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SUMMARY. In the analysis of clustered data with covariates measured with error, a problem of common 
interest is to test for correlation within clusters and heterogeneity across clusters. We examined this problem 
in the framework of generalized linear mixed measurement error models. We propose using the simulation 
extrapolation (SIMEX) method to construct a score test for the null hypothesis that all variance components 
are zero. A key feature of this SIMEX score test is that no assumptions need to be made regarding the 
distributions of the random effects and the unobserved covariates. We illustrate this test by analyzing 
Framingham heart disease data and evaluate its performance by simulation. We also propose individual 
SIMEX score tests for testing the variance components separately. Both tests can be easily implemented 
using existing statistical software. 
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1. Introduction 
It  is of substantial interest in the analysis of clustered and 
longitudinal data to test for correlation within clusters and 
heterogeneity across clusters. These tests are useful in many 
fields of research, such as genetic epidemiology, ecologic stud- 
ies, and clinical trials. For example, in genetic epidemiology, 
one is often interested in studying familial aggregation of a 
disease, which may indicate a genetic factor; in longitudinal 
studies, one is often interested in examining whether observa- 
tions measured within the same subject are correlated. (See 
Commenges et al. (1994) and Lin (1997) for other examples.) 
Lin (1997) examined this problem in the framework of gener- 
alized linear mixed models (Breslow and Clayton, 1993) and 
proposed global and individual score tests for variance com- 
ponents equal to zero. Special cases of these tests were con- 
sidered by Liang (1987) and Commenges et al. (1994), among 
others. 

A common problem in the analysis of clustered data is the 
presence of covariate measurement error. For example, in a 
subset of the Ramingham heart disease data, 75 coronary 
heart disease patients were examined every 2 years in an 8- 
year period for the presence of left ventricular hypertrophy 
(LVH). The study objectives were (1) to study the associa- 
tion of the risk of LVH and systolic blood pressure (SBP), 
baseline age, smoking status, body mass index, and exam 

number (1-4) and (2) to  test for correlation of observations 
within the same subject. A main difficulty in analyzing this 
dataset is that systolic blood pressure was measured with sub- 
stantial measurement error (Carroll, Ruppert, and Stefanski, 
1995). To address the first question, Wang et al. (1998) in- 
troduced generalized linear mixed measurement error models 
(GLMMeMs) , which extend generalized linear mixed mod- 
els (GLMMs) by allowing covariates to be measured with er- 
ror. They used the simulation extrapolation (SIMEX) method 
(Cook and Stefanski, 1994) to estimate regression coefficients 
and variance components. We focus in this paper on address- 
ing the second question. 

Specifically, we propose using the SIMEX method to con- 
struct a score test for the null hypothesis that all variance 
components are zero in GLMMeMs. This SIMEX score test 
extends the results of Lin (1997) by allowing covariates to be 
measured with error. A key feature of this SIMEX score test 
is that no assumptions need to be made regarding the distri- 
butions of the random effects and the unobserved covariates. 
We illustrate this test by analyzing the Framingham heart dis- 
ease data and evaluate its performance by simulation. We also 
propose individual SIMEX score tests for testing the variance 
components separately. Both tests can be easily implemented 
using existing statistical software. 
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2. The Generalized Linear Mixed Measurement Error 

Let the data be arranged in M clusters with the j t h  ob- 
servation (j = 1,. . . , ni) of the i th  cluster consisting of an 
outcome variable Yij , unobserved covariates Xij , observed 
Xij-related covariates Wi, , and other observed, accurately 
measured covariates Zi, and S,j.  The covariates (Xij, Zij)  
and Si j  are associated with fixed and random effects, re- 
spectively. Conditional on the random effects bi, the Yij are 
independent with means E(Y,j 1 bi) = p: and variances 

V ( p i ; )  = q5mij1v(pi;). Here 4 is a scale parameter and mij 

is a prior weight (e.g., binomial denominator). Conditional 
on the covariates (Xij, Zij ,  S i j ) ,  the observations Yij follow 
a generalized linear mixed model (GLMM) 

Model 

b b 

where g(.) is a monotonic differential link function, P = (Po, 
p3: Pz)  are regression coefficients, the random effects b, follow 
N(0, D(8)), and f3 is a c x 1 vector of variance components. 

We further assume that the measurement error is additive, 
i.e., 

(2 )  w . .  - x.. 
2, - 2, + uij, 

where the Uij are independent and distributed as N(0, Xu). 
Note that we do not assume a distribution for Xij , Our main 
interest in this paper is to use the observed data (Y2j, Wij, 
Zij,  S i j )  to construct score tests for the variance components. 
We first briefly review in Section 3 the score tests for variance 
components in GLMMs when there is no measurement error. 
We then propose in Section 4 the SIMEX score tests for vari- 
ance components in GLMMs when covariates are measured 
with error. 

3. The Score Tests for Variance Components in 

Lin (1997) proposed a global score test for the null hypothesis 
that all variance components equal zero (Ho: 8 = 0) in the 
GLMM (l), where the Xij are observed and there is no mea- 
surement error. The null hypothesis Ho: 8 = 0 corresponds 
to no correlation and no overdispersion. Lin (1997) showed 
that this test is a locally most stringent test and is robust in 
the sense that one does not need to specify a distribution of 
the random effects except for the first two moments. A key 
feature of this test is that it can be easily implemented by 
fitting a generalized linear model (GLM) to the data. 

Let 6ij  = l/g’(pij),w.. ,, - - V-’ (pi)6$, w,ij = w i j  + e i j ( Y j  
- p i j ) ,  where pij = E(Y,,) under Ho and satisfies the GLM 

(3) 

GLMMs Without Measurement Error 

s(pt3) = Po + XZPZ + ZZTjPz 

and ei = ~ v ~ ( ~ i ~ s ’ ~ ~ i ~ + ~ ~ ~ ~ ~ ~ ’ ~ ~ c L z ~ ~ / ~ v 2 ~ c L i ~ ~ s ~ ( ~ i ~ ~ 3 1  and 

Denote iclz = (w,. . . ,pznt) , si = G,. . . ,sin,) , D k  = 

is zero for canonical links. Note that the w z j  are the working 
weights under the GLM (3) and wij = E(w,i,) under Ho. 

aD/dB&=, (k = 1 , .  . . , c ) ,  and by the matrices Pi, Oi, and 
0,i the diagonal matrices with elements 6ij, w i j ,  and w,ij 
( j  = 1,. . . , ni). The global score statistic for testing Ho: 8 = 0 
can be written as 

T T T  

x:: = U(&Tz(B)-lU(&, (4) 

where ,6 is the maximum likelihood estimator of P under the 
GLM (3) and U ( p )  is the efficient score for 8 at 8 = 0 with 
the kth component 

u k  (6) 

i=l 

and Z is the efficient information matrix of 8 evaluated under 
Ho > 

z = 100 - I&Ip&e. (6) 

The expressions of (100, Ipe, Ipp) are given in Appendix 1. 
Lin (1997) also proposed individual score tests for testing vari- 
ance components equal to zero separately, i.e., Ho: Ok = 0, in 
GLMMs with independent random effects. See Section 4 of 
Lin (1997) for details. 

4. The SIMEX Score Tests for Variance Components 

The global and individual score tests for variance components 
of Lin (1997) are applicable to GLMMs with no covariate mea- 
surement error. We propose in this section using the SIMEX 
method (Cook and Stefanski, 1994) to construct such score 
tests for variance components in the presence of measurement 
error under the GLMMeM equations (1) and (a), where the 
Xij are not observed and their error-prone covariates Wij 
are observed. Specifically, we focus on applying SIMEX to the 
global score test for variance components. A virtually identi- 
cal procedure can be used to  construct the SIMEX individual 
score tests for variance components in GLMMeMs. See the 
Discussion for more details. 

SIMEX is a simulation-based functional method for infer- 
ence on the model parameters, where no distributional as- 
sumptions are made on the unobserved covariates Xi,. De- 
tails of the SIMEX method are given in Cook and Stefanski 
(1994) and Carroll et al. (1995). The SIMEX procedure con- 
sists of two steps, the simulation step and the extrapolation 
step. In the simulation step, given X > 0, one adds to the: 
Wij independent errors with mean 0 and covariance AXt, 
and computes the estimates of the model parameters using 
the resulting simulated data, which have measurement error 
covariance equal to (1 + A)&. This procedure is repeated a 
large number of times and the average (or median) of thesc 
naive estimates is calculated. One does this for a series of val- 
ues of X and plots these averages (or medians) against the 
X values. In the extrapolation step, a regression model is fit 
to these averaged naive estimates as a function of A. Extrap- 
olation back to X = -1 (no measurement error) yields the 
SIMEX estimates of the model parameters. 

We apply this SIMEX idea to construct a global score test 
for variance components in the GLMMeM (1)-(2). Examina- 
tion of the global score test statistic xg = U(&TT(p)-‘Z4(fi) 
in (4) suggests that it has the same setup as that studied by 
Stefanski and Cook (1995, Section 5.2) when the error vari- 
ance is known and by Carroll et al. (1996) when the error 
variance is estimated. We hence propose using SIMEX to ex- 
trapolate the “numerator” U ( , )  of the score test, which is 
given in equation (5), as if it were a parameter estimator. We 

in GLMMeMs 
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use SIMEX variance methods (see Carroll et al., 1995, Section 
4.3.5) to calculate the variance of this estimator. Denoting the 
results by Usimex( .) and Zsimex (.), respectively, the SIMEX 
score statistic is simply ~ ~ i * ~ ~ ~ ( . ) ~ { ~ ~ i ~ ~ ~ ~ ( , ) } - ~ ~ ~ i ~ ~ ~ ( . ) .  If 
the measurement error variance is unknown, then the esti- 
mating equation methods described in Section 4.7.2 of Carroll 
et al. (1995) can be used to obtain Zsimex(.). A sketch of the 
technical justification for this method is given in Appendices 

We demonstrate this procedure using Figure 1, which shows 
application of the SIMEX score test for variance component 
to the Framingham data example in Section 5 under the lo- 
gistic model (7 ) .  This model consists of a scalar covariate 
X = log(SBP - 50) that is measured with error and a ran- 
dom intercept with a scalar variance component 0. We denote 
by 6: an estimate of the scalar measurement error variance 
c;. In the simulation step, one calculates the naive score U 
in (5) using simulated data obtained by adding to the Wij 
independent random variables following N(0, Ad;). This pro- 
cedure is repeated for a large number B times and the me- 
dian of the resulting B scores are calculated. One does this for 
X = (0,0.5,1.0,1.5,2.0) and plots the resulting naive scores 
against A. These are shown in small solid squares in Figure 1. 
In the extrapolation step, a model is fit to  these small solid 
squares as a function of A, which is the solid line in Figure 1. 
The literature suggests that a quadratic model often provides 
a good approximation of the true bias curve and often works 
well (Carroll et al., 1995). One then extrapolates the model to 
the values less than 6;, which is the dashed curve in Figure 1. 

2-4. 

The extrapolated value at X = -1, which corresponds to zero 
measurement error variance, is the SIMEX score estimator 
Usiinex. 

5. Application to the Framingham Heart Disease 

We applied our SIMEX score test to the analysis of the Fram- 
ingham heart disease data introduced in Section 1.  Two SBP 
measures were taken during each exam and were transformed 
to log(SBP - 50) as suggested in Carroll et al. (1995) to make 
the normality assumption for the measurement errors more 
plausible. The covariates included X ,  average log-transformed 
SBP, and Z, age, smoking status, body mass index, and the 
exam number (values 1-4). Our objective is to test the correla- 
tion among observations within the same subject. We consid- 
ered a measurement error logistic mixed model with random 
intercepts 

logit{E(Y,j I bi)} = Po +Xi,Pz + Z z P ,  + b,, ( 7 )  

where Yij is a binary indicator for the presence of LVH and 
bi follows N(0,O). We assumed the observed log transformed 
SBP Wij was related to Xi j  through Wij = X i j  + U i j ,  where 
Uij is the measurement error and follows N(0,a:). A null 
hypothesis 0 = 0 corresponds to no correlation within each 
subject. 

Since blood pressure might change over time, estimation of 
the measurement error variance requires that SBP be ob- 
tained over a number of days within a relatively short period 
of time. However, SBP was obtained only every 2 years in the 

Data 

-1 .o -0.5 0.0 0.5 1 .o 1.5 2.0 

h 
Figure 1. 
when a: = 0.016. The value of U at X = -1 is the SIMEX score Usimex. 

SIMEX extrapolation of the score U as a function of X in the Framingham data 
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Table 1 
Empirical sizes and powers of naive and SIMEX score tests for 

variance components observed in 2000 simulations 

e 
Method 0.00 0.25 0.50 0.75 1.00 2 

UU 

Naive 0.081 
SIMEX 0.054 0.200 0.384 0.618 0.806 
Naive 0.101 
SIMEX 0.054 0.264 0.504 0.723 0.890 

113 

213 

Framingham data. We hence could not directly estimate u: 
from the data. Following Wang et al. (1998), we estimated 
u: by assuming, for the i th cluster, Xij  given Zij followed a 
linear mixed model, 

where ai and ~ i j  are independent, ai has mean zero and vari- 
ance u : ~ ,  and ~ i j  has mean zero and variance crz.  This model 
allows the Xi j  to be correlated within each subject. It follows 

mean a01 + Z i a  and covariance (a: + &)I + c&J, where J 
is a matrix of ones. This suggests that we could only estimate 
the sum of crz and crz but not each of them separately. Note 
that here we did not assume a full distribution for the Xij  
except for the first two moments. 

+ u: as 
0.016 and the between-subject variance a& as 0.032. For illus- 
trative purposes, we fixed the between-subject variance cr& 
as 0.032, which allows the underlying unobserved SBP to be 
correlated with the same subject. We then varied the mea- 
surement error variance between two extreme cases, u: = 0 
and UP = 0, where the first case (cr; = 0) assumes no mea- 
surement error, the second case (r? = 0) assumes that the 
true SBP does not vary over time for each subject, and the 
within-subject variation in the observed SBP is fully due to 
measurement error. We further treated u; as fixed and known 
and hence used the standard error estimation methods of Ste- 
fanski and Cook (1995) to calculate I(.). The SIMEX method 
was applied with B = 100, which took only 40 seconds on a 
SPARC Ultra. 

The naive score statistic for Ho: 0 = 0 calculated by ig- 
noring the measurement error, i.e., assuming cr: = 0, was 
U/Z1I2 = 4.6311.41 = 3.28 ( p  value < 0.001). The SIMEX 
score statistic accounted for the measurement error by assum- 
ing cr: = 0.016 was Usimex/T31~~ex = 3.9811.58 = 2.52 ( p  value 
= 0.006). Note here a one-sided test was used since the alter- 
native hypothesis is Ha: 0 > 0. This suggests that there is 
a significant correlation among observations within the same 
subject. In fact, Wang et al. (1998) estimated the variance 
component 0 as 2.05 (SE = 1.57) when u: = 0 (no mea- 
surement error) using an approximate maximum likelihood 
method and estimated 0 as 1.85 (SE = 1.52) when uz = 0.016 
using the SIMEX method to account for the measurement er- 
ror. Note that the standard error of the estimate of 0 cannot 
be used directly for testing 0 = 0 since the null hypothesis is 

that Wi = (Wil,. . . , Win,)T given Zi = (Z:, . . . , Zin , )  T T  has 

We used the method of moments to estimate 

on the boundary of the parameter space and the Wald statistic 
is not asymptotically distributed as a chi square (Lin, 1997) 

6. Simulation Study 
We conducted a simulation study to assess the size and power 
of the proposed SIMEX score tests for variance components. 
The design considered in the simulation study was similar to 
that in the Framingham data example in Section 5, where 
there were m = 75 clusters with n = 4 observations per 
cluster. The variable 2 was the exam number (1-4) within 
each cluster, while X, was generated as normal with mean 
zero and covariance matrix uEI + o&J, where uz = 0 and 
u& = 213. The observed XzJ-related covariates WzJ were gen- 
erated by assuming the measurement error variance 02 = 113 
and u: = 213, where the first scenario (u: = 113) mim- 
ics the Framingham data example in Section 5. A logistic 
mixed model with random intercepts in the form of equa- 
tion (7) was considered. The regression parameters were set 
as (po,pz,Pz) = (-2,1,0). The SIMEX method was applied 
with B = 100, and there were 2000 simulated data sets for 
each parameter configuration. 

We varied 8 as 0.00, 0.25, 0.50, 0.75, and 1.00 to study the 
size and power of the SIMEX score test for variance com- 
ponents. For the purpose of comparison, we also studied the 
size of the naive score test for variance components obtained 
by ignoring the measurement error and by replacing Xt3 with 
WzJ when calculating U and T .  Note that both size and power 
were calculated using a one-sided test. The nominal size was 
set to be 0.05. Table 1 gives the empirical size and power of 
the tests. 

The results in Table 1 support the theoretical development 
suggesting that the level of the naive score test calculated by 
ignoring the measurement error will be too high. The perfor- 
mance of the naive score test becomes significantly worse as 
the measurement error becomes larger. However, the SIMEX 
score test performs well and still has a level very close to the 
nominal value. As the variance component 0 increases, the 
power of the SIMEX score test increases and approaches one 
quickly. 

7. Discussion 
We have proposed in this paper a simple SIMEX global score 
test for variance components in generalized linear mixed mod- 
els with covariates measured with error. Key features of the 
SIMEX global score test are that it is robust and easy to 
implement. Specifically, no distributions need to be assumed 
regarding the unobserved covariates and the random effects, 
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and one only needs to fit generalized linear models to the 
data. Our simulation study shows that ignoring measurement 
error could result in a level of the score test for variance com- 
ponents that is higher than the nominal value. However, the 
SIMEX score test performs well, yielding an appropriate level 
and good statistical power. 

The SIMEX method can be easily used to construct indi- 
vidual score tests to test for variance components separately 
in GLMMeMs. Such SIMEX individual score tests are con- 
structed in an almost identical way to the SIMEX global 
score test. To avoid redundancy, we have not discussed them 
in detail in this paper. Specially, to test the null hypothesis 
Ho: QI, = 0 in GLMMeMs with independent random effects 
(see equation [6] of Lin, 1997), for each simulated data set 
generated in the SIMEX simulation step, instead of calculat- 
ing the global score vector U in (5) and the global efficient 
information Z in ( 6 ) ,  one simply needs to calculate the score 
and the efficient information of Qk or their approximations 
under the new hypothesis Ho: Qk = 0, which are given in 
equations (19) and (22) and equations (25) and (26) of Lin 
(1997). The rest of the SIMEX procedure described in Sec- 
tion 4 can then be applied directly without modifications to 
construct the SIMEX individual score tests for variance com- 
ponents. 

We consider in this paper score tests for variance compo- 
nents using the SIMEX method, which assumes no distri- 
bution for the unobserved covariates X. The SIMEX score 
test hence is robust to misspecification of the distribution of 
X. However, SIMEX score tests could be less powerful com- 
pared to fully parametric score tests constructed by assum- 
ing a parametric distribution for X. Unlike the SIMEX score 
tests, which often have closed-form expressions and can be 
easily implemented using existing statistical software, diffi- 
culties in constructing such fully parametric score tests are 
that closed-form expressions are often not available and often 
involve multidimensional integration and that new statistical 
software usually needs to be developed. Another disadvan- 
tage of the fully parametric score tests is that they are not 
robust to misspecification of the distribution of X. Further 
research is needed to compare the performance of the SIMEX 
score tests and the fully parametric score tests for variance 
components. 
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RESUME 
Un problltme rencontrk couramment dans l’analyse de donnkes 
groupkes avec des erreurs sur les covariables est celui du test 
des corrClations intra-groupes et de l’hktkrogkn6itk inter- 
groupes. Nous traitons ce problbme dans le cadre des modltles 
linkaires g6n6ralisks mixtes avec erreurs. Nous proposons de 
construire un test du score de I’hypothGse Ho que toutes les 
composantes de variance sont nulles, a l’aide de la mkthode 
SIMEX. Une caractkristique essentielle de ce test du score 
SIMEX est qu’il ne requiert aucune hypothese sur les distribu- 
tions des effets alkatoires ou des covariables manquantes. Nous 

appliquons la mkthode & des donnkes de 1’enquGte de Ram- 
ingham et nous kvaluons ses performances B l’aide de simu- 
lations. Nous proposons Cgalement des tests du score SIMEX 
individuels pour tester skparkment la nullitk des diffkrentes 
composantes de variance. L’implantation de ces tests & partir 
de logiciels courants est facile. 
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APPENDIX 1 

Calculatzons of the EfJiczent Informatzon 
Matrzx Z an Sectzon 3 

Suppose ~ 3 , ~  and ~4~~ are the third and fourth cumulants of 
Yz3 under Ho: 8 = 0 and are related to the second cumu- 
lant via ~ ( , + 1 ) , ~  = ~ 2 ~ ~ d ~ ~ ~ ~ / 8 p ~ ~  (r = 2,3), where ~2~~ = 

q5mG1v(pZ3) They take the form 

-1 2 I 
&323 = (4m,J ) ‘G ( ~ Z J ) ~ ( ~ J ) ,  

Let At = S i D k S T  and a: be an ni x 1 vector containing the 
diagonal elements of A? ( k  = 1, . . . , c) .  Let R, be an ni x n, 
matrix with diagonal elements ~ $ 3 6 , < ~ ~ 4 i j  + 2u?j + eztc2i3 - 
2w:jS272eij~3ij and off-diagonal elements 2wijwij1 (j # j ’ ) .  
Finally, let C i  be a diagonal matrix with diagonal elements 
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w 3 . 6 X 3 ~ 3 i j  2 3  23 - wijbij’eijK2ij. The efficient information matrix 
is Z = Iee - I & I ~ & ~ ,  where 

A4 

i=l 

M 

i=l 
where 1 is a vector of ones, G . H denotes component-wise 
multiplication of comformable matrices G and H. For detailed 
derivations of (A.l), see Lin (1997). 

APPENDIX 2 

Justijkation of the SIMEX Score Test 

The SIMEX score test is most easily justified in the explicit 
special case of a canonical GLMM with random intercept hav- 
ing variance component 8, scalar X ,  constant number n of 
observations per cluster, and number of SIMEX simulations 
B < co. The restriction to canonical GLMMs with a random 
intercept and constant cluster size is only for convenience; the 
general case is easily handled but with far more notational 
complexity. For example, to extend the proof in Appendix 3 
to the case with varying cluster sizes, multiple random effects, 
and noncanonical links, one needs to replace the scalar score 
function in equation (A.2) by the score vector given in equa- 
tion (5) and evaluated at a:. To allow X to be a vector, one 
needs to replace the scalar measurement error variance 0: by 
a measurement error covariance matrix Eu in (A.2). Virtually 
identical arguments to those given in Appendix 3 can then be 
applied to prove the asymptotic behavior of the SIMEX score 
test in such general cases. The restriction that B < co is no 
real restriction since this would be the case in practice and, 
in addition, Carroll et al. (1996) note that the case B = co 
involves difficult asymptotic theory for which rigorous results 
are available only in limited special cases. 

Our argument is in two steps. We first show that, with 
changes in notation, the results of Stefanski and Cook (1995, 
02 known) and Carroll et al. (1996, CT: estimated) apply to 
obtain consistent standard error estimates for the score test 
statistic in Section 4. We then indicate that, with the ex- 
act extrapolant, the SIMEX score test has the correct level 
asymptotically. 

APPENDIX 3 

Asymptotzcs 

Let { a ( O : ) , ~ s ( ~ ~ ) , P z ( a : ) }  be the ordinary estimates of the 
coefficients under the null model (8 = 0) with data having 
measurement error variance 0:. Note that the null model 
corresponds to the generalized linear -models with measure- 
ment error. Define FZ3(o:) = g-’{Pij(o:) + Wz,Pz(a$) + 
Z;;~Z(&)), &J(d) = 1/g’{fiZj(d}, and GZ,(d) = 
[V{fi,(a~)}/~,”(~:)]-l, where V(.) = ~ ~ W L ~ , ~ V ( . )  and g’ = 
l /v( . ) .  Denote the ensemble of responses by Y and let X, Z, 

- 

and W be defined similarly. The score statistic is 

z, w, ff3 

(-4.2) 

l 2  x {Yij - F i j  (d)} 

- p J i j  (0:) . ) 
n 

j=1 

Now let {Po(.:), &(a:), &(o;)} be the probability limits 
(assumed to exist) of the parameters as M 00, still as 
8 = 0. Further define pij(0-2) = g-l(Po(a2) + WijP5(&) + 
Zz/3z(o:)} and define wi j (a : ) ,  &j(o:), and U M ( Y , Z , W ,  
&) similarly. Finally, define 

(ffE) 

= E (  ; ( 

By ordinary delta method calculations, for some function 
x(.), we have the expansion 

bo (d)  - Po (0:) 
Pz (d )  - Pz (d) M1l2 [ -  bz (4) - P z  (d)  1 

M 
- - M-1/2 x (Y,, Z , ,  W,, 0:) + op (hi-’/’) , (A.3) 

2 = 1  

where E{x(Y,, Z,, W,, a:)} = 0 (cf., Stefanski and Cook. 
1995, Section 5.3). Applying a delta method expansion to 
(A.2) and using (A.3), it is easily seen that, for some function 
*(.)I 

M ~ / ~  {a, ( Y , Z , W , ~ ; )  - r  (a:)} 
M 

- - A4-l” * (Yz, z,, W,, v:) + op ( M - 1 / 2 )  , (A.4) 
3=1 

where E{rk(Y,, Z , ,  W,, a:)} = 0. Except for differences in 
notation, (A.4) is identical to the definition of &,(A) in Section 
5.2 of Stefanski and Cook (1995) and to equation (7) of Carroll 
et al. (1996). This verifies that their methods yield consistent 
variance estimates for the score statistic. 

APPENDIX 4 

Level of the Test 

The SIMEX method-extrapolates the estimates (in this case 
the score statistic) UM(Y, Z, W, 0;) back to the case that 
there is no measurement error. If the correct or “exact” ex- 
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trapolant function is used, then the SIMEX method yields 
a consistent estimate of the limit, which in our notation is 
r'(o: = 0). Under the null model that the variance component 
is zero (0 = O),  r(a: = 0 )  = 0 so that, if the exact extrapolant 
is used, the level of the SIMEX score test is asymptotically 
correct. 

In practice, the exact extrapolant function is typically un- 
known, and an approximation to it is the best that can be 
obtained. As long as the approximation is reasonable, the ac- 
tual level of the SIMEX score test should be near the nominal. 




