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Summary. In this research we develop generalized linear regression models for the mean of a quality-
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1. Introduction
In clinical trials, the length of specific disease or treatment
stages and the quality-of-life (QOL) are of high interest to the
practitioner. For instance, in the initial phase (TOX) of the
International Breast Cancer Study Group (IBCSG) Ludwig
Trial V (see Gelber et al., 1992), patients experience moderate
or increased toxicity, according to treatment arm assignment
(short- versus long-duration chemotherapy). Unless precluded
by death, TOX is followed by a disease-free period known as
time without symptoms or toxicity (TWiST), and then by a
period of cancer relapse (REL). The amount of chemotherapy
received during TOX impacts patient well-being thereafter;
hence, the need for tools summarizing the quantitative and
qualitative health aspects in a unitary and meaningful way.

When data are not censored, the quality-adjusted-life-year
(QALY) method is one such simple and easily interpretable
measure (see Torrance and Feeny, 1989). Essentially, the pa-
tient’s well-being is classified into a discrete number of health
states, each having a utility value. QALY is the sum of the
utility-weighted time periods spent in each health state. As
mentioned in Glasziou et al. (1998), sensitivity analyses of
the utility weights in QALY provide insight into the nature
of the quantity versus QOL tradeoff. Examples and practical
considerations involving QALY are presented, for instance, in
Goldhirsch et al. (1989), Glasziou, Simes, and Gelber (1990),
or Gelber et al. (1995).

When censoring is present, QALY may only be identifiable
in restricted or truncated form and quality-of-life-adjusted
lifetime (QAL) tests, which are based on integrated weighted

areas under the survival curve, could be used instead. This
class of tests has been studied by Gelber, Gelman, and
Goldhirsch (1989) and Huang and Louis (1999), among oth-
ers. A particular QAL test, attractive in its simplicity, Q-
TWiST has been introduced by Glasziou et al. (1990) and
successfully used as an inferential tool in various AIDS or can-
cer clinical trials, as presented in Gelber et al. (1992), Cole
et al. (1996), and Gelber et al. (1996). Its closed-form asymp-
totic variance has been given by Murray and Cole (2000). The
survival distribution of QAL is also of clinical interest. Gelber
et al. (1989) pointed out that, in this case, the Kaplan–Meier
estimator is biased due to the induced dependent censoring.
To correct for the bias, Zhao and Tsiatis (1997, 1999) have
proposed estimators involving inverse probability-of-censoring
weighting techniques, as in Robins and Rotnitzky (1992).
Zhao and Tsiatis (2001) have developed testing methods for
detecting differences between survival functions of QALs.

As a way to incorporate prognostic covariates, Cole, Gelber,
and Goldhirsch (1993) have proposed and studied Cox regres-
sion models for the QOL-adjusted survival analysis. Another
regression method involving Cox models has been proposed
by van der Laan and Hubbard (1999). However, because these
methods usually model the QALs indirectly via their hazard
functions, the coefficient estimates thus obtained lack a clin-
ically meaningful interpretation. Although meritorious, this
approach to modeling has moved away from the simple and
intuitive characteristics of mean QAL.

Alternatively, we propose a much simplified approach
to multiple regression of QALs, by using the so-called
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pseudo-observations (see, e.g., Wu, 1986). In connection to
Wu (1986), and building from Andersen, Klein, and Rosthoj
(2003), generalized regression models for mean restricted sur-
vival time analysis were developed by Andersen, Hansen, and
Klein (2004). We extend this methodology to the multiple re-
gression analysis of mean QOL-adjusted restricted lifetimes.
This approach has a few important advantages. First, we
model the mean QALs directly, rather than via QOL-adjusted
hazard functions, thus maintaining the interpretability of the
regression coefficients. While remaining in the realm of linear
regression, this approach is very appealing to the practitioner,
because it makes it easier to understand the clinical signifi-
cance of the results obtained. Second, minimal assumptions
are needed and the inferential procedures, generalized esti-
mating equation (GEE) in this case, are very well understood
and developed. Third, standard software is implemented in
most statistical packages, hence parameter and variance esti-
mates are available with no additional effort.

The rest of this article is structured as follows: in Section 2,
the new regression methodologies for the mean of the QOL-
adjusted restricted survival time are introduced and studied.
In Section 3, extensive simulations studies are presented, fol-
lowed by an example from the IBCSG Ludwig Trial V in Sec-
tion 4. Several remarks and related future research directions
conclude this article.

2. Pseudo-Observations-Based Regression for Mean
of QOL-Adjusted Restricted Survival Times

To begin, a general introduction to pseudo-observations is
given, followed by a brief description of their use in generalized
regression models. Next, the concept of QOL-adjusted life-
time is described, along the lines of Zhao and Tsiatis (1997).
In the last part, regression methods for analyzing means of
QOL-adjusted restricted survival times are proposed.

2.1 Pseudo-Observations: An Introduction
In general, the so-called pseudo-observations are obtained as
a result of using the jackknife, which is a resampling tech-
nique preceding the bootstrap. The initial purpose of the
pseudo-observations was to study the estimators’ bias and
standard errors. Devised for balanced data situations, the
original “leave-one-out” or “delete-one” jackknife has been
found to be a useful tool in situations where one is presented
with unbalanced data, such as linear or nonlinear regression
models.

The idea behind the original jackknife is very easy to con-
vey. Suppose that an estimator θ̂ of a quantity of interest θ
is available based on a size n random sample. Then, n esti-
mates θ̂(−i) of θ become available based on the “leave-one-out”
samples obtained by successively dropping the ith observation
from the original sample, where i = 1, . . . ,n. The ith pseudo-
observation is defined as nθ̂ − (n− 1)θ̂(−i).

2.2 Pseudo-Observations in the Context of Regression Models
There are multiple versions of the jackknife applied to re-
gression settings, and they involve various weighting schemes
in the way the pseudo-observations are defined. The specifics
are discussed at length by Fox, Hinkley, and Larntz (1980),
Hinkley (1977), Simonoff and Tsai (1986), among others. A
detailed review of the existing methods, including jackknifing
for regression M-estimators, nonlinear regression, and general-
ized regression models, is part of the innovative paper of Wu

(1986). Andersen et al. (2003, 2004) propose using pseudo-
observations based on generalized linear models with a ro-
bust variance estimator, in the context of multi-state models
and restricted mean survival time regression, thus opening up
possibilities for employing these techniques in survival analy-
sis problems. Following Andersen et al. (2003), the main ideas
will be presented subsequently and then extended for use with
models of restricted means of QOL-adjusted survival times.

The data consist of {(Xi, Zi), i = 1, . . . ,n} assumed
to be i.i.d. random vectors and one would like to estimate
θi(Zi) = E{f(Xi) |Zi}, for some function f, possibly mul-
tivariate. The random variable Xi can be thought of as an
outcome of interest, while Zi may represent a vector of co-
variates for the ith individual. Unbiased (or nearly unbiased)
nonparametric estimators of θ = E{f(Xi)} tend to be either
explicit or implicit mixtures of the parameters of interest be-
cause E{θi(Zi)} = E[E{f(Xi) |Zi}] = E{f(Xi)} = θ. For in-
stance, averaging over the empirical distribution for Z gives

θ̃ =
1

n

n∑
i=1

θi(Zi),

and

θ̃(−i) =
1

n− 1

n∑
j �=i

θj(Zj),

both unbiased estimators of θ. Estimators resembling θ̃ in
a restricted mean context have been studied by Chen and
Tsiatis (2001) and Zucker (1998).

The definition of the ith pseudo-observation νi = nθ̃ − (n−
1)θ̃(−i) = θi(Zi), i = 1, . . . , n, suggests an indirect method for
obtaining inference on θi(Zi) when the functional form of
θi(Zi) is unknown or when the investigators are unwilling to
make strong parametric assumptions. Namely, one may con-
struct any unbiased estimates θ̃ and θ̃(−i), i = 1, . . . , n, (non-
parametric or otherwise) of θ, construct the corresponding
pseudo-observations νi and regress νi on the covariate Zi in-
stead of regressing θi(Z) on Zi. This is justified because the
pseudo-observation νi is equal to θi(Zi) in expectation, with
respect to the joint distribution of (X, Z). In particular, one
can perform regression analysis of νi on Zi by means of gener-
alized linear models, assuming that there exists a link function
g(·) such that

g(νi) = βTZi,

where β is the vector of regression parameters. Due to the fact
that the pseudo-observations might be correlated, β may be
estimated using GEE methods as in Liang and Zeger (1986)
and Zeger and Liang (1986). A consistent estimator β̂ of β is
obtained from the GEE

U(β) =

n∑
i=1

Ui(β) =

n∑
i=1

{
∂

∂β
g−1(βTZi)

}
V −1
i

×
{
νi − g−1(βTZi)

}
= 0,

and the variance of β̂ is estimated using the classical “sand-
wich” estimator,

v̂ar(β̂) = I(β̂)−1v̂ar{U(β̂)}I(β̂)−1,

where
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I(β) =

n∑
i=1

{
∂

∂β
g−1(βTZi)

}T

V −1
i

{
∂

∂β
g−1(βTZi)

}
,

v̂ar{U(β̂)} =

n∑
i=1

Ui(β̂)Ui(β̂)
T
,

and V i is the working covariance matrix for Zi.
To extend this approach for our purposes, we need to define

appropriate pseudo-observations for mean of QOL-adjusted
restricted survival times.

2.3 Extension to Mean of QOL-Adjusted Restricted Survival
Time Estimation

First, the mean of QOL-adjusted L-restricted survival times
µQ(L) is reviewed. In line with the early parts of this section,
we obtain estimators µ̂Q(L) of µQ(L) based on the methods
of Zhao and Tsiatis (1997), create the corresponding pseudo-
observations, and analyze them using generalized linear re-
gression models.

With individual lifetime Y being subject to independent
right censoring at time C, one observes {Ỹ = Y ∧ C,∆ =
I(Y ≤ C)}, where a ∧ b = min(a, b). For technical reasons,
described in detail by Zhao and Tsiatis (1997), assume the
existence of a constant L > 0 such that P (Y ≤ L) = 1 and
P (C >L) > 0. Individual health history is described by a
continuous time stochastic process V(·) with disease severity
ordered states {0, 1, . . . ,S}, where state “0” represents death
and state “S ” means perfect health. A deterministic, non-
decreasing, and known utility function Q(·) assigns to each
health state a value between 0 (state “0”) and 1 (state “S ”).
Even though V(·) and C are assumed to be independent, V(·)
and Y are likely to be dependent. The QOL-adjusted lifetime
is defined as

QY =

∫ Y

0

Q{V (t)} dt .

Subject to censoring, its observed version is

Q̃Y =

∫ Ỹ

0

Q{V (t)} dt .

Subscript i attached to a previously defined quantity indicates
that the respective quantity is computed based on the ith
individual’s data.

Let Di(q) = inf [s ≥ 0;
∫ s

0 Q{Vi(t)} dt ≥ q]∧Yi be the first
time when the ith individual has accumulated at least the
amount q of QOL-adjusted lifetime. Should this happen past
Y i, the expression Di(q) is set to be equal to Y i. As described
by Zhao and Tsiatis (1997), a consistent estimator of the sur-
vival function HQ(q) = P (QY > q) is

ĤQ(q) = n−1
n∑
i=1

I{Q̃Yi > q}
Ĝ{Di(q)}

,

where Ĝ(·) is the Kaplan–Meier estimator of the censoring
time C survival function G(·) obtained based on {(Ỹi,∆i), i =
1, . . . , n}.

The mean of the QOL-adjusted L-restricted survival time is

defined as µQ(L) =
∫ L

0 HQ(q) dq =
∫ L

0 P (QY > q) dq and can

be estimated by µ̂Q(L) =
∫ L

0 ĤQ(q) dq . Then, the n jackknife

versions of this estimator are constructed, according to the
definition, as µ̂

(−i)
Q (L), where superscript (−i) indicates that

the ith observation in the original sample is being left out.
Thus, the pseudo-observations for the mean of the QOL-
adjusted L-restricted survival times are

νi(L) = nµ̂Q(L) − (n− 1)µ̂
(−i)
Q (L), i = 1, . . . , n.

As described earlier in the section, generalized linear regres-
sion models based on {νi(L), Zi} can be constructed in order
to assess the covariate effect(s). This approach is very appeal-
ing because it reduces a potentially complicated regression
problem with censored survival data to a more straightfor-
ward linear regression problem with parameters that are easy
to interpret.

3. Simulation Studies
Four simulation scenarios have been devised in order to as-
sess the moderate sample size properties of the estimates
of the regression coefficients. The results are presented in
Tables 1 and 2. The utility function Q(s) = s/100, where s ∈
S = {0, 1, . . . , 100}, has been employed throughout. Indepen-
dent Uniform (0, 2) censoring has been generated, resulting
in censoring percentages ranging from 10% to 50%. Under
each scenario random samples of size n = 50 were replicated
1000 times, with L chosen to be equal to 2. Throughout, the
identity matrix was used to model the working correlation
matrix.

In the first simulation scenario, the health process was
V (s) = 100, for all s ∈ S, so the mean of the QOL-adjusted
survival time was equal to its unadjusted counterpart. A mul-
tistep general algorithm, described subsequently, has been
used to generate the individual survival times T 1, . . . ,Tn:

Step 1: Generate individual covariates Z1, . . . ,Zn from
either a discrete (Bernoulli) or continuous (Uniform)
distribution.

Step 2: Given β, find λi = λi(Zi) that solves the equa-

tion
∫ L

0 e
−λitdt = eβZi , i = 1, . . . , n.

Table 1
Simulation scenarios (SS) 1 and 2 results: β = true

parameter value, β̂ = empirical mean of estimated β values,
ESE(β̂) = empirical standard error of estimated β values,
MSE(β̂) = mean of estimated standard errors of β values,

CP(β̂) = coverage probability of true β by the 95%
confidence intervals.

Z β β̂ ESE(β̂) MSE(β̂) CP(β̂)

SS 1 Bernoulli(0.5) 0 0.01 0.41 0.41 0.95
−0.25 −0.29 0.38 0.39 0.94
−0.50 −0.53 0.36 0.37 0.95

Uniform(0,1) 0 0.00 0.68 0.67 0.95
−0.25 −0.31 0.67 0.67 0.94
−0.50 −0.60 0.67 0.67 0.95

SS 2 Bernoulli(0.5) 0 0.11 0.38 0.39 0.93
−0.25 −0.22 0.37 0.37 0.95
−0.50 −0.48 0.37 0.38 0.94

Uniform(0,1) 0 0.14 0.65 0.68 0.95
−0.25 −0.20 0.65 0.65 0.94
−0.50 −0.47 0.64 0.66 0.93
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Table 2
Simulation scenarios (SS) 3 and 4 results in correctly (C) or incorrectly (I) specified models, with covariates correlated at
approximately 0.3 level: βi is the true parameter value, β̂i = empirical mean of estimated βi values, ESE(β̂i) = empirical

standard error of estimated βi values, MSE(β̂i) = mean of estimated standard errors of βi values, CP(β̂i) = coverage
probability of true βi by the 95% confidence intervals, i = 1, 2.

Model β1 β̂1 ESE(β̂1) MSE(β̂1) CP(β̂1) β2 β̂2 ESE(β̂2) MSE(β̂2) CP(β̂2)

SS 3 C 0 0.00 0.73 0.73 0.94 −1.00 −1.22 0.89 0.88 0.95
−0.25 −0.30 0.71 0.75 0.91 −1.00 −1.16 0.86 0.92 0.93
−0.50 −0.53 0.68 0.67 0.86 −1.00 −1.06 0.82 0.85 0.93

I 0 −0.27 0.71 0.72 0.92 −1.00 – – – –
−0.25 −0.50 0.68 0.73 0.85 −1.00 – – – –
−0.50 −0.77 0.66 0.66 0.77 −1.00 – – – –

SS 4 C 0 −0.04 0.65 0.63 0.96 −1.00 −0.89 0.20 0.21 0.86
−0.25 −0.26 0.64 0.62 0.95 −1.00 −0.87 0.19 0.19 0.86
−0.50 −0.50 0.63 0.66 0.93 −1.00 −0.87 0.19 0.21 0.82

I 0 −0.85 0.75 0.74 0.80 −1.00 – – – –
−0.25 −1.03 0.73 0.73 0.80 −1.00 – – – –
−0.50 −1.29 0.72 0.75 0.79 −1.00 – – – –

Step 3: Generate survival time T i from an exponential dis-
tribution with rate λi, i = 1, . . . ,n. This way, the means
µQ(Z) = eβZ of the QOL-adjusted survival times are guaran-
teed to follow the log-linear regression model log{µQ(Z)} =
βZ. Based on the observed data [T̃i = Ti ∧ Ci,∆i = I(Ti ≤
Ci), V̄i = {Vi(t), t ≤ T̃i}, Zi, i = 1, . . . , n], one computes the
pseudo-observations {νQ,i(Zi), i = 1, . . . ,n}. Then, one ob-

tains an estimate β̂ of β, using the generalized regression
model, log{νQ(Z)} = βZ. Table 1 contains simulation results
when this scenario is replicated for β ∈ {0, − 0.25, − 0.5},
with covariate Z being distributed Bernoulli (0.5) or Uniform
(0, 1).

The major change in the second simulation scenario lies
in the choice of the health process V i(t) described in step 4
below. With some minor alterations, the algorithm described
earlier can again generate QOL-adjusted times QT 1, . . . ,QTn

with means following µQ(Z) = eβZ :

Step 1: Generate sample of individual covariates
Z1, . . . ,Zn.

Step 2: Given β, find λi = λi(Zi) that solves the

equation
∫ L

0 e
−λi

ξi
t
dt = eβZi , where ξi = I(Zi > 0.5) +

0.85I(Zi ≤ 0.5) for i = 1, . . . ,n.
Step 3: Generate survival time T i from an exponential dis-

tribution with rate λi, i = 1, . . . ,n.
Step 4: Given Zi, define the health process

Vi(t) =




100, if 0 ≤ t ≤ Ti and Zi > 0.5

90, if t ≤ Ti
2

and Zi ≤ 0.5

80, if
Ti
2

≤ t ≤ Ti and Zi ≤ 0.5,

.

and let QTi =
∫ Ti

0 Q{Vi(t)}dt = I(Zi > 0.5)Ti + 0.9I(Zi ≤
0.5)Ti/2 + 0.8I(Zi ≤ 0.5)Ti/2 = ξiTi.

Then, the means µQ(Z) = eβZ of the QOL-adjusted
survival times follow the log-linear regression model
log{µQ(Z)} = βZ. Simulation results are shown in Table 1,
with β ∈ {0, −0.25, −0.5} and covariate Z distributed
Bernoulli (0.5) or Uniform (0, 1).

The third simulation scenario employs the same health
process V (s) = 100, for all s ∈ S, but a covariate vector
(Z, W) is used instead, with Z and W correlated at ap-
proximately 0.3 level. The data-generating algorithm is as
follows:

Step 1: Generate covariate vectors (Z1,W 1) . . . , (Zn,Wn),
with Z distributed as Uniform (0, 1), W as Exponential (4)
and Z and W are correlated at approximately 0.3 level.

Step 2: Given β1 and β2, find λi = λi(Zi, W i) that solves

the equation
∫ L

0 e
−λitdt = eβ1Zi+β2Wi , i = 1, . . . , n.

Step 3: Generate survival time T i from an exponential dis-
tribution with rate λi, i = 1, . . . ,n.

The mean µQ(Z,W ) = eβ1Z+β2W of the QOL-adjusted sur-
vival times follow the log-linear regression model log{µQ(Z,
W )} = β1 Z + β2 W . The pseudo-observations {νQ,i(Zi,
W i), i = 1, . . . ,n} are computed and two log-linear re-
gression models are fitted. In the first one, the functional
forms of both Z and W are correctly specified. To ex-
plore the parameter estimates behavior under model mis-
specifications, in the second model the functional form
of Z only is correctly specified, while W is entirely left
out of the model. Simulations are carried on for β1 ∈
{0, −0.25, −0.5}, β2 = −1 and the results are shown in
Table 2.

Finally, the fourth scenario bears similarity to the previous
one, except for the choice of the health process:

Step 1: Generate covariate vectors (Z1,W 1) . . . , (Zn,Wn),
with Z and W distributed as Uniform (0,1) and Exponential
(1) random variables, respectively, and Z and W correlated at
approximately 0.3 level.

Step 2: Given β1 and β2, find λi = λi(Zi, W i) that

solves the equation
∫ L

0 e
−λi

ξi
t
dt = eβ1Zi+β2Wi , where ξi =

I(Zi > 0.5, W i > 1) + 0.975I(Zi > 0.5, W i ≤ 1)
+ 0.95I(Zi ≤ 0.5, W i > 1) + 0.90I(Zi ≤ 0.5, W i ≤
1), i = 1, . . . ,n.

Step 3: Generate survival time T i from an exponential dis-
tribution with rate λi, i = 1, . . . ,n.
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(a) Treatment group coefficient estimate (Short-duration arm is reference)
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(b) ER status coefficient estimate (ER-negative group is reference)
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(c) Tumor size group coefficient estimate (at most 2cm is reference)

Figure 1. IBCSG Ludwig trial V example results for the premenopausal women group: coefficient estimates (—) and 95%
pointwise confidence intervals (. . .) in univariate regression models for log{Q − TWiST (60)} when toxicity period utility value
µTOX = 0.5 and relapse period utility value µREL is between 0 and 1.

Step 4: Given (Zi, W i), define the health process

Vi(t) =




100, if Zi > 0.5 and Wi > 1

97.5, if Zi > 0.5 and Wi ≤ 1

95, if Zi ≤ 0.5 and Wi > 1

90, if Zi ≤ 0.5 and Wi ≤ 1,

so that QTi =
∫ Ti

0 Q{Vi(t)} dt = ξiTi. Simulations are con-
ducted for values of β1 ∈ {0, − 0.25, − 0.5} and β2 = −1
and results are presented in Table 2.

Overall, the results confirm that when the regression mod-
els are correctly specified, the estimators show very little or no
bias. Furthermore, the sample average coverage probabilities

of the 95% confidence intervals tend to be near the nomi-
nal level in most simulation scenarios. Coverage probabilities
somewhat below the nominal level are observed under sce-
nario 4, likely due to the correlation of the covariates present
in the respective model.

The empirical standard deviations of the estimated param-
eters agree very closely with the empirical means of the es-
timated parameters’ standard errors. Model misspecification
leads to biased estimates and reduced coverage probabilities.

4. IBCSG Ludwig Trial V Example
Recall the IBSCG Ludwig Trial V mentioned in the intro-
duction, where adjuvant chemotherapy was aimed towards
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eliminating undetected tumor sites after surgical removal of
the primary tumor.

Of the 1229 patients in the study, we focus on the subgroup
of 715 premenopausal women, age range 24 to 60 years, and
mean age at enrollment of 44 years (SD = 42). Of them, 240
were in the short-duration (SD) treatment arm, while 475
were in the long-duration (LD) treatment arm. With toxicity
period (TOX), cancer relapse period (REL) and truncation
time measured in months, the mean of the QOL-adjusted 60-
month-restricted survival time QTWiST (60) is the version
of QTWIST = µTOXTOX + TWiST + µRELREL based on
60-month-restricted overall survival data, where µTOX, µREL ∈
(0, 1] are utility scores assigned to the toxicity and the re-
lapse periods, respectively. Throughout this example, we em-
ploy µTOX = 0.5, as was used in the analyses by the original
authors.

Investigators were interested in learning how the mean
of the QOL-adjusted 60-month-restricted survival time
QTWiST (60) is related to several factors of high clinical
importance such as treatment group (SD vs. LD), estrogen-
receptor ER status (positive or negative/unknown) and tumor
size measured in centimeters (greater than 2 cm or not). The
results are presented in Figure 1 depicting a three-panel plot
containing coefficient estimates for the variable of interest in
univariate regression models, when µREL ∈ (0, 1] and µTOX =
0.5. Throughout, the identity matrix was used to model the
working correlation matrix.

For clarification purposes, let us describe the findings in
detail. Figure 1a presents a sensitivity analysis of the esti-
mated treatment effect when the outcome is QTWiST(60) on
the log scale. Treatment arm coefficients are positive through-
out, indicating that the LD treatment arm patients have sig-
nificantly higher QTWiST(60) values than those in the SD
treatment (reference group), even increasingly more so for
higher µREL utility values. Figure 1b shows that there is no
significant ER status effect on QTWiST(60) for the entire
range of µREL utility scores. Results involving the tumor size
effect are shown in panel (c). When patients with tumors of at
most 2 cm form the reference group, the coefficient estimates
are negative throughout, indicating that a greater tumor size
is associated with a lower QTWiST(60) value. Giving higher
utility values to the REL period leads to a slight attenua-
tion of the tumor size effect, but the significant advantage
of having smaller tumors is still preserved. These sensitivity
analyses can be used by the investigators as a starting point
in understanding the complex relationships between QOL and
quantity-of-life in breast cancer patients.

5. Discussion
The methods developed in this article provide useful tools
that allow an investigator to assess, in a direct way, the ef-
fects of prognostic covariates on the mean of a QOL-adjusted
restricted survival time. Although Cox model-based regres-
sion methods are also available, they are not as user friendly
because they model the QOL-adjusted hazard function, an
object lacking a direct practical interpretation.

Since nonparametric methods are used, very few assump-
tions are being made in the process of obtaining pseudo-
observations. There is the added advantage that the Zhao and
Tsiatis-based components of the pseudo-observations have

been demonstrated to be asymptotically normal, further val-
idating the generalized linear regression approach to analy-
sis of the pseudo-observations. Translating a survival analysis
problem into a well-understood generalized linear regression
is beneficial on multiple levels. Computational simplicity is
gained because regression methods and techniques are im-
plemented in many statistical packages. Model-checking tech-
niques for generalized regression models are plentiful and ar-
guably easier to apply and interpret than those for censored
survival data.

Due to its simplicity, the pseudo-observation approach has
wide appeal to complex survival analysis problems. One pos-
sible future application of the current method is to incorpo-
rate covariates in the context described in Andrei and Murray
(2006), where the QOL-adjusted gap time distribution of suc-
cessive events is estimated. With covariate adjustments, one
could examine, in even greater detail, the complex relation-
ships among successive landmark events, gap time joint or
conditional distributions, and QOL scores.
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