is
required for
activity

A

()

(B) "Goldie-Locks' model showing how linker characteristics contribute to potency

Bim 2
B

Figure 5: Three structural features of curcumin-like compounds that are important for activity. (A) Schematic depiction of the three regions
(R;, R, and R;) that were identified and the approximate features that describe potent ligands. (B) Goldie-Locks model. Based on our results,
we propose that the substitution pattern and linker properties of curcumin are just right. Importantly, the length and flexibility of the linker

both contribute to defining the optimal range.
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a systematic analysis of these perceived commonalities had not
been performed. Thus, the main goal of this study was to under-
stand which features of these inhibitors are critical for activity. As
part of these experiments, we hoped to provide context in which to
explain the activity of previously described, synthetic inhibitors
(29-38). In addition, we hoped that these studies might guide the
rational design of new compounds.

Our approach was to assay a library of compounds that collectively
address three distinct structural features that were predicted to be
critical for inhibition of AS aggregation. Our findings indicate that
alteration or elimination of any one of the three major components
results in a significant loss of activity (Figure 5A). First, in the A;
study, we found that simple aromatics do not have activity. It is
worth noting that, although the majority of known amyloid ligands
have at least two phenyl groups, a handful of compounds with a
single phenyl ring have been shown to inhibit AS by other experi-
mental approaches (29,47). These observations are not necessarily
in conflict, because it is likely that distinct experimental platforms
(e.g. ThT, direct binding, etc.) and subtle changes in handling (e.g.
different buffers, temperatures, time, etc.) may give rise to different
outcomes. In the second portion of our analyses, we found that loss
of the hydroxyl group on the aromatic rings abolishes activity. This
result is consistent with the architecture of natural amyloid ligands,
such as curcumin and CR. In addition, polar functional groups (and
often, hydroxyls) are commonly seen in other reported ligands
(26,29,33,35). Our results suggest that these features are indispens-
able for activity.

Finally, results from the Rj; study establish that the optimal linker
region is restricted to a defined length and rigidity. Specifically,
we found that ligands containing linkers between 8 and 16 A
that are rigid (less than one to two freely rotating carbons) are
the best inhibitors. Interestingly, many of the best amyloid
ligands fall within the observed optimal range. For example, CR,
CG, RS-0406, and rosmarinic acid all meet the requirements
(23-25,35,38). In addition, the linker component seems to be one
of the most significant features, because compounds that fulfill
the other substructural requirements, such as aromatic substitu-
tion, still fail to inhibit if they have a short linker. An interesting
exception to this observation is compound 8 (resveratrol
ICso = 11 um). Despite its short linker length, this compound is
active, suggesting a possible alternative mechanism for inhibition
or binding to a different site on the amyloid, such as the site
occupied by ThT. Despite this finding, our studies show that the
length and flexibility of the linker is, in general, a critical com-
ponent of potent inhibitors.

Global analysis of the three features allows us to construct a preli-
minary model for how ligands related to curcumin might interact
with the AfS surface. From the f; study, we predict that there
should be at least two binding sites to accommodate the aromatic
end groups (Figure 5B). The Af peptide contains a number of aro-
matic (e.g. Phed, Phe19, and Phe20) and other hydrophobic residues
that are critical for aggregation (48,49); thus, it is reasonable to
predict that there are adequate opportunities for functionally impor-
tant hydrophobic interactions. In turn, the A, study predicts that
there might be good options for hydrogen bonding within these
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pockets, but the nature of these contacts is not clear. One of the
interesting aspects of this study is that it provides an approximate
distance between the docking sites. Specifically, we found that
lengths below 6-8 A and beyond 16-19 A are not well tolerated,
so the sites likely lie between 8 and 16 A from each other. There
are probably at least two pockets involved in defining this distance,
but it is unclear if multiple primary and/or secondary interactions
are involved. Regardless, to emphasize the strict requirements for
optimal binding and the diminished activity outside this zone, we
refer to this illustration as the 'Goldie-Locks' model (Figure 5B). In
the model, too much flexibility (e.g. >2 freely rotating centers)
allows for greater sampling of chemical space by the second aro-
matic group and, as a result, the high entropic penalty paid for
docking this group disfavors binding. Importantly, none of these
requirements describe the features of thiazolidine- or benzothiazole-
class inhibitors (50-52), which are typically short, uncharged, and
relatively non-polar, and it seems likely that a different model
applies to these compounds. This conclusion is consistent with
recent evidence that there are at least two distinct sites for small
molecules on amyloids (39,53-55). Moreover, as implied above, it is
possible that resveratrol, which is an outlier in our study, may
access this alternative site. Together, these studies provide a model
for how organic compounds bind the surface of amyloids and pre-
vent self-assembly.

We have used a collection of curcumin-inspired ligands to chemi-
cally 'map’ the Ap surface. We predict that further studies into the
interaction between small molecules and A will provide informa-
tion that will supplement the work emerging from structural studies.
These findings may contribute to our understanding of the features
that propagate aggregation and, perhaps, encode for neurotoxicity
and, together, these studies might inform those seeking better
inhibitors and chemical probes.
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