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Abstract

The purpose of this paper is to assess the importance of the density difference between a tracer solution and ground water
on the determination of aquifer properties by inversion of tracer signals. To estimate the effect of this density difference, we devel-
oped a nondimensional, approximate solution to a Boundary Value Problem (BVP) based on a partial differential equation first
presented by Bear and Dagan (1964). The BVP models the displacement of water by another aqueous solution with a different
density in a rectangular, vertical cross section of a homogeneous porous medium. A rectangular sandbox analog model was used
to verify the validity of the nondimensional solution for the case of a moving interface during the displacement of water by a heav-
ier-than-water aqueous solution. A constant flow rate was maintained by applying constant heads at a fully penetrating vertical
inflow and outflow chamber. The theory, which can be applied as a prediction tool for laboratory experiments, permits us to explore
the implications of using denser-than-water tracers for determining aquifer hydraulic conductivity and dispersion coefficient val-
ues. According to our assessments, density effects should not be ignored, as small density differences can lead to serious uncer-
tainties in permeability and dispersivity determinations.

Introduction

The flow of two aqueous solutions having different densities
has been investigated in numerous studies associated with the
movement of the salt water/fresh water interface in coastal aquifers.
Besides these studies, another branch of ground water modeling
makes extensive use of conservative tracers to determine proper-
ties of aquifers such as hydraulic conductivity and dispersivity. The
influence of the specific gravity difference between ground water
and a tracer solution on the transport of the tracer is, however, gen-
erally neglected. One possible reason for this omission is that in case
of a density difference between ground water and tracer solution,
a correct interpretation of the collected data requires a sophisticated
computer program capable of inversely simulating the convec-
tive-dispersive, density-affected transport of the tracer. The purpose
of this paper is to estimate the importance of density differences on
a conservative tracer experiment, by providing a simple non-
dimensional solution to a Boundary Value Problem (BVP) based on
a partial differential equation developed in the early research on sea
water intrusion (Bear and Dagan 1964). The BVP models the dis-
placement of the ground water by another miscible fluid phase with
a different density in a rectangular, vertical cross section of a
homogeneous porous medium. The proposed solution, even though
it is approximate, shows agreement with experimental data collected
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in an intermediate-scale sandbox analog model in which water
was displaced by a sodium-bromide solution. Flow and transport
were maintained between two constant head, fully penetrating ver-
tical inflow and outflow chambers. Consequently, the solution can
be applied to laboratory research involving the flow of two aque-
ous phases having different densities. The nondimensional solution

Timet=0 /bz

d Salt water Fresh water
/ —————
x=0 X
Timet>0 Az
—_— Fresh water
Q Salt water 1
[ I >
X

0 X
Figure 1. Depiction in vertical cross section of a moving salt water/
fresh water sharp interface, at times t =0 and t > 0.
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is used to estimate the sensitivity of hydraulic conductivity and dis-
persion determinations to the density difference between the tracer
solution and the ambient water. We found that even small density
differences can result in substantial errors in the values of aquifer
properties obtained by inversion of tracer signals.

Theory

In an infinitely long, horizontal aquifer of thickness d (L), hav-
ing a saturated hydraulic conductivity K (LT-!) and a porosity n, a
vertical interface between two liquids with specific gravities v,
(fresh water) and vy, (salt water) is allowed to exist at position
x =0 (L), at time t =0 (T). For t > 0, a lateral inflow per unit width,
Q (LT, at one end of the aquifer and an equivalent outflow at the
other end of the aquifer causes the interface to move and change its
slope due to density effects (Figure 1). Considering the Dupuit
assumption of horizontal flow and no mixing between the two
fluids, the height of the salt water above the bottom of the aquifer,
Ax,t), is given by the solution of the Boundary Value Problem
(BVP) consisting of the governing partial differential equation
(Bear and Dagan 1964; Bear 1972) modified to account for the direc-
tion of Q:

N + - | == + K’ ==

2 (Q M0
o ax[d da oxl 0 M

subjected to the boundary conditions

Mx,0)=d forx <0 (2a)
AMx,0)=0 forx >0 (2b)
M—oot)=d (2¢)

with K’ =K-(y, —y)/¥; being taken positive for the remainder of this
study.

Equation 1, subject to Equation 2, can be simplified to the new
nondimensional BVP
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AX,0)=1 for X <0 (4a)
AX,0)=0 for X>0 (4b)
A=, T)=1 (4¢)
where the nondimensional variables A, X, T, satisfy
A(x,t
AX.T) = % (5a)
Q
X = ﬁ(‘j‘ X (5b)
Q2
T o
d*K’ n (5¢)

If the front is approximated by a straight line (satisfying
A[X,T] = a[T])-X + b[T] ) at some time, then (disregarding the sin-
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Figure 2. Configuration of a linear approximation of the salt

water/fresh water front at nondimensional time T.

gularities at A = 0 and A = 1) the second term of the governing
Equation 3 is also a linear function of X. Hence, the front will remain
a straight line when time progresses. Having a vertical, linear front
as the initial condition, the idea is to consider a front that remains
linear as time progresses, as an approximate solution of the BVP
consisting of Equations 3 and 4. The solution is only approximate
because we (1) use the Dupuit assumption of horizontal flow; (2)
assume a sharp interface, thus ignoring any diffusion/dispersion of
the tracer; (3) use the assumption of a linear front; and (4) disregard
the singularities at A = 0 and A = 1. However, because we were
interested only in estimating density effects and not in obtaining the
exact solution of the nonlinear Equation 1, subjected to Equation 2,
we decided to use the linear approximation. This formulation can
be easily manipulated and is supported by the experimental results
presented in the section Materials and Methods. Given the hypoth-
esis of a linear front, we may consider the situation presented in
Figure 2. At some nondimensional time T, the linear front satisfies

X f L, A f 0 ©6)
X=L, A=1
The equation for the front is, therefore,
L, —-X
o= 7
— (7)
and the formula giving the slope S of the front at time T is
oA -1
S=--= 8
X L, -L, ®
The slope at time T+dT satisfies the expression
=9 _9 QJ&T)} _OA L A
S(T +dT) = E)X[A(T +dT)] = aX]:A(T) + dT |7 ax + dTaxaT
)

Substituting Equation 7 into Equation 3 and differentiating
with respect to X gives

9’A 2

= = -2 10
0XoT (L, - L, (19

Equation 9 can then be reformulated as
S(T +dT)=S(T) - 2dT[S(D)]* (11)
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Figure 3. Evolution of the theoretical front as a function of the non-
dimensional variables (X,A,T).

which, upon separation of the variables, yields

ds
$§ T 2dT (12)

Considering that the inverse of the slope attains a zero value
for T =0, and that in our case of salt water displacing fresh water
the derivative of A with respect to X is negative, we obtain the evo-
lution of the nondimensional slope of the front with time:

oA ~1
S_BX_?.\/’f (13)

This equation is consistent with the fact that a singularity
occurs in Equation 3 for t = 0, where the derivative of y with
respect to x is not defined because of the presence of the vertical
front. Applying the mass balance principle gives us the nondi-
mensional, approximate equation, describing the movement of the
front:
for X < T—VT

AXT) =1 (142)

A(X,T)=%<1—»X%> for T-VT < X < T+ VT (140

AX,T) =0 for X > T+ VT (14c)
The approximate solution Equation 14 satisfies Equation 3 on

each of the domains it is defined for. However, agreement with
Equation 3 cannot be reached at the positions X = T — VT and
X=T+VT , where the approximate solution presents singu-

larities for the slope of the front. A plot of Equation 14 (Figure 3)
shows that the absolute value of the slope of the advancing front
gradually decreases as time increases (Equation 13). For the non-
dimensional times T < 1, the mass balance principle is not obeyed
in the domain X > 0, because the domain used for the derivation of
Equation 14 also includes X < 0. Nevertheless, as we will see
later, this inconsistency has little influence on the general flow
behavior.
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Materials and Methods

In order to verify the validity of Equation 14, an intermediate-
scale flow container (internal dimensions: 1.67 m long by 1.0 m high
by 5 cm thick, Figure 9) was used to demonstrate the movement of
an initially vertical tracer front as it displaced deionized water in a
fully saturated porous medium. The flow container, of which a full
description can be found in Qostrom et al. (1999), contained a
clay layer such that d = 62 cm. No flow was allowed below the clay
layer. Above the clay layer, the porous medium consisted of a
coarse sand (Table 1) surrounding one lens of a very fine sand
(Figure 9, Table 1) and two lenses of a fine sand (Figure 9, Table
1). The average porosity of the coarse sand, as measured with a dual-
energy gamma radiation system (Qostrom et al. 1999) was 0.35
(standard deviation = 0.013). The three embedded lenses served lit-
tle purpose for the research reported in this paper, as they were
emplaced to investigate their effect on the infiltration and redistri-
bution of a dense nonaqueous phase liquid in a subsequent exper-
iment. However, these lenses demonstrate the behavior of the tront
in the presence of heterogeneities. The two end chambers of the flow
container allowed for horizontal flow by imposing a head difference
along the longitudinal direction. At time t = 0, the deionized water
in the inflow chamber was quickly displaced by a 5 g/L. NaBr
solution dyed with fluorescein (Ay/y; = 0.0052), while the fluid level
in the chamber was kept constant. The flow rate per unit width (Q)
was 2.9 X 102 cm?s'!. The successive positions of the front between
the deionized water and the salt water were recorded by photogra-
phy using ultraviolet light.

Supplementary information, in the form of breakthrough
curves, was obtained by extracting solution samples as a function
of time at a number of ports mounted in the back of the flow con-
tainer (Figure 9). The samples were analyzed with a bromide spe-
cific electrode. The resulting breakthrough curves were analyzed
with the program CXTFIT2 (Toride et al. 1995). In this program,
developed for one-dimensional problems, pore water velocities
(w) are obtained by dividing the fitted time of the occurrence of the
front (breakthrough time) by the longitudinal distance between
the injection and observation location. In order to use the obtained
values of ® for validation of Equation 14, we need to derive from
Equation 14 the time of occurrence of the front (T = T,) at a cer-
tain position (X,Z), with Z = z/d, and subsequently divide X by the
nondimensional time T,. We then obtain the nondimensional,
apparent velocity field €2 consistent with the hypothesis that lead
to Equation 14 and with the one-dimensional CXTFIT2 definition
of velocity. Inverting Equation 14 to obtain T as a function of X and
Z gives a polynomial of order 2 and, therefore, two solutions. One
of these solutions is, however, not applicable to our case and the
expression we consider is

11 2
TO:<—Z+5—5\/422—4Z+1+4X> (15)

It should be noted that Equation 15 is useful for predicting
breakthrough times in case of a step input of a conservative tracer
solution with a density that differs from the ambient water. For Q
=X/T, we obtain €2, the apparent dimensionless velocity given by
one-dimensional inversion, as a function of X and Z:

X

Q= e T , (16)
(— 2—5\/422—4z+1+4x>




Table 1
Porous Media Properties
Porous Medium
Sand F4.0 Sand F2.8 Sand F75
Texture Coarse Fine Very Fine
Particle size (% total mass)
<106 um 0.07 0.44 2.70
106-250 pm 0.86 14.35 47.53
250-500 pm 7.88 42.52 49.69
500-840 pm 90.47 42.55 0.02
>840 pm 0.07 0.44 0
Porosity 0.35 0.36 041
Standard deviation 0.012 0.014 0.019
Bulk density (kg m?) 1696 1566 1556
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Figure 4. Average slope of the front as a function of the inverse of the
square root of time (Equation 9).

Results and Discussion

To evaluate and apply the theory, we need a value of the
hydraulic conductivity of the coarse sand. Consequently, we fit the
average measured slope of the front as a function of one over the
square root of time by a least square error procedure (Figure 4). The
slope of the fitted line permits determination of the hydraulic con-
ductivity value used for theoretical purposes. The value for the inter-
cept approaches 0, which, together with R —1, shows the valid-
ity of the theory presented and of the method used for the hydraulic
conductivity determination. The average hydraulic conductivity
of the coarse sand was found to be 3.2 cm/min, a value that is 1.5
times less than an independent determination by the constant head
method applied to a 50 cm long sand column. Figure 5 shows a com-
parison between the fronts obtained with a normalized form of
Equation 14 and those obtained experimentally. In general, agree-
ment exists between the theoretical and experimental locations of
the front, even though the presence of the inflow chamber, containing

z (cm)

100
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Figure 5. Evolution of the theoretical front as a function of the
dimensional variables (x,z,t) for the intermediate-scale experiment and
comparison with actual experimental fronts.
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Figure 6. Behavior of the front at the proximity of a low permeabil-
ity lens: cases of (a) zero density difference and (b) nonzero density
difference between tracer solution and water.

fluids only, is not consistent with the boundary condition
M~ oot) = d (2¢)

used for developing Equation 14, but instead imposes the bound-
ary condition

AMxt) =d forx < 0 17
on the flow of the sodium-bromide solution. Consequently, our
experimental results show a weak influence of the boundary con-
dition on the general behavior of the front, and support the approx-
imations made during the development of our model. For instance,
the assumption of a linear front is generally valid, and other simi-
lar experiments not presented here confirm this behavior. The best
agreement with the linear approximation is generally found at
intermediate and long times, when the front is far enough from the
influence of the inflow chamber, i.e., when the boundary condition
Equation 2c¢ gains validity. This result is also logical in the sense that,
as the slope of the front diminishes with time, the singularities that
we disregarded at A = 0 and A = 1 lose more and more of their
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Figure 7. Nondimensional apparent velocity, 2, as a function of the nondimensional variables (X,Z).
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Figure 8. Normalized apparent velocity, o, for the intermediate-
scale flow container.

importance. The occurrence of relatively small lenses, with saturated
hydraulic conductivity values less than the remainder of the porous
medium, demonstrate that the presence of small scale hetero-
geneities has little influence on the overall flow behavior, which
compares favorably to the solution described by Equation 14. We
observed that, even if the flow through a lens was limited, the
density difference caused the salt water present above the lens to
come down when it reached the end of the lens. It then formed a uni-
form salt front again with the salt water that flowed under the lens
(Figure 6). The general trend for the moving front is thus to alle-
viate the influence of heterogeneities and to behave according to
Equation 14, as if the porous medium is homogeneous. A com-
parison with the situation that would occur in case no density dif-
ference exists between the tracer solution and the ambient water
(Figure 6) shows that values of the apparent dispersivity due to het-
erogeneity, obtained with dense tracers, will be lower than those
obtained with tracers having the same density as water because of
a higher vertical mixing.

A contour plot of the nondimensional apparent velocity field
€ (Equation 16) is presented in Figure 7, while the normalized the-
oretical apparent velocity field, €, is given in Figure 8. The com-
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pared values of apparent velocities (Figure 9), obtained by the
theoretical approach (italic) and by fitting with CXTFIT2 (roman),
are generally in agreement.

Applications

Hydraulic Conductivity Values

In many instances, both in laboratory flow containers and in the
field, conservative tracers are used to determine the horizontal
saturated hydraulic conductivity of a porous medium (e.g., Molz et
al. 1990). To obtain the necessary flow velocity in a presumably
homogeneous porous medium, the program CXTFIT2, or some
other one-dimensional fitting program, is used to analyze the break-
through curves obtained in response to a step input. Not taking den-
sity differences between the tracer solution and the ambient water
into account may, however, lead to a considerable error. Considering
the problem strictly one-dimensional, there usually is no concern
about the depth of sampling and only the longitudinal distance
between the injection and extraction point is thought to be impor-
tant. Based on the theory we provided, we will derive an expression
for the relative uncertainty due to density effects on the obtained K
value. From the Darcy equation, we know that for a given hydraulic
gradient (AH/AL), K is proportional to the velocity of the dis-
placement of the front in one dimension. The relative uncertainty
can thus be defined as the difference between the maximum, Q__,
and the minimum nondimensional apparent velocity, Q... These
extreme values are obtained for Z = 0 and Z = 1, respectively, which
according to Equation 16 results in

(18a)
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Figure 9. Sketch of the intermediate-scale flow container and comparison between velocity values obtained by breakthrough curve fitting at
sampling ports (roman values) and by application of Figure 8 (italic values).

X
Qi = 7777 v (18b)
(-3-3Vi+ )
2 2
The relative error in K can be expressed as
AK 16XV1 + 4X
o {Qmax - Qmin| =7 2 2 (]9)
K (=1 +V1+4X)23(1 + V1 + 4X)
For X » (.25, the preceding equation becomes
K VX

Figure 10 compares the plots of Equation 19 (solid line) and

Equation 20 (dashed line). For all practical purposes, X > 1 is a suf-

ficient condition for the use of Equation 20 instead of Equation 19.
After normalization, Equation 20 can be written as

(21)

As an example, consider the case of using a conservative tracer
such that the relative density difterence is 1%. Furthermore, assume
a hydraulic gradient of 1% (1 cm/m) and a tracer travel distance of
four times the depth of the aquifer. This results in a relative uncer-
tainty value for the hydraulic conductivity of about 100%.

Dispersivity Values

For determining the dispersivity of a porous medium concep-
tualized as homogeneous in which flow occurs in the horizontal
direction, breakthrough curves can be obtained, for example, at a
downstream fully penetrating end chamber, in response to a step
input. We will further assume the use of a conservative tracer, the
solution of which is denser than the water it will displace. Ignoring
the density difference in the analysis by a one-dimensional program
such as CXTFIT2, the value cf the apparent dispersion coefficient
comes into question because the shape of the breakthrough curve
is to a large extent determined by the gradual arrival of the gravity-
induced sloped front and little by dispersion effects.

For comparison of the density-induced spreading with a purely
advective-dispersive process, we consider the BVP consisting of the
one-dimensional advection-dispersion equation

dc % Jc
% _plt_y% 2
T 22)

subjected to the boundary conditions analogous to Equation 2:

c(x,0)=c, forx <0 (23a)
c(x,0)=0 forx >0 (23b)
c(—eot)=c¢, (23¢)

where V (LT is the pore water velocity, D (L2T-!) is the disper-
sion coefficient, ¢ (ML) is the concentration of the tracer, and I
is the inlet concentration. The solution to this BVP was given by von
Rosenberg (1956) and restated in Bear (1972):
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Figure 10. Uncertainty due to density-difference effects in the
hydraulic conductivity determination, in case of a rectangular porous
medium subjected to a conservative tracer at a step input. The solid
line represents Equation 19 and the dashed line the approximate
solution Equation 20.

?1[1+ pX TVt + forx =Vt <0 (24)
¢, 2 VD] - forx =Vt >0

It is important to note the analogy between the forms of
Equations 14b and 24, which shows that the gradual arrival of
solute due to the sloped front (Equation 14) can be conceptually
compared with a dispersion process (Equation 24). Applying the con-
cept of mixing length L, (Taylor 1953), which is defined as the dis-
tance between the locations where c/c, = 0.1 and c/c, = 0.9, to
Equation 24 results in

~

(L, V
D=1 (3.625) (25

In case of the approximate solution, i.e., a sloped, linear front
between the tracer solution and fresh water, L., becomes according
to Equation 13

dK't
L = 1.6\/ — (26)

m n

Substitution of Equation 26 into Equation 25 gives an estimate
of the apparent dispersion coefficient associated with the gradual
arrival of the tracer under the influence of gravity effects only:

5-029% (AY )

n \y 27

This result differs by a factor of 5 from the dispersion coeffi-
cient used by Gelhar et al. (1972) in their study of axisymmetric
gravitational mixing. In case of the intermediate-scale experiment
used for validation of Equation 14, we obtained a D value of about
1.5X 102 ¢mZs!, For comparison, values obtained by fitting
CXTFIT?2 through the breakthrough curves obtained from sampling
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ports (point measurements), values that are mainly due to disper-
sion processes, were in the order of 1.5 X 10 cm?s™!. The difference
of two orders of magnitude shows the necessity of taking gravity
effects into account when using a dense conservative tracer arriv-
ing in an end chamber or a well perforated over its total height. In
case of a heterogeneous porous medium, we already noticed
{Results and Discussion) that the use of a dense tracer, by increas-
ing vertical mixing, has the tendency to reduce the influence of het-
erogeneity on flow. On the other hand, a density ditference induces
a gradual arrival of the tracer (Equation 27). These two influences
have opposite effects on the dispersivity value obtained in a dense
tracer experiment. Nevertheless, it would be a mistake to neglect
these effects, for one influence does not a priori eliminate the other
one.

We would like to emphasize that D, as expressed in Equation
27, is independent of the flow velocity, which is inconsistent with
the notion of diffusion/dispersion in porous media. D is also inde-
pendent of x. The presence of a sloped tront due to specific grav-
ity differences between the tracer solution and the ambient water has,
therefore, no influence on the dependency of the dispersivity on the
longitudinal distance, as reported at the field scale (Gelhar 1993).
However, as dense tracers are being widely used, ignoring density-
difference effects may be the cause of many erroneous dispersiv-
ity values, as dispersivity is supposed to be a measure of the struc-
ture and/or heterogeneity of the porous medium only.

These two applications show the importance of density-dif-
ference effects on results obtained with tracers. The nondimensional
solution described by Equation 14 is nevertheless restricted to the
case of a two-dimensional rectangular homogeneous porous
medium, which is restrictive compared with the complexity present
in field experiments. The incorporation into further research of
concepts such as well solutions, heterogeneity, slug size, instabil-
ities (e.g., Oostrom et al. 1992; Liu and Dane 1996), will be nec-
essary to reach a more complete understanding of the influence of
density differences on tracer experiments.

Conclusion

We developed an approximate solution to the problem of a
sharp salt water/fresh water moving interface, which by its non-
dimensional nature is easily applicable to every case of a rectangular
homogeneous porous medium. The agreement with experimental
data tends to show a weak influence of the boundary conditions on
the general trend of the density affected flow. The solution allows
for a simplified general view of the influence of density differences
upon values of velocity, permeability, or dispersivity obtained in con-
servative tracer experiments.
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