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Agonist-induced desensitization has been observed for

many types of ligand-gated ion channels and may subserve

diverse functions in vivo (Jones & Westbrook, 1996).

GABAA receptor desensitization has been shown to be multi-

phasic, suggesting that multiple desensitized conformations

are possible (Celentano & Wong, 1994; Haas & Macdonald,

1999). We previously investigated the desensitization

patterns of abd and abg GABAA receptors (Haas &

Macdonald, 1999), thought to comprise the majority of

GABAA receptor isoforms in the brain (McKernan &

Whiting, 1996). Both the rate and extent of desensitization

were clearly dependent on subunit composition. For

example, a1b3g2L receptors showed extensive de-

sensitization that was described by a fast phase (~10 ms),

an intermediate phase (~150 ms) and a slow phase

(~1500 ms). In contrast, a1b3d receptors desensitized less

extensively, with a single slow phase (~1500 ms) that

resembled the slow phase of a1b3g2L receptor currents.

Subunit-dependent desensitization, among other properties,

may provide a molecular mechanism for regulating

GABAA response efficacy during prolonged or repetitive

activation.
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GABAA receptor fast desensitization is thought to shape the time course of individual IPSCs.

Although GABAA receptors also exhibit slower phases of desensitization, the possible role of slow

desensitization in modifying synaptic function is poorly understood. In transiently transfected

human embryonic kidney (HEK293T) cells, rat a1b3d and a1b3g2L GABAA receptors showed

distinct desensitization patterns during long (28 s) concentration jumps using a saturating (1 mM)

GABA concentration. a1b3g2L receptors desensitized extensively (~90 %), with four phases (t1

~20 ms, t2 ~400 ms, t3 ~2 s, t4 ~10 s), while a1b3d receptors desensitized slowly and less extensively

(~35 %), with one or two slow phases with time constants similar to t3 and t4 of a1b3g2L receptors.

To determine the structural basis of subunit-specific desensitization, d-g2L chimera subunits were

expressed with a1 and b3 subunits. Replacing the entire N-terminus of the g2L subunit with

d subunit sequence did not alter the number of phases or the extent of desensitization. Although

extension of d subunit sequence into transmembrane domain 1 (TM1) abolished the fast and

intermediate components of desensitization, the two slow phases still accounted for substantial

current loss (~65 %). However, when d subunit sequence was extended through TM2, the extent of

desensitization was significantly decreased and indistinguishable from that of a1b3d receptors. The

importance of TM2 sequence was confirmed by introducing g2 subunit TM2 residues into the

d subunit, which significantly increased the extent of desensitization, without introducing either

the fast or intermediate desensitization phases. However, introducing d subunit TM2 sequence into

the g2L subunit had minimal effect on the rates or extent of desensitization. The results suggest that

distinct d subunit structures are responsible for its unique desensitization properties: lack of fast

and intermediate desensitization and small contribution of the slow phases of desensitization.

Finally, to investigate the possible role of slow desensitization in synaptic function, we used a pulse

train protocol. We observed inhibition of peak current amplitude that depended on the frequency

and duration of GABA pulses for receptors exhibiting extensive desensitization, whether fast phases

were present or not. The minimally desensitizing a1b3d receptor exhibited negligible inhibition

during pulse trains. Because receptors that desensitized without the fast and intermediate phases

showed pulse train inhibition, we concluded that receptors can accumulate in slowly equilibrating

desensitized states during repetitive receptor activation. These results may indicate a previously

unrecognized role for the slow phases of desensitization for synaptic function under conditions of

repeated GABAA receptor activation.
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The subcellular compartmentalization of GABAA receptors

is also related to subunit composition. GABAA receptors

containing the d subunit have been shown to reside in

extrasynaptic membrane locations in the cerebellum

(Nusser et al. 1998). Extrasynaptic receptors may sense

ambient extracellular levels of GABA that fluctuate over a

much slower time scale than synaptic transients. The slow

desensitization kinetics of abd isoforms are well suited for

continuous response to sustained, low level GABA

concentrations that may occur extracellularly (Lerma et al.
1986). In contrast, ternary receptors containing the g
subunits have been suggested to be predominantly

localized to subsynaptic membranes (Nusser et al. 1998;

Brickley et al. 1999). During individual synaptic events,

fast desensitization is thought to shape the post synaptic

current in part by prolonging its duration (a process

known as receptor deactivation) by delaying the unbinding

of GABA, although in principle all desensitized states share

the property of trapping GABA on the receptor (Jones &

Westbrook, 1995; Bianchi & Macdonald, 2001a). The

rapid activation and desensitization kinetics of abg
isoforms, thus, are well suited for responding to brief

GABA transients during inhibitory synaptic transmission

(Haas & Macdonald, 1999).

The role of intermediate and slow phases of desensitization

for synaptic GABAA receptors is less clear. Slow desensitized

states may not contribute to the shaping of individual

IPSCs because equilibration occurs over a long time scale

relative to the synaptic transient. However, persistent

levels of GABA in the synaptic cleft are possible under

certain conditions, such as spillover of GABA during high

levels of activity (Isaacson et al. 1993; Rossi & Hamann,

1998). GABA spillover that reaches neighbouring inhibitory

synapses is the equivalent of pre-incubation in low

concentration GABA, which has been shown to desensitize

GABAA receptors to subsequent pulses of saturating GABA

(Overstreet et al. 2000). This prolonged exposure to GABA

may promote entry into the slow phases of desensitization.

Slow phases of desensitization may also be involved in

GABAA receptor responsiveness under conditions of

repetitive receptor activation. Such conditions may occur

during pathological states such as epilepsy, or during

normal rhythmic network firing patterns. With exogenous

application of GABA, even brief pulses can drive GABAA

receptors into desensitized states, such that subsequent

GABA applications evoke smaller amplitude currents.

When repeated IPSCs are evoked, the decrement in

synaptic current is often attributed to pre-synaptic

mechanisms (Davies & Collingridge, 1993; Stevens &

Wang, 1995). However, it is difficult to quantify post-

synaptic receptor desensitization; if GABAA receptors can

accumulate in slowly equilibrating desensitized states

during repetitive stimulation, this may also constrain

synaptic efficacy. Although dissecting the impact of post-

synaptic receptor desensitization is complicated by the

known presynaptic contributions to synaptic depression,

recombinant systems employing exogenous GABA

application allow direct testing of the hypothesis that slow

phases of desensitization can regulate GABAA receptor

availability during repeated applications of GABA.

In this study we used a chimera strategy to identify

structures that conferred the distinct desensitization

patterns of GABAA receptors containing d or g2L

subunits. Interestingly, two distinct domains of the d
subunit were shown to be responsible for its unique

desensitization pattern. The absence of the fast and

intermediate phases of desensitization was dependent

upon N-terminal and TM1 sequence, while TM2 sequence

regulated the contribution of the slower phases of

desensitization. Additionally, we took advantage of chimeric

constructs that showed slow but extensive desensitization

to explore the possible role of slow desensitization in

synaptic function. Progressive inhibition of peak current

during pulse trains suggested that accumulation of

receptors in slowly equilibrating desensitized states might

contribute to decreased synaptic efficacy during repeated

receptor activation.

METHODS 
Expression of recombinant GABAA receptors
The cDNAs encoding rat a1, b3, d and g2L, GABAAR subunit
subtypes and chimera subunits were individually subcloned into
the plasmid expression vector pCMVNeo. See Bianchi et al.
(2001) for construction of chimeras and splice site locations. All
constructs have been confirmed by DNA sequencing (Sequencing
Core, University of Michigan, MI, USA). Human embryonic
kidney cells (HEK293T; a gift from P. Connely, COR Therapeutics,
San Francisco, CA, USA) were maintained in Dulbecco’s modified
Eagle’s medium, supplemented with 10 % fetal bovine serum, at
37 °C in 5 % CO2–95 % air. Cells were transfected with 4 mg of
each subunit plasmid along with 1–2 mg of pHOOK (Invitrogen,
Carlsbad, CA, USA) for immunomagnetic bead separation
(Greenfield et al. 1997), using a modified calcium phosphate co-
precipitation technique as previously described (Angelotti et al.
1993). The next day, cells were replated and recordings were made
18–30 h later.

Electrophysiology
Patch-clamp recordings were performed on transfected fibro-
blasts bathed in an external solution consisting of (mM): NaCl 142;
KCl 8; MgCl2 6; CaCl2 1; Hepes 10; glucose 10 (pH 7.4,
325 mosmol l_1). Electrodes were formed from thin-walled
borosilicate glass (World Precision Instruments, Pittsburgh, PA,
USA) with a Flaming Brown electrode puller (Sutter Instrument
Co., San Rafael, CA, USA), fire-polished to resistances of
0.8–1.5 MV when filled with an internal solution consisting of
(mM): KCl 153; MgCl2 1; MgATP 2; Hepes 10; EGTA 5 (pH 7.3,
300 mosmol l_1). This combination of internal and external
solutions produced a chloride equilibrium potential near 0 mV.
Cells were voltage clamped at _10 to _60 mV using an Axopatch
200A amplifier (Axon Instruments, Union City, CA, USA). No
voltage dependence of desensitization was observed in this range.
For isoforms exhibiting ‘fast’ desensitization, cells were gently

M. T. Bianchi and R. L. Macdonald4 J. Physiol. 544.1
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lifted from the recording dish to reduce the solution exchange
time. For isoforms without fast desensitization, we observed
insignificant differences in fitting the desensitization whether cells
were lifted or not (despite faster current rise times upon lifting),
and thus data from the two conditions were pooled. GABA was
applied (via gravity) to whole cells using a rapid perfusion system
consisting of multi-barrel square glass connected to a Warner
Perfusion Fast-Step (Warner Instrument Corp., Hamden, CT,
USA). The glass was pulled to a final barrel size of approximately
250 mm. The solution exchange time was estimated routinely by
stepping a dilute external solution across the open electrode tip to
measure a liquid junction current. The 10–90 % rise times for
solution exchange were consistently 1–2 ms or less, although the
exchange around cells was probably slower.

Analysis of currents
Currents were low-pass filtered at 2–5 kHz, digitized at 10 kHz,
and analysed using the pCLAMP8 software suite (Axon
Instruments). The desensitization time courses of GABAAR
currents were fit using the Levenberg-Marquardt least squares
method with one, two, three or four component exponential
functions of the form Sane

(_t/tn), where n is the best number of
exponential components, a is the relative amplitude of the
component, t is time and t is the time constant. Additional
components were accepted only if they significantly improved the
fit, as determined by an F test automatically performed by the
analysis software on the sum of squared residuals. Five
component fits were not considered. Numerical data were
expressed as mean ± S.E.M. Statistical significance, using Student’s
t test (unpaired) was taken as P < 0.05.

Simulations
Simulated macroscopic currents were generated using the Berkeley
Madonna 8.0 software package (www.berkeleymadonna.com) that
numerically solves differential equations (4th order Runge-Kutta
algorithm, 100 ms step size for all simulations shown).

RESULTS
Desensitization of a1b3g2L and a1b3d GABAA

receptors differed in both rate and extent
There was a clear subunit dependence of GABAA receptor

desensitization (Fig. 1). Lifted cells expressing a1b3g2L

(Fig. 1A) or a1b3d (Fig. 1C) GABAA receptors were activated

by GABA (1 mM) for 28 s using the concentration jump

technique. a1b3g2L receptor currents desensitized rapidly

and extensively (91.1 ± 1.1 %), with a time course that was

best described by four exponential functions that we will

refer to as fast, intermediate, slow and ultraslow phases of

desensitization (Fig. 1B). In contrast to a1b3g2L receptors,a1b3d receptor desensitization was slow, accounted for

only 38.1 ± 4.4 % current loss over 28 s and was well

described by one (or sometimes two) exponential functions

(Fig. 1D and E). The measured time constants for a1b3d
receptors were similar to the slow and ultraslow phases of

desensitization of a1b3g2L receptor currents. Longer

duration pulses would be required to determine whether

additional, slower phases of desensitization exist. Figure 1E
showed the accuracy of multi-exponential fitting for the

rapidly desensitizing a1b3g2L current. The exponential

functions are superimposed on the trace, and the residual

current (actual current _ fitted curve) is shown above the

trace. Minimal deviations of the residual current were

observed, except for the first 30 ms of the trace, which may

have contributed to the variation of the fast time constant

(Fig. 1E2).

While excised patches have proven optimal for studying

fast desensitization (Haas & Macdonald, 1999; Bianchi et
al. 2001), whole cells offered two major advantages over

patches for the study of slow desensitization. First, we

found that the whole cell configuration provided considerably

greater stability during the long duration GABA

applications required to resolve slow phases of desensitization.

Second, whole cell currents were typically much larger

than patch currents, allowing accurate fitting of slow

phases even after substantial current loss during many

seconds of GABA exposure. The small current amplitudes

typically remaining after even a few seconds of GABA

application to patches may compromise fitting accuracy

due to low signal to noise ratio. Nevertheless, two

important considerations warranted further investigation

to ensure that the whole cell configuration was appropriate

for our study of slow desensitization. In the following

sections we evaluated the potential contribution of chloride

ion shifts to macroscopic desensitization and compared

desensitization in whole cell and patch configurations.

Chloride ion redistribution did not account for the
time course of desensitization
One difficulty in studying slow phases of desensitization is

the requirement for unusually long agonist applications. It

has been suggested that chloride ion shifts accounted in

part for the fading of current during prolonged (on the

scale of minutes) agonist applications (Akaike et al. 1987).

For example, at hyperpolarized holding potentials, chloride

ion efflux during the GABA application might drive the

equilibrium potential for chloride (ECl) to negative

potentials (it is normally near 0 mV using our solutions;

see Methods), such that the driving force would decrease

with time. This would lead to spurious overestimations of

apparent desensitization. Despite the use of low resistance

electrodes (that more easily dialyse internal solution into

the cell cytoplasm to buffer chloride ion efflux), the

possibility of chloride ion shifts needed to be addressed

directly. Although the expression level (as reflected in

current amplitude) of transfected GABAA receptors differed

widely among individual cells, it was not uncommon to

measure current amplitudes in the 5–15 nA range,

particularly for the a1b3g2L receptors. Therefore we

conducted control experiments using a1b3g2L receptors

to determine whether potential redistribution of chloride

ion could be affecting our measurements of desensitization.

If significant chloride ion shifts were occurring over the

course of GABA application, then the ECl would change as

the time of GABA application increased. We repeatedly

applied GABA (1 mM) for 10 s at various holding

GABAA receptor slow desensitizationJ. Physiol. 544.1 5



Jo
u

rn
al

 o
f P

hy
si

ol
og

y

potentials and measured the current amplitude at the

peak, middle (5 s) and end (10 s) of the response (Fig. 2A).

We used shorter application durations for these experiments

because most of the desensitization observed in 28 s pulses

occurred by ~10 s, and cell stability was more robust for

the required repeated GABA applications. Three cells that

showed large current amplitudes (5–15 nA at _50 mV

holding potential) were chosen for analysis. This protocol

provided three I–V curves for each cell. The data from a

representative I–V experiment (Fig. 2A) was plotted in

Fig. 2B. Although this particular cell showed slight

outward rectification at +50 mV, other cells showed no, or

slight inward, rectification. Any change in the relative

chloride ion concentration over the course of the

application would be revealed as a change in the reversal

potential. Chloride ion redistribution would also result in

non-linearities of the I–V relations measured at different

points during the 10 s application, which is theoretically

ohmic (and thus linear), assuming no voltage-dependent

gating. In excised patches (where chloride ion shifts were

not relevant because of the small currents and large

chloride ion reservoirs on both sides of the membrane),

desensitization of a1b3g2L receptor currents showed

minimal apparent voltage dependence between _75 and

+50 mV (data not shown). We did not observe any non-

linearity of the relation (Fig. 2B), and there was no

significant change in reversal potential (Fig. 2C). To rule

out the possibility that series resistance errors (that were

not compensated in this study) affected the I–V
experiment, we measured the reversal potential in three

M. T. Bianchi and R. L. Macdonald6 J. Physiol. 544.1

Figure 1. a1b3d and a1b3g2L desensitization differed in both rate and extent
A, current response of transiently expressed a1b3g2L receptors to a 28 s concentration jump using 1 mM

GABA (filled bar). The inset shows the first 3 s (open bar) on an expanded time scale. C, current response ofa1b3d receptors to the same protocol as in A. The parameters used to fit a1b3g2L and a1b3d currents are
shown as scatter plots in B and D, respectively. The left ordinate indicates the time constants (t1–t4; note the
logarithmic scale), and the right ordinate indicates the relative contribution of the corresponding time
constants (a1–a4), as well as the constant term to account for incomplete desensitization. For each
parameter, a horizontal line is drawn through the mean. Exponential fitting of a1b3g2L receptor currents is
shown for the entire 28 s application (E1) as well as the first ~2 s expanded (E2). The time constants (1–4)
and residual current (actual _ fitted) are labelled in both panels. The asterisk in E2 indicates the slight
deviation between the fitted curve and the actual current, as indicated by a non-zero residual.
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cells (that had large conductance changes in response to

GABA) in which the series resistance was compensated by

85–90 % (Fig. 2C). ECl was not different when measured at

the peak or 5 s later and was not different from that

calculated without compensation. In Fig. 2D the relative

charge transfer occurring over the course of a 28 s

application from five randomly chosen a1b3g2L receptor

current traces was plotted. The cumulative charge carried

at 10 s was over 700 times greater than that carried by the

time the peak was reached (< 5 ms). Despite this large

difference in chloride flux, no evidence was found for

significant redistribution of chloride ions in our

GABAA receptor slow desensitizationJ. Physiol. 544.1 7

Figure 2. Chloride shifts were not responsible for
the fading of current during prolonged GABA
application
A, currents were evoked by 10 s applications of 1 mM GABA
to a1b3g2L receptors at several command voltages (50, 30,
10, _10, _30, _50 mV, from the top trace to the bottom
trace). The open symbols with arrows indicate the current
measurements made at the peak (ª), 5 s (9) and 10 s (1) for
the plot in B. B, current–voltage relation plots were derived
from current measurements at three different time points of
each GABA application from the cell shown in A. Similar
plots were obtained in three other cells. C, calculated
chloride reversal potentials were measured as the voltage
corresponding to zero current from fitting the I–V relations
with a straight line from _50 to +30 for each cell. Values were
not significantly different among the three measurement
time points (filled bars). ECl was also calculated from 3–4
GABA applications from _20 to +10 mV in cells where
85–90 % series resistance compensation was used (open
bars). D, the cumulative charge transfer is shown for five
randomly chosen a1b3g2L receptor currents to
demonstrate the typical relative magnitude of chloride flux
occurring at various times throughout long (28 s) GABA
applications. The time constants of desensitization (E1) and
their relative contributions (E2) are plotted vs. conductance
for each a1b3g2L receptor current (from Fig. 1B). Linear
regression lines are shown for each parameter; none of the
eight regression lines had slopes that differed from zero.
Note the log scale used in E2, where the time constants are
shown with the fastest (1) on the bottom, followed by the
intermediate and slow time constants, with the ultraslow (4)
on the top.
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experiments. Although series resistance errors may alter

both the extent and the kinetics of desensitization (for

example, the larger voltage error at the peak current would

decrease the ‘true’ peak value and thus lead to

underestimation of desensitization extent), we did not

investigate these effects. However, neither the time

constants of desensitization nor their relative contributions

to the decay were correlated with conductance for the

rapidly desensitizing a1b3g2L receptor currents (Fig. 2E1
and E2).

Comparison of GABAA receptor desensitization in
excised patches and in whole cells using various
perfusion techniques
The concentration jump technique has been used to

demonstrate rapid, multiphasic desensitization in excised

patches containing native (Celentano & Wong, 1994) and

recombinant (Haas & Macdonald, 1999) GABAA receptors,

as well as nucleated patches from cerebellum (Tia et al.
1996). However, desensitization was usually slower when

observed at the whole cell level, even with relatively rapid

perfusion (for example, see Dominguez-Perrot et al.
1997). One concern with comparisons of desensitization

between the whole cell and excised patch configurations

was that channel behaviour might be altered if patch

excision disrupts interactions with cytoplasmic factors.

For example, phosphorylation and interactions with

clustering proteins are known to affect GABAA receptor

function (Jones & Westbrook, 1997; Chen et al. 2000).

However, it was also possible that the differences were

related to the technical limitations in perfusing whole cells

on a time scale sufficiently rapid to resolve fast processes.

To test this possibility, we quantified the time constant and

relative contribution of ‘fast’ desensitization, as well as the

current rise time, for rapidly desensitizing a1b3g2L

receptor currents evoked by GABA (1 mM) under various

conditions of perfusion efficiency (Fig. 3). The slowest

perfusion technique we investigated was a commonly used

Y-tube apparatus (Fig. 3A), with exchange times of

70–150 ms measured at an open electrode tip (Greenfield

& Macdonald 1996). Currents required ~100 ms to reach

peak, and subsequent desensitization was fitted with time

constants in the range of 1000 ms (not shown). A motor

driven ‘stepper’ that switches solutions by rapidly

translating parallel flow pipes across a cell (Warner

Instruments, see methods) provided much faster exchange

times, with open tip measurements in the range of 1–2 ms

(with faster exchange possible using increased solution

flow rates). When GABA was applied using this technique,

current rise times (10–90 %) were 7.3 ± 0.8 ms (Fig. 3B
and E). Also, a fast component of desensitization could be

resolved with relatively small amplitude and time constant

of 31.8 ± 2.0 ms (Fig. 3F and G). The efficiency and speed

of solution exchange around whole cells could be further

improved by gently lifting the cell from the culture dish

(Bianchi & Macdonald, 2001a). In this configuration

(Fig. 3C), the current rise time was decreased to 1.7 ± 0.1 ms,

and the first component of desensitization was both faster

and of greater proportion (Fig. 3C and F). (Note that the

current rise time was not a measure of solution exchange

time because activation reflects agonist binding and

channel gating, and desensitization curtailed the peak

current.) Finally, using excised patches and optimized

solution exchange times of 0.2–0.4 ms, we observed rise

times of 0.55 ± 0.04 ms (Fig. 3D), along with a fast

desensitization time constant of 6.0 ± 0.7 ms, which had a

greater relative amplitude (Fig. 3D and G). The extent of

apparent desensitization was also sensitive to application

method (compare Fig. 3A–D), with greater apparent

desensitization observed with faster application methods.

This was probably accounted for by failure to reach the

‘true’ peak (from which the extent of desensitization is

measured) with slower applications. Although ‘back-

extrapolation’ has been used to correct for this failure to

reach peak current, such manipulations cannot account

for missed currents that decay with time constants that are

near to or less than the time of current activation. The

extrapolation process assumes that the portion of the time

course available for measurement is an accurate

representation of the process in question (i.e. fast

desensitization). In other words, if the fast time constant is

blunted by slow GABA application, the extrapolation will

underestimate the ‘true’ peak. Figure 3H demonstrates the

effects of back extrapolating a typical excised patch current

using various fitting windows.

Although the results did not exclude the importance of

intracellular factors or address their intactness following

patch excision, they suggested that the differences in

desensitization between receptors measured in whole cells

and excised patches may have been accounted for in large

part by the physical limitations in solution exchange times

relative to the rapid channel kinetics of this type of GABAA

receptor. Further support for this idea came from our

observation that the pattern of desensitization of slowly

desensitizing isoforms (such as for a1b3d receptors) was

similar between intact, lifted and excised patch techniques,

despite clear differences in current activation time (not

shown). Despite our observation that fast processes, such

as current activation and fast desensitization, were

somewhat compromised by solution exchange limitations

in whole cells (compared to patches), we concluded that

the lifted cell mode was nevertheless appropriate for

investigation of processes, such as the slower phases of

desensitization, that equilibrated with slower time

constants and were therefore less sensitive to solution

exchange efficiency.

Structural determinants of multiphasic
desensitization explored with d-g2L chimeras
To investigate the subunit structural domains responsible

for the distinct desensitization of a1b3d and a1b3g2L

M. T. Bianchi and R. L. Macdonald8 J. Physiol. 544.1
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receptor currents, we tested a series of chimeras that

contained d subunit sequence in the N-terminal extracellular

domain spliced at various points within the first two

transmembrane domains to g2L subunit sequence. Each

chimera was expressed with a1 and b3 subunits and

responses were recorded during 28 s applications of GABA

(1 mM) (Fig. 4). Wild-type responses from Fig. 1 were shown

again in Fig. 4A (a1b3g2L) and Fig. 4F (a1b3d) for

comparison. The first chimera, containing d subunit

sequence only in the N-terminus (M1e; Fig. 4B1), did not

alter the pattern of desensitization, which still occurred with

four phases of similar time constants (Fig. 4B2), and reached

a mean current loss of 87.2 ± 1.9 % in the 28 s GABA

application. The next chimera, M1pre-iso, contained two

additional d subunit residues moving the splice junction into

transmembrane domain 1 (TM1) (Fig. 4C1). Using 400 ms

pulses of GABA (1 mM) to excised patches, we previously

showed that this chimera differed from M1e in that it

blocked the fast phase of desensitization (Bianchi et al. 2001).

Indeed, lifted cells expressing this chimera lacked the fast

phase of desensitization. However, only two slow time

constants of desensitization were resolved, with similar time

constants to t3 and t4 observed in a1b3g2L, indicating that

this chimera in fact lacked both the fast and intermediate

phases of desensitization (Fig. 4C2). Despite the absence of

these two desensitization phases, the currents nevertheless

desensitized extensively (70.8 ± 2.7 %). Increasing the

contribution of d subunit sequence to include all of TM1

(M1i chimera) did not change desensitization; the extent of

desensitization and its biphasic pattern was not different

GABAA receptor slow desensitizationJ. Physiol. 544.1 9

Figure 3. Comparison of activation and fast desensitization among various perfusion
techniques
Representative currents were obtained from a1b3g2L receptors using a modified Y-tube (A), a stepper
system applied to an intact cell (B) or a lifted cell (C), or an excised patch (D). Each current trace was obtained
from a different cell, and normalized to peak amplitude for comparison. The scale bar in D applies to all four
traces. E, current rise time, as indicated by the time elapsed between 10 and 90 % of the peak current, is shown
for applications made with the stepper system using intact cells (open bars; n = 34), lifted cells (grey bars;
n = 38) or excised patches (filled bars; n = 13) expressing a1b3g2L receptors. Bar colouration applies to
panels F and G as well. F, the fastest fitted time constant of desensitization. Note the logarithmic ordinate.
G, the relative contribution of the fastest desensitization component is shown. H, a typical current obtained
from an excised patch (grey traces) is shown with an overlaid fitted curve (dark line) generated by
extrapolating the fit to the time of current onset. The fits were generated between the 100 ms time point (not
shown in the figure) and the time point indicated by the arrow. For the top trace, the best fit was a single
exponential function, while the other three traces were fitted best by a two exponential function.
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from that observed for the M1pre-iso chimera (62.0 ± 2.8 %;

Fig. 4D1 and D2). However, extending d subunit sequence to

include TM2 clearly altered the extent of desensitization

(41.3 ± 3.0 %; Fig. 4E1). Desensitization of the M2e chimera

was indistinguishable from wild-type a1b3d receptor

desensitization, except that it was always monoexponential

(whereas 5 out of 10 a1b3d currents decayed biphasically),

with a time constant resembling t4 (Fig. 4D2). These

observations strongly implicated TM2 in the regulation of

slow desensitization.

M. T. Bianchi and R. L. Macdonald10 J. Physiol. 544.1

Figure 4. Structural determinants of desensitization explored through d-g2L chimeras
A1–F1, the subunit construct is shown in schematic form (left) with N-terminus to the left, and
transmembrane domains represented by boxes. Open portions of the schematics indicate g2L subunit
sequence, while grey portions indicate d subunit sequence. Current responses to 28 s GABA applications
(filled bar in A1) for each construct (expressed with a1 and b3 subunits) are shown (middle), with the first 3 s
(see open bar under trace in A1) expanded for comparison of initial phases of desensitization (right). A2–F2,
scatter plots of all measured parameters obtained from fitting the desensitization time courses are shown (see
methods). The left ordinate indicates the time constant of each component (left half of each plot), and the
right ordinate indicates the relative contribution of the corresponding time constants, as well as the constant
term to account for incomplete desensitization (right half of each plot). Wild-type traces and plots (A and F)
are from Fig. 1.
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We subsequently examined the desensitization of GABAA

receptors containing d or g2L subunits in which the four

divergent TM2 residues were replaced by g2L or d subunit

sequence, respectively (Fig. 5). Replacing the d TM2 withg2L sequence clearly increased the extent of desensitization

to 68.3 ± 1.3 %, significantly greater than a1b3d
desensitization (38.1 ± 4.4 %) (Fig. 5A). The rate and

extent of desensitization of d(M2S) (Fig. 5B) was

indistinguishable from M1pre-iso. This result suggested

that the g2L sequence in TM2 accounted for all of the

observed desensitization in that chimera, which containedg2L sequence in all of the transmembrane domains,

except for the first two residues of TM1. Mutating subsets

of the d subunit TM2 to g2L sequence did not significantly

change desensitization compared to wild-type d (not

shown). Having shown that d sequence in TM2 was

necessary to decrease the extent of slow desensitization, we

then tested whether it was sufficient. The reverse swap,

with d sequence introduced into TM2 of the g2L subunit,

had minimal impact on the pattern of desensitization

(Fig. 5C and D). The extent of desensitization was slightly,

but significantly, less for g2L(M2S) (86.0 ± 1.7 compared

to 91.1 ± 1.1 %). A summary of the desensitization extent

is shown in Fig. 6 for comparison among the isoforms

tested.

Possible role of slow desensitization for inhibitory
synaptic transmission
Previous studies have suggested that GABAA receptor

deactivation following brief agonist pulses (to mimic IPSC

time course) was selectively shaped by fast desensitization;

simulations suggested that slower phases had little or no

effect on deactivation (Jones & Westbrook, 1995; Haas &

Macdonald, 1999). Few studies have investigated the role

of intermediate or slow phases of desensitization on

channel function. Overstreet et al. (2000) demonstrated

that persistent low concentrations of GABA decreased

IPSC amplitude, and suggested that persistent low GABA

concentrations favoured slow desensitization (which

limited synaptic receptor availability). The model proposed

by Haas & Macdonald (1999) also predicted inhibition of

peak currents by pre-incubation with a similar IC50 to that

reported by Overstreet et al. (2000) (~2 mM; not shown),

although occupancy of all three desensitized states (fast,

intermediate and slow), contributed significantly to the

inhibition. Our model supposes that all three proposed

desensitized states are accessible only to the di-liganded

receptor, in contrast to the model of Jones & Westbrook

(1995). Multiphasic desensitization during the continued

presence of saturating GABA has been demonstrated for

both native and recombinant GABAA receptors (Celentano

& Wong, 1994; Dominguez-Perot et al. 1997; Tia et al.
1996; Mellor & Randall, 1998; Haas & Macdonald, 1999;

this study), indicating that slow desensitized states must be

available to the fully liganded receptor. Therefore, to begin

investigating the possible roles of specific desensitized

states in GABAA receptor function, we conducted simulations

using our comprehensive kinetic model that accounted for

both single channel and macroscopic behaviour ofa1b3g2L receptor currents across a range of GABA

GABAA receptor slow desensitizationJ. Physiol. 544.1 11

Figure 5. d subunit sequence in TM2 is necessary but not sufficient to block desensitization
A, current response of a1b3d(M2S) receptors to 28 s application of GABA (1 mM, filled bar) is shown. The
four residues in the d subunit that were exchanged for the corresponding residues in the g2L subunit were:
V264T, M278S, V279T, S280I (numbered according to the d subunit mature peptide). The first 3 s (open
bar) is expanded in the inset. B, scatter plot of fitted desensitization parameters is shown. C, current response
of a1b3g2L(M2S) receptors to the same protocol and the fitted desensitization parameters (D) are shown.
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concentrations and application durations (Fig. 7A; Haas &

Macdonald, 1999). Note that the longest application of

GABA used to generate this model was 4 s, and thus the

ultraslow phase of desensitization detected in the present

study (t ~10 s) was not observed. A simulated current

response to a prolonged GABA application was plotted in

Fig. 7B, along with the probabilities of being in any of the

three desensitized states. The multiphasic pattern of

current loss reflected equilibration among the three

desensitized states. The model response to a simulated

10 Hz train of 2 ms GABA pulses (1 mM) was plotted in

Fig. 7C1, with the probabilities of occupying the three

desensitized states given above the trace. Strong inhibition

of subsequent GABA applications was observed. However,

slower phases of desensitization were accumulating during

the train, while the occupancy of the fast desensitization

state (Df) was decreasing. Setting the entry rate constant

into Df to zero altered the time course of inhibition during

the train, but extensive current loss occurred nevertheless,

as receptors accumulated in the slower desensitization

states (Fig. 7C2). An additional prediction of fully liganded

slow desensitization states was that for a given inter-pulse

interval, the inhibition observed in the second response

would be sensitive to the duration of the first pulse. In

other words, when the first pulse was brief, occupancy of

rapidly equilibrating states was favoured, such as Df. For a

pair of 2 ms GABA pulses separated by 800 ms, the small

amount of inhibition of the second pulse was accounted

almost entirely by residual occupancy of the slower

desensitized states (Fig. 7D1). As predicted, if the duration

of the first pulse was increased to 200 ms, allowing

additional time to equilibrate in the slower desensitized

states, greater inhibition was observed in the second pulse

(800 ms later) (Fig. 7D2). Again, this inhibition was

accounted for by occupancy of the slow desensitized states,

while Df occupancy was near zero. Finally, we tested the

effect of smaller increases in the pulse duration of simulated

pulse trains on occupancy of the three desensitized states.

Increasing the pulse durations from 2 to 20 ms revealed a

small increase in occupancy of the desensitized states

(Fig. 7E). This simulation was important for the following

experimental section, in which pulse trains were delivered

to whole cells, requiring longer pulse durations due to

perfusion limitations.

Although the models provided a theoretical framework for

understanding the role of specific desensitized states in

GABAA receptor function, we sought a model-independent

test of the prediction that the slow phases of desensitization

were relevant for GABAA receptor inhibition during

repeated GABA applications. Several receptors with

chimeric subunits were observed to desensitize extensively

despite the absence of the fast and intermediate phases of

desensitization (namely M1i, M1pre-iso and d(M2S)).

These receptors provided the functional equivalent of

setting the entry rate constants into the fast and

intermediate desensitized states to zero. We delivered

trains of GABA (1 mM) applications that varied in

duration and frequency. Although the individual pulses

delivered to whole cells were, for technical reasons, longer

than the likely duration of synaptic transients (~1 ms),

they were a reasonable approximation and not likely to

significantly increase entry into slower desensitized states

compared to brief pulses (see simulation, Fig. 7E). The

responses of a1b3g2L receptors to trains of 10 ms pulses

delivered at intervals of 100, 200, 500 or 2000 ms are

presented in Fig. 8A. The extensive inhibition observed

with 100 ms intervals (left trace) was gradually diminished

as the interval was increased (next three traces). Intervals

of 8 s or longer were required to completely eliminate

depression (not shown). For the 2000 ms interval, we also

tested 200 ms GABA pulse durations (right trace). Longer

pulses favoured equilibration in slower phases of

desensitization. Although little desensitization accumulated

for brief GABA pulses when the interval was 2000 ms,

when the duration of each GABA application was

increased to 200 ms, inhibition was observed. Similar

results were found in three other cells. Figure 8B shows

current responses obtained from a cell expressinga1b3d(M2S) using a similar train protocol. Inhibition was

observed for 20 ms GABA pulses delivered every 100 ms

(left trace), suggesting that fast and intermediate

desensitized states were not solely responsible for the

decreased current during repetitive stimulation. The

extent of inhibition was decreased with increasing

intervals (next three traces). Inhibition was then observed

to increase for the 2000 ms interval when the GABA

application duration was increased to 200 ms, similar to

M. T. Bianchi and R. L. Macdonald12 J. Physiol. 544.1

Figure 6. Summary of desensitization extent during 28 s
applications of 1 mM GABA
Extent of desensitization was measured for each isoform as the
following percentage: (peak current _ current at offset of
GABA)/peak current. * Significant difference compared to botha1b3d and a1b3g2L receptors.
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the results obtained with the rapidly desensitizinga1b3g2L receptors. Similar results were obtained from

four other cells (expressing either M1pre-iso or d(M2S)).

Figure 8C shows the lack of inhibition observed with

repetitive stimulation of a1b3d receptors, even with pulse

durations of 1000 ms delivered at 1200 ms intervals

(middle trace). This was expected based on the minimal

extent of desensitization observed during a continuous

28 s GABA (1 mM) application for this cell (right trace).

GABAA receptor slow desensitizationJ. Physiol. 544.1 13

Figure 7. Simulations predict a role for slow phases of desensitization during repetitive
stimulation
A, the kinetic model presented by Haas & Macdonald (1999) to account for single channel gating and
macroscopic currents for a1b3g2L receptors is shown; rate constants were taken from that study.
B, response of the model in A to an 800 ms pulse of GABA (1 mM; filled bar) is shown. The probability of Df
(fast desensitization; continuous line), Di (intermediate desensitization; labelled dotted line) and Ds (slow
desensitization; labelled dotted line) are shown above the current trace (downward dark line labelled as
open). C1, the response of the model to repeated 2 ms GABA pulses (1 mM; arrows) every 100 ms is shown.
The probability of each desensitized state is shown above the simulated current (continuous dark line).
Occupancy of desensitized states is shown, as in B. C2, the same protocol as C1 was used, except that the entry
rate constant for Df is set to zero. D1, the response of the model to a pair of 2 ms GABA applications separated
by 800 ms is shown. A horizontal dotted line is shown for visual comparison of the small inhibition of
amplitude for the second peak current. D2, when the first GABA application is extended to 200 ms, the test
pulse (2 ms) occurring 800 ms later shows greater inhibition. The model suggested that the greater inhibition
was due to an increase in the probability of the slower phases of desensitization. E, same protocol as in C1,
except that both 2 and 20 ms pulse durations were shown. The longer pulse duration resulted in a slight
increase in the occupancy of all three open states, and a slight decrease in the simulated current amplitude.
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DISCUSSION
We employed chimeras between the d and g2L subunits of

the GABAA receptor to investigate the structural determinants

of the slow components of multiphasic desensitization.

Long duration GABA applications (28 s) permitted

resolution of four phases of desensitization for a1b3g2L

receptors (fast, intermediate, slow and ultraslow), whereasa1b3d receptor currents exhibited only two phases with

time constants similar to the slow and ultraslow phases

observed for a1b3g2L receptors. d-g2L chimeras indicated

that distinct domains of the d subunit were responsible for

blocking the fast and intermediate phases of

desensitization and regulating the contribution of the slow

phases. Additionally, we demonstrated that slow phases of

desensitization might play an important role in synaptic

function under conditions of repetitive GABAA receptor

activation.

Interpretation of macroscopic desensitization
patterns
Using the concentration jump technique applied to

excised patches, we previously showed that a1b3g2L

receptors desensitized with three phases during a 4 s

application of 1 mM GABA (t1 ~10 ms, t2 ~150 ms, t3

~1500 ms), while a1b3d receptor desensitization was

M. T. Bianchi and R. L. Macdonald14 J. Physiol. 544.1

Figure 8. Fast desensitization is not required for inhibition during repetitive stimulation
A, current responses of a1b3g2L receptors to a series of 25 applications of GABA (10 ms; 1 mM) is shown.
The interval between the start of each pulse is shown above the traces. The progressive inhibition of peak
current amplitude decreased as the interval between pulses increased from left to right for the first four traces.
The right trace shows the effect of increasing the duration of the GABA pulse to 200 ms for a 2000 ms interval
(compare to the fourth trace). B, pulse train protocol was applied to a1b3d(M2S) receptors, except that
GABA was applied for 20 ms. Inhibition of peak currents during the repetitive stimulation was observed for
this isoform, which lacks the two fast phases of desensitization. The right trace indicates the effect of
increasing the GABA application duration to 200 ms (compare to fourth trace). C, a1b3d receptors show
minimal inhibition during trains of GABA applications (left), even during 1000 ms applications separated by
only 200 ms of wash (for a start–start interval of 1200 ms; middle). The current response to a continuous
application of GABA (1 mM) is shown for comparison (right). The calibration applies only to the continuous
current trace.
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dominated by a slow phase of t ~1500 ms (Haas &

Macdonald, 1999). Using longer (28 s) applications to

whole cells, we now report four phases of desensitization

for a1b3g2L and two phases of desensitization for a1b3d
receptors that corresponded to the slow and ultraslow

phases (t3 and t4) of a1b3g2L receptor desensitization.

The similar time constants t3 and t4 suggested that similar

slow desensitized states were common to both isoforms,

but that the overall desensitization extent was less in thea1b3d receptor. The d subunit appeared to constrain the

desensitization of GABAA receptors in two ways: by

blocking entry into the fast and intermediate desensitized

states (that account for t1 and t2), and by decreasing the

overall extent of desensitization (accounted for by the

remaining slow and ultraslow phases).

Because the extent of desensitization is determined by the

relative occupancy of open and desensitized states, it is

possible that differences in open state stability might

actually be responsible for the desensitization patterns

observed in this study. Increasing open state occupancy, or

decreasing desensitized state occupancy, will lead to a

decreased rate and extent of desensitization. For example,

we have previously demonstrated that increased gating

efficacy accounted for the significantly decreased rate and

extent of apparent desensitization of a1b3g2L(L9‚S)

receptors (Bianchi & Macdonald, 2001b). It is unlikely that

such a phenomenon accounts for the distinct desensitization

of a1b3d and a1b3g2L isoforms because their

desensitization is the opposite of that predicted based on

differences in gating efficacy alone. a1b3d receptors have

been shown to exhibit brief and infrequent openings, even

under conditions of maximal activation by high GABA

concentration (1 mM) (Fisher & Macdonald, 1997; Haas &

Macdonald, 1999), and yet desensitization is minimal. In

contrast, a1b3g2L receptors have much higher gating

efficacy, yet their desensitization is rapid and extensive.

Several constructs exhibited desensitization patterns that

were intermediate between those observed with a1b3d
and a1b3g2L receptors. For the reasons stated above, we

concluded that the increased extent of desensitization

relative to a1b3d receptors (through greater contributions

of the two slow phases) observed for receptors containing

constructs such as M1pre-iso, M1i and d(M2S) (see Fig. 4)

was indeed due to changes in the relative occupancy of

slowly equilibrating desensitized states and not a

secondary effect of decreasing open state stability.

However, single channel analysis of these chimeras would

be required to rule out the possibility that receptors

containing these constructs had compromised gating

efficacy compared to a1b3d receptors.

The association of high efficacy gating and rapid

desensitization for a1b3g2L receptors (and the lack of

either phenomena in a1b3d receptors) raised the

possibility that the processes are structurally linked.

Previously, Naranjo & Brehm (1993) demonstrated that

subunit switches in the nAChR resulted in a concomitant

alteration of gating and desensitization properties. Further

structure–function analysis at both macroscopic and

single channel levels should reveal additional information

about the interrelatedness of open and desensitized states.

Structural determinants of desensitization
Although TM2 contains most of the channel lining

residues (Xu & Akabas, 1996), the physical nature of the

channel gate, and the manner in which desensitization

occludes chloride ion conduction, remain poorly understood.

Electron micrograph analysis of the Torpedo nAChR has

led to the suggestion that the channel gate resides in the

middle of TM2 (Unwin, 1995). However, the accessibility

of engineered cysteines near the cytoplasmic end of TM2

to extracellularly applied sulfhydryl reagents suggested a

deeper location of the gate (Wilson & Karlin, 1998).

Structural insights into desensitized conformations are

even less clear. A presumably desensitized state induced by

a pulse of high concentration of acetylcholine just prior to

freezing the membranes indicated structural changes in

the transmembrane domains as well as the extracellular N-

terminus (Unwin, 1995). There are also several mutation

studies that suggested the importance of various TM1 and

TM2 residues in desensitization of GABAA receptors and

other related ligand-gated ion channels (Revah et al. 1991;

Yakel et al. 1993; Im et al. 1995; Labarca et al. 1995; Lynch

et al. 1997; Dalziel et al. 2000). Involvement of trans-

membrane domains in desensitization may suggest a

distinct mechanism from glutamate-gated AMPA

receptors, in which desensitization appears to be under the

control of extracellular ligand binding domains (Stern-

Bach et al. 1998; Banke et al. 2001).

Using the same set of d-g2L chimeras shown in this study,

we previously reported that the fast phase of desensitization

was blocked by d-subunit sequence in the N-terminus and

adjacent TM1 residues (Bianchi et al. 2001). However, the

short duration GABA pulses used in that study (400 ms)

were insufficient to accurately resolve slower phases of

desensitization. We now extend the role of d subunit

N-terminus and adjacent TM1 residues to include block of

the intermediate phase of desensitization. However, slow

phases still accounted for extensive desensitization in

chimeras that contained d subunit sequence in the N-

terminus and TM1 (M1pre-iso, M1i). Only when d
subunit sequence was extended to include TM2 (M2e

chimera) was desensitization similar to that observed fora1b3d receptor currents. Notably, the importance of d
subunit sequence in TM1 and TM2 for regulating

desensitization patterns was dependent on d subunit

sequence in the N-terminus. Introducing d subunit

sequence into TM2 of the g2L subunit had only minimal

effects on desensitization (this study), and the TM1

residues identified by the M1pre-iso chimera were

GABAA receptor slow desensitizationJ. Physiol. 544.1 15
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insufficient to block fast desensitization (Bianchi et al.
2001). In contrast, mutation of d subunit residues in TM1

(Bianchi et al. 2001) or TM2 (this study) to g2L residues

increased desensitization. This structural ‘asymmetry’

may suggest that multiple d subunit domains are required

to constrain GABAA receptor desensitization. Mutation of

a subset of d domains can compromise the minimal

desensitization phenotpye of abd receptors, while

introducing subsets of the d subunit into the g2L subunit

was insufficient to alter desensitization. Additional

chimeras will clarify domains of the d-subunit N-terminus

that are required (in combination with the transmembrane

domains) for regulation of desensitization.

Our results indicated that separate d subunit domains

modulated the presence of fast and intermediate phases,

and the contribution of slow and ultraslow phases of

desensitization. This would be consistent with two distinct

desensitization ‘gates’, one of which operates on a relatively

fast time scale (tens to hundreds of milliseconds), and the

other on a slower time scale (one to tens of seconds).

However, it is also possible that the multiple desensitized

states inferred from macroscopic current measurements

reflect different conformations of a single structure that

can be modulated separately through TM1 and TM2. In

this regard, it is interesting that TM1 and TM2 may be

interleaved at their extracellular ends, based on data

obtained from cysteine scanning mutagenesis (Akabas et
al. 1994; Akabas & Karlin, 1995). Either way, it remains

unknown whether the collapse of the conduction pore

during desensitization involves alternative conformations

of the activation gate, or a physically separate structure. It

is also possible that some forms of desensitization (such as

the slow phases that depended on TM2 sequence) involve

stable closed conformations of the channel gate, while

others operate through distinct structures.

A possible role of slow desensitization for inhibitory
synaptic function
The model proposed by Jones & Westbrook (1995)

predicted that slow desensitization of GABAA receptors

was accessible in the monoliganded state and therefore

relevant only for slowly developing, low concentration

GABA transients. Although we cannot rule out mono-

liganded, desensitized states, there is clear evidence for

multiple phases of desensitization in native and

recombinant GABAA receptors. With the assumption that

there are minimal monoliganded receptors during

application of 1 mM GABA, there must be at least four

desensitized states accessible in the fully liganded receptor,

one to account for each time constant of desensitization.

We have previously developed a model that incorporated

slow desensitized states that are accessible to the fully

liganded receptor (Haas & Macdonald, 1999). Simulations

using this model suggested that although Df is the most

relevant desensitized state for brief transients (similar to

the model of Jones & Westbrook), in fact the slower

desensitized states (Di and Ds) accumulate during repetitive

brief GABA pulses, accounting for the progressive loss of

current. Repetitive applications of GABA resulted in

pronounced inhibition of GABAA receptor currents that

showed extensive desensitization, independent of the

presence of fast and intermediate phases of desensitization

(Fig. 8A and B). This strongly suggested that slow desensitized

states could accumulate under conditions of repeated

activation, even with brief pulses of GABA. Paired pulse

protocols and trains of high frequency stimulation result

in depression of IPSC amplitude (Davies et al. 1990;

Galarreta & Hestrin, 1998; Jiang et al. 2000; Bartos et al.
2001). Presynaptic mechanisms related to vesicular release

have been demonstrated (Davies & Collingridge, 1993;

Stevens & Wang, 1995). Also, shifts in the postsynaptic

chloride equilibrium potential have been detected during

repetitive firing (McCarren & Alger, 1985; Thomson &

Gahwiler, 1989). However, few studies of synaptic GABAA

receptors have identified desensitization as a mechanism

for depressed responses with repeated GABAA receptor

activation (Alger, 1991). Our results indicated that

accumulation in slow desensitized states might represent

an additional post-synaptic mechanism. Note that the

extension of any results obtained with recombinant

receptors assumes that native receptors behave in a similar

fashion. Although this has not been explicitly proven,

recombinant GABAA receptors exhibit many pharma-

cological and kinetic properties (desensitization, deactivation,

single channel kinetics) of native receptors (reviewed in

Olsen & Macdonald, 2002).

It has been suggested that non-desensitizing receptors

would be ideally suited for sustained responsiveness to

extrasynaptic GABA (Saxena & Macdonald, 1994; Nusser

et al. 1998; Haas & Macdonald, 1999). However, sustained

responses are also possible from a1b3g2L receptors.

Although desensitization was rapid and extensive, it was

never complete on the time scale we examined (28 s). The

currents were typically larger than those observed fora1b3d receptors, so that even after 90 % current loss over

28 s there was still significant current remaining (hundreds

of picoamps). a1b3d receptors did not desensitize

extensively during the long applications, but they had

smaller peak currents on average, so that the current

remaining was also in the hundreds of picoamps range.

The basis for this large difference in current size may be

related to differences in expression level, or gating efficacy,

which is considerably greater for a1b3g2L receptors

(Fisher & Macdonald, 1997; Haas & Macdonald, 1999).

Whatever the basis may be, if the difference persisted in a

neuronal environment, extrasynaptic a1b3g2L receptors

might be able to contribute sustained membrane currents

despite significant desensitization. There is evidence forabg isoforms in extrasynaptic membranes (Nusser et al.
1998; Brickley et al. 1999). Also, less apparent desensitization

M. T. Bianchi and R. L. Macdonald16 J. Physiol. 544.1
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is observed in a1b3g2L receptors currents evoked by low

agonist concentrations (Celentano & Wong, 1994; Haas &

Macdonald, 1999). Thus, tonic inhibition resulting from

prolonged GABA exposure may not be strictly limited to

non-desensitizing isoforms.
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