T HE UNIVERSITIY O F MICHIGA AN

Technical Report 19

Multiprogramming in a Small-Systems Eanvironnment

David L. Mills

CONCUMP: KResearch in Conversaticnal Use of Computers
F.H. Westervelt, Project Director
ORA Project 07449

supported Ly:
ADVANCED BESEARCH PROJECIS AGENCY

DEPARTMENT OF DLFENSE
WASHINGTON, D.C.

CONTRACT NO. TLA-49-083 035A-3050
ARPA ORDER NO. 716

administered througn:

OFFICE OF BRESEARCH ADMINISTHATION ANN ARBOR

May 1969

dultiprogramming in a Small-Systems Environment

ABSTRACT

This report discusses multiprogramming systems
architectures suitable for use with small machines ot the
PDP-8 class. Techniques tor task and I/0 device scheduling,
storage and device allocation, buifter and timer management
and command languaygye interpretation are discussed in detail.
Illustrative inplementation detaills are freely drawn from a
tollow-on version of KAMP, a uwultiprogramming system now
used in several appiicaticas 1invclvang process control,
message switching and terminal ccnticl.

This report was prepared using FOKMAT, a computer
program in MTS, the Michigan Terminal System. This progranm
is described in: Berns, G.M., Description_oi FORMAT, a_ Text-
Processing _Program, Connm. ACM, 12, 3 (Maxrch 1969), pp.
131-146. The text was entered to this program partly in
punched-card zrorm and partly directly <from a typewriter
terminal and was printed on an IBM 1403 printer equipped
with a TN print train.

Multiproyramming in a Smali-Systems Environment

TABLE CF CONTIENIS
LIPS © 11 o of o Y6 R Yok o5 W'e) ¢ g |
2. Operatiny ENVICONMENL ..caccasacesssnsosnaccssseannnesal
3. Basic Concepts and DefilnitiONS eceecesssasnssceccncaana)d
4. Basic System ACChiteCture .cceceecescencnacsnncassassal
4.1 Task-T1me OpPeratiONS .cececessessccsssmcamacccacnaall
4.2 Real-T1me OpPEerAatlONS eecevwsssmesssssssncsscscnnnaelD
4.3 Input/Cutput OpPErat 1ONS eeseeesvesonsamscesssnsncanel/
4.4 Storaye AlIOCAtiON wewceecosssssacssnsescssassancsnsell
4.5 Burfer MANAJEMENT ecaeeceensesnssccssevscsansnsnnsell
D Comlidlid OPELALIONS esseevecesccssessscssssscssnasencannssoadd
9e SpeClal UPEratlONS eeeceseasscsnssensenssnssscnssasanesd]
6.1 Device AlIOCAtION eceecsesascncsnsnssnensssssssansI]
6ol Input/Cutput Ut1litieS eeescessascsennsssesuscnneaedll
6.3 Interval Timer and Time-0f-Day ClOCK eeccensncess3d
v.4 System Initialization and Configuration eeceess+-+39

70 Re‘.erenceﬁ aa.-nzo.-no..s.tm.‘-tn-.nnuuﬁcosotau.n-.c.-““

Multiproyramming 1in a Small-Systems Environment 1

1. INIRODUCTIGN

This report describes further developments of the RAHP
system, a multiprogramming system designed for use in small
machines of the #¥DP-8 class for operation 1in real-time
processing envircnments. The old kKAMP systems, described in
Refereunces 1-4, have been used extensively 1in process
control, messaye switching and terminal control
environments. The development of the new system, called
nere siaply "new RAMP,™ has resuited in a greatly enhanced
taroughput and a much more attractive 1interface to which
speclal-purpose Jjob-proyram subsystems can be attached. In
addition, the new system 1ncorpcrates a general storage
allocation technigue which provides both tor the dynamic
loading of page-relocatable job-program subsystems and for
the temporary storage of ccntrcl 1ntformation and I/0
butrers. The concept of task, program, and real/task-tinme
processing 1s gliven more precise definition 1in the new
system; and tne 1nterface to aevice service routines is nade
wsuch simpler and mwmore powertul. Finally, I/C nmessaye
transmissions are accomplished in a record-oriented rather
than a byte-oriented tashion, so that high-speed 1/0 devices
can be efriciently connected and sc that proyram loading can
proceead directly to core memory rather than thrcugh an
intermediate bufter.

Although the primary implementation goal 1in the new
RAMP systea was 1ncreased throughput and flexibility as
compared to the old system, the development of the new
system has Dbeen different enougnh rfrom the old that it is
presented here in_toto; ana familiarity witia the old systenm
15 not assumed requisite 1in tne exposition. Furthermore,
although both the new aud the old systewns were coded for the
POP-8 rawily of machines, the 1inplementation techniques
described here are obviously not restricted for use on this
machine, but are appropriate for use con any "small" machine
requliring 1/ interrupts on a4 character-by-character basis.
In tact, 1t will develop that many of the construction
technigues 4are really special auaptations of those used in
larger systeums.

1. Introduction

2 Multiprogramming in a Small-Systems Environment

2. OPERATING ENVIRCNMENT

Although the emphasis in this 1report 1is on general
systems architecture and implementation techniques, the
prinicipal interest 1is in multiprogyramming systems for
relatively small systems such as those intended for process
control, message switching and terminal control
appiications. in general the hardware architecture of the
machine itself is assumed given; and no special equippent is
postulated especially for 1its use in a multiprogramming
environment. The goal of the presentation here 1is then a
specirication of attractive and useful system organizations
which allow a general-purpose machine of very nodest
capabilities to operate efficiently in a multiprogramming
environment.

Througaout the subsequent discussion a hypothetical
machine will be assumed whose characteristics are typical of
a number of small general-purpose machines currently on the
warket. Obviously, some of the characteristics assumed are
influenced py certainly the most popular of these machines,
tne PLP-Y; and 1indeed, the particular implementation most
often referenced 1invclves this machine. However, the
implementation techniques discussed are obviously not
restricted to systems involving this particular machine.

The hypothetical machine considered here hnhas a basic
core memory kank of perhaps UK twelve- to sixteen-bit words.
The supervisory system 1s expected to occupy perhaps a
Juarter to a half of this. The various Job—-progranm
subsystems, designed to perform the specialized processing
unigue to «e€acn application, occupy the remainder of the
basic memory bank and perhaps additional add-on memory banks
as well. Systems now in use involve PDP-8 systems of from
one to four 4K-wcrd memory banks.

The bdasic machine 1s assumed to include a rather fast
central processing unit (CPU) of a limited instruction
repetoire. As will be illustrated below, a slower CPU
processing speed cah be excnangyed for a more sophisticated
1/0 structure, depending or course on the application. An
accumuiator (AC) program counter (PC) and the various
memory-bus registers are assumed dintegral to tne CPU of

course; but extended arithmetic «capability (high-speed
multiply/divide) and index Tregisters are not necessarily
assumed avaiilianle, Al 1ndirect-addressing capability is

requisite, as well as the logical operations of "and" and
"one's couplement" and the arithmetic operations of
"addition" ana "two's complement", or any eguivalent set. A
minimal set of conditional-skip instructions, a branch
instruction and subroutine-iink instruction are necessary ot
course. These assumptions define a machline whnich can be

2. Operatinyg Environment

Multiprogramming in a Small-Systems Environment 3

argued is tune smallest usetul machine larger than a Turing
machine. Table 1 1illustrates a comparison of a few
currently-available machines in this class..

word Mem Mem Inst Work Page Comments
Size Size Cyc Cyc Reygs Size

Digital Equip.

PDP—-8S 12 40396 & 42 1 128 serial
PDP-8 12 4096 1.9 1.5 1 128 sup. PDP-8I
PDP-7 18 40%6 1.75 3.5 1 8192 sup. PDP-9
PDP-9 138 8192 1.5 1.5 1 8192

PDP-15 18 4096 .8 - 2 4096 1 index
Interdata

Model 3 16 1024 2 - 16 32768

Data General

NOVA 16 1024 6.5 H.5 4 256 2 index

SEL

310 1o 4090 1.75 - -

Data Machines

6201 16 1024 1.8 3.6 3 2048 nicropgm
5DS

Sigma 2 16 4096 - - 8 256

Table 1. <Ccmparison of Small Machines

The typical application of small multiprogranming
systenms envisioned here includes a good deal of 1I/0
activity; and 1inaeed, the only significant activity
performed by the system may be of tnis nature. Accordingly,
tne specitication of the I/0 intertace ot the hypothetical
machine 1s crucial but ot necessity highly tailored to each
individual application. A typical speciftication will be
assuimed here; more detailed descriptions of actual systems
can be touna in the references at the end of this report.

Ihe hypothetical machine 1s assumed to contain
facilities for a program interrupt at a single priority
level. That 1s, it the i1nterrupt system ot the machine 1is
enapled, then a simulated subroutine branch will be taken to
a fixed location in memory when an interrupt condition
becomes pendiug. A set of instructions is assumed available
to test each 1/0 device status and to initiate operations on
these devices. The bulk of all 1/0 data traunsters is

2. QOperatinyg Environment

4 Multiprogramming in a Small-Systems Environment

assumed to occur on a character-by-character basis, with an
interrupt occuring for each character transferred. 1In sone
ejuipment data transfers can be performed on a cycle-steal
basis; that 1s, directly to and from memory and an I/0
device. A richer I,/0 hardware architecture, possibly
including circuitry to resolve the priority and identifying
code oi the various interruption conditions, <could very
easily be added to the hypothetical machine, but our main
interest here 1s in the "barest-bones" architecture.

2. Operatiny Environment

Multiprogramming in a Small-Systems Environment 5

3. BASIC CONCEPTS AND DEFINITIONS

A program is simply a ccllection of subroutines which
operate wupon a set of data. Cur interest here is in a
system which includes several such programs, each of which
may be executed in scme sense independently of the others,
but only one of which 1is in actual control of the machine at
any particular time. Cne .of these programs, the supervisor,
is made responsible for the «coordination of the various
programs in the system and the operation of the scheduling
algorithr which determines which of these will next be given
control of the machine. In general the supervisor is made
responsible tfor the coordination and the allocation of all
ot the various syster Tresources such as processing
facilities, core storage and 1/0 devices.

A task 1s a program together with 1/0 device
assignments and storage allocations which constitute a
record of 1ts physical state. In most RAMP systems the
number and contiguration of the programs are usually fixed,
altnouyh some of the systems c¢an sustain dynhamic loading
operations. However, 1n ali systems, the 1/0 device
assiygnments and storage allccations can vary dynamically
duriny operation, so that the existence of a task can be
considered synonymous with the existence ot these
assignments.

As control is passed amongy the various tasks 1n the
system, the state of each task 1s preserved in a special
plock ot storaye cailed the task_ccntrol _block (TCB) (see
Fijure 1). Information stored in the TCB i1nciudes at least
the 1nstruction address at which the task was last
suspended, ana jresurably is the aadress at which the task
will be restarted when 1t 1s once again given control of the
macnine. Depending upon the architecture of the particular
system 1involved, other informaticn stored in the TCB wmay
include certain machine registers, I/0 device assignments
and storage ailoccation assignments.

Obviously, the association ot a TCB to a program and
tne data 1t orfperates upon 1is highly arbitrary and can be
maintained by pointers stored in the TCB itself. Thus there
is considerable justitication, when describing
multiprogyramming systems, to subordinate the usual ccncepts
of program and data to that ot the task and its TCB, which
reflects the current state of the processor as seen by the
progranm.

As each task 1s yiven ccntrel by the supervisor, the
macnine state peculiar to that task is restored using the
data stored in tue TCB as ot the last time that task was
suspendeu, and processing continues 1n the usual manner.

3. Basic Concepts and [efinitions

6 Multiprogramming in a Small-Systems Environment

When processiny of this task 1s temporarily suspended for
some reason, possibly pending compietion of a time-dependent
operation, then the state of the machine is stored 1in the
TCB and processing continues with the next task awaiting
activation. Rescheduling of the suspended task 1is a
function of the system architecture and depends upon whether
the suspension was initiated upon request by the task or as
the result of a4 hardware interrupt.

pmm——————— e +
| LINK TO NEXT TCB |
pmm———————————— ———————— +
| LINK TO CALLINs TCB |
o —————————————— e — +
| LNSTRUCTION ALDRESS |
pmm—————————— e e - ———

| |
+ DEVICE TABLE PCINTERS +

e ——————— e e e — +
| |
+ PARAMETERS +
| |
o —————————————— +

Figure 1. Task Control Elock (TCB) Format

The usual RAMP task-scheduling procedure consists of
arranying the TC3's of the system in a first-in-first-out
Jueue and chaining eaca TCB to the next in this queue. The
task-scheduling frocess then considers each TCB 1in turn so
that, it the task in control of the machine at a particular
moment is considered tc have highest priority, then, when it
is suspended, it can be considered to have lowest priority.
dany other retfinements are possibtle to this scheme, some of
wnlch are descrited 1n the next secticu.

Multiprogramming systems have traditionaily been
cateyorized as true multiprocgramming systems where
processing of a yiven task may continue 1ndefinitely or
antil explicitly indicated by a <call on the supervisor,
perhaps as a rejuest for some I,/0 operation, and as
timesharing systems, where processing of a glven task
continues until explicitly indicated or until a preset time-
slice interval has expired. Once the time-slice interval
has expired, the task 1s suspended and other tasks are
processed as required until the task in question is again
re-activated by the supervisor, at which time it 1s again
glven 1its preset time slice. As can be seen here, apart

3. Basic Concepts and Derinitions

Multiprogramming in a Small-Systems Environment 7

from the details of task scheduling and the mechanism of
timer interrupts, there is no fundamental difference Lketween
true multiprogyramming systems and timesharing systems and no
artificial distinctions will be drawn Dbetween them
henceforth.

In summary, in these introductory sections, the gross
organization of the architecture of RAMP-1like
multiprogramming systems should be apparent. In subsequent
sections various implementation tecnniques will be discussed
and examples presented. It should be emphasized, however,
that the exposition here does not attempt to describe
detailed specifications or calling sequences of the various
systems, but ratner to describe ounly the architecturai
cnaracteristics and primary functional components.

3. Basic Coilcepts and LCefinitions

8 Multiprogramming 1in a Small-Systems Environment

4. BASIC SYSTEM ARCHITECTURE

In typical muitiprogramming system operation am active
task runs until an interrupt occurs or until a time-
dependent supervisor operation is requested by the task. 1In
either case the supervisor is required to save the active
registers and machine status in the TCB for that task and to
schedule the next task to be activated. In the most general
case involving timesharing ojperations there may be several
queues maintained by the supervisor for the purpose of
scheduling access to system resources such as I/0 devices,
bulk memory and processing time; and the algorithm for task-
scheduling follcwing an 1nterrugpt may be exceedingly
CompieXe. ln particular, the next task to be executed
tollowing an I/0 interrupt may not be the task in which tne
interrupt occureda.

In most large-scale multiprogramming and timesharing
systems the proyrams themselves are coustructed so as not to
modiriy themselves during execution. In such systens
several tasks may share the same program and store the
temporary information unique to €ach task 1in the TCB for
tnat task. In a small system invclving a machine with no
index rcyister this type ot operation may be exceedingly
awkward, since @many of these machines typically store the
return link tor a subroutine in the subroutine code 1tself.
accordingly, a mecdified view of the typical multiprogramming
systew 1is needed 1in which a particular task caunot be
suspended until all of its state-dependent return links and
index pointers have been saved in the TCB.

In yeneral, the philosophy inherent 1n the various RAMP
systeas has been tc require the programming tunctions of
cach task to be responsible for these operations and to
indicate to the supervisor precisely those points at which a
task-scheduiing operation caun occur. As an 1implication of
these architectural requirements, the 1/0 1interrupt
processor is reguired to explicitly schedule on the CPU
queue those tasks whichh have beccme suspended awaiting the
completion of some time-dependent operation. Only when the
task 1n which the interrupt was taken becomes suspended as
the result ot an explicit supervisor operation will tne
scheduled task become eligible for re-activation.

This construction leads to a btimodal classification of
processing as rreal-time 1in which only 1interrupts are

serviced and tasks may be scheduled, and task-time in which
normal task operations can occur. The real-tiase processors
are assigned a reserved set ct tempcrary storage locations
and are designed to be activated by a hardware interrupt or
subroutine call (with the interrupt system masked off) and

to return directly to the cailinj task-time routine. The

4. Basic System Architecture

Multiprogramming in a Small-Systems Environment 9

task-time processors share a reserved set of temporary
storage 1locations disjoint from the real-time set, of
course, and are designed to be activated by and return to
the supervisor.

In a KAMP system machine ccntrol is passed among the
various TCB's 1n the CPU gqueue c¢n a first-come-first-served
basis. A particular task, once given control, is said to be
active and will run until some time-dependent supervisor
operation is requested, the completion of which presumably
1s predicatea pefore execution can continue. At the time
such an operaticn is requested, 1its TCB 1is placed on a
specilal Jueue depending aigon the type of operation
requested. At this point the next task on the CPU queue is
activated and control 1s passed to that task. Operation
continues 1n this manner until scme task 1s interrupted to
signal the ~completion of the operation. At this tinme
control 1is passed to the reai-time processor responsible;
and, followiny 1its completion, the interrupted task is
restarted trom the point of 1nterruption. The 1interrupt-
processing subroutine 1invoked in such a manner has the
responsibility ot removing the TCB trom the special queue
and scaeduling it on the CPU gueue. The TCB is now said to
be 1in the pending state. When the pending task again
becomes active, task-time prccessing of the 1/0 operation
can continue.

Now an cbvious refinement to this simple system model
would allow <certain subroutines to be shared amcng the
various tasks. Such subroutines can contain references to
parameters and temporaries residing in permanently-allocated
scratch storage shared by all tasks in the systenm. If a
task can Dbe suspended 1n the sense of the preceding
paragraph, then 1t may happen that scme of these parameters
and temporaries would have to pe saved during the suspension
interval while, presumably, other tasks may make use of
them. In a RAMP system these parameters and tesmporaries can
be saved 1in tne TCB 1itself; but 1t 1s the program's
responsibility to determine which to save in each case and
to pertorm tane actual copying ofperations. Certain systen
conventions and utility subroutines streamline this process,
however, and in such a way as to provide an 1nherently
recursive construction.

A RAMP routine can be classitied by the way in which it
can be shared by the various task invocations. At each
point 1n the code a certain state of the 1invokinyg TCB,
common temporary storage and machine registers 1s assumed.
If this task_state is iundependent of the state of the real-
time system and the common scratch storage allocated to the
real-time system, then the routine 1is said to be
interruptable at that point, and presumably the naraware can

4. Basic System Architecture

10 Multiprogramming in a Small-Systems Environment

be unmasked for real-time interrupts. A routine operates in
the task-time state if it 1s interruptable at some point and
1n the real-time state if it is nct. If the task state 1is
independent of a prior use oi the routine by this or another
task, the the routine 1s designated serially-reusable at
that point. It the task state 1is 1ndependent over a
suspension interval during which the routine can be shared
by another task, then the routine is designated re-entrable
at that point.

A tasx—-time routine will never alter real-time
temporaries or call real-time routines without first masking
off the interrupt system. If a task-time routine makes use
ot shared scratcn storage to save 1nformation over a
suspension interval, it 1is by necessity not re-entrable
duringy that 1interval and cannct be entered by any other
task. All temporary storage used by a re-entrable task must
reside 1in the TCB for that task c¢r in storage allocated by
and belonging to that particular task invocation. Serially-
rceusable routines typicaliy make use of large amounts of
temporary storage which are 1impractical to replicate for
each 1nvocation separately. Routines that cannot obey even
the serially-reusable criterion are only useful after a
tresh program load, of course, and are not usually part ot
the multiprogyramming system at all.

Althougn, in the current implemeatations, the Dbasic
AAMP supervisory system contains c¢nly re-entrable routines,
a4 practical job program can contain a collection of both
serially-reusable and re-entrable routines, depending upon
frequency oi use, temporary storage requirements and other
such factors. A mechanismp must be provided tor each
serially-reusable routine to avoid entry by one task when it
is peing used by another. Mechanisms for tnis are described
1n the rererences listed at the end c¢f this regort.

during normal system operation tasks are created,
executed and destroyed —routinely and often. In order to
economlize oh the storaye used by the various tasks, the TCB
4nd parameter regions are dynamically allocated and released
45 each task is created and destrcyed. A task is created by
an explicit sutroutine «call, presumably on the part of
another invoking task. The invoking task 1s here called the
motnher task, and each of her invoked tasks are called her
daughters. As implied, a mother task can create any number
ot daughter tasks whose operations then proceed in parallel
with those of the mother task. Optionally, however, the
mother task cau 1nitiate an explicit operation in such a
manner that, once a daughter task has been <created, the
executicn of the mother task is suspended and is restarted
only wnen the gaugnter task has conmpleted all processing.
Sucn an operation can be specified tor only one daughter

4. DBasic System ALchitecture

Multiprogramming in a Small-Systems Environment 11

task at a time. These operations are also possible in other
systems recently described.

In summary, and before proceeding with a detailed
description ot the various system operations and the
construction of the various gueues, the configuration of a
RAMP system at any time during ofperation can be viewed as a
collecticn ot TICB's one ot which is in active control of the
ceu. TCB's are scheduled on the various queues as the
resuit ot reai-time interrupt processing or as a result of
explicit supervisor cperations. Routines can be shared
between the various tasks in a 1limited fashion degending
upon tneir use of common routines and scratch storage.
Finally, and most 1importantly, a real-time interrupt
operation 1is constrained to restart the interrupted task at
the point of interruption and no task-switching operation is
allowed as a result.

4.1 Task-Time_ UOfperations

In the absence of time-dependent events, execution of
tasks 1in a KAWF system 1s on a first-come-first-served
basis, with control beinyg passed to €ach task 1in turn one
atter the other. TCB's for tasks awaiting execution are
held on the CPU_gueue and these are described as being 1in
the pending state. When a task-switching operation cccurs,
tne next TC8 on the CPU jueue 1s removed from the gqueue and
execution commences at the 1lnstruction address indicated by
an entry in the TCB (see Figure 1). A task 1in this
condition 1s described as being in the active state. It is
possible under certain couaditions when an asynchronous
attention 1s pending that a task ke in both of these states
at the same time, that 1s penaing on the CPU gueue and
active 1n execution. Once a task becomes active 1its
@xecution continues until one of ftour events occurs:

1. The task terrinates operations and returns control
to either its mother task or to the system. The
tormer behavior is possiktle only 1f the mother
task in question has initiated a WALT operation
(see below) tor the active dauyhter task. The
latter tehavior occurs 1in all other cases. 1In any
case, the task termination procedure causes the
TCB storage claimed by the active task to be
released.

2. The task creates a daughter task using the INSERT
operation followed by a WAIT operation. This
causes the executicn ct the mother task to bpe
suspended peudiny coampletion of 1ts daughter task
activity. During the waiting interval the wmother
task 1s saild to be in the dormant state. It is

4. Basic System Architecture

12 Multiprogrameing in a Small-Systems Environment

possible under certain circumstances that a task
be in both the pending and the dormant states or
in the active and dormant states at the same tinme.
These situations can occur only when an
asynchronous attention is pending.

3. The task encounters a temporary busy condition
which 1s expected to last a long time ccmpared to
the i1nstruction processing time but a short tine
compared to the CPU gqueue processing time. 1In
such a situation a special BUSY or REQUE operation
(see below) can be initiated, which results in the
TCB being placed at the end of the CPU queue.
When this TICB next becomes active due to normal
task processing, the task 1is resumed at the
current instruction address specified.

4. The task initiates an I/C operation on a device.
In such a situation the TCB 1is placed on the
appropriate 1/0_gueue (see below) associated with
the device. A task in this condition is described
as being in the blocked state. Presumably an 1I/0
interrupt will occur at some future time and the
TCB will again be scheduled on the CPU queue.

In the latter three of these four cases, once the
active task has been placed 1in the dcrmant, pending, or
biocked state, the next task pending on the CPU gqueue is
made active and processingy continues in that task. In the
tirst case, where the daughter task returns to its mother
task, execution continues 1n the mother task without
interruption due to a task-switchiny operation, and in
particular without placing the TCB of the mother task on the
CPU queue. Where no mcther task is waiting for the active
task 1n question, the active task aisappears entirely and
the next task pending con the CPU queue is made active.

Figure 2 1llustrates a typical configuration cf a RAMP
system 1n which one task 1s in execution (active), some
tasks are awaiting execution {(pending), one is waiting for
1ts daughter task to ccmplete processing (dormant), and some
are waiting tftor the ccmpletion of an 1/0 operation
(blocked) . keferring to Fiyure 1, note that the first word
in each TCB 1s always used as a pointer to the next TCB on
some queue or cther and that the second word is always
either zZero or a pointer to tne TCB of a mother taske. The
third word 1s wused as the 1instruction address at which
execution will re-commence when the task 1s dagain made
active. witn thilis organization note that a TCB may be
Claimed 1in only one queue at a time and that it may be
waiting Ior c¢nly one daughter task at a time. Furthermore,
no matter what the condition is that <causes the task to

4. Baslc System Architecture

Multiprogramming in a Small-Systems Environment 13

become active, execution <can begin only at the current
instruction address. Finally, the only ways a task caa
become active are either through the aormal CPU queue
processing or as a result of a return from a daughter task.
The fact that these two operations can be independent of
each other will be important when the asynchronous attention
operation is discussed belov.

$m———— + $m————t $—————%
CPU Q ==>| X==#=————w—==>| X=—=#——-————-=—=>| 0 |

VU | X=—t———=t I 0 |

| | i | | | |

pm————— + pm———— + | $—————t

PENDING PENDING | PENDING

|
|

$—————t pm————t | $—————t
1/0 Q ==>| X-—t——————=- -=>} 0 | t——-=>1 0 |

I 0 I 0 | I 0 |

| | i l | |

pm———— + pm———— + pm————t

BLOCKED BLGCKED DCRMANT

$m————t

10

I 0 |

| |

tm————t

ACTIVE

Figure 2. RAME System Operation

The various task-scheduling orerations are irplemented
in the present RAMP systems as a collection of subroutines
and entry points. Since these operations make heavy use of
the dynamic storage allocation routines, which are
constrained to operate in task-time, tasks can be created
and destroyed only in task-time. However, a blocked ICB can
be scheduled on the CPU queue in real-time using a
subroutine designed tor this [Furpose. In the present
implementation ail of the task-scheduling operations are
contained on a single 128-word page or PDP-Y memory. In
this implementation ail TCB's must lie in a silngle core
pank, which 15 declared by an assembly parameter. The
vperations provided are described below:

INSEKT - A task-time suproutine wnich allocates a TCB
ot specified lenytn, schedules i1t last on the CPU

4. Basic System Architecture

14 Multiprogramming 1n a Small-Systems Environment

queue and presets the first three words as the CPU
queue link, the return 1link and the 1initial
instruction address (entry point) respectively.
Both the CPU queue link and the return link are
set to =zerc by this subroutine. If a WALT
operation is initiated following the INSERT
operation, the return link is set as a pointer to
the TCB which initiated the WAIT operation. Upon
return from the INSERT subroutine an auto-index
register 1is set as a pointer to the allocated TCB
so that device table pointers and parameters can
be easily copied. The length of the TCB regquested
is given upon entry to the subroutine. A special
exit indicates that 1insufficient storage 1is
available in which tc ccnstruct a TCB of the
requested length.

CHAIN - A real-time subroutine which schedules the
indicated TCB on the CPEU queue. The cailing
sequence is designed to be convenient 1in cases
where a TCB is to te removed from an I/0 queue and
scheduled on the CPU queue.

RETURN - A task-time entry pcint which causes the TCB
of the calling task to be returned to the
allocatable storage pocl and control to be passed
to the mother task (if one exists) or to the next
task on the CPU queue {if not). Return is made to
the mother task without a task-switching
operation, so that aryuments can be returned to
the mcther task 1n common storage areas. A
particular word is designated as the return code
and may be used to transmit optional information
to the mother task.

REQUE - A task-time entry point which causes the TCB of
the calling task to be scheduled at the end of the
CPU gueue and await its turn next to be activated
by the supervisor. Thals entry point is used when
a system resource such as core storage temporarily
cannot be acquired by a task, which by convention
then retries after all pending tasks on the CPU
Jueue have been activated.

BUSY - A task-time subroutine (no return) which causes
the sare action as the KE(UE operation except that
the instruction address in the TCB is «changed to
point to the next word following the BUSY
subroutine call.

DELETE — A task—-time entry pcint which simply causes
the next TCB 1in the CPU gueue to be scheduled

4, Basic System Architecture

Multiprogramming in a Small-Systems Environment 15

without affecting the TCB oif the <calling task.
This action is used after a task has been tlocked
on an I/0 queue.

dhenever a task 1s made active by the supervisor a
switch 1s set so that the task can determine whether the
entry was due to CPU queue processing or due to a return
trom a daugbhter task. - The distinction 1is important in
connection with the asynchronous attention (see below).
Also, by convention, certain fields of the TCB are stored in
reserved locations whenever a task 1s activated. Most
commonly (but not necessarily) these are used as device
taple pointers for the assigned I/C devices.

4,2 Real-Time OQOferations

By definiticn, real-time operaticns occur only when the
system 1s disabled for 1nterrupts and are not subject to
task-switching ogerations. The construction of the real-
time system is therefore <ccrpletely conventional and
temporary storaye allocations are straightforward. Most
devices attached to the various RAMP systems sustain
transmission on a character-by-character basis, and generate
an I/u 1interrupt for each character transmitted. A few
devices sustaln transmissicn on a Dblock-transfer basis,
usiny tne PDP-8 three-cycle data treak facility. Interrupts
are generated by these devices following the block-transfer
operation. An interrupt 1s taken by the CPU hardware when a
device interruption condition beccmes pending and the
interrupt system 15 unhmasked. The interrupt is taken as a
torced subroutine jump to location zero in memory, following
which each device must be interrogyated in turn to identify
tne one reyuesting service. Following 1identification, the
requesting device 1s serviced and the interruption condition
is cleared at tte device.

If (as is not possible on the unmodified PDP-8) it were
possible to selectively mask off interruption conditions at
the various 1/0 devices, then the interrupt processor could
be written 1n several 1levels, each higher level able to
interrupt a lower level, and so forth. If 1interruption
conditions must te masked off frcm scme devices but unmasked
in others itor the purpocse of establishing such a priority
ranking, then the masking nardware must be built into each
device separately. 1n one RAMP system intended for message-
switching applications, permissable device service delays
have been contrclled in this manner and through careful
design of the peripheral equipment.

It has proved convenient 1n the various RAMP systems to

construct the I,/0 interrupt system as a collection of device
service_routines, each of which services a givea device

4. Basic System Architecture

16 Multiprogramming in a Small-Systems Environment

operating with a given transmission protocol. A common
subroutine, called the interrupt __identifier is held
responsible for the identification of each device interrupt,
storing status information trom the device, clearing the
interruption condition at the aevice and finally calling the
appropriate device service routine. These operations are
driven by a set of delicately constructed interrupt ccntrol
block (ICB) tables (see Figure 3), which are designed so
that new devices car be added permanently or dynamically
with minimum changyes to the bLasic systen. Using this
nierarchy 1t 1s possible to assign transmissicn protocol
routines ratner 1ndependently to the actual devices 1in the
system. In this manner 1t 1is possible, at least in one
system, to specity any of several <ccmmunication protocols
for use on a single transmpission device.

o ————————— ————————— +
| SKIP/TEST I1ICGI |
o ———————— e e =
| LINK TU NEXT ICH |
formm—————————— ———————— +
{ READ/CLEAR ICT i
et +
| DEVICE TAB1E FCINTER |
e +
| DEV SERV RKOUT ENTRY |
D e

Figure 3. interrupt Contrcl Biock (ICB) Format

The structure of the ICB varies among the various
systems, and depends upon tihe peculiarities of the attached
1/9 eyuipment. In most systems involving only
teletypewriter, paper tape and "simple" control-unit
intertaces, the 1CB carn take the form of Figure 3; but, in
wore complex systems involving nigh-performance control-unit
interfaces, a much more complex structure has been
aecessary.

Fields 1n the ICB specify the device table pointer (see
foliowing section) and the 1nitial instruction address of
the device service routine. Upon entry to this rcutine,
reserved locaticns 1n common scratch areas are set as
pointers to contrcl blecks assigned to the device. Using
information tound in these blocks, the routine performs the
service indilcated, perhaps 1invclving restarting the 1I/0
device. Note that, using this hierarcny, the device service
routine can be called rrom a task-time routine (after first
mnasking otf the interrupt system or course) tfor the fpurpose

4. Basic System Architecture

Multiprogramming in a Small-Systems Environment 17

ot starting the I/0 device. This operation has been dubbed
the "tweak" 1n the current vernacular.

The general philosophy of I/C processing in the RAMP
systems has been to pertorm control and line-editing
processes 1n real-time device service routines using
predliocated bufters and a set of ccammon buffer management
routines. Most devices attached to the various systens
provide data transmission on a character-by-character basis
using an 1interrupt for every character transmitted.
Accordinyly, 1input real-time rcoutines assemble characters
serially from the the 1nput device as the interrupts occur
and place them 1in an 1input buffer, performing code
conversion and line-editing operations during the process.
Anen a recorda-ending character 1i1s recognized, the first TCB
on the input gueue is scheduled cn the CPU queue and the
corresponding task becomes pending. This task may take the
form of a tramsnission operation, which merely copies the
record fromr one device to anctner, or a processing operation
in which the record 1is interpreted as commands or data to
the appropridte job proygram. While the task-time processing
1s goiny on characters may ccntinue to arrive from the input
device for the next following record. In this manner
several records may be stored in an input bufter up to the
capacity or the buffer.

The buffering operation required here calls for a
carefully tailored set ot buffer management routines (see
Section 4.5) using a cyclic type of buffer construction in
wolch the buffer is allowed to "wrap around," so to speak,
30 that the next character put in the buffer following the
one at the highest buifer address will be at the lowest
bufter address. To racilitate these operations a standard
bufter _control _block (BCB) 1s maintained for each cyclic
burfer. The BCB for a butrer 1is usually allocated and
preset when storage for the buffer itself is allocated.

Since aost transmissicn oOferations 1involve storage
allocation 1in one form or another, a requirement exists to
Know the size ot a particular record before transmission
begins. For 1nput operations this 1s performed by the
bufrer management routines themselves such that the first
word read fron tne buffer tor eacan record is the length of
the record 1itself. If the 1nput record 1is to be simply
transmitted unaltered to an output device, then the address
Or 1ts BCB 1s passed to the cutput device service rcutine,
which then transmits the reccrd ana disposes of the input
ourfer as necessary. If the output record is generated by
tae system 1tselt, rather than as a direct result of an
input record, thnen the recorda size 1s computed by tne systen

4. Basic System Architecture

18 Multiprogramming in a Small-Systems Environment

prior to allocation of the buffer.

Each I/0 device attached to the system is identified by
a pointer to the device table, which contains a two-word
entry consisting of a unit control block (UCB) and a device
control _block (LDCB) pointer. These entries are initially
zero- vhen the device is unattached or not-operational and
are filled in when the device is enabled for operation (see
Section 6.1).

The UCB contains, among other things, the use count and
enable flaygs (in some systems), I/C gueue headers, status
words and switches, B8BCB's and scmetimes the buffers
themselves. The UCB storage 1is allocated only when the
device 1s enabled; otherwise no claim 1is wmade on the
aliocatable storage pcol. The structure of the UCB depends
not only upon the particular system implementation, but upon
the regquirements of the 1individual device as well.
Conventionally, however, the first three (and sometines
four) words of the UCB are similarly structured as shown in
Figure 4. For ease 1n dynamically enabling, disabling and
recontiguring I/0 devices, a special set of enable_tables is
estatlished ftor use by the system bootstrap and enable task.
These tables establish for each device type (that 1is 0CB) in
the system the extent and preset values assigned to the UCB
when the device 1s enabled.

pomm— e —————_——————————
| ENABLE CONTRCL |
o e o +
| ATTENTION I/0 QUEUE |
et +
| READ 1/0 QUeUE |
o e e +
| WRITE I,0 QUEUE i
$omm e ——————— e e +
| REC COUNT/REC SIZE |
o ————————— e +
| TASK-TIME SWITCHES |
e e - +
| REAL-TIME SWITCHES |
T e +
{ {
+ PARAMETERS +
| |
dom e e +

Figure 4. Unit Contrecl Block (UCB)

4. Basic System Architecture

Multiprogramming in a Small-Systems Environment 19

The DCB (see Figure 5) contains, among other things,
pointers to subroutines and state-transition tables used by
the device service routines. The mnature of the DCB
information 1s read-only and can be shared by several
devices which, nevertheless, are assigned separate UCB's.
In the current 1implementations all UCB's nmust lie in a
single core bank and all LDCB's must lie in a single core
bank. tiowever, the device table, the UCB's and the DCB's
can lie in different core banks as determined by an assembly
parameter.

e e
] ASYNCH TWEAK ENTKHY |
e
{ ASYNCH BLOCK ENTEY {
pmmm e +
i READ TWEAK ENTRKY }
i
| READ BLOCK ENTKY |
i e —— +
] WRITE TWEAK ENTRY |
pmm e m e ————— +
} WRITE BLOCK ENTKEY }
e e atttt §
| CONFIGURATION TABLE |
e +
] CONFIG KCUT ENTRY]
$mmm e ————— —————————— +

Figure 5. Device Control Biock (DCB) Format

The queue Leaders indicated in Fiqgure 4 are used by the
system as neads of I/0 gqueues, ana are assigned as the
attentaion, ianput and output gueues respectively. If an
input operation 1s pendinyg at the device then the input
Jueue 1s uonempty and simiiarly for an output or an
attention operation. An 1input operation is initiated by the
READ task, with the location of a BCB and the length of the
record given when the KEAD task returns to its mother task.
£ach 1nput queue then 1s a chalin through the TCB's of one or
more KEAD tasks, each of which 1s in the blocked state.
dhen a record-ending conditicn is recognized, the first TCB
in the 1nput queue 15 scheduled cn the CPU queue. When the
READ task 1s activated 1t establishes the BCB pointer and
computes the record count. Following return to the mother
task calls can be made on the system subroutine KLCASC to
fetch characters from the 1ingut burter.

4. Basic System Architecture

20 Multiprogramming in a Small-Systems Environment

An output operation is initiated by the WRITE task,
with the location of a BCB given as part of tne WRITE task
TCB. Each output queue then is a chain through the TCB ot
one or more WRITE tasks, each ot which is in the blocked
state. When a record-ending condition 1is recognized the
first TCB in the output gqueue is scheduled on the CPU queue.
when the WRIT: task 1s re-activated, the butfer-release bit
in the BCB 1s 1nspected. If it is set then the BCB and its
buffer are returned to the allocatakle storage foocl.

In contrast to those tasks blocked on the 1inpput and
output queues, those in the attention gueue are not
pecessarily in the blocked state, but may be in elither the
active or dormant states. The TCB's 1n this gueue are set
up by an explicit subroutine call and remain 1n the Jueue
until removed either when an attention signal 1s recognized
4t the device or by an explicit subroutine call. A task
whose TCB 1s flaced 1n the attention Jueue may create
daughter tasiks, wait for tneir ccmpletion, pertorm I/C
operations and in general carry om all normal processing not
involving the pending state. when an attention signal 1is
recognized by the device, the tirst TCB on the attention
jueue is schedulea on the CPU gueue and so becomes pending.
The coding within the job program can be arranged so that a
return from a daughter task 1mn the active state can be
differentiated from an entry initiated from the fpending
state, so that the attention «ccndition «can truly be
recognized as an asynchronous task interrupt. It is this
type of operation which causes those strange exceptional
situations mentioned in Section 4 involving a task being 1in
two states simultaneously.

Two attentiocn queue operaticns are provided 1in the
basic system:

SETATN - A task-time subroutine wanich links the TCB of
tne calier on the attention queue for the device
indicated as the tirst device table poianter in the
TCB (see Figure 1).

CLRATN - A task—time subroutine which unlinks the TCB
ot the <caller =rrom the attention gueue for the
device indicated as the first device table pointer

(see Figure 1) . A special exit from this
subroutine indicates when the TCB is not on the
attention Jueue, in which case it must by

deauction be pendiny on the CPU queue.

Note that the attention queue 1s constructed as a
first-in-last-out queue, that 1is, a pushdown stack. Taus
the most recent SETATN call detines the TCB to te scheduled
upon the recojnition of an attention coadition. Also note

4, Basic System Architecture

Multiprogramming in a Small-Systems Environment 21

that the inherent asynchronism between these operations and
the device operations require the special exit indicated in
the CLRATN subroutine. If CLBATN has been <called and
returns via this special exit, then an attention condition
is pending on the CPU gueue but has not yet been taken. The
coding in the various job programs becomes rather
interesting in such cases.

In summary, the real-time and input/output systems are
constructed of a collection of subroutines, each serving a
number of devices of similar type and designed to be invoked
by either the interrupt identifier or by a task-tine
routine. Each device attached to the system is assigned a
device table entry, which coantains pointers to the UCB and
DCB wnich contrcls and records status ror the device. Each
input real-time routine assembles and edits characters
serially using a common set of tufter management routines
and schedules a TCB on the CPU queue upon recogniticn of a
record-endinyg condition. gach output real-time routine
transmits characters serially from 1its output buffer and
schedules a TCB cn the CPU gueue wupon recognition of the
record-ending condition.

4.4 Storage Aliocation

It any subsystem can be identified as contributing the
most to tne capabilities of the RAMP multiprogramming
systems, it most certainly would be the dynamic storage
allocation subsysten. In the systems described here this
subsystem 1s used to allocate task coatrol blocks, buffer
control blocks, unit ccntrol blocks and the butfers used
both by 1,0 devices and sometimes for program residence.
I'he general technigue 1s outlined here; retfinements and
Jenerailzations are immediately apparent.

At any time during the operation of the system, storaye
is fragmented into many blocks, scme belonging to a task or
I/0 device, and some representing allocatable free storage.
Assume that the first word of each of the latter blocks
contains the displacement (in words) to the next block
following, that 1s the total size of the block. Now
construct a chain through all these blocks using the second
word 1in each Llock. This <chain 1s called the freespace
thread and is maintained in order by increasing block size.
when a block 1s allocatea to a task or 1/0 operation, all
words in tue block are available for use. If the tirst word
in the plock (the size word) 1s altered, however, it must be
restored pefore the block 1is returned to the freespace
taread.

The operation of allocating a block to a reguesting
task or I1/0 operation then begyins with a sedarch alony the

4. Basic System Architecture

22 Multiprogramming in a Small-Systems Environment

freespace thread for the smallest block just large enough to
satisfy the request (see Figure 6). If such a block is
found, then it is unchained from tke thread and split into
two subblocks, the first of exactly the size requested and
the seccnd of a size equal to the actual size 1less the
requested size. 1f the second subblock is of nontrivial
si1ze, then it is immediately reinserted on the thread at the
proper position depending upcn its size.

o —————————————_——— - +
| | <-- FREESP. THREAD
[FREE |
+--| |
[T e +
| |
i ALLOCATED |
(N |
| te—em—————— -——— ———t
+=> |
| FREE |
+--| |
| #———m— e +
o |
i ALLOCATED |
b |
| 4= e e +
(| }
[ALLOCATED
I |
| 4= +
+=21 |
| FREE |
| |
o ———— e +

Figure 6. Storage Allocation Operations

The operation of returning a block to the freespace
thread proceeds in three steps. 1n the first the thread is
3canned to find the block 1mmediately preceding the block to
oe returned, that is the block af the next LOWEr $5LCGIIGE
address. If one 1is fouud, tamen it 1is removed from the
thread and concatenated with the block to be returmed. In
the second step the thread 1is scanned in a similar manner
ror the next following block, that is the one at the next
nigher storage address. If one 1s tound, then it is removed
from the thread and <concatenated with the block to be
returned. In the third step the new block, which by
construction here cannot be preceeded or tollowed by a block

4. Basic System Architecture

Multiprogramming in a Small-Systems Environment 23

on the treespace thread, is inserted on the thread at the
proper position depending on its size.

This technique 1s designed to minimize the
tragmentation of storage into many small plocks, no cone of
which may be large enough to satisfy a particular storage
request. 1n the current implementation a set of routines of
this type have been coded in a single 128-word page of PDP-8
memory and execute in 0.3-2.0 milliseconds per
allocatesdeallocate <cycle, assuming randomly distributed
block <sizes to 128. 1In the current implementation blocks
can be allocated on any of several threads 1in any memory
pank, although each thread is ccnstrained to lie entirely
within one bank. Thus it 1s possikle to maintailin a number
of freespace threads with scre threads entirely contained in
plocks allocated tromx cther freespace threads. These
routines have been modified tc provide a storage-aliygned
allocation tftor fpurposes of prcgranm iocading on page
boundaries.

4.5 Burfer Management

Althouyh device transmission 1n a RAMP system 1is
specified on a record basis, most of the slcwer-speed
devices must transmit data ou a character-by-character
pasis. Furthermore, 1n the case cf 1nput Kkeyboard devices,
the input data stream must be edited on a character—-by-
character basis using special ccntrcl characters embedded in
tne 1nput data streaw 1tseilt. These requlrements are
sdatlsriea by a set of tufter management routines designed to
present a uniform 1ntertace to the various device service
routines 1n the systen. These routines can De called
directly in real-time ana, aiter masking off the 1nterrupt
system, 1n task time.

Most burters are structured as ¢yclic_ _buffers, such
that the next cnaracter fplaced 1n the buffer after that
character at the highest buffer address w1ll be at the
lowest turfer address. In those cases where the burfer and
1ts butter contrcl block (BCB) are reallocated bpbetcre every
record, this wrap around feature @may not be used. Such
burfers are callied linear_puftiers, although for purposes of
standardization they are described in the same BCB format.

At e€aca call on these rcutines a single character 1s
either fplaced 1n the buffer or removed from 1t or a sinygle
editiny cperation is pertormed. Upon exlt from any routine
1t may be determined whether the bufrer has overflowed,
underfiowed and, 1n some cases, whether this 1is first
cnaracter or last character 1in the buffer or whetner an
editiny operation was successiul or not. Except 1n the case
0ot tnose butters used in editing cperations, the characters

4, Baslc System Architecture

24 Multiprogramming in a Small-Systems Eanvironment

processed in a buffer are not interpreted in any way, so
that the full twelve-bit word 1s available for transmission.
in editing operations the high-crder (sign) bit is used to
delimit an end-of-record condition. The remaining bits are
not interpreted, however.

All buiter operations involve use of the buffer control
block, whicn is either four cr five words in length as shown
in Figure 7. The structure of the BCB permits its storage
allocation disjoint from its buffer, although the allccation
15 in tact constrained to lie in the same core bank. The
first werd of the BCB contains a flag (W) indicating whether
the burter nas wrapped around, a kit (R) used to determine
wnether the DBCB and 1its buftfer can be released following
transmission and a field containing the maximum size of the
butrer. The second word 1s a pointer to the last character
put 1into the butfer (put pointer) and the tnird word 1is a
pointer to the last character fetched from the buifer (get
pointer). The fourth word 1is the address of the first
character in the bufter (begin pcinter) and is used to reset
eirther the put pcinter or the get pointer should the buffer
wrap around.

The structure of the BCB and 1ts buifer differs
slightly between those buffers that are used in editing
operations and those that are not. For editing operatioans
an extra word 1s inserted at the teginniny of each record.
I'nis word contains the number oif characters stored in the
record and 1S computed automatically by the appropriate
editiny routines. The fiftn word 1in the BCB, used only
during eaiting operations, 1s a r[pointer to the first
character in the current record. This word may be onitted
from those BCB's not used 1n editing operations.

e kSt R ¥
| W)k} EUFFER SIZE |
e e e 4
] PUT FCOCINTEEK {
b ———————— e e +
| GET PCINTER]
Dt +
| BEGIN ECINTEL }
e ————————— +
] RECORD FOINTEK |
o ———————————— +

figyure 7. Eufter Contrcl Block (BCB)

4. Basic System Architecture

Multiprogramming in a Small-Systems Environment 25

5. COKMAND CPERATIONS

In almost all applications of the RAMP systens
descriped herein some kind of operator control of the systenm
is required. In very many or these applications a rather
delicate control ot system rparameters by relatively

untrained operating personnel 1s anticipated. It seens
Juite typical that the ccmmand ianyuage interface 1s the
most often-modified portion c¢nce the systen tecones

operational. For these reasons, the operational interaction
segments or the KAMP systems have received a caretul
development 50 that an easily expandable modular
construction coula be achieved at relatively 1low cost in
system size and operating speeus. - The command_language
inteipreter (CLL) is the basic subsystem 1n which these
operations are implemented and will be described 1n these
sections.

The CLI 1s 1mplemented as a task associated with an I/0
device, cailea the commana_source, which 1s allocated when
the CLI task 1s created. During cperation, the basic systen
operdational commands are assumea to originate via this
device. From time to time ccmmentary may be generated by
the system, either as a result cf commands entered via the
command source or as a [result of exceptional «conditions
recognized within the system. This commentary is produced
on an iI/C device, callea the command sink, which 1s assigned
to the CLI task on demand. In scme situations, namely tnose
involving ccmrunicaticns store-and-forward operations, a
third I,0 device, called the copy sink, may be assigned on
demand to the CLI as the destination ot all not-command
trarric Jjenerated by the ccmmana source. With this
oryanhization, a number of CLI tasks can pe outstanding at
any particular time, each one assigned to a particular
command source, scme of which possikly invoked by others.

4 special arygument 1s 1included 1n the task control
biock (TCB) assigned each CLI task. This argument is a set
of parameter switches which determine, among other things,
whetner the detault operation identified with the command
source is copy mode or commarnd mode. If the detault mode is
copy, then eacn input messaje originating via the command
Sodrce 1s transmitted unaltered to the copy sink wWwith the
tollowing exception: Each input message processed by the CLI
1s inspected ror tne selection code assigned the particular
system, usually an USASCII SOH-letter sequence. If the
selectiocn ccde matches, then tue message 1s processed by the
CLI itselt and 1s not propagated to the copy sink. If the
detault mode 1s command, then each message Jgenerated by tne
command source is processed by the CLI directly. A special
CL1 command is available to cause a particular message to
appear at the copy sSink.

5. Command Operations

26 Multiproyramming in a Small-Systems Environment

A command operation 1s specified completely as a single
record; commands are not normally continued on fcllowing
tecords. The syntax of a command is described recursively
as a keyword followed by a 1list of gperands which may
themselves be keywords with their own lists of operands. A
command function 1s identified with each keyword name; and
the arguments to this functicn are provided by the 1list of
operands, each of which 1is represented by a value. The
command function 1itself produces a value, which may be used

as an operand.

There are two syntactic torms for these commands, the
free form and the bound form, which are distinguished only
in the manner of separation of the operand-field elenents.
In the ftree form the operand-field elements are separated
trom one another and ftrom the keyword by one or more blanks
and the operand field 1s terminated by an end-ot-record
chdaracter. In the bound form the operand-field elements are
separated bpy special break characters, which are most often
commas and equal signs, and the operand field is terminated
by a blank. Missing or defaulted operands in the free form
are indicated by special symbols or reserved names; wmissing
operands 1in the bouna form are 1indicated simply by the
juxtaposition of two break characters. In some systens
special operana-field ccnstructions are prescribed which
regquire syntax specifications more ccmplex than these. Even
in these cases the syntactic form assigned to the fieid,
oace the scan has terminated on that field, 1is still a
ReyWoLd.

Now, the basic atomic element with which all commands
ate constructed 1s the keyword. A keyword can take the form
0of a segquence ot digits representing a numerical constant, a
sejuence of letters designating either a self-detining
constant or the name of a procedure which defines a value,
or a combinaticn of the twc. The vaiue of a numeric
constant is determined directly from the sequence of digits
using either binary, octal or decimal conversion alygorithms.
Ihe value of a letter string is determined by a table-lookup
search, as 1s the entry point assigyned to a procedure namae.

The values assigned to letter strings, the conversion
£adlx wused tor digit strinys and the various operand-format
riagys and privilege classes are stored in a tree structure
called the keyword _dictionary. The Lasic operand-field
scanner 1s a recursive subrcutine called the keyword
interpreter; and 1ts cperation is as follows: At a point in
an operand rield scan a fpointer toc a keyword dictionary
entry 1s malntained on a pushdown stack. This entry
establishes what torm of operand tield scan 1is allowed
(lrg1t stringy, letter string, self-defining constant or
procedure name), what privilegye class 1s required to access

5. Coamand Operations

Multiprogramming in a Small-Systems Environment 27

this keyword, what conversion radix to use in the conversion
of digit strings and, finally, a pointer to another
dictionary entry which establishes a list of letter-string
names which are valid in the operand fields of this keyword.
During the operand field scan numeric strings and self-
defining letter strings are converted and fprocessed as
found. If a procedure name 1is found, then the entire
process recurses and a new keyword dictionary pointer 1is
estaklished at the wentry corresponding to the procedure
name, in this fashion the tree-structured keyword
dictionary is interpretea as a function of the names of the
various procedures occurring in the operand fields and the
order ot thelr occurrence.

Corresponaing to each procedure name is a segment of
code in the CLI itself which lisplements the actual function
rejuired. These segments are usually small and consist of
recursive calls on the keyword interpreter, calls cn other
system subroutines and references to system variables. It
is clear from this description that new commands can be
added rather conveniently ana even that aictionary entries
ana procedure segments can pe added and deletea "“on the fly"
during system operations invclving dynamic loading and
overlay procedures. The keyword interpreter 1itselt occupies
about a paye of memory in the current implementation, while
dictionary entries are tnree or four words in length and
typical procedure segments are perhaps a udozen lnstructions.
I'ne Kkeyword interpreter calls wupon the input formatting
routine KRDBCD (see Section 6.2) tor all of its 1input text.
The various proceaure segments often make calls on the
output formattiny routines.

The task control block tftor the CLI itself contains
several parameters which establish among other things the
identity of the command source, command sink and copy sink.
Also 1ncluded 1is a word containing several switches and
small tields. The TCB tor the CLI task is shown 1in Figure
Oe

The fuil generality descrikbed in the preceding
paragraphs 1s not needed 1n all the various systems, of
course; and various subsets ot this general implementation
are found amony the several systems. In one particularly
interesting variant an internal line-structured text file
has been implemented 1in connection Wwith a text-editor
alyebraic language interpreter (Retereunce ©6). In this
iaplementation commands can be entered into the text file
via typical text-editing procedures and 1interpreted as a
separate operation. This editing/interpreting function
proved sc compact and useful that it has been 1iuncorporated
into other systems, notably the Lata Concentrator (see
dererences 5, 7). In this fashion it 1s possible to

5. Command Operations

28 Multiprogramming in a Small-Systems Environment

prescribte complex control procedures in a more ccmpact form
tnan in the basic machine language.

pmmm e}
| LINK TO NEXT TCB)
prmm e ——————————————— +
{ LINK TO CALLING ICB |
fmmm e e e
i ENTRY POINT i
e ————————————— +
{ CHMD SCU DEV TBL ETE |
o ————————————_—————— ¢
| CWML S5IN DEV TBL PTRK |
fmmm e ————_—————————— +
| CPY SIN DEV TBL PTR |
e Rttt St
| FLAGS | PKIV CL]BANK |
pmm————— pmm——————— pm———— +

Figure 7. Command Language Interpreter (CLI) TCB Structure

Althouygh not all the various KFAMF systems have the same
command repetoire and the same ccmmand syntax, naturally,
all have certain basic minimum capabilities, including those
to uaisplay ana alter memory lccations via the operator's
console. Those systems including the time-of-day clock ({(see
Section o.3) have the capability to set the time-of-day cell
from the operator's console in hours:minutes:seconds format.
Provisions are 1included im all systems including more than
one keyboards/teleprinter or high-speed reader/punch to
specity which of these devices is tc be used as the command
source, command sink and copy sink in any particular
operation. Some systems nave a complex hierarchy of
commands to enable and disable input/cutput devices and to
prescribe their operational characteristics as terminals to
the systen. Finally, those that include the text-file
facility mentioned Jjust above include provisions to test
various conditions and branch among the lines of the text-
file 1tself. A ftew of the more interesting commands will be
described Dpelow. All o1 these commands have been
1mplemented in the Data Concentrator.

DISPLAY - Display in octal format selected memory

locaticns. This ccmmand causes a special task to
be created waich 1tselr generates the output text.

If mnore locations are rejuested than can Dbe
printed on one line (currently eight), then this
task remains 1in operation until all lines have
been generated. In such a case the display task

5. Command Operations

j.

Multiprogramming in a Small-Systems Environment 29

sets an attention interrupt (see Section 4.3) on
the ccmmand source device. It an attention is
received from that device, the display task 1is
terminated at the end of the current output line.

ALTEK - Alter selected memcry locations using data
entered in cctal tormat.

PARAMETEK - Set defauit parameters in the TCB of the
CL1 taskK 1ssuing this ccmmand. Using apprcpriate
Keywords the comwana source, command siuk and copy
s1nk devices can be changed, as well as the
privilege class and DISPLAY/ALTER core Lbank.

SET - Set system default parameters. Usinyg afpprcpriate
keywords, the time-or-day ciock, broadcast/signon
messages and startup/shutdown flags can be
manipulated.

TASK - Create a new CL1 task with a TCB as specified.
Usinyg appropriate keywcrds the invoking CLI task
may be specified tc either continue or to wait for
the ccmpletion of the invoked CLI task.

OFF - Oftline device. 4if the specified device 1is in
tue avarfacie state, thien pface 1¢ 1n the cfrfiine
state.

ON - Online device. 1If the specified device 1is in the
oftline state, then fplace it 1n the available
state.

SENSE - Print on the command sink certain fields of the
device tables and unit control blocks of the
devices specified.

ENABLLE - tLtnable device (see Section 6.1). Usiug
appropriate Kkeyworas the device type and default
operatiocnal attributes can be establishea and the
invokiny LI task r£a3p Dpe specliried rro £itrber
continue or to wait for the completion of the
ENABLE operation.

UD1SABLE - Disable device enalblea by tne ENASLE ccmmand.

HALT - Transmit asynchronous HALT to device, placing it
in the purge state (see Section 6.1).

GOOSE - Transmit asynchronous attentiou to device (see
Section 4.3).

ECHC - Transmit messayge tollowiny (on tne same comwmand

Command Operations

30 Multiprogramming in a Small-Systems Environment

line)l to the device specitied.

BROADCAST - Transmit broadcast message to the devices
speciftied.

EDIT - Update the internal line tile at the line numper
specified using the message following (on the same
command line).

CONTROL - Establish new operational parameters tor the
devices specified.

5. Command Operations

Multiprogramming in a Small-Systems Environment 31

6. SPECIAL OPERATIONS

In some of the RANMP sSystenms special supervisor
operations have been implenmented, scme of which have general
application in other systems. These operations include very
general device allocation procedures, I/0 utility routines,
interval timer and time-of-day clock and systen
initialization and contiguration subsystems. New systems
have been synthesized by picking and choosing among these
subsystems, depending on the agplication of the particular
new system, tfor those subsystems which are useful. For the
most part these subsystems are modular and can be added and
deleted rrom the kasic system without materially disturbing
other system compcnents.

.1 Device Allocation

In most of the operating KAMF systems the allocation
and contiguration of I/0 devices can be performed when the
system 1s tirst 1nitiaiized following weither a power-on
reset or 1initial proyram load (see Section 6.3). 1In sone
systems however, in particular those intended for store-and-
forward operations, the aliccation and contiguration
operations may become gquite complex and may 1nvolve the

jeneraticn of special Erobe sequences for device
identitication and the @wodification of device service
routine characteristics "on the fly." In such systenms

several characteristics are desirable, amony then the
following:

1« Core storage tor ccntrol biocks, I/0 queues, etc.,
should not be aliocated if the device 1is not in
use.

2. A device may te allocated to only one particular
task, althouyh any number or other tasks may use
it.

3. If a device 1s allocated by a task, then that task
1s solely responsible for its deallocation.

4. A device should Dbpe wmdarked busy (for allocation
purposes) when rirst allocated to a task and
marked non—busy «c¢nly when all time-dependent
discornect seguences have been completed.

Some of these characteristics iavolve rather
interestingy architectural requirements, which wiil be the
topic or this section.

As discusse€a 1n Section 4.3, corresponding to each I/C
device attached to the system 1s a two-word device table

b. Special uUperations

32 Multiprogramming in a Small-Systems Environment

entry. One word of this eatry points to a unit control
block (UCB) which, presumably, is allocated only when the
device 1s active. The other word of this entry poiants to a
device control block (DCB), which is a fixed table of
control intormation peculiar to the device type. Typically,
a collection of devices such as teletypewriter terminals are
assigned a contiguous klock of device table entries such
that each teletypewriter 1s assigned a unigue UCB and a
common DCB. A device will be said toc be in the available
state 1f 1its DCB entry is zero, and without respect to its
UCB entry, and in the reserved state ctherwise (see Figure
9) . A device can be switched betvween the available and the
reserved state cnly when the UCB entry 1s zero, however. A
device 1is switched from the available to the reserved state
prior to the contiguration or offline operations, and 1is
switched trom the reserved to the available state following
the disconnect or online operations. All data transfer ana
device control operations are i1gnored in the available state
and behave as 1f the device were in tact nounexistent.

DCB UCB ACi HLT USE

set alloc bit bit cnt
Available 0 X X X X
Reserved 1 0 X X X
Configuration 1 1 0 0 X
Working 1 1 1 0 0
Busy 1 1 1 0 1
Purye 1 1 0 1 1
Disccnnect 1 1 0 1 0

figyure Y. Device Allocation States

Once a particular device has Dpeen switched trom the
availabie to the reserved states, then a sequence of
operations may be necessary betfore the device can be used 1n
data-transter or control operations. These operations are
pertormed by a special ENABLE task whose parameters are the
device table pcinter and a DCB pcinter for the device type
in guestion. An invoking task may 1issue a WAIT for the
ENABLE task 1n which case a return coae indicates whether or
not the operation was successrul. Following a successful
ENABLE task completicn the device may pe reterenced for

6. Special Operations

Muitiprogyramming in a Small-Systems Environment 33

READ, WRITE and HALT operaticns (a SENSE operation is always
valid 1im any state.). Interrupts are 1ignored 1in the
reserved state.

The ENABLE task proceeds by first allocating and
presetting a ucs using intormation tound in the
configuration tables. Once the UCB has been allocated and
preset the device is said tc be in the configuration state,
in whicn interrupts will be serviced and CTRL ogperations
honored. READ or WEITE operations in this state will be
rejueued, however. Once in the contigyuration state a series
of gquite complicated operations may be performed which are
designed to identiry the type of terminal, if the device 1is
connected to a data set, or to wake up and start a
mechanical device, if the device is a printer or a card
reader. During tnese operations the UCB may be deallocated
and reallocated in different formats, timeouts may be
initiated and other tasks may Le generated; but, in any
case, 1if the ENABLE task terminates successfully, the UCB
ana DCB entries have been stored correctly in the device
taple and the aevice has been placed in the working state
and 1s ready for use. If the operation terminates
unsuccessfully, fcr instance due to a wrong-number call on a
data set, the the ENABLL return code is set apptopriately
and the device 1s returned to the reserved state.

Now, once thke ENAELE task operation has beeun completed,
the device 1s allocated to the task i1ssuing the ENABLE,
aithough 1t way be used by any number of other tasks. By
convention, a task which 1ssues a number of READ or WRITE
operaticns on the device first increments a use count in tae

rirst word of the UCB for that device. Wwhen these
READ/WRITE operations have FLeen concluded, this wcrd is
decremented. This word 1s aiso incremented if an interval

timer operation is set on the device (see Section 6.3) and
decremented either when the timer operation is cleared or by
4 timer interrupt. These actions are done 0 that the
device wiil not be disconnected wuntil all pending time-
Japendent operations have been terminated.

A device can pe disconnected at any time by a HALT task
operation. Tais task may be issued by any task at any time,
either explicitly on the part of an operator or internally
due to a hardware waltunction detection (e.g. Data set on-
nook indication). A HALT operation is also 1implied by a
DISABL task oferation. fcllowing the HALT operation the
device 1s iett in the purgye state and any further
operations, 1includinyg interrupt service, are ignored with
tae exception o¢f tne DISASL task operation. Tue HALT
operation usuaily causes some aevice-dependent activity
which results i1n a request fcr disccnnect. 1In the case or a
aata set the Terminal keady contrcl lead is dropped, causing

b. Special Operations

34 Multiprogramming in a Small-Systems Environment

the data set to go on-hook. In the case of a System/360
interface operation a special sense bit is set indicating to
the System/360 program that the job should be signed off.

The device now remains in the purge state wuntil the
device service rcutine itself recoguizes that disconnect has
in fact been ettected. This condition, recognized Ly the
device service routines themselves, causes the device to be
placed in the disconnect state, im which all operations
except DISABL are ignored. The disconnect operation itself
causes all tasks blocked on the attention, read and write
4queues to be indiscriminantly scheduled pending on the CPU
queue. Obviously the various task returns must be coded to
recognize this fpathology, since I/0 operations may ke only
partially completed. The principal result of this violence
i1s that the task which issued the ENABLE, or one of its
daughter tasks, receives an attention interrupt, which
causes it to clear its current WAIT condition, usually by
issuing a ATTN task on some device. Eventually, during the
recovery procedure, the pathology is discovered on the dying
device, which 1s stilil allocated to the task which issued
the ENABLE. This task then by convention issues a DISABL
task operation to disccnnect the device from the system.

Note that the issuance of the LISABL is not necessarily
synchronous with the trauma of the device as 1t progresses
through the purge state to the dJisconnect state; and,
turthermore, the decrementing of the use count as the
various operations pending at the device yo "down the drain"
is asynchronous with both of these operations. Therefore,
unless the device 1is already in the disconnect state and the
use count is zZero, theu the DISABL task itself 1is blocked on
the attention queue of the device's UCB-. Following
satisfaction ot both ot tuese conditions the DISABL task is
scheduled pending on the CPU queue. In the final phase ot
D1SABL processing the UCB is deallocated and the device is
ajain placed in the reserved state. Following return to the
invoking task the device «can be placed in the available
state and the 1invoking task, ncw assured that all I/0
responsibilities have been aischarged, can continue 1its own
operations.

These rather complicated procedures are hnecessary in
any system which allows I/0 devices to be shared among
several tasks, although the actual code involved 1s not as
massive as miyght be suspected. The addition ot these
teatures costs rperhaps a page of code 1mn the current
implementation.

0.2 Inputy/Output Utilities

6. Special vperations

Multiprogramming in a Small-Systems Environment 35

In any system invelving corversational interaction with
an operator, a number of I/0 formatting routines are always
necessarye. These routines provide for the character-
sensitive recogynition and translation functions for the
input operations and the translation functions and text
generaticn ror the output operations.

In the current RAMP 1implementations a single 1input
routine is provided which maps 8-bit USASCII characters into
a4 6-bit packed representation and determines whether the
character 1s a digit, a letter, a special cnaracter or a
control character. In some systems the assembly of letter
strings as keyword names and conversion of digit strings as
numeric constants is a tunction ot the keyword 1interpreter
45 driven by the keyword dictionary. In all command input
operations the parity bit 15 suppressed and lower-case
USASCII characters are converted to their upper-case
ejuivalents.

Conversion of 12-bit binary words into digit strings in
octal or decimal radix 1is provided by the special
subroutines PKOCT ana PkDEC. Leading Zeros may be
suppressed usinyg PRDEC. Letter strings packed two six-bit
characters per twelve-bit word binary word camn be converted
into 8-pit USASCII strings by means of PRBCD, which maps a
single 1.-bit word, and PkCCM, which maps a vector preceeded
py a count of the number of 1Z2-kit words. It the time-of-
day routines (see Section 6.3) are included 1n the system a
subroutine PECLK 1is available tc print the time-of-day in
the hours:minutes:seconds format. In one RAMP version all
output text generated by these routines 1s assigneda the
correct even-parity bit in position 8 ot the USASCIL
Character. In the others this pcsition 1s forced to a one
bit.

In order to print a comment or a line of text, the
system arcinltecture calls tor the creation of a WRITE task
controi biock, a butfer control block and tne buffer 1itself.
A supbroutine GTDEV is provided for this fpurpose, which
defaults the output wmessage to thne command sSink. This
suoroutine creates the WRITE TCE, schedules the TCB on the
CPU gueue and sets the BCB pointer. The BCB 1s ailocated as
part of the TCB parameter regicn toyether with the buttfer
itselr. The putfer-release bit 1s not set in the BCB, siace
tne BCB ana its buffer are released autowmatically tcgether
with the TCO when the WwRITE task returns to 1its 1nvoking
task. The lengtn of the buffer is specified upon the call
to GTDEV, wnich tken returns in an auto-iandex register a
pointer to the fufter. Characters may be stored directly 1in
the bufitfer via the autc-index rcyister or may be formatted
and stored autcmatically using the output format routines
descriped apove. A call to LiLF must be made to finish

6. 3pecial Operations

36 Multiprogramming in a Small-Systems Environment

processing the BCB fields when all the text has been stored
in the buffer.

——— A < S e M A S ——— S S— >

In very many applicaticns of the systems discussed
here, a need exists to determine the time of occurrence of
an event or the time difference between two events. Most
commonly, only the latter facility, called here an interval
timer operation, is necessary. In real-time data logging
systems a time-of-day clock operation is also necessary. In
the typical small machine considered for RAMP application an
interval timer is easily implemented either as a special I/0
device or as a special cycle within +the CPU itself. In
either implementation a location in core memory is caused to
increment every so often, usually in the 10-100 mS range.
when the count overflows an interrupt occurs which is then
processed in the usual manner. The manner in which such a
device can be incorporated into the RAMP system architecture
to provide interval-timer and time-of-day facilities will be
the topic of this section.

Due to the inherent multiprogramming nature of a RAMP
system, it is common that several independent logical timers
are required at any given instant. Some ot these timers are
necessary for task-time operations in which the task is to
be blocked for a certain time interval, while others are
necessary for real-time operations in device polling and
control. Such an architecture has been implementea using a
chain of clock _control bloccks (CCB) (see Figure 10) which
correspond to the set of 1logical timers 1in operation at
every instant. These CCB's are linked in a CCB chain in a
particular sequence as follows: consider the intervals
assigned each o¢f n logical timers t(1),t(2),.-.,t(n) and
assume t{i)<t(i+1) for all 1£i<n. Then the CCB's
corresponding to t(1),t(2),...,t(n) are chained 1n that
order and the countdowr interval in the (i+1)th CCB 1is
preset to contain the value t(i+1)-t(i). Then each time a
timer interrupt is taken, the first CCB entry in the chain
1s unlinked and a field in this entry is used as a branch
address to a real-time processing routine. At this time the
interruption condition 1s cleared and the countdown interval
of the next CCB entry on the chain replaces the contents ot
the hardware timer. Processing continues in this wmanner
unt1l the chain tecomes empty, at which time the hardware
timer 1s allowed to cycle through its full-period interval.

A pre-constructed CCB entry reguesting an interval of t
basic timer steps can be entered in the CCB chain using the
subroutine SETIME. This subroutine scans the current CCB
chain and totals the cumulated expected countdown interval
t (i) at the ith entry. ILf j is the index of the first entry

6. Special Operations

Multiprogramming in a Small-Systems Environment 37

in the chain such tkat t(j)>t, then the new CCB is linked
between the (j-1)th entry and the jth entry, a new value t-
t (j=1) replaces the countdown interval of the (j-1)th entry
and a new value t{j)-t replaces the countdown interval of
the new entry. Obvious refinements are made if the new
entry is elther the first or the last in the CCB chain.

o e +
| LINK TG NEXT CCE |
fmmm——————————_————————— }
| COUNTDOWN INTEEVAL |
fomm—————————————————— +
| INT ROQUTINE ENTHY |
P e e +

Figure 10. Cicck Contrecl Elock (CCB) Format

An already existing entry 1in the C(CB chain <can be
deieted from the chain usiny the subroutine CLRTIdA. If j is
tne index of the entry to pe removed, then this subroutine
will wunlink it from the chain and link tne (j-1)th entry to
the (j+1)th entry. Each entry 1in the chaia starting with
the (j+1)th then 1is corrected by adding to 1its countdown
intervai the value associated with the jth entry.

This rather simple and straightforward architecture 1is
complicated by the tact that thke hardware timer can
increment at any time, and in particular during eitaer
SETIsE and CLRTIM processing. Timer service routine snaris
in the present implementation are avoided by "freezing”" the
timer woefore any change is made to the CCB chain and
“tnawing"™ it when the processiny is ccmplete. In the freeze
operation the countdown interval ot the first CCB entry is
corrected by the elapsed time since the timer was last set;
and the timer 1is reilnitialized at zero. In the thaw
operation any timer interrupt conditions, which may have
peccme pendinyg due tc a timer increment, are serviced; and
the countdown interval of the first CCB entry replaces the
timer contents.

At certain points during the tfreeze/thaw operations
when the tiwer 1s changed, a possille timer increment may be
iost. This 1s because, in the simple machines considered
here, the timer cah increment atter the old contents have
peen read out but before tne new contents have been read 1in.
Even some large macnines like the sSystem/360 Model 67 have
suffered at one time or another because this couid happen.
In tne Model 67 <case the difficulty has beeu avcided by
u3ing a core-to-core move cperation that moves the old

b. Special Ujperations

38 Multiprogramming in a Small-Systems Environment

contents out of the timer and moves the new contents into
the timer in one iastruction. A special interlock circuit
prevents a timer increment during the execution of this
particular instruction. In the small machines coansidered
here a timer increment during this sensitive sequence 1is
impossible to detect uniess it also causes an interrupt flag
to be set. This latter condition is detected and properly
processed in the current implementation.

All subroutines which maintain the 1nterval timer
operation are contained in a single page of memory in the
current implementation and are designed to be removable
without atfecting other system components (except the tinme-
of-day clock - see pelow). In the current implementation
all CCB's must lie in a particular memory bank defined as a
systen assembly parameter. It has been convenient in at
least one RAMP system to 1lrplement some timer interrupt
operations as a pseudo-receive or pseudo-transmit interrupt
for a particular 1I/0 device. In this system a device
service routine may request a timer 1interrupt which, when
taken, appears as a character interrupt. However, using
this construction it is necessary that the timer routines
appear recursive to the real-time device service routines.
This is accomplished by setting a tlag in the timer-freeze
operation and testing this flag in the interrupt identifier
after the device service routine has been called. If the
Jdevice service routine ever calls a timer service routine,
then the interrupt identifier itself will perform the timer-
thaw operation, which may involve «calling other device
service routines. Special interfaces for task-time calls on
the timer service routines accomplish this same function.

A real-time or time-of-day clock is easy to implement,
given the 1nterval timer operation as described abcve. This
is done in the tollowing manner: a 24-bit time-of-day cell
i3 maintained 1in units of the fkasic timer step relative to
midnight. Each time a hardware interrupt is taken the
countdown interval indicated in the tirst CCB entry is added
to the time-ot-day cell. 1f the CCB chain is empty then the
timer has completed one tull cyclie, and the corresponding
interval is added to the time-of-day cell. Each time the
timer 1s «rrozen a quantity egual to the countdown interval
of the first CCB entry minus the current timer value 1is
added to the time-of-day cell. In this manner the time-of-
day cell is corrected each time the timer is updated.

Subroutines are provided in the current implementation
which set the time-cf-day c¢ell wusing values tor hours,
ainutes, seconds and hundredtns ot seconds as entered via

the command lanyuage 1interpreter. A subroutine PRCLK 1s
availaole to print the time-cf-day in the format HH:INMN:S5S
(dd = hours, KM = minutes, SS = seconds). All subrcutines

,

6. Special Jdperations

Multiprogramming 1n a Small-Systems Enviroament 39

which maintain the time-of-day clock are coantained 1in a
single page 1n the current 1implementation and are so
designed to be removable from the basic system without
affecting other system components.

AP PP Y

it has been convenient for reascns of debugging ease
and error recovery procedures to construct the RAMP systems
in a self-initializing tashion. In ail systems, at 1initial
program load, selected storage blocks (including the device
table) are erased, storage aliocation freespace <chains are
initialized and the CEU queue and CCB chain headers
initialized. Then a number of LNABLE tasks are generated
and a task servicing the operator's comnsole is created. All
or these operations are table-driven so that changes can be
easily reassemblea in the systen.

In the case of one of the systems intended for message
store-and-itorward operations, the configuration fcllowing
elther an initial program locad or a power-on restart is
controilled by an inspection of hardware conditions to
determine which intertaces and line adapters are
operaticnal, tfcllowing which the operational devices are
marked 1in the available state and certain LNABLE tasks are
automaticaliy generated to start the system. This systen
Wakes up with two System/360 1nterfaces, the 1line-adapter
scan controls, the operator's console and a reserved
System/300 1nterface unit address 1in the working state,
followiny wnich further coanfiguration 1information can be
entered either via the operatcr's console or via the
System/360 interface. In particular, the 1interactive
vehavior during the initial phase fcllowing connection of a
terminal to the system can be programmed as a series of
commands entered in the internal line-tile (see Section 5).
Using tnis file a cycle of inguiry/response cah be elicited
from the terminal user to deterrine special requirements
prior to connection with the Systew/360. It 1s possible
using this technique tc connect the terminal tc either or
poth System/360 interfaces 1n the «case of a partitioned
systcm where one system 1s running on one CpPU and another on
the other. In such cases the ccntrolling line-file is
iloaded directly 1into the systen via the System/360
intertaces.

In the <case ot thne cther RAMP systeas, the
configuration following ianitial proyram load 1s established
s1mply by a prestored table. However, followiny a fpower-on
reset the system 1s restarted at the point tolliowing the
power-orf interrupt. All I,0 devices dre reset by the
power-oif conditicn of course; but, in these simple systeams,
this uoes not result 1n patnclogical behavior other than the

6. Special Operations

40 Multiprogramming in a Small-Systems Environment

loss ot a character or two if a device operation was pending
at the same tinme. The power-off 1interrupt and powvwer-on
reset operations can be supported only if the proper
hardware option is installed in the PDP-8 ot course.

6. 3pecial Operations

10.

7‘

Multiprogramming in a Small-Systems Environment 41

7. REFERENCES

Mills, D.l., A__Bandom-Access__Multiple-Program__System
for Language Laboratories, Language Laboratory,
University of Michigan, April 1965.

System, Language Laboratory, University OZ—EEEEIEEET
May 1965.

Mills, D.L., RAMP: A Multiproqramming System_for _Real-

Time__pevice__Control, Concomp Project Memorandum 5,
University of Michigan, May 1967.

Milis, D.L., i/0 Extensions _to_ KAMP, Concomfp Froject
Memcrandum 11, University of Michigan, October 1967.

Mills, b.l., The__Data_ _Concentrator, <Concomp Froject
Technical Report 8, University of Michiyan, May 1968.
Also 1in Procedings ot University ot Wisconsin
gngineering Institute, Decemkber 1968, pp. 1-113.

Milils, D.L., RAME_Architecture in_a Utility Calculator
System, Concomp Project Memorandum 24, May 1969.

Milis, Db.L., Topics_ in_ Computer Communications_Systeas,
Concomp Project Technical kepcrt 20, May 1969. Also 1in
Procedinygs ci University of Michigan Engineerinyg Sunmer
Conterence, June 1969.

Frantz, D.k., Brender, K.F., and Foy, J.L., Jr.,
LOCCSS, A _Multiprogramming Mcpitor for the DEC_PDP-7,
Concomp Project 7Technical Report 10, University of
Michigan, Ncvember 196&.

Brender, R.fF., Ffrantz, D.K., Foy, J.l., Jr., and
Schunior, TeWa, Specializea System__Software_ _tor
Interacting LEC _PDP-7 and_IBM_ 1800 Computers, Concomp
Project Technical Keport 11, University of Michigan,
December 1908.

Jackson, J.bB., An__Executive_ _System_ _for__a__DEC__339
Computer_ Display _Terminal, Concomp Project Technical
Report 15, University ot Michigan, December 19068.

References

-2~

UINCLASS E:! ED
dSecurity Classification

DOCUMENT CONTROL DATA - KR &‘ °

Security classi‘ivation of title, body o! costract snd inueiay Lonsrarion musy Be s overall report is classified)

1 1. ORIGINATING ACTIVITY (Corporate author) 2a, PEZPORT SECURITY CLASSIFICATION

20. GROUP

THE UNIVERSITY OF MICHIGAN g UNCLASSIFIED
i
i CONCOMP PROJECT 5

3. REPORT TITLE

MULTIPROGRAMMING IN A SMALL-SYSTEMS ENVIRONMENT

s, DES £ TES i Type of rer or: and inclusive dates)
TECANTTAL "REFORT 19

5. AUTHORIS! (First name, middic initial, last name)

DAVID L. MILLS

6. REFORT DATE T‘.x TOTAL NO. OF PAGES S!?b. NO. COF REFS
t MAY 1969 e, i 10
8a. CONTRACT OR GRANT NG. {%a. ORIGINATOR'S REPORT NUMBER(S)
y
i
DA—Q?—083 0SA 3050 . TECHNICAL REPORT 19
b, PROJ T NO. i
;er. OTHER REPORT NO(S) (Any other numbers tha:t may be assigned
c. £ this report)
, s
| o :

10. DISTRIBUTION STATEMENT

i
i
{ Qualified requesters may obtain copies of this report from DDC.

!)1 SURE_EMENTERY NOTES E';Z. SPONSORING MILITARY ACTIVITY

|

' Advanced Research Pro jects Agency

3. RA

1 RESTRACT This report discusses multiprogramming systems architectures
suitable for use with small machines of the PDP-8 class. Techniques
for task and I/0 device scheduling, storage and device allocation,
buffer and timer management, and command language interpretation are
discussed in detail, Illustrative details are freely drawn from a
follow-on version of RAMP, a multiprogramming system now used in
several applications involving process control, message switching,
and terminal control,

DD "2..1473

Security Classification

___HNQ%ASSIEIFD
ecurity Classification
14,

oooooo

UNIVERSITY OF MICHIGAN

AL

3 9015 03483 7149

LLLLL

LLLLL

Security Classification

