Titanium nitride (TiN) coatings were applied to graphite-fiber tows by dip coating desized (900°C in nitrogen) fibers in hexane solutions containing 0.5, 1, or 2 equivalent wt% TiN as the precursor, –[Ti(NMe₂)₂],(μ–NCHMe₂)₂–. The precursor was characterized by thermogravimetric analysis (TGA), chemical analysis, and nuclear magnetic resonance. Bulk samples of precursor were heated to selected temperatures in argon. Based on microstructural and chemical analyses, two pyrolysis temperatures—900°C and 1200°C—were selected for more-detailed studies predicated on fiber oxidation-resistance behavior. At 900°C, the bulk material exhibited a powder X-ray diffraction pattern consistent with microcrystalline TiN, although some free carbon remained. XRD analysis of the samples pyrolyzed to 1200°C indicated a higher degree of crystallinity and some carbon incorporation in the TiN lattice; e.g., a TiCN solid solution forms, as supported by chemical and TGA analyses. Fibers coated with precursor were heated at a rate of 10°C/min in argon to selected temperatures, followed by a hold for 1 h, and the resulting coatings were characterized by scanning electron microscopy, X-ray photoemission spectroscopy, and oxidation resistance at 700°C for 2 h in air. Coated fibers pyrolyzed to 900°C and 1200°C were studied in detail. Fibers heat treated at 900°C exhibited better oxidation resistance than fibers pretreated at 1200°C, as determined by mass loss. Uncoated fiber tows fully oxidized after 80 min. The oxidation-resistance studies on fiber tows pretreated at 900°C and coated with 0.5, 1, and 2 equivalent wt% TiN indicated that the sample with a coating of 1 wt%, with thicknesses of 0.1–0.2 μm, was the most stable. The coatings of 0.5 equivalent wt% TiN were irregular, whereas the coatings of 2 equivalent wt% TiN exhibited process-related cracking, leading to poor oxidation resistance.

I. Introduction

The performance of fiber-reinforced (polymer-, metal-, and ceramic-matrix composites (PMCs, MMCs, and CMCs, respectively) depends greatly on the interaction between the composite components at mutual interfaces. Fiber coatings are commonly used to modify interfacial interactions to optimize a variety of properties. In actual use, they are expected to be multifunctional; i.e., they can enhance composite mechanical properties and protect fibers from chemical reaction with the environment.

Graphite fibers, which offer high specific strengths at relatively low cost, are widely used to reinforce all types of composites. Unfortunately, they oxidize readily at temperatures of >500°C, which restricts their use as reinforcing materials for MMCs and CMCs and increases the difficulty of composite fabrication. They also can react with matrix materials in MMCs to form metal carbides (e.g., Al₃C₅ in aluminum matrices), which damages fiber integrity, the matrix, and the interface. The development of diffusion barriers that eliminate chemical reactions between graphite fibers and the matrix or the processing environment, while also providing appropriate interfacial mechanical properties, could resolve these problems.

To date, coating materials including TiC, SiC, SiO₂C, BN, B₆C, Al₅O₉, and MgO have been explored as a means of controlling interfacial properties and passivating graphite-fiber surfaces. The wide variety of coating materials studied and required in MMC and CMC fabrication is predicated on the widely differing adhesive properties and chemical reactivities of the composite matrix materials used. Many of these coatings are readily applied via chemical or physical vapor deposition (CVD or PVD, respectively); however, both approaches are equipment and energy intensive. Consequently, we and others are exploring the use of dip coating fiber tows with preceramic polymer solutions, followed by firing, as a low-cost, alternative approach to high-quality coatings. To date, we have examined the fabrication of SiO₂C and mullite coatings on graphite fibers.

TiN coatings are quite hard (22–32 GPa), which makes them useful in cutting-tool applications. TiN also bonds strongly to many metals—e.g., aluminum alloys and steels—and, thus, may be a good interfacial material in MMCs. TiN is isomorphic with TiC, which has already found use as a carbon-fiber coating. TiN exhibits high-temperature stability, with a melting point of 2930°C and good chemical stability, and is used for diffusion barriers in electronics and superalloy applications. In addition, a polymer is precursor to TiN is readily available (see below). Unfortunately, TiN is susceptible to oxidation, although the oxidation products TiOₓ, Ti₂O, and TiO₂ are potentially useful coating materials. All of these suggest that TiN coatings may be of benefit in passivating carbon fibers and providing good-to-excellent interfacial properties.

TiN coatings are commonly produced via PVD and CVD methods. Ti(NMe₂)₄ (where Me is a methyl group) is frequently used as a CVD precursor and provides high-quality TiN coatings. TiCl₄ also has been used as a CVD precursor to produce TiC coatings on graphite fibers and TiN coatings on boron fibers. Although the resulting coatings perform well, as noted above, CVD is equipment and energy intensive and, therefore, expensive. Moreover, both methods are inconvenient for processing large quantities of fiber tows.

In principle, simply dipping continuous-fiber tows in a precursor solution and then heating the fiber tows to decompose the precursor coating to produce a uniform, defect-free ceramic coating appears simple and straightforward. In practice, two difficulties are encountered: (i) removing the organic ligands so that carbon contamination is avoided is not always easy, and (ii) obtaining good wetting such that uniform coatings of desired thickness are obtained is often hard. The work reported here targets the use of soluble titanium amide precursors for dip coating graphite-fiber tows to produce uniform and defect-free TiN coatings following pyrolysis, with controlled coating properties, especially improved oxidation resistance.
II. Experimental Procedure

Thornel P-55 carbon fibers (Amoco, Chicago, IL) were used for dip coating. The as-received fiber properties include a typical diameter of \(-10 \mu m\) (with sizing), a specific gravity of 2.0 g/cm\(^3\), a tensile modulus of 380 GPa, a tensile strength of 40 kV and 100 mA, respectively. Cu\(K\alpha\) \(\lambda = 1.54 A\) radiation with a nickel filter was used. Scans were continuous while hot into the argon dry-box vacuum chamber.

(A) TiN Precursor: Ti(NMe\(_2\))\(_4\) (8.9 g), synthesized by the method of Bradley,\(^2\) was dissolved in 20 mL of toluene in a 100 mL schlenk flask fitted with an efficient reflux condenser and a stir bar. The flask was placed in an oil bath at 60\(^\circ\)C (\(\pm 2\)\(^\circ\)C). Isopropylamine (4.24 mL) (49.8 mmol, density of 0.694 g/mL), was added (ratio of 1.25 mol:1 mol titanium). Small bubbles immediately emerged from the solution, and the solution color changed from yellow to dark orange. To facilitate removal of dimethylamine, a slow stream of argon was admitted through the flask side arm and removed at the top of the condenser. After 6 h, no further bubbling was observed, and the reaction was assumed to be complete. On the removal of solvent, 14.6 g of precursor were recovered. The yield of TiN precursor, based on the proposed formula Ti[N(CH\(_3\))\(_2\)]\(_4\) (1.25 \(\mathrm{N(CH\(_3\))\(_2\)}\))\(_{1.25}\) was 80% of theory.

(B) Nuclear Magnetic Resonance: Nuclear magnetic resonance (NMR) spectra were obtained on a spectrometer (Model Aspect 3000, AM-360 NMR, Bruker Co., Germany) operated at 360 \(\nu\) (\(\nu\)H) or 90.6 \(\nu\) (\(\nu\)C) MHz using 30\(^\circ\) pulse widths and relaxation delays of 1.0 (\(\nu\)H) and 0.5 (\(\nu\)C) s. TiN precursor samples (0.2 mL) were dried under vacuum, then dissolved in 0.5 mL of \(\mathrm{CD}_2\) (Cambridge Isotope Labs, Cambridge, MA) under argon (D is deuterium), and then transferred to 5 mm NMR tubes. All chemical shifts are reported as parts per million (ppm) downfield of tetramethylsilane (TMS) (Aldrich).

(C) Thermal Analytical Techniques: Thermogravimetric analysis (TGA) studies were performed using a thermal analysis instrument (Model Hi-Res TGA 2950, TA Instruments, New Castle, DE). The sample and a platinum sample pan were weighed in an argon glove box and then transported out and allowed to dry for 15 min in the argon environment. The fibers were then placed in an alumina boat and loaded in the ported quartz tube. The quartz tube was then placed in a Lindberg tube furnace and heated to \(1000\)\(^\circ\)C with oxygen as the combustion gas, whereas the reduction tube was maintained at \(640\)\(^\circ\)C using helium as the carrier gas. The systematic error in measurements was \(\pm 0.4\) wt%.

(D) XRD Studies: Powder X-ray diffractometry (XRD) patterns were taken using a rotating anode goniometer (Rigaku Denki Co. Ltd., Tokyo, Japan). Pyrolyzed samples were ground in air using an alumina mortar and pestle. Then, the ground samples (40–80 mg) were loaded in a sample holder (glass plates) for data collection. The working voltage and current were 40 kV and 100 mA, respectively. Cu\(K\alpha\) \(\lambda = 1.54 A\) radiation with a nickel filter was used. Scans were continuous from 5°–90° 2\(\theta\) with a step scan of 10° 2\(\theta\) min and increments of 0.05° 2\(\theta\). The peak positions and the relative intensities of the pyrolyzed products were characterized by comparison with standard International Centre for Diffraction Data (ICDD, Newtown Square, PA) files.

(3) Fiber-Coating Studies

(A) Coating Precursor Solutions: Precursor solutions of 0.5, 1, and 2 equivalent wt% TiN (200 g) each were made for fiber-coating studies. For example, a 200 g solution of 2 wt% TiN was made by mixing 177 g of hexane and 23.4 g of TiN precursor (TiN yield of 17.1 wt%), prepared as described above, together in a glass container inside an argon dry box. The glass containers were predried at 150°C for 24 h in air and transported while hot into the argon dry-box vacuum chamber.

(B) Fiber-Coating Procedures and Pyrolysis: Prior to coating, the sizing on the Thornel P-55 carbon fibers was removed as follows. Tows of carbon fibers, 60–80 cm in length, were wrapped lengthwise on a 20 cm graphite and a stir bar. The flask was placed in an oil bath at 60\(^\circ\)C (\(\pm 2\)\(^\circ\)C) of copper oxide. Samples were then placed in a Lindberg tube furnace and heated to \(1000\)\(^\circ\)C at 5\(^\circ\)/min and increments 100 mL schlenk flask fitted with an efficient reflux condenser of 0.05 \(\nu\) (\(\nu\)C) with oxygen as the combustion gas, whereas the reduction tube was maintained at \(640\)\(^\circ\)C using helium as the carrier gas. The systematic error in measurements was \(\pm 0.4\) wt%.

(C) Chemical Analysis: CHN analysis was conducted using an elemental analyzer (Model 2400 CHN, Perkin-Elmer, Norwalk, CT). The combustion tube was maintained at 1000\(^\circ\)C with oxygen as the combustion gas, whereas the reduction tube was maintained at 640\(^\circ\)C using helium as the carrier gas. The systematic error in measurements was \(\pm 0.4\) wt%.

(D) Scanning Electron Microscopy: The surface appearances of sized and coated carbon fibers were examined using a scanning electron microscope (SEM) microscope (Model S800, Hitachi, Tokyo, Japan) operating at 5 kV. SEM samples were prepared by mounting carbon-fiber tows (3–5 mm in length) on an aluminum stub using carbon paste.
(E) X-ray Photoelectron Spectroscopy: X-ray photoemission (XPS) spectra for bulk pyrolyzed powders and coated fibers were collected using an X-ray photoelectron spectrometer (Model 3400, PHI, Industry, CA). The powder XPS data were used as a reference for the fiber-coating analyses. A Mg X-ray source was operated at 300 W and 15 kV. The operating pressure was kept at 1.3×10^{-2} Pa (10^{-7} torr) to minimize the signal from air. A small-area omni focus of 1 mm2 was selected for sample analysis, and a neutralizer was used to prevent charge buildup.

Survey and multiplex analyses were conducted for each sample. Surveys were conducted over the 0–1000 eV energy range with an acquisition time of 5 min. The survey data provided basic information on peak positions for the elements found in the bulk powder and coating surfaces. Based on the survey information, multiplex analysis was performed for the interested energy ranges (or interested elements). The multiplex function gave a relatively accurate shape and position for the desired elemental peaks, from which the types of atomic bonding were evaluated, and permitted quantification of the surface compositions. Data were collected until the peaks of interest were visibly smooth (typically 1 h).

For all sample surfaces, the original surface was analyzed first, and then the surface following ion milling was analyzed. Surfaces were cleaned by argon-ion milling for >7 min for the powders and >2.5 min for the fibers, with a beam voltage of 3 kV. Milling rates were ~ 10 A/min.

III. Results and Discussion

(1) Precursor Synthesis and Characterization

The first goal in these studies was to develop an easily synthesized, rheologically useful, polymer precursor that transforms to dense, phase-pure TiN on pyrolysis. One other criterion requires that the precursor wet the substrate effectively to produce high-quality coatings. Based on previous efforts to synthesize non-oxide polymer precursors, Ti(NMe$_2$)$_4$ was selected as the starting point for the synthesis of a processable TiN precursor.14,19,20

Because Ti(NMe$_2$)$_2$ is too volatile for fiber-coating purposes20,22,23 and because methyl groups are likely to promote the formation of TiC,24,25 a nonvolatile, soluble precursor with few methylamide moieties was sought.26 Precursor solutions are potentially ideal for controlling coating thickness, because this can be done by simple adjustment of the precursor concentration, provided that good wetting can be obtained.

The TiN polymer precursor used in these studies was prepared by reacting Ti(NMe$_2$)$_2$ with 1.25 equiv of isopropylamine. The choice of 1.25 equiv was predicated on the need for a viscous polymer that coats well. Efforts to use >1.25 equiv resulted in highly crosslinked, intractable solids. The addition of isopropylamine, followed by heating, transformed yellow Ti(NMe$_2$)$_2$ hexane solutions to dark orange as dimethylamine was eliminated and the polymer formed: the TiN precursor-to-ceramic transformation process, as a function of the pyrolysis temperature, was followed by mass-loss behavior and CHN, XPS, and XRD analyses to identify the various chemical and microstructural changes that occur. These

<table>
<thead>
<tr>
<th>Chemical compound</th>
<th>10C chemical shift (δ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HN(C$_2$H$_5$)$_3$</td>
<td>26.69</td>
</tr>
<tr>
<td>H$_2$NC1H(C$_2$H$_3$)$_2$</td>
<td>43.27</td>
</tr>
<tr>
<td>Ti(N(C$_2$H$_5$)$_2$)$_2$</td>
<td>44.38</td>
</tr>
<tr>
<td>TiN polymer precursor</td>
<td>7.60</td>
</tr>
</tbody>
</table>

If reaction (1) proceeds as anticipated, the resulting polymer should be partially crosslinked with a structure similar to

$$\text{Me}_2\text{N} \rightleftharpoons \text{N}-\text{CHMe}_2$$

and with an empirical formula of C$_{6.75}$H$_{2.75}$N$_{2.75}$Ti. Dimeric (e.g. [Ti(N$_2$/C$_{2}$.H$_{3}$)$_2$]$_2$) and oligomeric species are known to form.25 We believe that the product obtained here is polymeric, based on the initial reaction stoichiometry, NMR and CHN analyses, and the TGA ceramic yield at 1000°C (see below).

(A) NMR Studies: NMR of the 13C solution was used to establish a general solution structure. The 13C values for Me$_2$NH, iPrNH$_2$, and Ti(N(CH$_3$)$_2$)$_2$, listed in Table I, provide resonances that support the proposed general molecular structure. For example, the carbon in free Me$_2$NH shifts from 36.88 to 44.48 ($\Delta = 7.60$) when bound as an amido group in Ti(NMe$_2$)$_2$. The secondary carbon peak position of iPrNH$_2$ shifts from 43.36 in the free amine to 61.36 ($\Delta = 18.00$) in the precursor. This much-larger shift likely results from an isopropylamido group bridging two titanium atoms rather than an amido complex.26 Proton NMR resonances (Table II) for the Me$_2$N and iPrN ligands shift as expected for terminal amides and bridging imides, respectively. Four distinct peaks are observed, suggesting a distribution of species, as expected for a partially crosslinked polymer. The dimer, if present, forms coincident with a number of oligomeric titanium species.

(B) CHN Analysis: Chemical analysis of the vacuum-dried precursor gave the following values (in wt%): carbon, 43.1; hydrogen, 8.7; and nitrogen, 19.2 (± 0.4 wt%). Values calculated for C$_{6.75}$H$_{2.75}$N$_{2.75}$Ti, corresponding to [Ti(NCH$_3$/C$_2$.H$_{3}$)$_2$]$_2$[N(CH$_3$)$_2$.C$_{2}$.H$_{3}$], are as follows (in wt%): carbon, 43.8; hydrogen, 9.5; nitrogen, 20.8; and titanium, 25.9. These calculations assume a high polymer and do not include contributions from any remaining Me$_2$N– end groups. These values are relatively similar and, together with the NMR data, suggest that the proposed structure is reasonably accurate, as also supported by the TGA results below. The moisture sensitivity of the precursor precludes gel-permeation chromatographic molecular-weight analysis.

(C) TGA Analysis: The TGA ceramic yield at 1000°C (at a rate of 10°C/min in air) for the vacuum-dried precursor is 43.23%. The off-white powder has been shown by XRD to be TiO$_2$. The theoretical TiO$_2$ yield, based on the proposed empirical formula, is 43.09%, which is within the error limits of the analysis method and again supports the proposed precursor structure.

(2) Bulk Material Studies

The TiN precursor-to-ceramic transformation process, as a function of the pyrolysis temperature, was followed by mass-loss behavior and CHN, XPS, and XRD analyses to identify the various chemical and microstructural changes that occur. These
most of which appears to be nitrogen (see below). The mass losses at temperatures of >800°C also may result from the loss of nitrogen.

Chemical analysis indicates that the pyrolysis product is never pure TiN. The data in Fig. 1 show a 43% ceramic yield at 900°C, the pyrolysis temperature used for processing coated fibers. This value is 23 wt% higher than theory for pure TiN. In previous work, we observed that Mo₂(NMe₂)₆ on pyrolysis, converts to Mo₂C, thus, the excess mass observed here is likely to be carbon that has been retained either as free carbon (graphitic or amorphous) or as the carbide, TiC.

In the samples pyrolyzed to 900°C, the carbon appears to be present as free carbon, based on TGA experiments (at a rate of 10°C/min in air to a temperature of 1000°C) involving samples prepyrolyzed to 900°C or 1200°C. The samples prepyrolyzed at 900°C show a mass loss of 5 wt%. In contrast, pure TiN exhibits a 29% mass gain (also theory) when converted to TiO₂ under heating and/or mineralization. The 50% mass loss at 400°C also may result from the loss and characterizing precursor-derived TiN coatings on graphite fibers.

A Pyrolysis Studies: We previously reported that the isobutyrate ligand (iPrCO₂) can be used as a general means of forming processable metal-oxide precursors. These results prompted our efforts to use isopropylamine to form a processable TiN precursor. An additional motivation for choosing a secondary amine was the fact that the thermolysis of amine ligands with β-hydrogens frequently leads to direct cleavage of the C–N bond rather than the metal–N bond, per reaction (2):

$$\text{HN(CH₃)}₂ \text{H, CH₃} \to \text{H₂ + N₂}$$

Isopropyl rather than α-propyl groups were chosen to promote C–N bond cleavage, because the isopropyl moiety has six, rather than two, β-hydrogens and cleavage is more favorable if secondary carbon radicals form. The isopropyl groups would then most likely evolve as propene (reaction (2)), generating hydrogenated Ti (TiₙN, Hₜ) first and then TiN on continued heating, because the residual hydrogen is lost as H₂ or CH₄, if any methyl groups remain. If pure TiN forms, then the theoretical ceramic yield would be 33.39%, based on an initial composition of C₆.75N₂.75H₁₇.75Ti.

The actual weight changes that occur when the dry precursor is pyrolyzed in 200°C increments from 200°C to 1200°C are shown in Fig. 1. On heating to 400°C, the polymerlike precursor transforms to a brittle material, suggesting extensive crosslinking and/or mineralization. The 50% mass loss at 400°C likely results from C–N bond cleavage, per reaction (2). On further heating to 800°C, an additional mass loss of 7% is observed.

![Fig. 1. Mass changes for TiN precursor pyrolyzed to selected temperatures for 2 h in argon.](image)

Table II. 1H Peak Positions for TiN Precursor

<table>
<thead>
<tr>
<th>Chemical compound</th>
<th>Chemical shift (δ)</th>
<th>Chemical shift (δ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HN(CH₃)₂</td>
<td>2.87 septet</td>
<td>0.92 doublet</td>
</tr>
<tr>
<td>H,N(CH₃)₂</td>
<td>3.82, 4.36, 4.53</td>
<td></td>
</tr>
<tr>
<td>Ti[N(CH₃)₂]₂</td>
<td></td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.94, 1.49, 1.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.18, 3.20, 3.26</td>
</tr>
</tbody>
</table>

†H is the primary hydrogen in isopropylamine/isopropylimide, H₂ is the secondary hydrogen in isopropylamine/isopropylimide, and H₃ is the hydrogen in dimethylamine/dimethylamide. At Jₐnal 6.3 Hz.
Fig. 2. CHN chemical analysis ((—) carbon, (— —) hydrogen, and (— — —) nitrogen) showing compositional changes on pyrolysis to selected temperatures for 2 h in argon.

processes that cause hydrogen atoms to diffuse through the material until sufficient numbers of hydrogen atoms collect on the same carbon or nitrogen atom so that CH₄ or NH₃ evolve. Alternatively, HCN or other simple carbon–nitrogen compounds can evolve. Further loss of hydrogen is likely to be controlled by its diffusion rates in the char and will be slow until the highest pyrolysis temperatures are attained.

Carbon content also decreases on heating, until 550°C, as organic ligands are expelled, as discussed above. The carbon content at this stage is ~23 wt%. On heating to higher temperatures, carbon content increases slightly, mostly as a consequence of nitrogen loss. In contrast to the carbon content, but in keeping with the expected generation of propene and methane, nitrogen content increases on heating to 550°C, from 19 wt% to 21 wt% (Fig. 2). The nitrogen content then decreases to 10% at 1200°C, most likely as a result of evolution of NH₃, HCN, or possibly N₂. As found in the XPS studies, the Ti:N ratio at 900°C is ~1:1. Thus, the considerable nitrogen loss on heating to 1200°C (Ti:N ratio = 2:1) may coincide with the formation of TiC or TiCN. This provides the rationale for contrasting fiber coatings processed at 900°C with those processed at 1200°C.

(C) XPS Data Analyses: Typically, XPS is used for the elemental analysis of surfaces. The XPS data for the pyrolyzed bulk precursor have been obtained to provide a reference for coating analyses (discussed in the following section). Table III presents XPS and chemical analyses for the precursor samples pyrolyzed to 900°C and 1200°C.

Ion milling was used to clean the pyrolyzed precursor powder surfaces, to remove oxygen or other contaminants resulting from air exposure during XPS sample preparation. Ion milling removes ~10 Å/min on a typical surface. However, because the XPS samples were pyrolyzed powders, rather than a simple plane surface, ion milling was prolonged and kept in a fixed direction to partially clean the powder surfaces. Some contribution from the original powder surfaces is likely to occur.

Because exposed surfaces adsorb oxygen during handling and sample preparation, the XPS data for the pyrolyzed bulk materials are not perfect. However, the data still suggest that the Ti:N ratio is ~1:1 at 900°C but increases to >2:1 for the sample pyrolyzed to 1200°C, as mentioned above.

Figure 3 shows the Ti 2p₃/₂ peaks for several samples. The Ti 2p₃/₂ peak positions for commercial TiC and TiN powders are shown in Fig. 3(A). Both samples contain adsorbed oxygen (as TiO₂) before ion milling, as indicated by the peak at 458 eV for TiC and 457.8 eV for TiN. After ion milling, although the TiO₂ Ti 2p₃/₂ peak (~458 eV) still remains, the major Ti 2p₃/₂ peaks display TiC and TiN binding energies, both of which are 454.2 eV.

The Ti 2p₃/₂ peaks for the precursor pyrolyzed to 900°C are shown in Fig. 3(B). The bulk material, without ion milling, exhibits a TiO₂ peak at 458 eV. After ion milling for 7 min, the Ti 2p₃/₂ peak shifts to a maximum at 454.2 eV. This suggests that the titanium that is present exists mainly as TiN (454.8 eV, 457.8 eV, 458.2 eV).

Table III. XPS Data for Precursors Pyrolyzed to 900°C and 1200°C and for a Commercial TiN

<table>
<thead>
<tr>
<th>Sample conditions</th>
<th>Carbon (at.%)</th>
<th>Oxygen (at.%)</th>
<th>Titanium (at.%)</th>
<th>Nitrogen (at.%)</th>
<th>Hydrogen (at.%)</th>
<th>Titanium:nitrogen ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrolyzed to 900°C</td>
<td>37</td>
<td>41</td>
<td>12</td>
<td>10</td>
<td></td>
<td>1.20</td>
</tr>
<tr>
<td>Pyrolyzed to 900°C, ion milled for 16 min</td>
<td>27</td>
<td>21</td>
<td>34</td>
<td>18</td>
<td></td>
<td>1.89</td>
</tr>
<tr>
<td>Pyrolyzed to 1200°C</td>
<td>61</td>
<td>23</td>
<td>11</td>
<td>5</td>
<td></td>
<td>2.20</td>
</tr>
<tr>
<td>Pyrolyzed to 1200°C, ion milled for 16 min</td>
<td>46</td>
<td>23</td>
<td>24</td>
<td>7</td>
<td></td>
<td>3.43</td>
</tr>
<tr>
<td>CHN chemical analyses for sample pyrolyzed to 900°C†</td>
<td>40.2 (22.3)</td>
<td>28.9 (64.2)</td>
<td>20.1 (13)</td>
<td>10.8 (0.5)</td>
<td></td>
<td>1.44</td>
</tr>
<tr>
<td>CHN chemical analyses for sample pyrolyzed to 1200°C†</td>
<td>47.1 (24.6)</td>
<td>31.5 (65.7)</td>
<td>15.4 (9.4)</td>
<td>6.0 (0.3)</td>
<td></td>
<td>2.05</td>
</tr>
<tr>
<td>Commercial TiN</td>
<td>24</td>
<td>34</td>
<td>24</td>
<td>18</td>
<td></td>
<td>1.33</td>
</tr>
<tr>
<td>Commercial TiN, ion milled for 16 min</td>
<td>14</td>
<td>50</td>
<td>36</td>
<td></td>
<td></td>
<td>1.39</td>
</tr>
</tbody>
</table>

†Values in parentheses are the corresponding wt% values (±0.4%). ‡Chemical analyses assume that carbon, hydrogen, nitrogen, and titanium are the only elements present in the precursor.
Table IV. XPS Data for a Commercial TiC Powder

<table>
<thead>
<tr>
<th>Sample</th>
<th>Carbon (at.%)</th>
<th>Oxygen (at.%)</th>
<th>Titanium (at.%)</th>
<th>Titanium/carbon ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial TiC</td>
<td>34</td>
<td>43</td>
<td>23</td>
<td>0.68</td>
</tr>
<tr>
<td>Commercial TiC ion milled for 8 min</td>
<td>40</td>
<td>20</td>
<td>40</td>
<td>1</td>
</tr>
</tbody>
</table>

455.6 eV) or TiC (454.2 eV) but not as TiO2 (458 eV). The XRD data for the precursor pyrolyzed to 900°C discussed below also suggest that the material is crystalline TiN.

(D) XRD Patterns: Figure 4(A) shows powder XRD patterns for precursors pyrolyzed to 400°C, 900°C, 1100°C, and 1200°C with a dwell time of 1 h. All samples heated to temperatures of >400°C have been pyrolyzed at a rate of 2°C/min in argon to a temperature of 500°C and then at a rate of 10°C/min in argon to higher temperatures. The XRD data show peaks attributable to crystalline TiN (ICDD File Card No. 38-1420).

The broad peaks and poor intensities, as seen in the sample pyrolyzed to 400°C, suggest that considerable material is either amorphous or nanocrystalline. In Fig. 4(A), as the pyrolysis temperature increases, the XRD peak intensities increase and the peak widths decrease, indicating a greater degree of crystallinity and/or grain growth. Because TiC and TiN are almost isomorphous, the XRD peaks for the commercial powders can only be differentiated by careful examination of selected reflections (see below). Furthermore, the formation of a TiN/C solid solution would diminish the unit-cell parameter differences, which makes distinguishing between the two materials even more difficult. Thus, the formation of a TiN/C solid solution cannot be excluded based solely on XPS and XRD data. However, the ~1:1 Ti:N ratios found (by XPS and chemical analysis) at 900°C suggest mostly pure TiN with free carbon, unless some nitrogen is present as carbon nitride, which we find unacceptable based on the carbon nitride literature. Moreover, the TGA oxidation studies (see above) support our contention that at 900°C, the carbon is present as free carbon. A third argument comes from the TGA oxidation studies at 1200°C and the XRD analyses that follow.

Figure 4(A) also shows the XRD data for a commercial TiC powder, with peak positions corresponding to ICDD File Card No. 32-1383. Comparing the peak positions of the commercial TiN, the TiN precursor pyrolyzed to 900°C, and the commercial TiC powders, the TiC peaks are found at angles ~1° 2θ lower than those for TiN and for the maximum for the pyrolyzed samples. This is best illustrated using the Fig. 4(B) data for the (200) peak at 42.6° 2θ, suggesting that this material is TiN. However, Fig. 4(B) also shows that, at 1200°C, this peak shifts to 42.1° 2θ, which is closer to the (200) peak of TiC at 41.2° 2θ (ICDD File Card No. 32-1383, position 41.7° 2θ). Most likely, some carbon displaces nitrogen in the TiN lattice, shifting the unit-cell parameters closer to those of TiC at the higher pyrolysis temperatures. These results are in accord with our TGA oxidation findings that suggest ~6% of the 24.6% of carbon that is remaining at 1200°C is present as the carbide.

(3) Coating Studies

As described above, graphite fibers were dip coated in TiN precursor solutions (0.5, 1, and 2 equivalent wt% TiN) and then pyrolyzed to selected temperatures in argon. These studies were

![Figure 3](image-url)
conducted to answer two questions. The first question is whether the coating solution can provide TiN coatings on graphite fibers. To address this question, XPS analyses of coated and pyrolyzed graphite fiber were conducted. The second question is what is the best processing route, including the concentration of the coating solution and the temperature of pyrolysis, to obtain the best coating properties. One important coating property is oxidation resistance. The oxidation-resistance properties for fibers processed via different routes were evaluated using TGA by holding the fibers at 700°C for 2 h in air. The coatings were evaluated by SEM to detect the presence of defects and to examine the microstructure and the thickness.

(A) Pyrolysis Temperature Studies: The bulk material studies suggest that microcrystalline TiN, contaminated with free carbon, is obtained at 900°C, based on the XPS and chemical analyses, which indicate a Ti:N ratio of ~1, almost the same as in pure TiN. At 1200°C, based on the bulk XPS and CHN results, the coating is more likely to be a TiCN coating, albeit somewhat more crystalline. To understand which coatings provide better oxidation resistance, the coatings pyrolyzed to 900°C and 1200°C were compared.

(B) Graphite Fibers Coated with 1 equivalent wt% TiN Precursor and Pyrolyzed to 900°C in Argon: Figure 5 shows a micrograph of desized graphite fibers. The fiber diameter is 9 ± 1 μm. Cross sections of the fiber reveal striations associated with the orientation of the mesophase pitch used to produce the fibers. After dip coating and pyrolysis, no visible changes in the fiber diameter are observed. Figure 6(A) shows a graphite fiber coated with a 1 equivalent wt% TiN precursor. At the lower right edge of the fresh-cut cross section, the debonded “skin” indicates a coating thickness of 0.1–0.2 μm. Figure 6(B) provides a better view of the surface, which appears to be smooth and uniform; i.e., no cracks or pores are visible and the coating does not appear to debond from the surface. Hence, under these processing conditions, the polymer precursor coats fibers effectively and densifies uniformly on pyrolysis; the resulting ceramic coating wets the surface following pyrolysis.

XPS data for as-formed fiber coatings and for coated fibers that have been ion milled for 8 min are presented in Table V. The Ti:N ratio is 1.2:1 for the sample without ion milling and 1.6:1 for the sample that has been ion milled for 8 min. Commercial TiN gives values of 1:4:1, even after ion milling. Note that for the ion-milled bulk precursor, we observe a Ti:N value of 1:1, which is confirmed by chemical analysis. How-ever, as noted above, XPS analyses of powders are assumed to be somewhat inexact. Consequently, these results, considered in toto, suggest that the coating consists primarily of TiN and carbon; quantification of the amounts of each is not possible. As with the bulk analyses, some oxygen also is observed and likely results from surface absorption, because the pyrolyzed fibers were handled in air. Figure 3(B) shows the Ti 2p3/2 binding-energy profiles for fresh surfaces with and without ion milling. These profiles appear to be very similar to the bulk precursor profiles. No changes in the peak positions are observed. Without ion milling, the binding energy observed is 458.0 eV, the same as the bulk sample data, and indicates the presence of TiO2 on the coating surface. Recall that XPS analyses provide information to depths of 30–50 Å only. Similar to the behavior of the bulk precursor, after ion milling for 8 min, the Ti 2p3/2 peak position moves to 454.2 eV, which suggests the bonding is mainly TiN (454.8 eV, 455.6 eV), with carbon...
formation of TiCN rather than TiC coatings have prompted studies to ascertain whether improved coating properties could be obtained at 1200°C. Figure 7 shows an SEM micrograph of a graphite-fiber cross section coated with 1 equivalent wt% TiN, revealing a cracked (flawed) coating. Furthermore, the fiber surfaces exhibit a mottled texture, wherein the fiber striations are clearly visible between beads of material. A higher-magnification image (at 20000×; see Fig. 8) strongly suggests that dewetting has occurred. These beads are not observed for coatings pyrolyzed to 900°C (Fig. 6(B)). The XPS Ti 2p binding-energy profile for these surfaces (Fig. 3(B)) still exhibits peak maxima consistent with the presence of TiN/TiC or TiCN, although some TiO₂ is present on surfaces that have not been ion milled. One possible explanation for dewetting is that, at higher temperatures, crystallization, coupled with the alleviation of compressive stresses created during the initial precursor-to-ceramic transformation process, lead to grain growth with dewetting.

(D) Oxidation Resistance of TiN-Coated Graphite Fibers Pyrolyzed to Different Temperatures:

To establish the uniformity of the coatings and to develop a simple test of their reactivity, as measured by oxidation resistance, TGA oxidation studies were conducted using isothermal heating. Figure 9 shows that, on heating at a rate of 50°C/min in air to a temperature of 700°C, followed by an isothermal hold, uncoated fiber tows oxidize completely in 80 min. In contrast, fiber tows coated with 1 equivalent wt% TiN solutions and pyrolyzed to 900°C reproducibly retained ~55% of their initial weight at the end of the test (Fig. 9), indicating improved oxidation resistance. Fibers that were coated identically but heat treated to 1200°C exhibited lower oxidation resistance (Fig. 10). The inconsistent oxidation profiles that are shown suggest that coating integrity is lost at 1200°C, as expected from the SEM studies. Oxidation resistance similar to that of the fibers processed at 900°C was obtained in related studies with SiOₓCᵧ, mullite, and SiC coatings. Analyses of the coatings processed at 1200°C also are similar to the bulk studies.

(E) TiN Solution Concentration Studies:

Three different TiN solution concentrations—0.5, 1, and 2 equivalent wt%—
Table V. XPS Data for Graphite Fibers Coated with 1 Equivalent wt% TiN and Pyrolyzed to 900°C

<table>
<thead>
<tr>
<th>XPS elemental analysis</th>
<th>Amount (at.%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbon</td>
<td>Oxygen</td>
</tr>
<tr>
<td>Before ion milling</td>
<td>37.5</td>
<td>44.7</td>
</tr>
<tr>
<td>After ion milling for 8 min</td>
<td>84.7</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Fig. 7. SEM micrograph of a graphite fiber coated with 1 equivalent wt% TiN and pyrolyzed to 1200°C.

Fig. 8. SEM micrograph, at a magnification of 20000×, of a graphite fiber coated with 1 equivalent wt% TiN and pyrolyzed to 1200°C.

Fig. 9. TGA plots for graphite fibers coated with 1 equivalent wt% TiN (900°C) heated to 700°C in air.
were studied. The coating properties were again evaluated by isothermal oxidation studies at 700°C for 3 h in air. Fiber tows coated with 0.5 equivalent wt% TiN and processed at 900°C exhibited erratic oxidation behavior (Fig. 11). Some tows behaved similarly to the uncoated ones and others retained >50% of their original mass at the end of the test (120 min), as observed for the tows coated with 1 equivalent wt% TiN. This behavior can be attributed to incomplete or insufficient coating of the fibers. The 2 equivalent wt% TiN coatings (pyrolyzed to 900°C for 1 h in argon) provided good, but erratic, oxidation resistance. In this instance, the average coating appears to have been too thick (0.2–0.4 μm), leading to process-related cracking, as shown in Fig. 12. The cracks permitted the ingress of oxygen, leading to rapid oxidation.

The Fig. 9 TGA behavior of graphite-fiber tows coated with 1 equivalent wt% TiN (900°C) (shown in Fig. 9) must be treated as a lower limit for fiber-coating oxidation resistance, because some portion of the coated fiber ends crack during processing; the coatings at these ends are thicker than average (Fig. 13). For these fibers, oxidation starts from the fiber ends. Figure 14 shows the end of a graphite fiber coated with 1 equivalent wt% TiN and pyrolyzed to 900°C after heating at 650°C for 3 h in
air. The hollow structure indicates that the graphite fiber oxidizes, leaving behind the skin of the ceramic coating. However, in the middle of the same fiber section, the graphite fiber remains unoxidized, indicating the actual oxidation resistance is likely higher than determined by TGA (Fig. 15).

IV. Summary

A processable, easily prepared TiN precursor, \([\text{Ti(NMe}_2\text{)}_{x-2}]\), was synthesized and then characterized by TGA, chemical analysis, and NMR. Based on these analyses, the general molecular structure is suggested to be
The phase and microstructural evolution that occurs on pyrolytic transformation of the precursor to a ceramic material has been followed by XRD, CHN, and XPS. On heating to temperatures of \(\approx 900^\circ\text{C} \), a microcrystalline material is generated that is suggested by XPS and XRD to be primarily TiN. The Ti:N ratio at 900°C is \(\approx 1:1 \); however, chemical analysis, TGA oxidation studies, and XPS indicate the presence of 22–24 wt\% of free carbon. For material pyrolyzed to 1200°C for 1 h in argon, the Ti:N ratio is no longer 1:1, suggesting the formation of TiC and/or TiC\(_2\); the XRD data also suggest a powder pattern indicative of a Ti–NiC–TiC solid solution.

Three hexane precursor solutions were prepared, containing 0.5, 1, and 2 equivalent wt\% TiN. Graphite fiber tow was dipped in these solutions and pyrolyzed to 900°C for 1 h in argon or 1200°C for 1 h in argon (for 1 wt\% TiN only). Coating composition and integrity were evaluated by XPS, SEM, and oxidation resistance. The best coatings were those obtained with the 1 equivalent wt\% solutions and heated to 900°C, as determined by the relative absence of pores or cracks, with a thickness of 0.1–0.2 μm.

The oxidation resistance of the resulting ceramic coatings was compared by following the weight loss in TGA at 700°C over a period of 2 h. The TGA profiles demonstrated improved oxidation resistance after coating. The fiber tow coated with 1 equivalent wt\% TiN retained >50% of their mass after 100 min, whereas the fiber tow coated with 0.5 and 2 equivalent wt\% TiN exhibited erratic oxidation behavior, because of processing flaws. Uncoated fiber tow oxidized fully after 80 min.

References