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ABSTRACT

The purpose of this study was to investigate
the relationship between unsteady state well performance
and insitu characteristics of reservoirs., Certaln insitu
conditions often encountered in reservoirs were postulated
and their effect on the unsteady state performance were
obtained by calculations. The error in neglecting the
non-linear term in the differential equation describing
the flow of a slightly compressible liquid was evaluated,
This information is important in interpreting reservoir
drawdown and build-up pump test data.

A mathematical expression describing the pressure
behavior in a reservoir was derived for the case where a
gas field or a line of constant pressure is located near
the viecinity of the pump test in an aquifer or oil field,
The magnitude of the error in the evaluation of the insitu
permeability and insitu compressibility was determined,
A graphical method for locating the gas-water interface
from drawdown tests on water wells located near a gas field
is described.,

The pressure behavior of a reservoir when
leakage is occurring through the caprock, described by
M. S. Hantush, was expressed in engineering units and ex-
tended to the case of leakage through both the cap and
bottom rock and for pressure build-up tests in addition
to drawdown tests. The magnitude of the error in the

XV



measurement of insitu permeability and insitu compressi-
bility was evaluated, The pressure behavior of an
agquifer when leakage is occurring was observed to be very
similar to the pressure behavior of an aquifer located
near a gas field,

The magnitude of the error in neglecting the
non-linear term in the differential equation describing
the flow of a slightly compressible fluid in a porous
media was evaluated by numerical means, The effect of
neglecting this term was found to be negligible in all
field data investigated; An equation giving the condi-
tions when neglecting this term is not justified are
presented,

Analyses of well test data from three fields

for the insitu characteristics are presented.

xvi



I. INTRODUCTION

Before the optimum depletion schedule for an
oil or gas reservoir can be determined, it is necessary
to obtain numerical values for the reservoir character-
istics., These characteristics include the reservoir
permeability, effective compressibility, porosity, and
fluid viscosity. In addition the nature of the reser-
voir limits, the amount of gas or oil contained in the
field must be known before the optimum number of wells,
well spacing, and production schedule can be determined.

Storage of natural gas in water sands has made
it necessary to evaluate the characteristics of an
aquifer prior to gas injection-production history. In
order to evaluate the suitability of an aquifer for gas
storage, it is necessary to determine if a suitable cap-
rock exist and if there is sufficient permeability for
the required gas deliverability.

It is reasonable therefore, that considerable
research and money have been spent developing methods
for evaluating reservoir and fluid characteristics and
obtaining field data. Fluid characteristics can be deter~
mined by obtaining a sample of the fluid from the reser-

voir and evaluating its properties in a laboratory.

]l
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Determination of the reservoir rock properties can also be
examined in laboratories, but it is not known how to average
rock perméability in order to obtain the reservoir effective
permeability. Thus it is necessary to perform well tests
in the field in order to evaluate the effective permeability
and compressibility.

Unsteady-state flow behavior must be analyzed
since steady state conditions exist only prior to fluid flow
tests in the reservoir. A pseudo-steady state can exist in
a limited reservoir and is defined as the state when the
pressure change with respect to time is constant and equal
at all points in the reservoir. Available unsteady state
flow equations are used to calculate the following informa-
tion:

1., Insitu permeability and insitu compressibility
in infinite aquifers of constant thickness
2, Insitu permeability and insitu compressibility
in finite circular aquifers of constant
thickness
3, Location of linear faults
4, 8kin effects (reduced permeability within few
feet of pumping well)
The equations and methods used to determine these properties
are presented in the next section.

Unfortunately, the performance of many reservoirs

cannot be described by the equations presented in the next

section. This failure may be due to neglecting important
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parameters or failure of the mathematical equations to
describe the flow, Effects of heterogenities in reservoirs
may contribute to the “abnormal" behavior.

The validity of neglecting the non-linear term
in the partial differential equation describing the flow
of a slightly compressible fluid was evaluated. It was
found that neglecting this term is usually justified,

The errors in the insitu permeability and insitu
compressibility calculated from well test data if an infinite
aquifer of uniform thickness is assumed are determined for
the following cases:

1, A gas field or an external line of constant
pressure is located near the test wells

2, Water is leaking through the cap and/or
bottom rock into the aquifer,

Field well test data are analyzed in Section VI
to demonstrate the application of available methods for
determining insitu reservoir permeability and insitu reser-

voir compressibility.



IT. LITERATURE SURVEY - DESCRIPTION OF

EXISTING METHODS FOR THE DETERMINATION

OF INSITU PERMEABILITY, INSITU COMPRESSI-

BILITY, AND RESERVOIR LIMITS

Drawdown and build-up well test results are used
to estimate the insitu properties and geometry of under-
ground reservoirs. These properties include insitu
permeability and insitu compressibility as well as loca-
tion of reservoir boundaries and reservoir limits (hydro-
carbon volume)., In addition, the effect of interference
from neighboring hydrocarbon fields on a common aquifer

can be predicted. Descriptions of several methods used

in interpreting well tests are presented in this section.

A, Well Tests in Infinite Reservoirs

The pressure behavior of a well in an infinite

reservolr during a constant rate drawdown pump test

presented by Horner (35) and Theis (84%) is given in

engineering terms by

- 70.6%5 . -9 2
r= Kh Ei (4(0‘2’:23;)}(1:) (m-1)

where:

¢ = compressibility, vol/(vol)(psi)

P

Ei = exponential integral, Ei(-x) = - Ji% e “du
x

h = reservoir thickness, feet
K = permeability, millidarcys
TN



-5

P = pressure, psia

q = pumping rate, reservoir conditions, bbl/day

r = distance from center of pumping well to
point of pressure measurement, feet

t = time, days

M = viscosity, centipoise

¢ = porosity, fraction

Equation (II-1), which assumes the pumping well radius is
infinitesimal, was originally developed by Lord Kelvin and
is known as the continuous point source solution. Values of

the exponential integral are available in tables and graphs

(19) (28) (43). If the value of the argument 4133525;§Kt
is less than ,0l, Equation (II-1) (19) (35) (51) (92) can

be approximated by

P=p- 'ézkf'a;/-« {1#7.0 (-‘%&ai——%‘i‘l)w.ssxs} (I1-2)

Thus if the well pressure is plotted versus log time, the

insitu permeability is calculated from the slope by

- _ _162.64 4 -
m = KR (II-3)

and the insitu permeability from Equation (II-2) where
m = pressure drop, psi/cycle. An example calculation of
the insitu permeability and insitu compressibility is given

by Katz et al (51). Equations (II-1) and (II-2) are approxi-

0.006233 Kt
bcm re

mate solutions which are valid for greater than
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1000. The pressure behavior for lower values of the argu-
ment is given by Van Everdigen and Hurst (86) and Chatas
(12).
The pressure behavior of an infinite reservoir

during a build-up test, obtained by superimposing a nega-

tive and equal production rate on Equation (II-1), (35)
(51) (92) is

4(0.00633)K (t+AtT)/

(II-4)

pep M%{E,__ $pcre )

_E. _ b mecr? 4
i (= F70.00633) K4t /

where:

At
o

time since cessation of pump test, days

duration of pump test, days

4(0.00633) Kt s less than 0,01, Equation (II-3) can

be approximated by

,P = ﬁ _ ,Gi'he?'ﬂ ‘o ( to +At ) (IINE)

Several examples of the determination of the insitu permea-
bility from a build-up test are available in the literature
(%) (39) (51) (71). 1If the pressure is plotted versus

logqpo AtAt the insitu permeability is calculated from the
slope by

K=- mzy‘fh?”‘ (II-6)
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The cumulative water influx for a constant terminal
pressure drawdown is given by Van Everdigen and Hurst (86),
Chatas (12), Katz et al (50) (51), and Jacob and Lohman (42),

Other methods of analysis, additional information
and case studies for build-up and drawdown tests are given
by Ammann (2), Arps (4), Bruce (9), Collins and Kolodzie
(16), Dolan et al (20), Driscoll (21), Hazebroek et al (62),
Maier (57), Matthews et al (58), Matthews and Stegemeier
(59), Miller et al (62), Pirson and Pirson (72), Pitzer et
al (73), Schrenkel (79), and Thomas (85).

Analyses of well tests and pressure behavior in
gas fields are presented by Accord (1), Aronofsky and Jen-
kins (3), Bruce et al (8), Carter (10), Carter et al (11),
Cornell and Katz (17), Cornell (18), Dykstra (22), Jones
et al (45), Jones, L. G. (46, 47), Jones, P. (48, 49), Katz
et al (50), Kidder (53), Layton (54), McMahon (61), Pott-
man et al (74), Smith (80), and Swift and Kiel (82),

B. Well Tests in Finite Reservoirs

The point source solution to the flow of a fluid
into a single well of finite radius, developed by Muskat

(66) is

2

P, = P+ ‘4'61‘/"' {— +ﬂ,n__w__¢

r2

0.00633 Kt 1:‘ (I1-7)

JZ ()

_ 2(0.00633Kt J‘, )e
¢/« c rea + ZZ Az
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where:

>
>
1]

roots of Jy(X) =0 (II-7a)

e
o
"

Bessel function, first kind,
°zeroth order

=
0

Bessel function, first kind,
first order

radius of circular reservoir, feet

=
o
1]

ry = radius of pumping well, feet
The corresponding approximate solution given by Horner (35)

is

_ 70.6 (o _ppmerE
4;5 = /H + T%& {E!( 4-(0.00633)Kt)

II-8
- /- ¢/AC"Q£ \\ ( )
=1 i 4(0.00633Kt /

4(0.00633) Kt exp ( - pmched )
®_c re? 4(0,00633 Kt
The last two terms of Equation (II-8) account for
the effect of the external boundary. Thus Equations (II-6)
or (II-7) are used to predict the pressure behavior of a

reservoir during a drawdown pump test.

The pressure behavior during a build-up test is

again found by superposition. If to is the total pumping
time and At the time after cessation of pumping, the

approximate point source solution (35) is

L= A - —'%ﬁ,—?’“—[b%(—tﬁt)
2
+ 0.434{ Ei (+‘¢o_'$6c3;e_§(t° > (II“9>

_ 4(0.00633)Kt, b cret )
$ mcr exp (' #(0.00633Kt.
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Graphs of the last two terms in Equations (II-8) and (II-9)

are given by Horner (35).

C. Effect of Linear Faults on Pressure Behavior

The method of images (35) is used to describe
pressure behavior of a well producing near a linear fault,
Thus if the distance from the production well to the fault

is L, the pressure behavior for a drawdown test is given by

, C prcl
Pw = + %A{E:( 4‘%‘&3’5}7‘ +Eif- ————oog:saf(t)} (II-10)

and for a bulld-up test by

_ 70.6 - ppcny
Pu= £+ —K—h*»“-{E! (-4(0.00633)1((%*4*))

. p e L2
+E | 000633K(t.+4'b')) (II-11)

’ L2
“E'( 4(“0’7;:;5;(&) E( 025:;%“ )}

Pumping time and the distance L are usually large
enough to allow Equation (II-11l) over the first part of the
build-up curve to be approximated by

L= A - 626 {1’07.0 (Lerdt +At)

e L2 )} (I1-12)

- 0.434 Ei (" 0.00633 K to

For large shut-in times, the pressure behavior

can be calculated from



-10=-

8.3 t, +AT
B = o = —gp I Loy (—F (II-13)

Thus when the pressure 1is plotted versus loglb(tzﬁft% the

slope over the latter portion is twice the initial (35).

D. Interference of Several Wells Pumping in a Common Aguifer

The pressure behavior of wells producing on a
common aquifer can be obtained by superposition of the
separate effects. The pressure in an aquifer where other

wells are producing is given by
_ 70.6 . $d mcrk
P =+ —n {‘5‘ Ei (- 4(0.00633)Kt)

Z": %: Ei pucli \} (II-1%)

T 0.00633 (4Kt ;
=|

where:

production rate of given well, bbl/day

Q
]

= production rate interfering well, bbl/day

o]
s
I

£
e
]

distance from given well to "i" inter-
fering well, feet

n = number of interfering wells
r, = radius of given well, feet
Additional procedures for predicting the effect of
interference are given by Coats et al (14), Hurst (39),
Mortada (63) (64), Parson (70), Stevens and Thodos (81),
and Warren (90).
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E. ©Skin Effects

The resistance to flow caused by a reduced permea-
bility within a few feet of the pumping well is known as the
"skin effect" and may be calculated by the following equa-
tion (88) (92)

= P ~Pe _ (__hL__) ‘} _
S, = ;.:515{ e Y () 3.22) (115)
where:
8¢ = skin effect
Plhr = pressure at shut-in time of one hour,
psia
pe = flowlng bottom hole pressure at
shut-in, psia
m = slope per cycle of straight-line

portion of build-up curve, psia/cycle
Application of the skin effects are discussed by Arps ),
Brons and Marting (6), Hurst (37), Johnson et al (%4), and

Van Everdingen (88).

F. Other Topics

The effect of leakage on the performance of
aquifers is discussed by Hantush (25) (28) (29) (31), Han-
tush and Jacob (30), Jacob (41), Walton (89) and Witherspoon
et al (93).

Reservoirs with different permeabilities are
analyzed by Henson et al (33), Katz (52), Lefkovits et al
(55), Loucks and Guerrero (56), Mueller (65), and Warren (91).
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Pressure behavior of partially penetrating wells
was investigated by Hantush (27) and Nisle (69),

Water movement and pressure behavior in oil and
gas storage reservoirs are described by Coats (13), Coats et
al (14), Hutchinson and Sikora (40), Katz et al (50) (51),
Katz (52), and Rzepczynski (77).

Compressibilities of reservoir rock have been
measured by Fatt (23) and its effect on permeability by
McLatchie et al (60),

Numerical methods were used to solve two phase flow
by Nielsen (68).

Counter current gravity segregation was investi-
gated by Briggs (5).

In summary, available solutions to flow of fluids
in homogeneous reservoirs of constant thickness used in
calculating insitu characteristics include:

1, Drawdown tests in infinite or finite reser-

voirs - insitu permeability and compressibility

2, Build-up tests in infinite or finite reser-

voirs - insitu permeabllity

3. Drawdown tests in infinite reservoirs with

" leakage - insitu permeability

. Drawdown tests - reservoir hydrocarbon
volume (reservoir limit test described by

Jones (48) (49)).
Although one well is sufficient for calculating the ihsitu
properties, two or more wells increase the reliability,
The dissertation extends these tests to include:
1, Build-up tests in infinite aquifer with
leakage - insitu permeability
2. Drawdown tests in aquifers for locating gas

fields or lines of congtant pressure in
vicinity of test wells.



III. DETERMINATION OF ERROR IN NEGLECTING THE
NON-LINEAR TERM IN THE PARTIAL DIFFERENTIAL
EQUATION DESCRIBING THE FLON OF SLIGHTLY COM-
PRESSIBLE FLUIDS IN PCOROUS MEDIA

The purpose of this section is to define the condi-
tions under which one is justified in neglecting the non-
linear term in thé differential equation describing the flow
of slightly compressible liquids in porous media., A graph
is presented showing the reservoir pressure behavior as a
function of dimensionless time when the term is not neglected,
A second graph gives the maximum values of dimensionless time
for various values of the dimensionless coefficient of the
non-linear term beyond which negleeting this term is not
Justified. Example problems illustrate how one may determine
if neglecting the non-~linear term is justified,

Katz et al (50) and Rowan and Clegg (76) noted that
when a single equation of state is used in the derivation of
the differential equation for flow of a slightly compressible
ligquid in a porous media, a non-linear term appears. Many
authors have used two equations of state in deriving the
differential equation for the flow of a slightly compressible

liquid and thus avoided the term in their erroneous derivation.

A, Derivation of Non-Linear Differential Equation

The differential equation describing the flow of
a slightly compressible liquid is obtained by combining the

following three equations:
-13-
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1. The equation of continuity

2., Darcys law

3. BEquation of state for slightly compressible

liquids
The continuity equation is obtained by writing a

mass balance on a differential element showing the net
change in the mass flow rate in and out of the element is
equal to the rate of change of the mass in the element, In

Cartesian coordinates, the continuity equation is

2low) 3(,0\&) 5(,0 - - ) -
el T St

where:

time

ct
n

X,¥,2 = space coordinates

vy = fluid velocity in x direction
vy = fluid velocity in y direction
Vy = fluid velocity in z direction
/2 = fluid density

t = time

¢ = porosity of the porous media

Darcys law is an experimental observation that the
velocity of a homogeneous fluid flowing through a porous
media is proportional to the force potential § and inversely

proportional to the viscosity.

\7"’=-§(ﬁ§"7§ (IT1-2)
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where:
$ =gz + j;
K = permeability
4 = pressure
A = viscosity
o = density

If the effect of gravity is neglected, Equation (III-2) can

be written

(III-3)

Qo
D>

K
VS =_7

where s is the direction of flow. Writing Equation (III-3)

for each component in Cartesian coordinates yields

=-K de 2y
Ve =T 0 45 (III-4)
= - d -
vy =- K :&ﬁ (I11-5)
.- K
V% =- 4 9f (I11-6)

The equation of state can be derived from the

definition of compressibility

- dV - _1 III-7
c V dp D P j;:— ( )

If the compressibility is independent of pressure,

then integrating Equation (III-7) gives
c(p-p)=tn(5) (111-8)
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The equation of state is obtained by exponentiating Equation

(III-8) and rearranging

pep o clt-t) (I11-9)

Expanding Equation (III-1) yields
) AV vy
—afx&vx+/oax *'3?"3*/"35,,

+20y +pld% =-¢ % (II1-10)

dp 9dx dx
P V-R P + vy

Yp2y W TP Ty (III-11)

3 dva 24
& IR o ff 3t
Differentiating Equation (III-9) gives

Y- 2 c(p-n) -
si- =cpe (III-12)

Substituting Equations (III-4), (III-5), (III-6), and (III-12)
in Equation (III-11) and cancelling A e < (#-F) in each

term gives

Q/Q/

¥p _ ) _Aaz (III-13)
Ay < (‘4Q) A ¢C
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Thus rearranging Equation (III-13) gives the differential
equation describing the flow of a slightly compressible fluid

in a porous media

3—2){45 + -gff; + %%@ e [(—Lf-)z,«(—j—f)z,«(gf)j = Méc p (ITI-1%)

K Jt

For linear flow, Equation (III-14) reduces to

)% 2 _ 3 -

For radial flow, Equation (III-14) is given by

2

) ap\e_ ;

Neglecting the non-linear terms in Equations
(III-13), (III-14), and (III-15) yields diffusivity equa-
tions that most authors use in solving for the flow of a
slightly compressible liquid in a porous media:

l, General

Vip = 7%?— S (III-17)

2. Linear flow

H .
aTﬁ = %ﬁi %—f— (III-18)

3, Radial flow

Yoo L de o misde (11119
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B, BSolution of Non-Linear Differential BEquation for Radial
Flow, Constant Terminal Rate Case

In addition to the differential equation derived

for radial flow in part A

2
% | dp A) _ Méc 3P

one initial condition

4 (r,0)=p (III-20)

and two boundary conditions

RE3

t2 0 (III-21)
o ar

AK - Znrh K ’

rebpry
pleo,t) = p (1II-22)

are necessary to define the problem. The terms in these
equations are defined below:

A

area perpendicular to flow, square
centimeters

K = permeability, darcys

>
n

pressure, atmospheres

initial pressure, atmospheres

>
"

Q = rate of production, cc/sec

i
i

radius, centimeters
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ry = radius of well, centimeters
t = time, seconds
M = viscosity, centipoise

¢ = porosity, fraction
Substitution of the dimensionless quantities

R =-’€-’ (III-23)
,% = _2nm (Lo &/ﬁ) h K (ITI-24)
A
_ Kt -
t, = XYY (III-25)

into Equations (III-16), (III-20), (III-21), and (III-22)

yield the following dimensionless equations

3¥B . | 3B em (AP)Z_ 3P .
SRt RSE R (5R) = 32 (111-20)
PD (R, O) = 0 (I11-27)
3f —
3’; ae) = —' (I11-28)
Po (> tpy) = 0 (III-29)

respectively.
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Define the dimensionless coefficient

- _ _Ccu@
M = - 7%%

and substituting in Equation (III-26) yields

(III-30)

(III-31)

Thus the pressure can be calculated at any time by

R vl

(III-32)

In Engineering field units, the dimensionless

quantities defined by Equations (III-25) and (III-30) can be

calculated from

" 0.00633 K t
b T Mt

= -14].2 ¢
M WK

where:

¢ = compressibility, vol/(vol) (psi)

h = thickness of porous media, feet
K = permeability, millidarcys
q = flow rate, bbl/day

r = radius of well, feet

(III-33)

(III-3%)
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t = time, days
¢ = porosity, fraction
A = viscosity, centipoise

Thus the reservoir pressure in psia 1s calculated by

P = A - ’4’;,%(/“?")0 (IITI-35)
where:
Po = initial pressure, psia
p = pressure, psia
Pp = dimensionless pressure

The values for dimensionless pressure, Pp, as a function of
dimensionless time, tp, are solved in this section,

No analytic solution to the differential Equation
(III-31) is known. Thus the Equation (III-31) along with
the initial and boundary conditions; Equations (III-27),
(III-28); and (III-29) were solved by replacing them by
finite difference equations and solving the difference equa-
tions numerically on the IBM 7090.

Partial differential equations may be solved by an
explicit or an implicit method., These methods are currently
being used to solve reservoir problems for which analytical
solutions are not available (8) (15) (33) (34) (65) (68) (75)
(93).

1. Explicit Numerical Method

Equation (III-31) was solved numerically by the

following method. Transform R using



-0D-

w= | - e‘(R") (III-36)

so that the limits of R, | # R& %@ is transformed to the limits
of w, O%f w2 |.

The values of each term in Equation (III-31) in
terms of w are derived below., Differentiating Equation (III-36)

gives
dw -(R-1) _
DTE |- w (II1-37)
Thus*
AP _ P dw . - -
SE - dw TJARL = 'g—w— (] W) (111 38)
and ,
32P _ oP - d
YRE = 3w [ 5w (! W)]—o;%
(22 _, 22
_( ST W ngz - g’;] (1-w) (I11-39)

Solving Equation (III-36) for R gilves
R=[- An (I-w) (I1I-40)
Substitution of Equations (III-38), (III-39), and
(III-40) in (III-31) gives

) *Note that the subsc¢ript D is dropped in this sec-
glgn to avoid confusion with other subscripts to be introduced
ater,
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(I-w) 2P
(- W) ) w ﬁn.(l\:vw) dw
ALY Y LY
+M(l-w) (Bw) - 'S—t; (III-41)

which reduces to

(I- )zéP [( w) = ,_h“)w)J 3P

(ITI1-42)

+M(I- w) ‘;P—)

Equation (III-42) is solved in the region

O wsi | (III-43)
and

0s t, &= (TII-Uh4)
by representing the region by a grid

W= iAw ' | (ITI-45)
and

ty = jat, (III-46)

where Aw and AtD are the increments of distance and time
respectively. Thué Pi,J defines the value of the pressure

at the point me, ity -
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A finite difference representation of Equation

(III-42) is
(1 i Loz ep)

- - - l—idw Pat, = Bior g
[(’ iAw) [~ &n (=i Aw) ( 2hdw

2
-4 2 i+, _P"-,: - P =P
+-N4(' ' Aw) ( ZAAVV ) = At

Solving Equation (III-L47) for Pb gives an

) (ITI-47)

g+

explicit expression for ﬁ that is, HJJ+| is equal to

o J+i

known quantities.

aies = T ¢ (253"{("“‘“)2( s =2 Py +R)
- Aw __(I-i4w) ]
[( I=idw ) | =An, (I-»'Aw)J(R‘HJJ' -Pi-bj) (ITI-48)

+ —’r— (- o‘Aw)2 (Pi"'JJ. - P:-',J)z}

An analysis of the stability of the numerical

Equation (ITII-48) (15) (34) requires that

'(ﬁf:)z < + (ITT-49)

or on rearranging

2
At, < -é-(Aw) (1II-50)

is a necessary condition for a stable solution. Thus the
maximum size of the time step is limited by the choice of

AW,
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The boundary conditions defined by Equation (III-28)

in terms of w is

P = - 5]
Swl,.. © | (III-51)

Equation (III-51) can be expressed in numerical form by using
a three point Lagrangian fit for P and evaluating the deriva-

tive at w = o. Thus

3R, *4P. “R. . - (III-52)
2w |
is the numerical expression for Equation (III-51),
The remaining boundary condition, Equation (III-29),

in terms of w is

=0 (III-53)

IW:[

The initial condition, Equation (III-27) is

Pi,o =0 (III-54%)

The MAD (Michigan Algorithm Decoder) program used
to solve Equations (III-48), (III-52), (III-53), and (III-54)
is given in Appéndik A, This program was used to evaluate
the values of dimensionless pressure for values of dimension-
less time from O to 0.0l. The results are presented in

Figure (III-1). Values of dimensionless pressure for values

of dimensionless time greater than 0,01 were determined by

an implicit method described in the next part.
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2., Implicit Numerical Method

The solution of Equation (III-31) by an implicit
numerical method is developed below,

Equation (III-31) is transformed to the w plane by
Wz |=-g-alR=1) (III-55)

Note that a scaling factor "a" is introduced in this trans-

formation.
Hence
g_P_ = a(l-w) %7 (III-56)
and
. ,
R A

Solving Equation (III-55) for R gives
R=2 (a=Ln(I-w) (111-58)

The differential equation in the w plane is ob-
tained by substituting Equations (III-56), (III-57), and
(ITII-58) into Equation (III-31).

2 ()W)t 2P _ a2 (jow)P , af (1-w) 3P
[ (' W) dw2 a (’ W) dw + a -Adn (1-w) ow
(II1-59)

+Ma.2(|-w)a<—§£)2 = 3}:
b
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where

0

178

(II11-60)

g
1T

Expressing Equation (III-60) in difference form gives

o2 / i—- fAW)a Po'-rla ol _— 2 Pl'. j+1 * Pl'—l 141
§ Aw

_az( f’-iAw) { P:‘c-l..'.u iy Pmﬂh—l }

20w (I1I-61)

+ a" ("‘ l'AW) Pl'-b_l_ VY - Pl'_-l. } ¢
a -An (I-iAw) 2 Aw

2
+ a2 M (,"‘AW)Z{PL“.J‘.'Z-E;" ,-“___} = P; '“l&; P.“ ;
D

Replace the non-linear term in Equation (III-61) by

(P""aJ*' - P‘-u;u)z = (P"*'LJM“P

Ll PR Y

)RS, - B, ) (111-62)

Hadsr e L g

*

JJ""

* . . .
where E*,J+' - P“, is estimated from previous time
-

steps or previous iterations and corrected until

¥*

¥ ~
Pa‘-u,ju - P;-nu.,., = R“J“, -P

(III-63)

"JJ""

Substituting Equation (III-63) in Equation (III-61)

and rearranging gives
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P {(bdAwV_ (J=idw) , _(1-idw)
e (Aw)® 20w (a - 2n (1-i0w) (24w)

) 2 *
+M L1-ilw) L-(‘A[év\;z) (Pi+o,J+l - P-'-:'_;u)}
+p . {-2(-iawf_ 1
ISRL Y| Aw 42Atp

4P fumiaw?  (1-igw) _ _ (1-idw)  (ITI-64)
=1, e (Aw)? 2 Aw (@ -An (1-ibw))2Aw

-M (:-‘-Aw)‘(,?* -p.* )}:— P,

4 (ow)? 1, g LY a2 Aty

Multiply Equation (III-64) by (Aw)2 to obtain the

implicit numerical equation for the differential equation

. 2 _ Awll-14w) | Aw (I-ibw)
Piu_,jﬂ {("'Aw) 2 + 2(a-An(l-i4w))

+—A44-(l- EAW)Z (R':l‘,g-rl - P""JJ“)}

o -2 (1100 - g ]

ﬂ.aAtp

(1= 14w (TTI-65)
a=An (}-t4w)

+P;-,N.H{(I'iAw)2 + %(I-iAw)—%ﬂ

...—%,—(l-l'AW)Z(P* 'P-‘-l,.iﬂ)}

’.""4 i+l
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Equation (ITII-65) is solved by the following proce-

dure., Assume

P =Ci P, +D (III-66)

f=1) Je

Substitution of Equation (III-66) into Equation (III-65) yields

Poisu (Z8) + P (V) + Cp Py, #Dix)= K, (111-67)

where

z; - (,_‘.Aw)z_ Aw (I-iAw).+ Aw (| -iAw)

2 2 (o=t (1-10w))
" (ITI-68)
+M-iaw)® (R - R
2
Y = -2 (1-iAw)? - —(8w)" (ITT-69)

a2 Aty

V- - 2 __M - - Aw (’-:Aw)
X' B (' IAW) * 2 (l lAW) 2(4-M(I—J‘Aw))

‘_ZL(""AW)Z(R* - P (I1I-70)

*, 04 (=1y Je

Kij= - Py o (I11-71)
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Solving Equation (III-67) for P, gives

J._I"’l

= ‘;3 Kll_;l = DIIXII L
Pn',J'-H = Pﬂ'-HJ_,'.H CiXi +Y; } + C v;(; +Y'-‘ (I1I-72)

Comparison of Equation (III-72) and Equation (III-68) yields

- —Zi
Civi = Txiev (I11-73)
and
‘ = Kii=DiXi Al
Div AT (III-74)
Hence the recursion relationships are obtained for
C.

; and D; which will allow the calculation of C; and D; 3
i=2, ..., imax provided C;, and D; can be found,
The boundary condition, Equation (III-28) in the w

plane is given by

2f - -+ (I11-75)

3w wsz o -

Using the same procedure as in the derivation of

Equation (III-52), Equation (III-75) can be approximated by

‘3Pc..'4-| +4Pl.}+l _Pﬂ-jtl :-..L Ilaé
2 Aw a (THE-76)

and hence
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PZJJ-H = ._Z_f_!‘! - 3P°od"l'l +4Pl“'+| (III'77)

Evaluating Equation (III-67) for i = 1 gives

P‘”‘*' (Z‘) + P'u'u (Y,) + POJJ‘*I (XI)= KI”‘ (III-78)

since

Po,sep = €1 P, Dy (III-79)

Substituting Bquation (III-77) into Equation (III-78) yields

(é'é_ﬁ = 3R, s "'4'3.,)“)2. + R, (Y,)
(III-80)

+P°J J+) (Xl) = K'JJ

or

R (X,= 3Z,)+R, 1, (42,4Y, ) =Ky, -L%”—Z—' (III-81)

Solving Equation (III-81) for FL,5+, yields

- -(42Z, *Y.) } K- (ZAWZ./Q) _
P in) = P.,J,.,{ X, - 32 + X, - 32, (I1I-82)

Comparison of Equation (III-82) with Equation (III-65) shows
that

cC = (ITI-83)

-4Z, -Y
X, "3Zl
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and

' - KL;J - (Z Aw Zl/ﬁ.) TTT~84%Y
D" ) xl - 3 z,v ( ’

All values of C4 can now be calculated from Egqua-
tions (III-73), (III-74), (III-83), and (ITI-84).

The last equation in the matrix has the form

Rmux-iJJ,., = PiW“X,Jﬂ Cl‘mm + Dl‘ma.x (111”85)
The boundary condition for i = imax is

Poar,;u, = O (I11-86)

d+i

The resulting tri-diagonal matrix can be sclved by
the following procedure:
1. Set Py, =0

2. Set PLT . -R., = P -P

I+, j¢s =t j+ Vely oy

. Calculate €, and D,
. CalculateC;,D; for 1i=2, ..., imax
from Equation (III-64)

sd+l

TeSt P"*.JJ*' - P"-‘JJ+I E Pi

N -— 4 v
b, 0% P“D-H'I

3
L
5. Solve for P,
6
7

o If this condition is not satisfied, set
Pn‘ijw = PEJJ*";,;, for l"—’O, v, 4 may
8. Repeat steps 2 through 7
9. Proceed to next time step
The MAD program used to solve the equations in this

part is given in Appendix B. The values of dimensionless
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pressure, P, , evaluated for values of dimensionless time,
tp , from 0.01 to 100, are presented in Figwe (III-1).

C. ©Solution of Non-Linear Differential Equation for Linear
Flow, Constant Terminal Rate

The differential Equation (III-15) describing the

linear flow of a slightly compressible liquid

along with the initial condition
P (x,0) = 4, (III-87)

and two boundary conditions

4P = Q. 2 -
YA da , t 20  (ITI-88)
p oo, t) = 4, (I1I-89)

define the constant terminal rate case in infinite linear
porous media.

Substituting the dimensionless quantities

(III-90)

X

"
x[<

P = (4o-Q4og)AK (III-91)
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tp = Mf: T (III-92)
M = - C M Q Xe (III@93)
AK

into Equations (III-26), (III-27), (III-28), amd (III-29)

gives the dimensionless equations to be evaluated, respec-
tively.

2 ‘2
33;" +M 3;) = -g—%— (III-94)
]

P, (X,0)=0 |, 04X & o0 (III-95)
%;L ceo - : (ITI-96)
R (e.t) =0 (III-97)

Thus the pressure at any time is given by

P=p- M—"A Kx‘ R, (I1I-98)

The dimensionless terms defined by Equations (III-92)

and (III-93) in engineering field units are:
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; = 0.00633 Kt
b~ mbexE

(III-99)

and

M= - Bar’PfK"M%—&— (III-100)

where:
A = cross sectional area normal to flow, (feet)
¢ = compressibility, vol/(vol) (psi)
K = permeability, millidarcys
q = flow rate, bbl/day

C'-
1

time, days

reservoir characteristic length (arbitrary),
feet

>
o
]

¢ = porosity, fraction
= viscosity, centipoise
Thus the reservoir pressure in psi can be calculated

from

p=p- 28 mex p (III-101)

As in previous case for radial flow, the linear flow
case will be solved by numerical means using both implicit and
explicit methods,

1. Explicit Numerical Method

Equation (III-94) is transformed by

w= |-e-X | (II1-102)
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£ X é o are transformed to O =

[{VN

so that limits 0 1.
The values of each term in Equation (III-94) are given by

% = 3—P- di;'- = —3—'; (1-w) (III-103)

and

gXPz =% BP (1- )} (1-w )”P (I w) ~ (II1-10+)

Substituting Equations (III-103) and (III-104%) in

Equation (III-94%) yields

2 2
('-w)z%;Pz -(I-w)%% +M(l-w)z(—§-f7) = g':o (III-105)

Equation (III-105) can be represented in difference

form by

(=i { R =2 i) - (12 )| By 3P
(III-106)

+M ( l-iAw)z{ ‘PiﬁZéA:vP;-b: } = P";.‘Zt- P,
b

where 1 and J refer to the mess points of the distance

and time increments respectively.
Rearranging Equation (III-106) and solving for

PI., J.“" giVeS

P:"o-,aPl'J (’ i 4 ) P;""J P +P Y
Lin T T Aw )2{ aw?( 2 a Pl) (111-107)
P, J) + M“;IAW) (Pi"";.[ -R-'.J) }

= (l_'AW 'A_(Pwl



-38-
the difference equation in implicit form.

Again an analysis of the stability (15) (3%) re-

quires that
Bty < 4 (aw) (III-108)

The boundary condition given by Equation (III-96) is

aP

Tw = - | (III-109)

wsa 0

which may be expressed in numerical form by

-3PR. iy +22\_.~x=: = Pe e - (III-110)

The remaining boundary condition is

e =0 (III-111)

The initial condition is given by
P. . =0 (III-112)

Equations (III-107), (III-110), (III-111, and
(III-112) were solved on the IBM 7090 computer for imax = 80,
The MAD program is presented in Appendix C. Dimensionless
pressure was evaluated for values of dimensionless time from
O to 0,01, Values of dimensionless pressure for values of
dimensionless time greater than 0.01 were found by an implicit
method as discussed in the next part. These results are shown

in Figure (III-2).
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2. Implicit Numerical Method

The non-linear differential Equation (III-92) is

transformed by
W= [-e"** (TII-113)

as follows,*

r) Sl Tl R (R (TTT-11%)
3°F =_a_(_a_t'i_)
3XE T XL

= at (I_w)e_%f;sz _aa“__w) _g__we (I1I-115)

Substituting Equations (III-114%) and (III-115)
into Equation (III-94) yields

az(l-w)z——ii - az(l-wJ ¢ P

ot P
dw? ow

(I11-116)

LIS
g
(7S

.
Mat (1wt (R 2 2R o
0

A difference equation approximation of Equation (III-14) is

given by
a2 ( ]..;AW>Z{PI~HJ el -Z(Z,x;é + P:_,.;H} Cat(1-i0w).
4ﬁ“d“‘am”}+QZM(LﬁAwV{&UM“HﬁJQZ_ R-(%%iuj)
i e I e

*The subscript D is dropped as in the previous derivations.
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Again the non-linear term in Equation (III-15) is

replaced as in Equation (III-61) by

(P

Tl jeiu

R ) = (Ruys =R 0 )R *.-R.) (I11-62)

rL U+

where (P* - p*

¥ ) 1is estimated from previous time
HI J-bl ;-0’,1-‘

steps or previous iterations.
Substituting of Equation (III-62) into Equation
(ITI-117), rearranging and multiplying by (Aw)a gives

Pi-u_,J” {("‘SAW)&— ,Qﬁ_(_lz‘_‘A_W) + "Z_A_(“iAw)a'
-( i, ge Pl'l 4+|} P’JJ*’{ 2(’-'A )2 aﬁAAw-(); }

+ B.,J_,‘,{(I-iAw) + %(I-Mw) +

(Rt R} = - P ()

M (1-iaw)"
(III-118)

The same procedure is used to solve Equation

(I1I-118) as was used to solve Equation (III-65). Assume
Pois = Ci P
Substituting Equation (III-119) in Equation (III-118) gives
Fﬁ+ui+. (2::) + Fﬂ,J+: (YQ)
+(CiR,, +D)X; = K,

iy d

ije tDi (III-119)

(III-120)

where

(ITI-121)
+ M aw) (P - P*)

MFELY i=1, 3%
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2
Y, = -2 (I-iaw)® - “T(eéz% (III-122)

l‘-bJ..

Xi= (1-iaw)® + L2(1-i8w)- £ (1-iaw) (B2, - P, ) (1T1-123)

- (Aw)*
Ki; = - P,; (—;ﬁﬁp—) (III-124)
Solving Equation (III-120) for P; .,  vyields
= Z; Ki; -DiX:
R =P VS Lud 4 ITI-12
i;.lq""! - Pl‘il,a‘d-l {Ci x'. - Y‘, } + Cl'Xa' + Y; ( 5)

If BEquation (III-125) is compared to Equation
(ITI-119), it is obvious that

oz
Ci-H - C:X; +Y|' (111—126)
and
. _Ki; -D: X )
DLH = CiX: +Y, (I1I-127)

Equations (III-126) and (III-127) are the recursion
relationships used to calculate the values of Ci and Dj.
The boundary condition, Equation (III-88) in the

w plane is

3 P dw}
—— = ——— —— = -} (I1I1-128)
X |, 3w dX [, .,
and hence
2P

—~—rr sm

(IT11-129)

w
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The remaining boundary condition, Equation (III-97),

in the w plane is
P(I,t,)=0 (III-130)

The initial condition corresponding to Equation

(I1I-95) is
Plw,0)=0 , Os¢ws | (II1-131)

The differential form of the Lagrangian three point
formula evaluated at the initial point 1s used to approximate

Equation (III-129).

"36,;,.; +4P:.,'+5_Pz.§+'l ..____l__. -
: > AL 4 = = (ITI-132)
Rearranging Equation (III-132) gives
P i = 2w _3p, ., +4P, ., (II1-133)

Evaluating Equation (III-120) at i = 1 gives

B2, (Z,) + Pl,Jw (Yn) +'R7.,J+J(X;) = Kl,j (ITI-13%)
Substituting Equation (III-133) in Equation (III-134) gives

(B8Y =3P +4R)Z, + P (V)
(III-13%)

+ Pmiw(Xn) - Kl,j



g

or

Pojer (Xi=3Z)) + P (42,+7)= K, - 20w B (177_336)

a

Solving Equation (III-136) for P,, j,, Yields
- ___‘!_L_*L) Kuy -28w 2 /a _
P%JH = i { X, -32, + X, - 32, (IT1-137)

Comparison of Equation (III-137) with Equation (III-119) shows

that
- "4Z| —Yj -
C, X, - 32, (II1-138)
and
- KUJ' -ZAWZI -
, = III-139
D X -32, ( 39)

A1l values of C5 can now be calculated from Equa-
tions (III-126), (III-127), (III-36), and (III-139).

The last equation in the matrix has the form

R = Poax, jor (Cimax) + Do, (III-140)

tmaxl, iy

Since

= 0 (ITI-1%1)

Pima.X,JH

The tri-diagonal matrix can now be solved, and the
values of P found for 1 = 0, 1, 2, ..., imax.
The same procedure as outlined on page 33 for the

radial model is used in this case,
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The MAD program was used to evaluate values of
dimensionless pressure, Pp, for several values of the
coefficient M, for values of dimensionless time, tp, from

0,01 to 100, These results are presented in Figure (III-2).

D. Analysis of Results and Application to Reservoir Problems

The percent error in the measurement of the pres-
sure drop for a constant rate pump test in a radial flow
system is shown in Figure (III-3). The value of dimension-
less time for which the error is less than one percent may

be approximated by

ts (1% error) & i,\%%—'— (III-142)

The following two example problems show how to determine if
neglecting the non-linear term in the differential equation
describing the flow of a slightly compressible fluid in a

porous media is justified.

Example Problem IIT-1

Consider an aquifer with the following physical
properties and dimensions:

7 x lO'évol/(vol)(psi)

Compressibility, c

160 feet

Thickness, h

Permeability, K 200 millidarcys

i

.21

L]

Porosity, ¢

Viscosity, M = 1 centipoise
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=474
If a well with a one foot diameter, completed in
the aquifer, is pumped at a constant rate of 300 bbl per
day for three days, determine if one is justified in neg-
lecting the non-linear term.
Solution

The coefficient M is calculated from Equation (III-34)

_ 1412 ¢ _ (141.2)(Tx1678) (1) (300) -6
M= ==y “? = "(l60)(200) =9.27 xio

and the value of dimensionless time at the end of three days

by Equation (III-30)

£ = 0.00633 Kt _ (0.00633)(160)(3) - 8.3 x/0°
DT Mec rt T ()(0.21(7x/0%)(0.5)F —

The value of dimensionless time for which a one per-
cent error in the calculation of pressure drop is made in

neglecting the non-linear term is calculated from Equation

(III-142)
t, = —-——I-Mz = {q.27%50ce = 116 x10

Neglecting the non-linear term results in less
than a one percent error ih the calculation of the pressure
drop. Thus one is justified in neglecting the non-linear
term-and using solutions based on the diffusivity Equation

(IT1-19).
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Example Problem III-2

A natural gas storage field is situated on a large
aquifer, The gas field and aquifer have the following dimen-
slons and physical properties:

7 x 106 vol/(vol)(psi)

Compressibility, c
Thickness, h = 20 feet
200 millidarcys

Permeability, k

Porosity, ¢ = 0,18

0.8 centipoise (reser-
voir conditions)

Water Viscosity, u

Radius of gas field, r,= 3000 feet

If the gas field is produced for ninety days at
a rate which causes a water influx rate of 20,000 bbl/day,
determine if neglecting the non-linear term in the solution
of the flow equation is justified,
Solution

Again the coefficient M is calculated from Equa-
tion (III-34)

M= 1%l2cug _ (141.2)(7x10~¢)(0.8)(20,000)
. Kh = 7 (200) (20)

= 0.000396

The value of dimensionless time at the end of 90

days is

t. = 0006334t _ (0.00633)(200)(90)
p =

b crk T (0.8)(0.18)(7x10-¢)(3 000)*

7. 4
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Equation (III-142) is used to determine the value
of dimensionless time above which an error greater than one

percent would be made

0.001 - 0.00I -
tD = ‘——TM - {3.76'—‘”0_4)5 - 6370

Thus the solutions based on the solution of the
diffusivity equation can be used to calculate pressure drop.

The error in pressure measurement-resulting from
neglecting the non-linear term for a constant rate pump test
in a linear flow system is shown in Figure (III-4), Again
the value of dimensionless time for which the error is less

than one percent may be approximated by

t, (1% error) = —Q'—,%-‘é’-’- (III-142)

Note that this is the same expression found in the radial
case. An example problem demonstrates how to determine if

the non-linear term may be neglected in the linear flow case,

Example Problem III-3

A gas field is situated on a large aquifer, The
gas field and aquifer are located between two parallel
faults so that the linear equations can be used to predict
the pressure, The aquifer has the following dimensions and
physical properties:

Crcss.sectional
area to flow, A

i

500,000 square feet

it

Compressibility, ¢ = 7 x 10~6 vol/(vol) (psi)
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Permeability, X = 50 millidarcys

Porosity, ¢ = 0.10

0.7 centipoise

it

Water Viscosity, M

Gas is injected into the field for thirty days
causing a water efflux rate of 10,000 bbl/day. Justify
neglecting the non-linear term in the differential equation
used in determining the pressure behavior in the aquifer,
Use 1,000 feet as the characteristic length.

Solution

The value of M, calculated from Equation (III-98),

is

M= 8876 cugx (887.6)(7xi10"%)(0.7)(10,000)(1,000)

KA (50)(500,000)
= .73 »107°
Dimensionless time at the end of thirty days is

given by , |

£ = 000633 Kt _ (0,00633) (50)(30)

° M oe xS (0.7)(0.1)(7x107%) (10°)
= 19.4

Equation (III-142) is used to determine the value

of dimensionless time when the error reaches one percent

t, (17 error) = O‘,\zg' = “.704:20,5_3)a = 330

Since the value of dimensionless time at the end

of thirty days is less than the value which results in a one
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percent error in the calculation of pressure drop, solu-
tions based on the diffusivity Equation (III-18) are valid,
The same conclusion results for any selected value for the

characteristic length.



IV. EFFECT OF NEIGHBORING GAS FIELD (OR LINE OF
CONSTANT PRESSURE) ON INSITU PERMEABILITY AND
COMPRESSIBILITY MEASUREMENTS IN AQUIFERS FOR CON-
STANT RATE PUMP TESTS

Field data on pressure behavior of wells have been
observed to deviate considerably from the behavior predicted
by the methods described in Section II. Failure of the
mathematical model to describe the reservoir is partially
responsible for these deviations.

The presence of a gas field, an outcropping of the
porous media on the bottom of a lake or stfeam, or a sudden
increase in the permeability are a few conditions which may
cause the deviation., Effect of these conditions on the
measurement of the insitu permeability and compressibility
will be evaluated in this section, Furthermore, the un-

steady state pressure behavior of wells during constant rate

pump tests will be described for these situations.

A, Prediction of Pressure Behavior During Drawdown or Build-

up Pump Tests

Field pump test data from aquifers can be analyzed
to determine if a gas field (or line of constant pressure)
is located near a pumping or observation well if the theo-
retical pressure performance is known as a function of the
distance between the pumping and observation wells in
addition to the distance between the wells and the gas
field., These relationships are developed below,
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O OBSERVATION WELL

® PUMPING WELL

CONSTANT PRESSURE LINE

Figure IV-1, Pumping Well and Observation Well near a Line
of Constant Pressure.

*Y

OBSERVATION WELL

PUMPING WELL MAGE WELL
P
- Xo + Xo X

Figure IV-2, Mathematical Model and Location of Image Well.
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1. Pressure Behavior of Observation Well During
Drawdown and Build-u -up Tests

Figure (IV-1l) shows a sketch of a pumping well and
an observation well near a line of constant pressure,
The mathematical equations which describe the pres-

sure behavior of an observation well during a drawdown pump

test is given by the diffusiyity equation

__12 = Mec 9p (IV-1)

3xz K

the initial condition
Py, 0) = 4 (17-2)

and the boundary conditions

,io‘,m 2 (x,y,t)=m (IV-3)
Lo 2 (K, t) = 2 (IV-})

or

d - - G M -
—’P—ar (=Xo » o,t) = 5 h"’<x+'s<,,,)~°- = (IV-5)
P - -a 4 _
<L (X“ 0, ¢) = 27 Kh [(x-x,)2 +y2 (17=6)

If the distance between the pumping well and the
observation well is greater than 30 times the well radius,

Mortada (63) showed that the point source solution presented
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by Horner (35) is valid. Thus the solution to Equations
(IV-1) through (IV-6) is given by the addition of a point
source at x = -Xg, ¥y = 0 and a point sink at x = X5, ¥y = O

(See Figure IV-2),

ron = - Bl AR

(Iv-7)
- QG : mde de
FaKh E! {‘ TKE }

where:
¢ = compressibility, vol/(vol) (atm)
Q = production rate, cc/sec
M= viscosity, centipoise
K = permeability, darcys
h = thickness, centimeters
Ei = exponential integral, Ei(—X)='J’a,e au
p = pressure, atmospheres -
Po = initial pressure, atmospheres

4, = distance between pumping well and
observation well, centimeters

=~
f

= distance between observation well
and image well (See Figure IV-2),
centimeters

¢

Replacing the terms in Equation (IV-7) by the

porosity, fraction

following dimensionless quantities

o - Qm

(IV-8)
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_ Kt
To = ~—mgeTe (1V-9)

>
~

(IV-10)

=y
o
{l
b

yields
F;:—-ZL{E;(—Z-I_E—)-E; (- —4—57{—)} (TV-11)

If field units are used, the expression for the

dimensionless pressure (Equation IV-8) is given by

PD - 141.2Kh (foo-2) (TV-12)

F A
where:

h = reservoir thickness, feet
K = permeabllity, millidarcys
p = pressure, psia
Po = initial pressure, psia

q = production rate, bbl/day
M = viscosity, centipoise

and the expression for dimensionless time becomes

0.0
T, = 2258 (IV-13)

where:
¢ = porosity, fraction

¢ = compressibility, vol/(vol)(psi)
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t = time, days

A, = distance between pumping and observa-
tion well, feet

The distances in Equation (IV-10) must be expressed in the
same units,

Numerical values of dimensionless pressure drop,
Pp, as a function of dimensionless time, Tp, are presented
in Figure (IV-3) and Table (IV-1) for values of Kp between
1 and 16 and Tp less than 1,000, Steady state values for
the dimensionless pressure drop, Pp, as a function of
dimensionless distance ratio, Rp, are presented in Figure
(IV-4),

The pressure behavior for a build-up pump test is

obtained by superimposing a negative flow rate on the time

after the pumping well is shut-in. Thus
2
¢Cl| — e C/Q
{E t+At)) Ei ( ’4K(+,,+At5)

] 2 (IV-14)
CEi (-t ) L (- g )}

4 kAt 4 KA

or if dimensionless pressure, Pp, and field units are used

nde 22
R = {t‘( #(e, ooesa)mt.mt))
R
~Ei(- ar5oess K Tevan ) (IV-15)

— - M¢ /el : ’Qa
E'( 400,006 33)!<At) tEi <" 47’00.‘0%33%&)
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Figure IV-l,

10
LENGTH RATIO, Ry=L2/LlI

Steady State Dimensionless Pressure Drop
for Radial Systems with Constant External
Pressure Line,

100
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The values for the exponential integral can be replaced by

an equivalent form (19).

E,{(-x)=A4n x + 0.5772 + 2, <—nl) Hxlﬂ (T7-16)
n=y . K
2
If the shut-in time is large so that / w e A is

\ 410.00633) K At
less than 0,01, and the value of A, 1is very large compared

to £, , then

JDD = _2,“ An (——-———————mé*'tAt j: -"2)’;’0")/&?,0 (-M_td’;_ r \ (IV-17)

Thus when a well in an infinite radial system is pumped, a
straight line is obtained as illustrated in Figure (IV-5).
The effect of the presence of a line of constant
pressure in the vicinity of the pumping and observation wells
is shown in Figure (IV-6) for Rp = 6. Here a slope of
1.1515 is not obtained as in Figure (IV-5)., Thus if
£, is not very large compared to £, , substituting Equation

(IV-16) in Equation (IV-15) gives for large shut-in time

P, = O (IV-18)

Hence an asymtope value of O is obtained for long pump tests

as shown in Figure (IV-6).

2., Pressure Behavior of Pumping Well During Draw-
down and Build-up Tests

The point source solution can not be used to

describe the pressure behavior of a pumping well during a
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drawdown test for values of dimensionless time below 1000,

The dimensionless pressure drop, Pp for a pumping well is

given by
P, = R (t) +4 Ei(-£=) (1V-19)
where:
tp = 2223 KE (IV-20)
Rp = —;qf
Pt = dimensionless pressure drop for well

in infinite radial system (Table 10-5,
Katz et al (50), Chatas (12), Van
Everdigen and Hurst (86))
The engineering units are listed below Equations (IV-12)
and IV-13), For values of dimensionless time above 1000,
Equation (IV-1l) can be used to predict the ideal pressure
behavior at the well,
Values of dimensionless pressure, Pp, versus
dimensionless time, tp, are given in Figure (IV-7).

The pressure performance of the pumping well

during a build-up test near a line of constant pressure

will be similar to that of a well in an infinite radial
system if the pumping time is short. The build-up curve

for a pumping well where Rp = 100 is shown in Figure (IV-8),
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B. Evaluation of Error in the Measurement of Insitu Permea-
bility and Insitu Compressibility

The insitu permeability and insitu compressibility
are obtained for infinite radial reservoirs by plotting
pressure versus logjo pumping time. The insitu permeability

can be obtained from the slope of this plot. (51) (92)

m=-162.6 —%ﬁ (IV-21)

where:

m = slope of pressure vs logjp time,
psia/cycle

pumping rate, bbl/day

a
K permeability, millidarcys
h

reservoir thickness, feet
M= viscosity, centipoise

Solving Equation (IV-21) for K yields

le2. 06
K= — —— & (IV-22)

The insitu compressibility is obtained by evaluat-

ing the expression for the pressure drop

- —_— - 70,64—/4 . _ ‘bCllz } -
PP Kh' Ei { 4(§%0633)Kt (1v-23)

for the compressibility. The terms in Equation (IV-23) are
defined below Equations (IV-12) and (IV-13). Thus solving

Equation (IV=23) for ¢ gives

c=-

| -_p)
4‘(0.00633) Kt E‘. f__ Ao = A4 Kh} (IV“‘2)+)

b L E T0.6g u



-69-

Unfortunately, there may be considerable error in
the determination of the insitu permeability and insitu
compressibility if there is an external line of constant
terminal pressure in the vicinity of the pumping and observa-
tion wells, The magnitude of this error will be éhown below,.

The numerical values for the slope of a plot of
dimensionless pressure drop, Pp, vérsus dimensionless time,
Tp, when an external line of constant pressure is present

can be obtained by writing Equation (IV-11l) in integral form

Q

po= g demdu - [ Heda (1v-25)
U RZ
T, i

and differentiating with respect to logyp Ip

2
me ey 2t o) v
The error due to the external line of constant pressure is
given by the last term in Equation (IV-26).

The error in the measurement of the insitu
permeability is a minimum if the maximum value of the slope
from BEquation (IV-26) is used. The value of dimensionless
time, Tp, when the slope, m, is a maximum for a given value
of the dimensionless length ratio, Rp, is obtained by
differentiating Equation (IV-26) with respect to logip Tp,
setting the resulting expression equal to zero, and solving

for Tp. Thus



2 _ L. _fg
and
. RZ - |
Ty = ‘*Zﬁz;rﬁs— (IV-28)
where

I = logarithm base e

The minimum error in the measurement of insitu permeability
for a given value of the dimensionless length ratio, Rp, is
obtained by the following steps:
1. Use Equation (IV-28) to find Tp.
2. Find the slope for this value of Tp from
equation (IV-26).
3. Calculate the minimum error in K from

equation (IV-29).

K(obs) _ o
= IV-2
2 R e

where K (obs) = observed permeability, millidarcys. A plot
of the ratio of observed permeability to the true permea-
bility,-Jﬁ%%EQ versus the dimensionless length ratio, Rp,

is shown in Figure (IV-9). Note that the observed permeability
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is always greater than the true permeability. Thus if ’<khﬂ
equals 1.3, the observed permeability is 30 percent higher
than the true permeability.
The error in the measurement of insitu compressi-
bility which corresponds to the error in the measurement
of insitu permeability is obtained by the following analysis,
If an external boundary of constant pressure is

present, the dimensionless pressure drop is given by Equa-

tion (IV-11)

-4{EiC3R)- B CA)] (1v-11)

In the absence of an external boundary (R,= == ), the

dimensionless pressure drop is given by

Po= ~% Ei (-37) (17-30)

Thus if no external line of constant pressure is
assumed when there is such a line, the error in the measure-
ment of insitu compressibility is as follows., Equation
(IV-30) is assumed to give the correct pressure drop when

the actual pressure drop is given by Equation (IV-11l), thus

Ei(-amm) = Ei-35 )-Ei(-5%)  avs3w

|
Solving Equation (IV-31) for IT000 gives

- 4"_To‘(abs) = 7 {E‘ (- 77;)-Ei Taré")} (17-32)
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Expand Tp(obs) yilelding

3 (rl( <) F)= e (B2 ) - B0 )
Solving Equation (IV-33) for —Eéﬁﬁl gives
clobs) = _ 4 (Klebd) (1,) £ Ep (-5 ) - Ei (- B2)] (av-30)

where c(obs) is the measured value of the insitu compressi-
bility,.

The ratio of observed compressibility to the true
compressibility,-éi%gﬁl , versus the dimensionless length
ratio, Rp, is shown in Figure (IV-10). As in the case for
the observed permeability, the observed compressibility is
always greater than the actual compressibility.

C. Description of Graphical Method for Locating External Line
of Constant Pressure (or Gas-Water Interface)

The location of the external line of constant pres-
sure (or the gas-water interface if a large gas field is
located in the vieinity of the well test) can be determined
graphically if the following information is available:

1. The true effective permeability (Obtain from
pressure data from the pumping well or core data)

2. The observed permeability at an observation well
at a known distance from the pumping well (Ob-

tain from pump test)
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3. The observed permeability at a second observa-
tion well at a known distance from the pumping
well (Obtain from pump test)

The procedure for locating the external line of
constant pressure or the gas-water interface is as follows,
For the purpose of discussioﬁ, assume the wells are located
as shown in Figure (IV-11). ,

1. Calculate the value of Kiﬁbél for observa-
tion well No. 1.

2. Using the value of Kiﬁbél from step 1, read
the value of Rp from Figure (IV-9).

3. If the distance from the pumping well to
observation well No, 1 is "a" feet, then
the distance from observation well No. 1
to the image well with respect to observa-
tion well No, 1 is (Rpa) feet. Draw a
circle of radius (RDa) around observation
well No. 1.

4. Determine the locus of all points located
midway between pumping well and the circle
of radius (Rpa) (Shown as locus No. 1 in
Figure (IV-11)). v

5. Calculate the value of Kgﬁhél for observa-
tion well No. 2.

€  Using the value of Kiﬁhﬁl from step 5, read

the value of Rp for observation well No. 2,
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7. If the distance from the pumping well to
observation well No. 2 is "Db" feet, the
distance from observation well No. 2 to the
new image well is (Rpb). Draw a circle
of (Rpb) around observation well No. 2,

8. Determine the locus of all points located
midway between the pumping well and the
circle of radius Rpb. (Shown as locus
No., 2 in Figure (IV-11).

9, The location of the external line of con-
stant pressure (or the gas-water interface)
is given by the intersection of locus No, 1
and locus No, 2. (This is shown as points
A and B in Figure (IV-11).)

10, If the exact location is required, i.e.,
| whether the external line of constant pres-
sure 1s located at point A or point B, then,
pump either observation well No, 1 or observa-
tion well No, 2, determine the X(OBS) at the
other observation well and repeat steps No. 1
through No. 4, Locus No. 3, obtained by this
method, will intercept either point A or

point B.

D, Example Problems

Several example problems are presented to illustrate

the application of the material in this section.
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// /’ OBSERVATION \\
/ WELL(D
/

/( PUMPING . ?\0
|\ Pt

OBSERVATION

\ \ WELL(Z)
4///

Figure IV-11l., Illustration of Graphical Method for Determining
Location of External Line of Constant Pressure
or Gas-Water Interface.
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Problem IV-1

The distance between an observation well and pump-
ing well in an aquifer is 200 feet, The pumping well is
located 300 feet from the edge of a large gas field, The
locations of the wells in reference to the gas field are
shown in Figure (IV-12). If the true value for the insitu
permeability is 100 millidarcys, determine the insitu
permeability that would be measured at the observation well,
Solution

The value of L1 and L2 are shown in Figure (IV-12),
L1 = 200 feet
L2 = 824 feet
Calculate the ratio

L2 = 82k = 4,12
L1 200

and read the value of KL%Q§1 from Figure (IV-9)
K(obs) . -
K "‘102)+
Thus the value of the observed permeability is

K(obs) = 1,24 K

1.2% (100)

124 millidarecys

1]

Problem IV-2

If the true value of the insitu compressibility
for the aquifer described in Problem (IV-1) is 7 x 10-6
vol/(vol)(psi), determine the value of insitu compressibility

that would be measured at the observation well,



AQUIFER

OBSERVATION WELL

200"

400

~70-

GAS FIELD

PUMPING WELL

IMAGE WELL

\-—GAS WATER INTERFACE

Figure IV-12., ILocation of Wells for Problem IV-1.
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Solution
The value of %% = 4,12 is obtained from Prob-
lem (IV-1),
Read the value of gighél from Figure (IV-10).

elobs) . 1 o8

P =

The observed value of the insitu compressibility

is
c(obs) = 128¢
= 1,28 (7 x 10'6)
c(obs) = 8,96 x 10-6 vol/(vol)(psi)



V. EFFECT OF LEAKAGE INTO THE PERMEABLE STRATA

THROUGH THE CONFINING CAP AND BOTTOM ROCK ON THE

INSITU PERMEABILITY AND INSITU COMPRESSIBILITY

MEASUREMENTS IN AQUIFERS OR OIL FIELDS

Leakage through the confining cap and bottom rock
and its effect on the pressure behavior of well tests and
the resulting insitu permeability and insitu compressibility
is evaluated in this section. The equations describing
leakage are presented in engineering units so that compari-
son can be made with previous work in analysis of reservoir
performance, Furthermore, the effect of leakage is shown
to be similar to the effect of ah external line of constant
pressure discussed in the previous chapter. Thus it may
be difficult or even impossible to differentiate between
the two effects by a single well test. Pressure behavior
for both drawdown pump tests and build-up pump tests are
presented, Example problems at the end of the section
illustrate the application of this material to field data.
Hantush (28) (31) and Hantush and Jacob (25) |

examined the problem of leakage during pump tests in under-
ground aquifers, Their results are presented in terms of
transmissibility, coefficients of storage, and well func-
tions; termé used by hydrologists. These results are
transformed into engineering terms such as dimensionless
pressure drop, dimensionless time, permeablility, compressi-
bility, viscosity, and porosity so that their work can be

-81-
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compared with previous accomplishments in the field. The
superposition principle is used to extend these results to

build-up pump tests.

A, Prediction of Pressure Behavior During Drawdown Tests

The differential equation describing the flow of
slightly compressible fluids in a porous media with leakage

(25) is given by

0% p e ) dp -
yr2 r'%f’ 52 oﬁ%e;EK 3t (V-1)

The initial condition is
4o (r,0) = A, (V-2)

and the boundary conditions are

p(=t) =2 t2o0 (V-3)
and
' d =
Lim r 5T = - FERE (V-4)
where:
B = Kh(L + L), reet (V-Ya)

¢ = compressibility, vol/(vol)(psia)

ja3
L

thickness of permeable zone, feet

jny
L]

thickness of caprock, feet

h" = thickness of bottom rock, feet

=
]

permeability, millidarcys



~
n

t
$ =
M=
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permeability of caprock, millidarcys

= permeability of bottom rock, millidarcys

pressure, psia
initial pressure, psia
flow rate, bbl/day

distance from center of pumping well to
point of pressure measurement, feet

time, days
porosity, fraction

viscosity, centipoise

The solution to Equations (V-1) through (V-4) is

given by Hantush and Jacob (25) as

e = 2K (5) - LOS)E

(28.4Kh)

)]

+exp(——4%—) {0.5772 +An w
HEi (-w]-uru[ I (5)- 1] /(55%) -9
uzi‘ Z‘ (=] "+m(h m+1)l( rzz)mu"'m}

where:

o
i

4B

nej n+2

well function, u = E%E

= Modified Bessel function, first

kind, zeroth order

= Modified Bessel function, second

kind, zeroth order

= 0,00633Kt/ . pcr?
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Equation (V-5) written in tsrms of engineering

units is

where

p = _I41.2 (p-pn)Kh
D cZ,/a,

(V-62a)

The dimensionless pressure drop, Pp, is shown as
a function of dimensionless time, tp, with parameters of
éﬁ%& in Figure (V-1). Note that the general pressure be-
havior is similer to that observed with the external line
of constant terminal pressure, Figure (IV-3)., Extensive
tables of u versus (%%) are given by Hantush (28).

For large values of dimensionless time, tp, a
steady state pressure drop is obtained. This pressure drop

in dimensionless terms is shown in Figure (+2) as a function

of (§).

B. Prediction of Pressure Behavior During Build-up Tests

The pressure response for build-up well tests is

obtained by superimposing a negative flow rate of the same
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magnitude on the drawdown test after the pumping well is

shut-in. Thus the pressure behavior during build-up can be

predicted by

Pos 4K (5) -2 L(5) [E: (<5t

+2[exP( ZtD)J{O'ETT‘g'L’M‘"to)

IR Y I I.(8)-
+-Ei( 4tD)J 4%, T 4%, z%_a)

R S (e [ Y L\
16 t2 .,Z, ;, (nh+2)l2 (452>(4t[,>

-4 K, (5)+21, [E(—rzto J (V-7)

-Zl:exp(;’"ézi”')] {0.57?2 - Ln(4t!)

- I ’ - _J_ i Io(g)'
*-Eil-7g )l 25 T 7 ()
_ , o0 o (-I)n*m(n-m-’.l)! ra)M/ / Nem
16(t,)? Z ; (n+2)l2 4 B? \4t;>
where:
' _ _0.00633 Kat
tp = A b o rE (V-8)
. _0.00633 Kt _
D A bt (V-9)
At = time since well shut-in, days
t =

time since pump test started, days
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The effect of leakage in build-up tests is shown
in Figure (V-3) for-%§= 0.2. Comparison of Figure (V-3)
with Figure (IV—6) shoys that the effect of leakage on the
pressure drop is very similar to the effect of an external
line of constant pressure. Thus additional observation
wells are necessary to differentiate between the two effects.

C. Evaluation of Error in the Measurement of Insitu
Permeabll;_x and Insitu Compressibility

Standard methods used to obtain insitu permeability
and insitu compressibility are described in Section II,

The numerical value of the slope if leakage 1is
occurring from a plot of dimensionless pressure drop versus
dimensionless time is obtained by expressing Equation (V-6)

in integral form (28)

Ro= 4 ) &explu- g de (¥-10)
ey

and differentiating with respect to logyg tp

(1 r2t,
_ db - 2.303 “\3%, * gz )
"E TG T T2 ¢ (¥-11)
If B = o0 (no leakage), then the slope is
_ _2.303 - 2%
ms=-S5—=— € 4% (V-12)

which is the expression for the slope of radial flow in an

infinite, radial, porous media,
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The minimum error in the measurement of insitu
permeability is obtained by using the slope at the point
of inflection as shown by Figure (V-1). The value of

dimensionless pressure at this point is

(V-13)

Substitution of Equation (V-13) in Equation (V-11) gives

the slope at the point‘of inflection

_ _2.303 -
M e = 2 €

aly

(V-14)

Thus the ratio of the observed insitu permeability
to the true insitu permeability at the point of inflection

is given by

K(P:w =1 _ - a5 (V-15)

The values of ﬂ%%ﬁl versus {%-obtained at the point of

inflection are shown in Figure (V-4).
The pressure drawdown at the inflection point

defined by Equation (V-13) is
PD = 'ZL Ko ('g’) (V—lé)

If no leakage 1s occurring, the pressure at the inflection

point is

/ , [
Po = =5 Ei ‘4‘;0; (V-17)
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Setting Equation (V-16) equal to Equation (V-17) gives

K(E) ==z Ei (- my‘) (V-18)
. [ .
Solving for T oby) gives
| -
Taew -6 {-n ) (V=19)
and hence
c (obs) K | _ -, =
Cs RTeED) T: = 4 B {—Ko(%)} (V-20)

Solving Equation (V-20) for 11%51- gives
clebd o (Klebd)(42,) (-E {-K(5))  v-21)

Thus at the point of inflection, the ratio of the observed

compressibility to the actual compressibility is given by

obs)  _ i .
o s g fuigl] o
Values of the ratio of observed compressibility to the
actual compressibility-%%—using the slope obtained at ﬁhe
point of inflection in a plot of dimensionless pressure

drop versus logjp time is shown in Figure (V-5).

D. Example Problems

Two examples are given to illustrate the applica-

tion of methods developed in this section.
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Problem V-1

A well completed in an aquifer is pumped at a
rate of 40 gal/min., The aquifer is 20 feet thick and has
a permeability of 200 millidarcys. The caprock 1s 5 feet
thick and has a permeability of 0.001 millidarcys. The
bottom rock is 10 feet thick and has a permeability of
0.5 millidarcys. If the pressure is measured at an
observation well 141 feet from the pumping well, deter-
mine the value of insitu permeability and insitu compressi-
bility if the maximum slope of the drawdown curve 1s used
and the pressure drop at the point of inflection is used
to calculate the insitu compressibility. Assume the true

compressibility of the formation is 8 x 10-6 vol/(vol) (psi).

Solution
Calculate the value of B using Equation (V-ka)
/ n 0
B = /Kh/(% +5,;j (i ,f,,’:“’ = 282 feet
Thus
ro_ 141 _
5 = 28z “O5

Use Figure (V-4) or Equation (V-15) to find—ﬂﬁ%é>
for —E—= 0.5

DLS
_l'i%_) = 1‘65
Klobs) = 1,65 (200)
K (obs) = 330 millidarcys, the

observed permeability



~95-
Use Figure (V-5) to find <l for £ = 0,5

Cfobsz - 1.92

c
clobs) = 1,92 (8 x 10-6)
clobs) = 1,536 x 10-5 vol/(vol)(psi)

This example shows that if the bottom rock is
permeable, the error in the insitu permeability and insitu
compressibility can be large.
Problem V-2

An 92 foot thick aquifer is being considered
for storage of naturai gas, Core data shows that a 20 foot
caprock with a permeability of 0,02 millidarcys lies above
the aquifer. The core data also showed a 10 foot, tight
sandstone below the aquifer has a permeability of 1
millidarecy. A well was pumped at 10 gal/min. Pressure
data obtained from an observation well 100 feet from the
pumping well was used to measure the insitu permeability.,
If the measured value of the insitu permeability is 165
millidarcys, what is the true permeability of the aquifer?
Solution

The true value of the permeability must be found
by trial and error.
Trial No. 1

Assume-—%—-= 0.5

Use Figure (V-4) or Equation (V-15) to fing Kloks)

K
K(&Bs):- 1.6‘5



Thus
B 55— = 2= 200
B2= 40,000
and
=.§%%$ =.+%%— = 100 millidarcys

Check value of K using Equation (V-4a)

KIK‘;u = 40)000
W +55)
- _40 000 K’ Y
(= 24000— (4 £)
-_ 40,000 0.02 |
3z (20 + IO)

4 4‘ m;”:'Jow-cys

Since the two values of K do not agree, it is

necessary to assume a new value of —g— and repeat the

calculations.
Trial No, 2

Assume —g— = 0.3

Use Figure (V-4) or Equation (V-15) to find iiﬁ#§

K (obs) _
Sl = .35
Thus B= 5= = 52 =333

B%= 111,000



and

K= Klf“sb;) = ;’6355 =122 mf”idarcys

This value is checked using Equation (V-%a)

Kh = 111,000 (¥ +KI)
_ 111,000 [ 02 . I
K=—%; ( 20 T Tl0 )

122 m.'”ic‘a\rcys

Since the two values of K agree, K = 122 milli-

darcys is the correct value for the permeability.



VI, INTERPRETATION OF FIELD WELL TEST DATA

The pressure behavior of one gas field and two
aquifers are analyzed in this section. Replacement of
p by p2 in ﬁhe equations for flow-of}slightly compressi-
ble fluids to describe the flow of gas when the pressure
drawdown is less than ten percent is justified., Analysis
of well drawdown and bulld-up tests in the two aquifers
will illustrate many problems involved in the interpreta-

tion of reservoir pressure data,

A. Field A

Pressure data from a drawdown test on a gas well
completed in the deep Frio trend of Southwest Texas was
presented by Accord (1). These data are analyzed using
a procedure similar to the procedure for analyzing the flow
of slightly compressible liquids. Since the pressure drop
was less than 10 percent of the initial pressure, the equa-
tions for a slightly compressible fluid can be used if p
is replaced by p? (17) (50) (92). Justification of this
procedure is given below:

1. Approximate Equations Describing Gas Flow in
Porous Media for Constant Rate Tests

Darcys law for the radial flow of gas in porous

media is given by

- KA
g=Kp deo (VI-1)

-98-



-99-

where:
A = cross sectional area normal to
flow, square centimeters

q = gas flow rate, flow conditions, cc/sec
K = permeability, darcys

p = pressure, atmospheres

r = radial distance, centimeters
M = viscosity, centipoise

The gas law can be used to convert the gas flow rate to
standard conditions. Thus

#= Quz(2)(F) (V1-2)

where:

Py = pressure base for gas measurement,

atmospheres
Qe = flow rate at standard condition, cc/sec
T = temperature at flow conditions, °K

Ty = temperature base for gas measurement, °K

z = gas compressibility factor, flow
condition

The area normal to flow at a given radius is
A=2Znrh (VI-3)

where:
h = reservoir thickness, centimeters
Substituting Equations (VI-2) and (VI-3) in Equation (VI-1)

and rearranging gives
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Q.= BTk Zags (1

which simplifies to

dp? . _p _mZTGe (VI-5)

dr T 7o hKr

The boundary condition at the well bore is

given by
_dp®l - e TEZTQR
N I v e (VI-6)
Ry=
where
Rs = ¥, (V1-7)

The diffusivity equation for the flow of gas in

a porous media, derived by Katz et al (50), is

2 p? | dpt Mérvz 40t
‘| Sk KE SF (VI-5)

The initial condition is

£ (Ry, 0)=.pp, Ro 20 (VI-9)

or

£ (Ro, 0)=p® Roto  (VI-10)

The remaining boundary condition is

Lo g0 =g, tzo0 (VI-11)

o )
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or

j/“/m.‘ﬁe = ,4%2 t20 (VI-12)

P =5 oo
Define dimensionless pressure and dimensionless

time for the flow of gas as follows

- m (R -p)TohK _
(R, = T Te, (VI-13)

(to)ons = b (VI-1}4)

Substituting Equations (VI-13) and (VI-14) in
Equations (VI-8), (VI-6), (VI-10), and (VI-12) yileld

respectively
3% (F) [ 3 (R) 3 (Po)
D 961 - .
Bt R TR T S, (119
d (P)
as _- -
———-—9—3 R, . | (VI-16)
R (RD, O) = 0 (VI-17)
Limn (Po)gas =0 (tges 20 (VI-18)

RD—9’Q
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Equations (VI-15), (VI-16), (VI-17), and (VI-18)
are identical to the equations of flow of a slightly com-
pressible fluid except that p is replaced by p?.
If p2 is plotted versus logiot and engineering

units are used, the slope of the drawdown curve is given

by (50)

T Qs (VI-19)

424 i 2
h K
where:
h = reservoir thickness, feet
K = permeability, millidarcys
m = slope, (psi)2 /cycle
Po = initial pressure, psia

Qg = gas flow rate, SCF/day, for Ty = 60CF,
£, = 14.7 psia

T

reservoir temperature, °R
Z = average gas compressibility
/.= average gas viscosity, centipoise
The error in the application of this method is
due to the change in p given in Equation (VI-14),

2. Analysis of Pressure Drawdown Data

The pressure drawdown data and values of p? are
given in Table (VI-1). Note that the pressure drop in this
test 1s less than 10 percent of the initial pressure,

Other reservoir data needed to analyze the pump

test data are:
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Average viscosity, = 0,0362 centipoise

Average gas _
compressibility factor, z = 1.3

729 °R

Reservoir temperature, T

8 feet

Reservoir thickness, h

The gas flow rate for the pressure drawdown test is 600
SCF/day,

Thé slope over the initial drawdown of a plot of
p? versus logiot in Figure (VI-1) is used to calculate the
insitu permeability. The sharp changes in the slope over
the latter history reflects the effect of reservoir faults
as discussed in Section II.

Thus using
m =-1,300,000 psi2/cycle

the insitu permeability to gas is calculated by rearranging

Equation (VI-19)

Kz “'424;2 TQG
hm (VI-20)
= —1424 (0,0362)(1.3)(729) (600) _
K 8 (- 1,300,000) < 2.9 md

It is interesting to note that when the question for a
slightly compressible fluid was applied to this data
directly by Accord (1), a value of 3,0 millidarcys was

obtained for the insitu permeability to gas,
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TABLE VI-1

PRESSURE DATA FOR FLON TEST ON GAS
WELL IN FIELD A (ACCORD (1))

Flow Time Pressure, psia (Pressure)e, (psia)z
Hours (well-bottom) (well-bottom)
0.000 9340 87.o4 x 106
0.117 9122 83.21
0.250 9085 82.54%
0.500 9059 82,07
0.750 o0k 81.88
1 903 81.69
2 9018 81,32
3 8997 80,95
L 8976 80.57
5 8960 80.28
6 8950 80.10
7 8934 79.82
8 8924 79, 6%
9 8914 79 .46

10 8908 79.35
11 3303 79,26
12 93 79.09
14 8867 78,62
16 8846 78.25
18 8830 77 .97
20 8815 77470
22 8794 7733
ol 8778 77.05
28 8745 76 .48
32 8690 75,52
36 8648 74,79
Lo 8625 74,39
Ll 8590 73.79
L8 8560 73,27
56 8500 72,25
6L 8460 . 71.57

72 8431 71,08
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B. Field B

Drawdown and build-up test data from an aquifer
located in St, Peter Sandstone in the Illinois Basin are
presented below. Values for the physical properties of the
sandstone obtained from core data are porosity 14,5 percent,
water viscosity 1 centipoise, sand thickness 164 feet, and
permeability 168 millidarcys.

Well (B-1l) located in the aquifer was pumped at
a rate of 1028 barrels per day. Pressures were observed at
the Pumping Well (B-1), three Observation Wells (B-2) (B-3)
B-6) completed in the aquifer, and two Observation Wells
(B-4) (B-5) completed in the first permeable sand above the
agquifer, Locations of the wells are shown in Figure (VI-2)
and pressure measurements are listed in Table (VI-2) for
the drawdown test and in Table (VI-3) for the build-up test.
The distance between the Pumped Well (B-1) and the observa-

tion wells are:

Well (B-2) - 1021 feet
Well (B-3) - 1760 feet
Well (B-4) - 1232 feet
Well (B-5) -~ 1320 feet
Well (B-6) - 6600 feet

l. Drawdown Test

A plot of the pressure change versus logjptime

for the drawdown test is shown in Figure (VI-3). The
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(B-6)

® DENOTES WELL

Figure VI-2, Location of Wells in Field B.
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TABLE VI-2
FIELD B - PRESSURE DRAWDOWN DATA

Pumping Pressure Drop, Feet of Water
Time, Hours Well B-1 Well B-2 Well B-3 Well B-4 Well B-5 Well B-6

0 0 0 o 0 O 0

0.017 60

0.033 80

0.050 95

0.067 120

0.083 135

0.100 146

0.117 151

0.113 159

0.150 16k%

0.162 169

0.250 183

0.333 198 0.0%

0.520 201 0.09 0.01

0.50 202 0.20 0.03

0.58 0.43 0.09

0.67 0.60 0.13

0.75 204 0.77 0.19 0,02

0.82 1.05 0.25 0.02

0.91 1.20 0.3k 0.02

1,00 205 1.50 o2 0.04

1,08 1,73 0.52

1.16 1.93 0,61

1,25 20k 2,05 0,66 0.0k

1.33 2,30 C.79

1.k2 2.35 0.88

1.50 206 2,61 0.98. 0.07 0.01

1,98 2.79

1.67 2.95

1.75 208 3,05 1.26 0.12 0.01

1.82 3.20

1091 3'35

2,00 210 3.50 1.48 0.1 0.01

2.25 3.80 ,

2.50 210 L. 16 1,94 0.19 0.01

2.75 L5

3.0 210 L, 70 2,31 n.46 0.01

3.5 5.05 2.65 0.55 0,01

L 210 5.52 2,93 0.72 0,02

5 210 6.15 3.h% 1.05 0.10

6 212 6.55 3.7 1,37 0.12

7 208 7.00 L1k 1,92 0.14%

8 209 7.20 L L1 2,22 0.4

9 208 7.69 L. 67 2,62 0.31

10 208. 7.85 4,87 2,84 0.36

11 7.85 L.87 0.35

12 209 8.30 5.31 3.k 0.62 0.10
14 210 8.70 5.64 3. 96 0.75 C.10
16 210 9.00 5. Ok 4,29 0.89 c.12
18 212 9,30 6.22 %,55 1.09 ¢.18
20 211 9,60 6.48 4,81 1.35 0.25
23 10.13 6,92 1.35 0.31
ok 210 10,05 6.92 5.28 1,64 0.35
30 205 10.50 741 5.87 2.39 C.l4+5

5 205 10.89 7.73 6,26 2,85 C.67
0. 209 11.05 7.93 6.54% 3.40 C.66
1 203 11.40 8.28 6,78 3,80 0.88
47 11.40 8,28 6.78 3,80 C.76
50 210 12,00 8.53 7.13 4,33 1.00
55 202 12,10 8,68 7,27 4,80 1.05
59 12,25 8.93 7,47 5,14 C.96
60 200 12,25 8.93 7.47 5,14 1.2%
65 9.18 1.25
70 200 12,30 9,18 7.73 5.99 1,26
71 12.30 7.73 5.99 1.16
72 205 12,18 9.32 7,87 6.1% 1.30
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TABLE VI-3

FIELD B- PRESSURE BUILD-UP DATA

s Feet of Water
Well B-3" Well B-4 Well B-5 Well B-6

Pressure Drop

Well B-2

Well B-1

Shut-In
Time, Hours
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pressure drops in Wells (B-4) and (B-5) show that there
is communication between the St. Peter sandstone and the
next sandstone above the St. Peter, The change in slope
of the drawdown curve in Wells (B-2) and (B-4) indicates
that there is pressure communication in the vicinity of
these wells, See Figure (VI-2). Data from Wells (B~2)
and (B-3) were used to determine the insitu permeability
and insitu compressibility.

The slope of the drawdown curve for Wells (B-2)
and (B-3) are -6,5 and -5,0 feet of water/cycle, respec-
tively or -2,82 and -2,17 psi/cycle respectively.

The insitu permeability calculated from Equation

(I1-6), 1is

K =- ____%A,'Gii (II-6)

Thus for Well (B-2)

K = —162.6 (1028)(1)
-2.82(164)

36l m't“n'darcys

and for Well (B-3)

K= ZISZLUSEND - 470 illidurcys

The insitu compressibility is obtained by solving

Equation (II-1) for ¢

- =4(0.00633)Kt ! 4_9-@ VI-21
Cc 4’/4 2 El {( o, )} ( )

Kh
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A drawdown of -6,5 feet of water (-2.82 psi) at 6 hours

(0.25 days) for Well (B-2) was used to calculate the insitu
compressibility for Well (C-2).

c= —%(000633)(361)(0.25) -1 -2.82
(0.145) (1) (1021)2 E' (zo,e)(1028)(1)
(361)(164)

cC= 9.06 xjo°7 vel /(vel)(psi)
Using the drawdown of -9,3 feet of water (-4,03 psi) at

72 hours (3 days), for Well (B-3) the insitu compressibility
is given by

¢ = —4(000633)(470) (3) Ei! ~4.03
(0.145)( 1) (1760)2 ! (70.6)(028) (1)
(470)(164)

C= 6.35 «x 1077 vo'/(vol)(Ps;)

This value is checked using the drawdown -4,14% feet of

water (~1.79 psi) at 7 hours (0.292 days) for Well (B-3)

— e

c= —4(000633)(470)(0,292) Ei~{=1.79
(0. 145Y( 1) (17¢0)2 ‘ (70.€)(1028)(1)
(470)(16 4
C =

TAT x 1077 4o /(vcl)(Psa‘)
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These results for the insitu compressibility are
not only inconsistent,»they are less than the compressi-
bility of the water itself, These data strongly indicate
that in addition to leakage, the formation is heterogeneous
and can not be represented by a single pseudo homogeneous
porous media. The pressure drawdown for a layered reservoir

can be calculated from

P=AR TT0.6u iSZn: K?ik: Ei {J(ofocoégsr:t} (VI-22)
where:
h; = height of the ith layer, feet
Ki = permeability of the ith layer,
millidarcys
n = number of distinct homogeneous layers
qy = flow rate from the ith layer, bbl/day

If the heterogeneities in a reservoir are known, then the
pressure behavior can be determined. Unfortunately the
converse is not true, since there may be an infinite num-
ber of combinations of stratifications, leakage, faults,

etc, which will give essentially identical pressure behavior.
Furthermore the flow may not be radial and forcing the data
to fit this model may lead to large errors in the deter-
mination of the insitu properties. Applications of
hemispherical model and thick sand model (bottom water drive)

to reservoir well test data are given by Katz et al (51).
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Barometric pressures were not recorded during this
test. Failure to correct the pressure data for barometric
changes can cause serious error in interpreting pump test

data when the pressure drawdown is only a few feet of water.

2. Build-up Test

The pressure change versus logig (—;~4%%?—Jj is
shown in Figure (VI-4) for the build-up test. The slope of

the curves for Wells (B~2) and (B-3) is

m = -6 £t, of water/cycle
m= -2,6 psi/cycle

The insitu permeability calculated from Equation (II-6) is

- _ 162,64 u

K= P

K= - 162.6 (1028)(1)
- (~2.6) (l1e4)

K= 393 m?”o‘a/a.v-cys

C. Field C

Drawdown and build-up test data from a second
aquifer in the Illinois Basin are analyzed. Location of
the pumping Well (C-1) and three observation Wells (C-2)

(C-3) (C-4) in the Mt. Simon formation are shown in Figure
(VI-5).
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Well (C-1 was pumped at a rate of 2740 barrels
per day (80 gallons per minute). Pressure observations
corrected for changes in barometric pressure, at the Pump-
ing Well (C-1) and the three Observation Wells (C-2), (C-3),
and (C-4) are recorded in Table (VI-4). The pressure
behavior, corrected for changes in barometric pressure,
is given in Table (VI-5) for the build-up test. The hori-
zontal distances between the Pumping Well (C-1) and the
observation wells are

Well (C-2) - 4611 feet

Well (C-3) - 2869 feet

Well (C-4) - 6934 feet
The distances between the pumping well and the observation
wells when the vertical displacement of the formation is
considered is

Well (C=2) - 4612 feet

Well (C=3) - 2880 feet

Well (C-W4) - 6934 feet

The aquifer is several thousand feet thick and
contains several non-continuous shale streaks. Core data
show the permeability of the sandstone varies from a few
millidarcys to several darcys, Thus the meaning of insitu
permeability and insitu compressibility is questionable in
such a heterogeneous formation. Pump test actually measure
the transmissibility, T, and storage coefficient, S, where

these terms are defined by
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(c-2)

® DENOTES WELL

Figure VI-5. Location of Wells in Field C.




-118-

TABLE VI-l

FIELD C - PRESSURE DRAWDOWN DATA

Well C-3 Well C-l

Pressure Drop, Feet of Water
Well C-2

(Corrected for Barometric Pressures)

Well C-1

Pumping
Time, Hours
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TABLE VI-5
FIELD C - PRESSURE BUILD-UP DATA

Pressure Drop
Shut-in Feet of Water (corrected)
Time, Hours
Well C~1 Well C-2 Well C-3 Well C-4

6 193 5,67 4,15 3.25
18 65 5.08 3.73 3.17
o4 49 4,76 3,54
30 39.4 4,56 3.52 3.11

42 28.5 k.11 3034 2.99
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T
S

Kh/m , millidarcy feet/centipoise
¢ ch, feet/psia

Except for the inclusion of viscosity, these terms are not
new and have been used by hydrologists for decades (28) (42)
(84).

The pressure for a drawdown test in terms of

transmissibility, T, and storage coefficient, S, is cal-
culated by

' "z —
Prh v 1% Ei - e (V1-23)

The storage coefficient, S, can be obtalned by solving
Equation (VI-23) for S. Thus

5_-_.1_(_0_"10_52_3_3)_115;"{( = } (VI-24)

O.é«}

Comparison of Equations (II-1) and (VI-23) shows that the

transmissibility, T, can be calculated from the slope of

the drawdown or build-up test by

T = - le&Ly (VI-25)

The expression for dimensionless time in engineering units
can be written as

_ _0.00633Tt
t, = &3 (VI-26)
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1. Drawdown Test

Pressure change versus log time is plotted in
Figure (VI-6) for the drawdown test, Data from each of
the three observation wells are used to determine the
insitu transmissibility, T, and storage coefficient, S.
Equation (VI~25)‘is used to calculate the insitu trans-
missibility, and Equation (VI-24) is used to calculate
the storage coefficient. The slopes for the drawdown

test shown in Figure (VI-6) are

Well (C-2), m = =3,05 ft water/cycle = -1,34 psi/cycle

Well (C-3), m = -2.5 ft water/cycle = ~1.08 psi/cycle

Well (C-4), m = -2.2 ft water/cycle = -0.95 psi/cycle
The corresponding values for the insitu trans-

missibility given by Equation (VI-25)

T=- 16264 (VI-25)

m
are calculated for each of the three observation wells,
Well (C-2), T = 162.6(2740) = 330,000 milli-
-1.3 darcy feet/centipoise

Well (C-3), T = =162.6(2740) = 412,000 milli-
-1.08 darcy feet/centipoise

Well (C-4), T = =162.6(27%0) = 468,000 milli-
-0.95 darcy feet/centipoise

The average insitu transmissibility for the three
wells is

T = 404,000 millidarcy feet/centipoise
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Since the value for the aquifer thickness, h, is ques=-

tionable, solving the expression for the transmissibility

- _Kh
T=—x

for the insitu permeability is not recommended for this
field,
The values for the storage coefficient, S, are

calculated by Equation (VI-2k)

_ 4(0,00633) Tt ,-I (f.#')T
S = ré Ei { 0. 64 ?

for each of the three observation wells., Values for the

drawdown at 720 hours (30 days) are read from Figure (VI-6).

Well (C-2)

S = 4(0.00633)(332,000)(30) Ei-! (-5.5)(0.433)(332 000)

5 = 0.00C 2 feet c.enﬁpo:.sc / Ps;a..

Well (C-3)

S = 4(0,00633)(412,000)(30) £ -3.7(0.433)(412,000)
(2880)2 ! 70.6 (2740)

S= 0.00072 feet centipoise / psia
Well (C=k4)

G = _4(0.00633)(466,000) (Bo)E,-t -2.9(0,433)(468,000)
(6934)2 | T0.é (2740)

S: O OOOZI feef cen"'l'Po:se /Ps.‘q"
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The average value for the storage coefficient, S,

for Field C 1s

Sgve = 0.00035 (feet)(centipoise)/psia

The expression for the storage coefficient S = ¢ ch
should not be solved for the insitu compressibility since the

effective value for the aquifer thickness, h, is not known

for Field C,

2. Build-up Test
The build-up curves for Wells (C-2), (C-3), and

(C-4) are shown in Figure (VI-7). The curves are extrapolated

to ~157§f31 = 1 in order to obtain the slope, The slope for

these curves is -2,8 ft. of water/cycle or -1,21 psi/cycle.
The insitu transmissibility, given by Equation

(VI-25) is

7= =162.6(2740)
-1,21

T = 368,000 millidarcy feet/centipoise
This value is within the range of values obtained for the

insitu transmissibility from the drawdown test,
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VII. SUMMARY, CONCLUSIONS, AND RESULTS

Several problems involving the unsteady state
behavior of fiuids in underground strata were investi-
gated in this dissertation. These problems include:

1., Evaluation of the error in neglecting the
non-linear term in the partial differential
equation describing the flow of a slightly
compressible liquid in a porous media,

2. Determination of mathematical expressions
describing the unsteady state pressure
behavior for radial flow in a reservoir
during drawdown and build-up pump tests
when gas fields or lines of constant pres-
sure are located in the vicinity of the
well, |

3. Determination of mathematical expressions
in engineering units describing the un-
steady state pressure behavior for radial
flow in a reservoir during drawdown tests
when leakage is occurring through the
confining cap and bottom rock and extended
these results to build-up tests,

4, TIllustration of many difficulties encountered
when actual field data are analyzed,

-126-
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The following results and conclusions were ob-
tained in this study.
1. The effect of neglecting the non-linear
term in evaluating the unsteady state
pressure behavior is negligible for both

radial and linear systems when

t, ¢ 000l M™?

where:

= 000633 K ¢t
tp A ¢ e pe

M =jﬁﬁj§ﬁ%ﬁh%— for radial flow and

:ﬁE%%%f¢“%3i for linear flow

A = cross sectional area normal to
flow, (feet)

¢ = compressibility, vol/(vol) (psi)

1]

thickness of porous media, feet

~
]

permeability, millidarcys
flow rate, bbl/day

o]
it

r = radius of well, feet

t = time, days

e
o
1]

reservolr characteristic length, feet
¢ = porosity, fraction

M = viscosity, centipoise

2. The pressure behavior during a drawdown test

when a gas field 1s located nearby is given by
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P=op o+ T0Egu[Ei (- bedin ) B #hbidin))

where:

El
4,

exponential integral

distance from pumping well to point
of distance measurement, feet

11

Jp = distance from point of pressure
measurement to image of pumping
well, feet

The observed insitu permeablility and insitu
compressibility are larger than their true
values - and the magnitude of these errors
are given in Figures (IV-9) and (IV-10).

3. The pressure behavior during a build-up test

when a gas field is located in the vicinity
of the test 1s

2
£ = g 20E5m [E (- pstadrm)

- . AL é c ,e: . o _AA ¢ c 'le
E' (4-10. 006 33) me‘.mt))"E’ ( 4(0.00633>Két)

FA
+Ei - gttt

where:

Ci-
(@}
i

length of drawdown test, days
At

time since cessation of pumping,
days
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The pressure performance versus dimension-
less time when leakage 1s occurring through
the cap and bottom rock was evaluated for
drawdown and build-up tests. These results
are presented in Figures (V-1) and (V-3).
The complex expressions for the pressure
behavior are given by Equation (V-6) for
the drawdown and Equation (V-7) for the
build-up. The error in the measurement
of insitu permeability and insitu compressi-
bility is shown in Figures (V-4) and (V-9).
Two fields characteristics, transmissibility,
T, and storage coefficient, S, should be
evaluated for reservoirs in which it is
difficult or impossible to obtain the reser-

voir thickness. These characteristics defined

by
- KRh
T="x
and
S= ¢ch

can be used to predict the reservoir performance,
A graphical method for locating an external line
of constant pressure or a gas-water interface

is described,



for predicting the pressure behavior of constant rate pump

VIII. RECOMMENDATIONS FOR FUTURE WORK

Methods have been presented in this dissertation

tests when (1) a gas field is near or a line of constant

pressure is present and (2) leakage is occurring through

the cap and bottom rock.

to be substantiated by field data and extended to the ase

of constant pressure well tests., Specific problems and

tests which would enhance our understanding of unsteady

state reservoir behavior are given below,

1.

Drawdown and build-up well tests should be
conducted near the edge of a gas field to
evaluate the usefulness of the material pre-
sented in Section IV on pressure behavior
near a gas field, These tests could be per-
formed near the edge of a gas storage field
during the few months preceding or after the
gas withdrawal season. It is further
recommended that both constant rate and
constant pressure pump tests be performed,
The pressure behavior for constant pressure
drawdown and build-up tests should be deter-
mined for the case when a gas field is
located in the vicinity of the test site.
-130-

The usefulness of this work needs
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It probably will be necessary to solve the
partial differential equation, boundary,
and initial conditions by numerical methods,
The pressure behavior for constant pressure
drawdown and build-up tests need to be
evaluated when leakage is occurring through
the cap and bottom rock. Again numerical
methods will probably be necessary to obtain

the desired mathematical solutions,
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APPENDIX A
COMPUTER PROGRAM FOR NUMERICAL EXPLICIT METHOD
USED IN DETERMINING THE ERROR IN NEGLECTING THE
NON-LINEAR TERM IN THE PARTIAL DIFFERENTIAL
EQUATION DESCRIBING RADIAL-FLOW OF A SLIGHTLY
COMPRESSIBLE FLUID IN POROUS MEDIA
A description of the IBM 7090 computer program
used to determine the error in neglecting the non-linear
term in the partial differential equation describing the
flow of a slightly compressible fluid for radial flow is
presented in this appendix. This appendix includes the
MAD (Michigan Algorithm Decoder) program, the program
nomenclature, the flow dlagram, a list of information re-
quired, and an example problem illustrating the use of the
program, This program was used to calculate values of
dimensionless pressures for values of dimensionless time
below 0.01,
The following information is required in the
computer program:
1. The number of length increments. (Eighty

length increments were found to be satis-
factory, Aw =1

80
2, The value of the time increments. (At =

0.00005 1is an acceptable value of At for
Aw :1§5. Stability requirements demand
that (AtWAw)® is less than 0.5.)

3. The number of time increments to be evaluated.

4, The number of M coefficients to be evaluated,
(The value of M is defined by Equation (III-34)).
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5. The numerical values of the M coefficient to
be evaluated, '

The computer program uses the information to calcu-
late values of dimensionless pressure versus dimensionless

time for each value of the dimensionless coefficient M.

Deck Assembly

1., IBM eenter.control cards

2., Radial, Explicit Numerical Program (MAD or
Binary Deck)

3. Input Data
The input data is read in "simplified input
format",
For Example,
IMAX = 80, DELT = 0,00005, MMAX = 2, JMAX = 49, M(1) = 0, , 1.%
Definitions of the terms used in the simplified input are

given below in the nomenclature,

Flow Sheet

The instruction J = a, b, J>e¢ in the flow sheet
means that the set of célculations is calculated for J = a
and repeated in increments of b until the condition J >c
is satisfied. For J = a, b, J >c refers to iterative
calculations for a given box. Through d, J = a, b, J>c¢
refers to 1iterative calculations through "circle 4". The

Flow Sheet is presented at end of Appendix.
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Nomenclature Used in IBM Program and Flow Sheet

ADIM
A
DELT
DEIW
DT

IMAX

JMAX
K1

MMAX

X2
X3
Xk

Term used to dimension P(I,J) vector
NN
At
Aw
2
At/ (F)

Scaling coefficient "a", 1In this dissertation,
F=1.0

Space index

Number of space increments

Time index

Number of time increments

Term used in program, K1 =1-1Aw

Dimensionless coefficient defined by Equation
(ITI-34)

Number of dimensionless coefficients
Dimensionless pressure

Counter used in IBM program

P - P

i+, j -,

(x2)°

Term defined by X2
Term defined by X3

n

Absolute value of X2

Value of dimensionless time at a given time
step, 2 = jAt
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MaCa MILLER
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000

M
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p

MILLER

Q203N 002 045
D C Py P
R EVALUATION OF NON-LINEAR TERM IN NON-LINEAR,

R_SECOND ORDERs PARTIAL _DIFFERENTIAL_EQUATION

000

'__IBM__Center Control Cards.

R FOR FLOW OF SLIGHTLY JOMPRESSIBLE LIQUIDS
R_XN _INFINITE _RADIAL _MODEL

_—MA’D“‘PrUgmm_* ‘

R
RSOLVED BY DIFFERENCE EQUATIONS,EXPLICIT FORM
R

DIMENSION P(_8100,ADIM)sMI10}

INTEGER T9JsKsL sRsNs IMAX9MMAX y JMAX
VECTOR VALUES ADIM=2,1015100

S4

F=1.
READ DATA,IMAX,DELToMsMMAX s IMAX

DELW=1.«/1IMAX
A=DELT/DELW/DELW

DT =DELT/F/F

PRINT RESULTS DELT s IMAXsMMAX s JMAX s AsMIL)aea MMMAX]

Sl

P{IMAXs 1)=0s

THROUGH S6,F = X
THROUGH S1sFOR 1=0s1sIeGeIMAX
P (12012040

Z=0.
J=0

PRINT COMMENT
1SECOND ORDER)

S1EVALUATION OF NON-LINEAR TERM IN NON-LINEAR,
PARTIAL DIFFERENTIAL EQUATION FOR FLOW OF SLIGH

2TLYS
PRINT_COMMENT

$OCOMPRESSIBLE LLIQUIRS IN INFINITE RADIAL MODEL:

13

S5

PRINT RESULTS M{R)sDELTsDELWsASF
PRINT COMMENT $0 N TIME PRESSURES
THROUGH S23FOR I=131s1eGe(IMAX~1)

X2=P(I+1+0)-P(I-140}
X4=4ABSe (X2)

WHENEVER X4 oLe 1eE-10s X2=0e
X3=X2%X2

Kl=(1e=I*DELW)
P(l,

1)=P (1,0} +AX(KI*KI*(P{I+]150)=2e*P(1,0)+P([=140))

1-DELW/2+%(K1-K1/(F -ELOGe (K1)} )}¥X2
2+M(R)¥K1*K1/4e%X3)

32.

WHENEVER P(1s 1)eLeleE=20+P(191)=0s
CONTINUE

P(0y 1)=(24#DELW/F+4e%¥P(1ly 1)=P(2y 1))/3,
J=J+1 :

Z=2+0T ‘
PRINT._FORMAT RSLT1sJsZsP(0s1)

VECTOR VALUES RSLT1=$514sF9e69F1247%%
WHENEVER JsGeJMAX»TRANSFER _JO_S6

S3

THROUGH .53y FOR I1=091s1sGelIMAX
P(1s0)=P(Is1)

56

TRANSFER TO S5
CONTINUE

TRANSFER TO sS4
END OF PROGRAM

$ DATA

IMAX=804 _

DELT=4000055  MMAX=2,

Data Tnput

JMAX= 49,  M(1)=0e¢sle¥

_____ EIALU_A_ILQN__O.E‘MO_N:LLN.EAB-_LEKE_-I_N._.N.QN_:LJ.N.E.AB_[_,SE_C.O_ND._U.&DEBJ._E_AR_T_l‘AL_.Dj—EE.E&ENLIAL_‘EQQAIIQ&..EP.R..FLOE,D.F,_ SLIGHTLY .
COMPRESSIBLE LIQUIDS IN INFINIVE-RADIAL MODEL )

IBM__Program Print Qut

M(1) = «000000, DELT = __5.000000E-05, . ___
- F. = 1.000000
1 .000050 .0083333
_______ 2. .000100_____.0118008
3 .000150 0142833
RN 4 2000200 .0163656
5 .000250 .0181936
6 .000300 20198440
7 .000350 +0213605
8 000400 .0227713
9 .000450 +0240960
18 __.000500 20253485
11 .000550 0265395
12 .000600 20276771
13 .000650 .0287680
14 __.000700 .0298173
15 .000750 +0308294
16 __.000800 .0318081
17 .000850 «0327563
18 .000900 20336766
19 .000950 +0345715
20 _.001000 - 0354427
21 .001050 «0362922
22 __.001100 __ . 20371213
23 .001150 .0379315
24 _,001200 -0387240

DELW = 012500, ... . A=

_«3200¢0



25 .001250  .0394998
26 .001300 ___ .0402600

27 0410055
28 £0417369
29 0424552
30 20431609
31 0438547
32 £0445371
33 0452086
34 +0458699
35 .0465212
36 <0471630

37 .001850 «0477958
38 .001900 +0484198
39 .001950 +0490354
40 002000 .0496430
41 .002050 .0502428
42 .002100 +0508351
43 .002150 «0514202

48  .002400 20542455
49  .002450 «0547920
50 .002500

-1l -

IBM__Program__Print. Out _

EVALUATLDNHOE_NON:LJNEAR_IERH“INNNQN:LLNEGR;"SEQDND"ORDEBL-EAEIJAL.JHﬁEE&E&llALnEQQAILQN FOR FLOW OF SLIGHTLY
COMPRESSIBLE LIQUIDS IN INFINITE RADIAL MODEL

___________ M(2)_ = . 1.000000, _DELT =___5,000000€=05,
N F= 1.000000
TiM PRESSUR

1 .000050 .0083333
..... 2...2000100 ____.0Q116080 ______

+000150 «0143028

+000200 20163989

3
4
5 .000250 .0182415
[]
7
8

«000300 «0199070
.000350 »0214391

.8 4000400 20228659
-9 ,000450 .0242067
10 .000500  .02547155___ .
11  .000550 +0266830
12 .000600 20278372
13 .000650 .0289448
14 __.000700 «0300110
15  .000750 .0310400
16  .000800 20320356
177.000850 .0330008
18 __.000900 20339383
19 .000950 +0348503
20 .001000 .0357387 __
21 .001050 +0366054
....22 .001100  .0374517 _
23 .001150 .0382792
24 _ 001200 .0390890
25 .001250 .0398822
26 .001300 .0406597
21 .001350 .0414225
.28 __.001400 20421714
29 T .001450 .0429071
30 _.001500 +0436302
31 .001550 .0443414
32 .001600  .0450413
33 .001650 S04573637
.34 ,001700 «0464090
35 .001750 0470779
36 .001800 0477372
37 .001850 .0483875
38 .001900  '.0490290
39 ,001950 «0496622
40 .002000 = .0502873
41 .002050 +0509046
42 .002100 .0515145

44 .002200 .0527128

45 .002250 L 0533017

46 .002300 «0538842
AT 002350 .0544603

48 .002400 »0550303

9 . o
.50 .002500 +0561528

«012500,

A=

«32000C
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APPENDIX B
COMPUTER PROGRAM FOR NUMERICAL IMPLICIT METHOD
USED IN DETERMINING THE ERROR IN NEGLECTING THE
NON-LINEAR TERM IN THE PARTIAL DIFFERENTIAL
EQUATION DESCRIBING RADIAL FLOW IN A SLIGHTLY
COMPRESSIBLE FLUID IN POROUS MEDIA
An implicit numerical method was used to calcu-
late values of dimensionless pressure for values of dimen-
sionless time above 0.0l1. A description of the IBM 7090
computer program used in this caleulation to determine the
error in neglecting the non-linear term in the partial
differential equation describing the flow of a slightly
compressible fluid for radial flow is presented below., As
in the previous appendix, the MAD (Michigan Algorithm
Decoder) program, the program nomenclature, the flow sheet,
a list of required information, and an example problem
illustrating the use of the program are given,
The following information is required in the com-
puter programs
1., The number of length increments., (Eighty
length increments were found to be satis-
factory, AW = z5.)
2. The number of time increments to be evaluated,

3, The numerical value for each time increment,

4, The number of M coefficients to be evaluated.
(The value of M is defined by Equation (III-34)

5. The numerical values of the M coefficients to
be evaluated,

6. The allowable error between the assumed and
calculated pressures,
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7. The maximum number of iterations allowed for
a given time step.

The above information is used by the computer pro-
gram to calculate values of dimensionless pressure versus

dimensionless time for each value of the dimensionless co-

efficient M.

Deck Assembly

l, IBM center control cards

2, Radial, Implicit Numerical Program (MAD or
Binary Deck)

3. Input Data
The input data is read in the "simplified input
format", For example,
IMAX = 80, JMAX = 51, MMAX = 2, M(1) = 0., 1., B = 20,
MAXDIF = 1,E-6, TIME(1l) = 0,0001, etc.*
Definition of these terms used in the simplified input are

given insthe nomenclature below,

Flow Sheet

The instruetion J = a, b, J >¢c in the flow sheet
means that the set of calculations is calculated for J = a
and repeated in increments of b until the condition J >c¢c
is satisfied. For J = a, b, J >c refers to iterative
calculations for a given box. Through d, J = a, by J>¢c
refers to iterative calculations through "circle d". The

Flow Sheet is presented at end of Appendix.
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Nomenclature used in IBM Program and Flow Sheet

A
AA

B

BB

¢ (I)
B (1)
DD
DELW
DP
DPSTAR
F

I

I3
IMAX

JMAX
K (I)

K1,K2,
K3, Kk

TIME (I)/(aw)

C(I) * P(I)

Maximum number of iterations for a given time step
c (I) * X (D)

Terms defined by Equations (III-73) and (III~83)
Terms defined by Equations (III-74%) and (III-84)
1-iAw

Length increment,Aw

Calculated Pressure Drop

Assumed Pressure Drop

Scaling factor "a" defined by Equation (III-55)
Space index

Counter used in IBM program

Number of space increments

Time index

Number of time increments

Terms defined by Equation (III-71)

Terms used in IBM program
Counter used in IBM program

Dimensionless coefficient defined by Equation
(III-34)

Allowable difference between assumed and calcu-
lated pressure drop

Number of dimensionless coefficients
I-1

Dimensionless pressure



POLD

TIME
X (1)
XT

Y (I)
Z (I)

=149=
Dimensionless pressure from previous time increment
I+1
Dimensionless time
Terms defined by Equation (III-70)
TIME (J) /F / F
Terms defined by Equation (III-69)
Terms defined by Equation (III-68)
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1BM _ Center Control_Cards

MsCe MILLER : Q203N - 002 045 000

MwCow-MEEAER - o mm e oo QOB o002 045 - - 000 <o e

$COMPILE MADs EXECUTEs DUMP» PUNCH OBJECTsPRINT OBJECT : MAD Progrqm
R EVALOATION—OF —NON—LINEAR—TERM—EN—NON-L INEARy-

RSECOND ORDERs PARTIAL DIFFERENTIAL EQUATION
------------- ~wmee=-REOR - FLOW- OF-L1GHTLY.-COMPRESS FBLE -+ QU DS I
RIN INFINITE RADIAL MODEL

[ B ety - S .- i —— e ——————— e a . e e s

RSOLVED BY DIFFERENCE EQUATIONS» IMPLTCIT FORM

EXECUTE FTRAP.

------------------- DIMENSION-P-(500}yM {500+ D560 ¥X50019Y (500)+2(500) yPSTAR(506 -

1)K (500} sDP(500) sDPSTAR(500)+C(500) »POLD(500) »TIME (200}
e INTEGER < TodgRaby: NvIMAXTJMA%vMMAXvALMAX lllevaIBle e
F 1.
--—"~”——————fREAD—DATA1IMAXvdMAXvM+&+111*H+HﬁHyMMAXvByTlME(l)oooT!ME(MAX)"'*
DELW=1+/IMAX
== - THROUGH 5149 FOR LalslsbwGuMMAX - - . o . e
THROUGH S1sFOR I%OoloI-G-!MAX o
sl P{I )=0.0 prmm———— . R co s e
‘A=TIME(1)/DELW/DELW
oo oo PRINT- -COMMENTS 1EVALUAT-ION-OF—NON=L-INEAR ‘TERM IN NON~LINEARy-5—
. 1ECOND ORDER,PARTIAL DXFFERENTIAL EQUATION FOR FLOW OF SLIGHTL
2Ys C -
~PRINT COMMENT $ COMPRESSIBLE LIQUIDS IN XNFINITE RADIAL MODEL
1%
PRINT: COMMENT SOSOLVED BY DIFFERENCE EQUATIONS’IMPLICIT FORMS
e e PRINF-RESUL TS~ Mt }y———DELWY - - MAXDIF B s IMAXSF - e
PRINT COMMENT $0 N TIME PRESSURE BN - P
"1IMAX=1)}$ - - R R ) x -
J=0
13=]
s2 THROUGH S3sFOR I=0u1,I.G-IMAX
— - »pOLD( l) - P(I, . : - e e« e aan - o 4w IR . N P Rpa——
S3 - PSTAR(I )=P(1 ) ,
si2 THROUGH S49FOR I=19lsleGulMAX] - S
DD=1e=I%#DELW ' o :
K1=DD*DD L
K2=DD*DELW/ 2. . '

s e = K3WAMAL ) S oy YKL e = PSTARL I+1 - }-PSTAR(I=1}) e
K4=K2/(F=ELOG. (DD)) . . . .
Z(1)=K1=K2+K3+K4
Y(I)==2,%K1=1e/A i

X(1)=K1+K2=-K3=K4 o
S4 K(1)==POLD(I)/A- ’ .
Cn e G 3 a3 R 2 (T Y 1 H‘()H—l—-f-ir*ﬂ ) - S s e
D(1)=(K(1)-Zo*DELW/F .
- *Z&l))%(Xfl)-Bo*Z(l)) ’ s e
. THROUGH SsFOR I 1 13leGeIMAX=1

i
i

CREI4L e - e
BB=C(I)*X(I) :
e G AR W= A1) BB e A - s

s6 D(RI=(K(I)=-D(II*X(1))/(BB +Y(I))
‘ PUIMAX )80y = = -

_THROUGH S7,FOR I= IMAX  s=1pl.Lel
AASC(I)*P(1) - R _
s7 P(I-1 )=AA +D(1)
e e WHENEVER Mt oEv0ur-TRANSFER-F6-510 -
RTEST
R .
THROUGH - S8 9FOR- 1= o1 s TwGo b-EMAN=L) - - - - . Co e e
R=1+1 »
N. 1’1“"‘“ [ . . N . ——— e &

DP(1)=P(R )=P(N )
DPSTAR(I)#PSTAR{R -~} ~PSTAREN--+ - R
WHENEVER-ABS-(DP(I)-DPSTAR(I)).G-MAXDIF:TRANSFER TO 59 ’

S8 CONTINUE -+ [
TRANSFER TO S10 :
59 B 13e]3+1 - i - e

WHENEVER 134481 TRANSFER T0 S15
THROUGH - 511 sFOR: I 2071 y-EwGubMAK-—---nmmmmom - i

s11 PSTAR(I - )=P(I ) :
. TRANSFER TO S12 e o e - e e
510 J=J+1 :
— XFuTIME () AFAF ' Ce e
- WHENEVER XT +Ge 1000es TRANSFER 7055

e men - PRINT -FORMAT-RSLT Ly JoXFoP b 04+ E 3o P IMAX=1)- - - e
VECTOR VALUES RSLT1=5145F1244)F1247,15,1PE20474S
mmmmmes e TRANSFER - TO §1 3w mmmmmmm e e e

s5 PRINT FORMAT RSLT2sJsXT WP(0)+13 +PUIMAX=1)
- VECTOR VALUES—RELT2 =S H4v HPEF2 v Iy F I 2v Ty E5y EPE2Os THG— v
$13 WHENEVER JoEoJMAX»TRANSFER TO S14
-------------------- A FIME € 1 FEMEd-HADELWADE W —---mmmm e moons o - oo oo
13 .
e YRZésFER et TSR —
s15 PRINT COMMENT SI 100 MANY INTERATIONS IN PSTAR CALCULATIONS
*PEFAR CHMAX -
s14 - CONT INUE

—————————————————— END--OF - PROGRAM -
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: SDATA : .
e e IMAX=80s JMAX=51)MMAX=2s M{1)®Oe¢vlevy - - e - - Dafa - lnp"ri -
B=20y MAXDIF=l.E- 64 ' ’
T IME(1)®40001 5400015440002+ 40003»50004+: 0005+ +0006+40007+s0008+0009» — —— —
¢00194001550002+400394004940052400694007540085¢009+
e -~ 9019e0159940254039404940554069s0755085209 R

¢190159025039049059069079¢81099109105920930944950196037¢98099¢9104

ees o 15092009300 94003500 960 ¢ 970458005904 71004+150012000 5300 44004 95000 §600i g = = #wmrr - <orimnsminns < imn e

: 70043800099000910006515000920004930000940004395000696000¢»7000¢98000
e 90004510000¢% - - v o

IBM Program_Print Out

COMPRESSIBLE LIQUIDS IN INFINTITE RADIAL MODEL

SOLVED 8Y DIFFERENCE EQUATIONS,IMPLICIT FORM

M1 = . 000000, DELW = 2012500, WAXDIF = 10.000000E~07, B=
TMAX = 80, F= 1.000000
N TIME PRESSURE BN PUIMAX-1)
1 20001 .01330i1 1 +0000000E_00
2 .0001 .0154438 1 .0000000E 00
3 .0002 «0173404 1 +0000000E_00
4 0003 0205250 1 < 0000000E 00
5 .0004 .0233026 1 - 0000000E 00
6 .0005 .0257895 1 - 0000000E 00
1 .0006 .0280575 1 +0000000E_00
] .6007 0301540 1 ~0000000E 00
9 .0008 20321117 1 .0000000E 00
10 0009 10339541 1 . 0000000E 00
11 +0010° .0356991 1 .0000000E 00
12 0015 0429614 1 .0000000E 00
13 0020 £0492553 1 -0000000E 00
14 .0030 .0596028 3 .0000000E 00
15 .0040 0685006 1 .0000000E 00
16 70050 0763816 i . 0000000 00
17 -0060 .0835065 1 .0000000E 00
18 .0070 +0900438 1 <0000000E 00
19 +0080 .0961090 1 3.4972836E-38
20 ,0090 1017849 1 2.533T114E-37
21 .0100 .1071333 1 1.4480600E-36
22 L0150 21250299 1 7.2618235E-24
23 .0260 1477552 1 1.4805471E-22
<0300 177968 . =
25 .0400 42035498 1 9.2093271E-17
26 .0500 22259100 1 7.322T7136-16
27 .0600 .2458918 1 4,0990127€~15
28 L0700 .2640369 1 1.8094378e<1%
29 .0800 «2807147 1 6,6971315E-14
30 .0900 .2961888 1 2.1592918E-13
31 . .1000 .3106538 1 6.2244555E-13
32 J1500 . 3682615 1 4 5184912809
33 +2000 .4163586 1 3.5444978E-08
3% 23000 24912857 i 1.5180347E-06
35  .4000 .5527991 1 7.7374445E-06
36 ~5000 “5051975 T 244914 T3E-05
37 6000 .6509620 1 6.0029113E-05
38 L7000 T6916831 1 1245873 7E-04%
39 .8000 .7284333 1 2.296713TE-04
TR 9000 LT619696 T 3UBT25TI9E-04
41 1.0000 .7928471 1 6.0905688E-04
LY4 1.5000 + 90985961 1 4,00911B8E-03
43 2.0000 1.0036693 1 9.7457930E-03
4% 3.0000 11416780 1 2.T63787T8E=02Z
45 4.,0000 1.2499011 1 4.8928528E-02
45 5.0000 1.3384760% 1 T-13984TOE=02Z
47 6.0000 1.4131096 1 9.3642391E-02
%28 T.0000 -1a4112550 1 1. T485905E-01
49 8.0000 1.5331367 1 1.3464326E-01
""" 50 9 0000 I, 5822681 1 T 1.5283222E-01 T
5 10,0000 ___1.6257329 1 1.6940413E-01
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_IBM._Program Print Qut_

.. EVALUATION OF NON-LINEAR VERM IN NON-LINEAR, SECOND_GRDER,PARTIAL DIFFERENTIAL EQUATION FOR FLOW OF SLIGHTLY

COMPRESSIBLE LIQUIDS IN INFINITE RADIAL MODEL

SULVED BY DIFFERENCE EQUATIONS,IMPLICIT FORM

MiZi = 1600000, DELW = .012500,
IMAX ‘= 80, F = 1.000000
N TIME  PRESSURE BN PIIHAX=-1)
L £0001 _ .0133231 __ 3 +0000000E_00
2 L0001 .0154783 3 20000000 00
3 .0002  ,0173884 2 ,0000000E 00
4 .0003 0206026 3 +0000000E 00
5 L0004 .0234113 3 0000000 00
6 L0005 .0259301 3 ~.00000C0E 00
1. .0006 _ .0282309 2 - 0000000€ 00 __
8 L0007 T .0303605 2 <0000000E 00
9 .0008  ,0323517 2 .0000000€ 00
10 <0009  .0342279 2 +0000000E 00
11 L0010 .0360069 2 .0000000E 00
12 L0015 0434415 3 .0000000E 00
13 +0020_____.0499087 3 +0000000E 00
14 7000307 .0606041 3 .0000000E 00
15 .0040  .0698504 3 _+0000000E 00
16 .0050 .0780802 3 .0000000€ 00
17 .0060 0855540 3 +0000000€ 00~
i8 L0070 .0924401 3. .0000000E " 00
19 50080 ' ,098854% 3 .3.59760356-38
20 L0090 T 1048786 T3 2.60737256-37
.21 .....0100  .1105753 3 1.4907704E-36
22 L0150 77 11342009 3 7.7363950E~24
23 20200 1546447 3 1.5785186E-22 _
24 0300 77.1882595 3 6.7221543E-18
25 .0400  .2172161 3 1.0092352€-16
26 L0500 .2429319 3 8.0487968t~16
21 40600 .2662525 3 4.5187569E-15
28 S0700° T 28TT2IT I 2.0006314E-14
29: £0800  .3077101 .3 7.4267524E~-14
30 L0900 3264824 3 2.40166956-13
3l L1000 .3442339 -3 6.9438660E~13
32 1500 4179798 4 5053803 T0E-09
33 22000 4819923 4 4,4000771€-08
34 43000 5880898 4 2.0264578-06"
35 24000 .6803159 4 1,0607364E-05
IR T T L0600 < 7630929 © & 3.4408661E-05
37 .6000  .8389783 & 8.6384336E-05
"38 "+ 7000 «90961457 4T, 8362337E-04
39 .8000  .9761125 4 . 3,4670B87E~04
40 29000 1.0392574 T4 T 5.9883187£-04
41 1.0000  1.0996277 4 9.6483438E-04
TT42 TUTIVB000 1. 3¢ ~ B U818963E=03
43 2.0000 1.6004583 6 2.2088459E-02
44 3,0000 ZiU2TIIIT R B, 2024909E-02
45 4.0000 2.4276088 8 1.7708651€-01
46 5.0000  2.8113426 " 9 3.1038776E-01
47 6.0000  3.1851252 9 4.8506430E-01
48 7.0000 7 ~3.8526329 "9 T 7.0424624€-01
49 8.0000 3.9161483 = 9 9.7126147E-01
50 9.0000  4.2771963° 7 10 7~ 1,2903542E 00
51 10,0000  4.636928C 10 . 1.6683324E 00

" MAXDIF = 10.000000E-07,
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READ
Fel IMAX, JMAX

+M(I)... M(MMAX), MMAX , B, TIME (1)... T(MAX)

DELW = I./IMAX

THROUGH S14
L=1,1,L>MMAX

PRINT COMMENT

FOR 120,1, I>IMAX
P(1) =0.0

(OD—

A = TIME(I)/ DELW/DELW

COMPRESSIBLE LIQUIDS

EVALUATION OF NON- LINEAR, SECOND ORDER, PARTIAL
DIFFERENTIAL EQUATION FOR FLOW OF SLIGHTLY

IN INFINITE RADIAL MODEL
SOLVED BY DIFFERENCE EQUATION, IMPLICT FORM

PRINT RESULTS

M(L), DELW, MAXDIF, B, IMAX, F

PRINT COMMENT
N TIME PRESSURE BN P (IMAX-1)

J=0
13=1

FOR I=1,1,1>(IMAX)
DD = (1.- I xDELW)
K1=DD x DD

K2 = DD x DELW/2.

K4= K2/(F-ELOG.(DD)}
Z(I) = KI-K2+K3+K4
Y{I) = -2xKi1-1./A

X(I) = KI+K2-K3-K4

K(I) =-POLD (1)/A

K32 (M(L)/4.) xKi x { PSTAR(I+1)- PSTAR(I-1))

FOR 1=0,1,1>IMAX
POLD(I) = P(I)
PSTAR(I} =P(D)

FOR 1=1,1, I<IMAX-1

R=I+1

BB = C(I)x X(I)

C(R) =-Z(I)/(BB+ Y(I))

D(R) = (K(1) - D(1) x X(1))/(BB + Y(I})

C (1) s ~(4x Z(1)+Y(M))/(X(1)-3.2Z (1))

D{1) s (K(1) ~ 2. x DELW/F x Z(IN/(X(1)-3.%x Z(1))

FOR I=1,-1, I<1
AA = C(I) x P(I)
P(I-1) = AA+D(])

FOR 1=1,1, I >(IMAX-1)
R=let

Nal-1i

0(1) = P(R) - P(N)

DPSTAR(I) s PSTAR(R)- PSTAR(N)

CONTINUE

WHENEVER .ABS.(DP(1) - DPSTAR(1)) .G. MAXDIF , TRANSFER TO S9

JeJ+i
XT = TIME (J)/F/F

FOR 1=0,1, 1> IMAX
PSTAR(I) = P(I)

-6

PRINT
J, XT, P(O), I3, P(IMAX-1)

~_

T

M(L) > 0.

=

PRINT
J, XT, P(0),13 , P(IMAX-1)

6

13=1

A =(TIME(J+1) - TIME (J))/DELW/DELW




APPENDIX C

COMPUTER PROGRAM FOR NUMERICAL EXPLICIT METHOD

USED IN DETERMINING THE ERROR IN NEGLECTING THE

NON-LINEAR TERM IN THE PARTIAL DIFFERENTIAL

EQUATION DESCRIBING LINEAR FLOW OF A SLIGHTLY

COMPRESSIBIE FLUID IN POROUS MEDIA

A description of the IBM 7090 computer program
used to determine the error in neglecting the non-linear
term in the partial differential equation describing the
flow of a slightly compressible fluid for linear flow is
presented below. Although this program is very similar to
the method used for radial flow deseribed in Appendix A,
this appendix is enclosed for completeness. The MAD
(Michigan Algorithm Decoder) program, the program nomen-
clature, the flow diagram, a list of required information,
and an example problem illustrating the use of the program
are given,
The following information is required in the
computer programs
1, The number of length increments., (Eighty

length increments were found to be satis-

|
factory, Aw = -53-.,)

2. The value of the time increment, (At =
0.00005 is an acceptable value of At for
AW =35,  Stability requirements demand
that (At)(Aw)® is less than 0.5.)

3, The number of time increments to be evaluated,

L, The number of M coefficients to be evaluated.,
(The value of M is defined by Equation (III-100).)

5. The numerical values of the M coefficients to be
evaluated,

~15% =
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This information is used by the computer to calcu-
late values of dimensionless pressure versus dimensionless

time for each value of the dimensionless coefficient M,

Deck Asgembly

1., IBM center control cards

2. Linear, Explicit Numerical Program (MAD or
Binary Deck)

3. Input Data
The input data is read in "simplified input format®,
For example, |
IMAX = 80, DELT = 0.00005, MMAX = 2, JMAX = 49, M(1) = O., 1. *
Definitions of the terms used in this input are given below in

the nomenclature,

Flow Sheet

The instruction J = a, b, J >c in the flow sheet
means that the set of calculations is calculated for J = a
and repeated in increments of b until the condition J>c¢ is
satisfied., For J = a, b, J >c refers to iterative calcula-
tions for a given box, Through d, J = a, b, J >c refers to
iterative calculations through "eircle d"., The Flow Sheet

is presented at end of Appendix.

Nomenclature used in IBM Program and Flow Sheet

ADIM Term used to dimension P(I,J) vector
A INVION"N
DELT At



DEIW
DT

IMAX

JMAX
K1

X2
X3
Xk

~156-
Aw
At/ ()

Scaling coefficient "a", 1In this dissertation,
F = 'looo

Space index

Number of space increments, Aw

Time index

Number of time increments

Term used in program, K1 = 1-i Aw

Dimensionless coefficient defined by Equation (III-100)
Number of dimensionless coefficients

Dimensionless Pressure

Counter used in IBM program

Term defined by X2 = Pm,j’Ps-:,J
Term defined by X3 = (X2)°
Absolute value of X2

Value of dimensionless time at given time step,
Z = JOt
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IBM __Center _Control _Cards

MeCo MILLER- Q203N 002 045 000
-------- SO Tl — BT €4 I .t S 4S9 SO
SCOMPILE MAD» EXECUTEs DUMP» PUNCH OBJECTsPRINT OBJECT MAD Program

R —EVALUAT I ON OF ~NON=LINEAR—TERM—IN—NON-LINEARY - -
R SECOND ORDERs PARTIAL DIFFERENTIAL EQUATION
mmemeasmeoes oo R-FOR-FLOW OF - -SLIGHTLY- COMPRESSIBLE: £1QUIDS - S
R IN INFINITE LINEAR MODEL
- R

RSOLVED BY DIFFERENCE EQUATIONS-EXPL!CIT FORM

"DIMENSION P( 8100+ADIM) oM (10}
Smmme e INTEGER 19 sKsL o R yNy EMAK-sMMAR yMAX: -
VECTOR VALUES ADIM=25101+100
e e Fale - S
s4 READ DATA, IMAX »DELT oMo MMAX o JMAX
e DEL W L / TMAK e
A=DELT/DELW/DELW
* DT =DELT/F/F :
PRINT RESULTS DELT»IMAX’MMAX.JMAX- AoM(l)o..M(MMAX)
PUIMAXs 1)m0, - “ome-
THROUGH S56+FOR Re1410ReGaMMAX
e THROUGH $19FOR--F#8s1y beGeiMAR— -
s1 P{110)2040
. .. 2=04 L
J=0
PRINT. COMMENT S1EVALUATION OF NOMN~-LINEAR TERM IN NON-LINEAR --
. 1SECOND ORDERs PARTIAL DIFFERENTIAL EQUATION FOR FLOW OF SLIGH
R . JI T S e e R

PRINT COMMENT SOCOMPRESSIBLE LIQUIDS IN INFINITE LINEAR MODEL
1s
PRINT RESULTS M(R)-DELT;DELW AsF
PRINT COMMENT $0 N ° TIME PRESSURES
§5 THROUGH S2»FOR I-lolvl-Go(IMAX =1}

DR X2®P (1+190)=P(1=150)}
X4=eABSe (X2)
WHENEVER X4 olLe 14E-10s 'X220Qs
X3=X2%X2 '
Kim(1e=I#DELW} -
. Ptly 1)'P(Ic0)+A*(K1*K1*(P(I+1.0)-2.*P(Ip0)*P(l 1s0))
R - 1=DELW/2¢#K1%X2 -
2+M(R)¥K1#K1/4e%X3)
WHENEVER P(ls 1)elLeleE=209P{l41)m0,.
s2 CONT INVE .
: P(Os 1)=m(2.*#DELW/F+4e*Pily 1)=P(2y 1}}/3s
JuJ+l
Z=2+DT :
PRINT FORMAT RsLTllJlllP(° 1)
VECTOR VALUES RSLT12S8149F9¢64F12474$
WHENEVER JoGeJMAXsTRANSFER TO S6
THROUGH S$34 'FOR 1209191¢GeIMAX

$3 P(I+0)=P(1,y1)
TRANSFER TO S5
S6 CONT INVE

TRANSFER TO S&
END OF PROGRAM
$ DATA Lo
IMAX=80s  DELT=.00005, ‘MMAX=2s  JMAX= 49 M(1)=04sle¥ Data Input

) T IBM Program__Print Qut

_NON-CLINEAR, SECOND ORDER, PARTIAL DIFFERENTIAL EQUATION FOR FLOW OF SLIGHTLY..

_COMPRESSIBLE LIQUIDS IN INFINITE LINEAR MODEL e
M(l) = - 000090, DELY = _5,000000€-05, . DELMW = 2012500, _ A= #32030°

,,,,,, E = 1000000 ‘ . e S e aee

N TIME PRESSURE R

1 .000050 »0083333

2...000100 0118225

3 .000150 0143279

.4 000200 20164336
5 .000250 .0182852
6
7
8
9

.000300 .0199593
.000350 .0214997
2000400 0229345
+000450 .0242831

.10 .000500 __ .0255596
11 .000550 0267747
4
13 .000650 .0290513
. 14_...000700 +0301248
15 .000750 .0311610
16 __.000800 <0321638
17 .000850 .0331361
18 000900 +0340806
19 .000950 .0349995
20___.001000 -0358949
21 .001050 .0367684
222001100 203762117
23 .,001150 «0384560
24 .001200 _ .0392726
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25 .001250  .0400725
26 .001300 .0408568
27 .001350  .0416263
28 001400 __ .0423818
2977.001450 0431241
30 .001500 0438539
31 .001550  .0445717
32 .001600 _.0452782
33 .001650 ~ .0459738
34 .001700 ____.0466590
35 .001750 T T.0473344
36 .001800 __ .0480002
37 .001850 0486570
38 .001900 _ .0493050
39 .001550 0499446
40 .002000 .0505762
41 .002050  .0511999
42 .002100 .0518162

437,00 .
44 .002200  .0530273
45 .002250 0536226
46 1002300  .0542114
47 .002350 TT,0547939
48 ,002400  .0553702
49 ,002450 +0559407

50 .002500 0565053

IBM__Program__Print Out

— E!ALUAILON-OE._NON-:L.IN.EAK__[ERM.JN.-.N.QN:LLN.E.!&:..SE_QU_ND..QR.DEBL-P.ABJ.IAL-.O.LEE.EBENI.IAL_EQUAIUJN- FOR FLOW OF SLIGHTLY . . __ .

COMPRESSIBLE LIQUIDS IN INFINITE LENEAR MODEL
I M{2) = 1.000000, DELT = _5.000000€-05, .___.__.._ . DELW = «012500, . . . A= «32000%
E= 1. 000000 . - e e e e

1 .000050 .0083333
e ®..0Q0Q100_ 20118297 ____
3 .000150 «0143475
4___+000200 20164670
5 .000250 .0183333
6 000300 20200228
7 .000350 +0215790
8
9
[}

000400 20230299
2000450 40243950

........... 2000500 .0256881
11 .000550 10269199
+0006| 986
13 ,000650 20292306

- 14..000700 __.0303211
15 .000750 20313747
_.16.__+000800 10323947
17,000850 .0333844
18 000900 20343464
19 ,000950 0352829
20 001000 20361959

21 ,001050 .0370871

881
24 ,001200  .0396444

25 .001250 0404621
.26 ,001300 0412643 .
2777.001350  .0420516
28001400 0428251
2977,001450 ,0435853
30__.001500  .0443330
31 .001550  .0450688.
32 .001600  .0457933

L. 34...001700 0472102
3577,001750 <0479036
36 .001800  .0485875
0492624

+0499285

42 .002100 20525124

. «0531396
44 .002200 «0537599

48 .002400 +0561757
49 002450 0567644
50 _.002500 0573474
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APPENDIX D
COMPUTER PROGRAM FOR NUMERICAL IMPLICIT METHOD
USED IN DETERMINING THE ERROR IN NEGLECTING THE
NON-LINEAR TERM IN THE PARTIAL DIFFERENTIAL
EQUATION DESCRIBING LINEAR FLOW OF A SLIGHTLY
COMPRESSIBLE FLUID IN PCROUS MEDIA
An explicit numerical method was used to calcu-
late values of dimensionless pressure for values of dimen-
sionless time above 0,01, Although this computer program
is very similar to Appendix B it is included for complete-
ness, The MAD (Michigan Algorithm Decoder) program, the
program nomenclature, the flow sheet, a list of required
information, and an example problem illustrating the use
of the IBM 7090 program are described below.
The following information is required in the
computer program:
1, The number of length increments. (Eighty

length increments were found to be satis-

factory, Aw = z&.)

2. The number of time increments to be evaluated.

3. The numerical value for each time increment.

4, The number of M coefficients to be evaluated.
(The value of M is defined by Equation
(III-100).)

5. The numerical values of the M coefficients
to be evaluated,

6. The allowable error between the assumed and
calculated pressures.

7. The maximum number of iterations allowed for
a given time step,

The computer program uses this information to calculate the
numerical values of dimensionless time versus dimensionless

-160-
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for each valve of the dimensionless coefficient M,

Deck Assembly

l. IBM center control cards

2. Linear, Implicit Numerical Program (MAD or
Binary Deck)

3. Input Data
The input data is read in the "simplified input
format". For example,
IMAX = 80, JMAX = 51, MMAX = 2, M(1) = 0., 1., B = 20,
MAXDIF = 1,E-6, TIME(1l) = 0,0001, etc.*

Fl Sheet

The instruction J = a, b, J >¢ in the flow sheet
means that the set of caleulations is calculated for J = a
and repeated in increments of b until the condition J >¢
is satisfied. For J = a, b, J >c refers to iterative
caleculations for a given box, Through d, J = a, b, J>c
refers to 1terative calculations through "circle d", The

Flow Sheet is presented at end of Appendix.

Nomenclature used in IBM Program and Flow Sheet
A TIME(I)/(Aw)®

AA C(I) * X (I)
B Maximum number of iterations for a given time step
BB C(I) * X(I)
c(I) Terms defined by Equations (III-126) and (III-138)

D(I) Terms defined by Equations (III-127) and (III-139)
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DD 1-1Aw
DEIW Length increment, Aw
DP Calculated pressure drop

DPSTAR  Assumed pressure drop

F Scaling factor "a" defined by Equation (III-113)
I Space index

I3 Counter used in IBM program

IMAX Number of space increments

J Time index

JMAX Number of time increments

K(I) Terms defined by Equation (III-124)

K1,K2,K3 Terms used in IBM program

L Counter used in IBM program

M Dimensionless coefficlent defined by Equation (III-100)

MAXDIF Allowable difference between assumed and calculated
pressure drop

MMAX Number of dimensionless coefficients

N I-1

P Dimensionless pressure

POLD Dimensionless pressure from previous time increment
PSTAR Assumed value for dimensionless pressure

R I+ 1

TIME Dimensionless time

X(I) Terms defined by Equation (III-123)

XT TIME (J) /F /F

Y(I) Terms defined by Equation (III-122)

Z(I) Terms defined by Equation (III-121)
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IBM Center Control Cards

MeCe MILLER Q203N 002 045 000
MeCe MILLER Q203N 002 045 000
SCOMPILE MADs EXECUTEs DUMP, PUNCH OBJECTsPRINT OBJECT MAD Program

R EVALUATION OF NON=LINEAR TERM IN NON=LINEAR)
RSECOND ORDERs PARTIAL DIFFERENTIAL EQUATION
RFOR FLOW OF SLIGHTLY COMPRESSIBLE LIQUIDS

RIN INFINITE LINEAR MODEL

R

RSOLVED BY DIFFERENCE EQUATIONS, IMPLICIT FORM
R .

EXECUTE FTRAP.
. DIMENSION P(500)sM(500)sD(500)»X(500)sY(500)+Z(500)sPSTAR(500-
1)K (500) sDP(500) sDPSTAR{500) sC(500) sPOLD(500) s TIME(200)
INTEGER IsJsRsLs NoIMAXsJIMAXsMMAX s ALMAXs119129Bs13sM1
F=le
READ DATAs IMAXsJMAXsM(1)eeeM(MAX) sMMAX 9B s TIME (1) ¢u T IME (MAX)
DELW=14/IMAX
THROUGH S14s FOR L=1ls1lsLeGeMMAX
THROUGH S1sFOR 1=0s1s14GeIMAX
sl Pl  )E040
~A=TIME(1)/DELW/DELW
PRINT COMMENTS1EVALUATION OF NON=LINEAR TERM IN NON-LINEARs S
1ECOND ORDERsPARTIAL DIFFERENTIAL EQUATION FOR FLOW OF SLIGHTL
2Ys. .
PRINT COMMENT $ COMPRESSIBLE LIQUIDS IN INFINITE LINEAR MODEL
1% '
PRINT COMMENT $OSOLVED BY DIFFERENCE EQUATIONSyIMPLICIT FORMS
PRINT RESULTS M(L)» DELWs MAXDIFsB s IMAXsF
PRINT COMMENT $0 N TIME PRESSURE BN P
1IMAX-1)8
J=0
13=1 .
52 THROUGH S39FOR 1=09191eGeIMAX
POLD(1) = P(1}
s3 PSTAR(I )=P(I ) .
s12 THROUGH S43sFOR I=1s1sleGeIMAX~1
DD={1e~I%DELW)
K1=DD#*DD
K2=DD*DELW/2.
K3=(M{L)/4e)¥K1 ®(PSTAR(I+1 )=PSTAR(I=1))
Z(1)=K1=K2+K3
Y(I)==2e#K1~14/A
X(1)=K14K2=K3
sS4 K(1)==POLD(1)/A
T (L) == (be%Z1)I4Y (L)) /(XI1)=3e%2(1))
D(1)=(K(1)-2+*DELW/F
1 *Z{1)Y/(X(1)=3e%2(1))
THROUGH S63FOR 1=1s1s1e¢Go IMAX=]

R=1+1
BB=C(I)*X(1)
C(RY==Z(1)/(BB +Y(1))
S6 D(R)=(K(I)~D(T)*X(1})/(BB +Y(1))
P(IMAX =0,
THROUGH S7sFOR = IMAX s=lslelel
AA=C(I)*P(])
s7 P(I-1 )=AA +DI(1)
WHENEVER M(L) +EeOes» TRANSFER TO S10
RTEST . .
R
THROUGH S8sFOR I=191s1eGe(IMAX~1)
R=1+1
N=I~1

DP{I1})=P(R =P(N )
DPSTAR(1)=PSTAR(R )=PSTARIN )
WHENEVER «ABSe (DP(I1)~DPSTAR(I))+GeMAXDIFsTRANSFER TO 9

S8 CONT INUE
TRANSFER TO S10
s9 13=13+1

WHENEVER 134GeBsTRANSFER TO S14
THROUGH S11sFOR I=091s1+GeIMAX

Sil PSTAR(I )=P(Il )
TRANSFER TO S12
510 J=J+1
XT=TIME(J)/F/F
WHENEVER XT +Ge 10009 TRANSFER TO S5

PRINT FORMAT RSLT1sJsXTsP(0)sI3sP(IMAX-1)
VECTOR VALUES RSLT1=8149F12+49F12e791591PE2047%3
TRANSFER TO S13

S5 PRINT FORMAT RSLT2sJeXT sP(0)sI3 sP(IMAX~1)
VECTOR VALUES RSLT2=$1491PE12e39F12e7»1591PE20e7%3
$13 - WHENEVER JeEeJMAXsTRANSFER TO S14
A=(TIME(J+1)=TIME(J))/DELW/DELW
13=}
TRANSFER TO S2
Sl4 CONTINUE

-END_ OF PROGRAM



$DATA

IMAX=80»

B=20,

JMAX=51sMMAX=2
MAXDIF=1+E= 69

M(1)=0esler
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Data

TIME(1)=4000194000155400025¢00035+00045¢0005540006+400075¢00083¢0009»
¢0019400155400294003540049¢00594006+400754008»40095
00190015+4029¢039¢0434053¢06940794083009)
0190159029039 0430550690750890991e¢910552093439409509609743809969100
15092009300540¢350096045700980099009100091504352004330005400095000360001
7004580009900491000451500092000433000494000095000¢»6000697000¢98000¢5s
90004 510000e%

Input

1BM

__EVALUATION OF NON-LINEAR VERM IN NON-LINEAR, SECOND ORDER,PARVIAL DIFFERENTIAL EQUATION FOR FLOW OF SLIGHTLY

COMPRESSIBLE LIQUIDS IN INFINITE LINEAR MODEL

Program__Print__Qut

SOLVED BY DIFFERENCE EQUATIONS.IMPLICIT FORM

2(

ML) = 000300, DELN = 012500, MAXDIF = 10.000000E~0T, B =
IMAX =~ 80, [ 1.000600
N TIME ~ PRESSURE BN PUIMAX~1)
T ....s0001  .0133468 1 . .0000000€E 00
2 L0001 7 TU0155127 1 .0000000E 00
i 3 .0002 0174327 1 -0000000E 00.
4 000370206648 1 .0000000E 00
5 .0004  .0234902 1 .0000000E_00
6 .0005  .0260250. 1 +0C00000E 00
1 .0006 _ .0283411 1 .0000000E 00
8 0007 7, 0304857 1 " 0000000€ 00
.9 . .0008 1 .0000000E-00
10 0009 1 .0000000€ 00
11 .0010  .0361753 1 . 0000000 00
12 .0015  .0436779 1 -0000000E "00
.13 L0020 ,0502114 1 .0000000E 00
i4 0030 7T.0610352 1 ~0000000E 00
15 0040 .0704066 1 _.0000000E 00
16 L0050 ,0781589 1 ~0000000E 00
17 .0060 0863525 1 .0000000E 00
18 L0070 .0933564 1 1.1088234E-38
19 . .0080___ .0998863 1 9.24185006-38
20 0090 " 7TI1060250 1 6.0052935E-37
....2b _ .0100 .1118342 1 3.3806798E~36 "
22 L0150 7 .1359989 1 1.7167136E-23
23 20200 .1569611 1 3.49959456-22
24 <0300 .1915496 1 1.4700575E=17
25 L0600 .2214234 1 .2.2032544E-16
26 .0500 ' .2480053 1.7540985E-15
27 40600  .272146) 9.8308289€-15
28 L0700 02943941 4.3449056E-14
.29 ,0800 _ .3151238 1 1.6100764E-13
30 .0900  .3346030 1 5.1974005E-13
31 .1000  ,3530298 1 1.4999970€-12
32 A1500 429612977 1T 11,1288304E~08
33 .2003 4960114 1  8.8980350E-08
34 3000760551731 3.9127982E-06
35 .4000 7000678 1 2,0126939E-05
36 .5000  .7841834 1 6.4224688E-05
37 .6000  .8605650 1 1.5861864E-04
38 TTTOI0007 7T 9309516 1T 3.3162597€-04
39 48000 49965303 1 6.1570762E=04
40 .9000 " "1.0581490 1 1.0454163E-03
41 1.0000 . 1.1164367 1 1.6554139E-03
42 1.5000  1.3586604 1 T.1625443E-02
43 2.0000 1.5686593 1 2.91328856-02
44 3.00007 7 T.YL49T4T 17 T 8.7942625E-02
45 4.0000  2,2138803 1 1.6229092E-01
46 75,0000 T2 6T94863 1T 204530167601
6.0000  2.7200514 1 3.3206388£-01
7.0000 2.9407316 1 4.1933646E-01
8.0000  3.1449153 1 5,0509205E-01
50 19,0000 T73.334933877 71 77T 5,86125076-01
51 . .10.0000 __ 3.5124638____.1 6.6776519E-01




COMPRESSIBLE LIQUIDS IN INFINITE LINEAR MODEL
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_1BM._Program_ Print Out

SOLVED 8Y D!FFERENtE EQUATIONS,IMPLICIT FORM

M(2) = 1.0000060, DELW = .012500, MAXDIF = 10.000000E-07, 8= 2c
IMAX = 80, F = 1.000000
N TIME  PRESSURE BN PIMAX-1)
A ...sQ00L . Q133689 3 . _ +0000000E_00 __
2 .0001  .0155474 3 .0000000€ 00
3 ..0002 . _.0174812 2 -0000000E 00
4 .0003 0207432 - 3 -0000000E - 00
5 20004 .0236002 3 +0000000€ 00.
6 .0005  .0261676 3 ~0000000E 00
.7 _.._.0006  .0285169 . 2 .0000000E 00
8 .0007%7 7,0306954 2 -0000000€ 00
9 . .___.0008  ,0327355 __ 2 ______.__.0000000E 00  __
10 L0009 T .0346607 2 .0009000E 00
1l 0010 .0364887 2 .0000000E 00
12 T.0015  .0441688 3 .0000000E 00
13 . .0020 _ . «0508817 3 . «0000000E- 00
14 .0030 T.0620681 3 .0000000€ 00
15 .0040 __ .0718052 3 .0000000E 00
16 .0050 T.0805253 3 .0000000E 00
17 .0060  .0884888 3 0000000 00
18 L0070 .0958643 3 1.1404954E-38
19 .0080 ___.1027672 3 .9.,5095649E-38
20 L0090 .1092804 3 6.18187256-37
.21 .0100  .1154652. 3 3.4815888E-36
22 L0150 .1415240 3 1.8302682E-23
23 £0200  .1643947 3 3.7373441E-22
24 L0300 .2028455 3 1.61111196-17
25 40400 ,2366256 3 2.4224841F~16
26 .0500  .2671563 3 1.9348174E-15
27 .0600  .2952857 3 1.0878372E-14
28 L0700 .3215597 773 4,8233255E-14
29 L0800 .3463504 3 1.7931378E-13
30 L0900 .3699235 3 5.8071772E-13
31 <1000 - .3924754 3 1.6814848E-12
32 <1500 T .4902508 & 1.4069004E-08
33 £2000 __° .5783575 4 1,1261847E-07
34 .3000 T .7330062 S 5,4064626E-06
35 14000 .8742882 S 2.8750841E-05
36 .5000  1.0066097 5 9,4679370E-05
37 L6000  1.132568 2.4133995E<04
38 L7000 1.253811 5,2107086E-04
39 .8000 1.3714461 5 9.9980067E-04
40 .9000  1.4862493 5. 1.7556938£-03
41 1.0000  1.5987870 5 2,87743916-03
42 1.5600 2.1330223 8 "T2.8702732E-02
43 2.0000  2.6523208 8 8.6282647E-02
44 3.0000 3.6680869 11 3.9015816E-01
45 4.,0000  4.6748586 13 9.5703807€6-01
46 5.0000 5.6780592 13 1.8492870E 60
47 6.0000 __ 6.6798893 14 3.1628510E 00



FLOW DIAGRAM
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3 9015 03483

M(MMAX), MMAX, B, TIME(])...

THROUGH St14
L=1,1,L>MMAX

_“ DELW = 1./IMAX l

T(MAX)

READ
Fel. IMAX, JMAX, M(1)...

PRINT COMMENT
EVALUATION OF NON- LINEAR, SECOND ORDER, PARTIAL

FOR 1:0,1,
P(1) *0.0

I>IMAX

®_.

A= TIME(I)/ DELW/DELW

DIFFERENTIAL EQUATION FOR FLOW OF SLIGHTLY
COMPRESSIBLE LIQUIDS IN INFINITE LINEAR MODEL
SOLVED BY DIFFERENCE EQUATION, IMPLICT FORM

PRINT RESULTS
M(L), DELW, MAXDIF, B,

IMAX , F

PRINT COMMENT
N TIME PRESSURE BN P(IMAX-1)

J=0
13=1

FOR

120,1, I>IMAX
POLD(I) = P(I)
PSTAR(1)= P(1)

TN TN

FOR I=1,1, I>(IMAX)

DD =(1.-IxDELW)

K1=D0D x DD

K2+ DD x DELW/2.

K3 = (M(L)/4.) x K1 x (PSTAR(I+1)- PSTAR(I-1))

Z(I) = K1 - K2 +K3
Y(I) = -2 xKI-1L/A
X(1) = K1+ K2 -K3

K(I) = - POLD(I)/A

FOR [=1,1, I>IMAX -1

RsI+l

B88=C(1)x x(1)

C(R) = -Z(1)/(BB+ Y(I))

D(R) = (K(I) - D(I) x X{1)}/(8B + Y(I))

C{1) =-(4.x Z(1}+ Y(1)/(X{1)-3.x Z(1))

D1} = (K(1)=2.x DELW/F x Z(1))/(X(1)-3.x Z(1)}

FOR I=1,-1, I
AA = C(1) x P(I)
P(I-1) = AA + D(I)

M(L)> 0.

T

FOR [s=1,1,
R=l+l
N=l-1

D(I) = P(R) - P(N)

DPSTAR(1) = PSTAR (R) - PSTAR (N)

1> (IMAX-1)

CONTINUE

WHENEVER .ABS.(DP(1) - DPSTAR(I)) .G. MAXDIF , TRANSFER TO S9

9

(18 )+

FOR 1:0,1, 1> IMAX
PSTAR (1) = P(I)

—6

&9

Jede+d
XT = TIME (J)/F/F

T
O,

PRINT
¢, XT, P(O), I3, P(IMAX-1)

TN

CONTINVE

J = JMAX

PRINT

J,XT, P(O), 13,

P(IMAX-1)

BT

As(TIME(J+1)- TIME (J))/DELW/DELW
139




