Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FAA-RD-78-82 4. Title and Subtitle 5. Report Date Critical Assessment of Emissions from June 1979 Aircraft Piston Engines 6. Performing Organization Code 8. Performing Organization Report No. 7. Authors) W. Mirsky, R. Pace, R. Ponsonby, J.A. Nicholls, D.E. GeisterFAA-NA-78-166 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Department of Aerospace Engineering The University of Michigan 11. Contract or GrantNo. Ann Arbor, Michigan 48109 DOTFA74NA-1102 13. Type of Report and Period Covered 12. Sponsorin Agency Name and Address U.S. Department of Transportation Final Report Federal Aviation Administration June 1974 - May 1978 Systems Research and Development Service 14. Sponsoring Agency Code Washington, D.C. 20590 15. Supplementary Notes The contract was administered by the National Aviation Facilities Experimental Center, Atlantic City, New Jersey 08405. 16. Abstract A comprehensive mathematical analysis for evaluating the measured emissions from piston type general aviation aircraft engines is presented and discussed. The analysis is used to calculate the fuel-air ratio, molecular weight of the exhaust products, and water correction factor. Further, a sensitivity analysis is presented which shows the effects of emission measurement errors on calculated fuel-air ratio. The University's test, facility is briefly described and the associated emissions instrumentation is discussed in detail. The experimental results obtained in this facility on the AVCO-Lycoming LIO-320 engine are presented. This includes baseline and lean-out emissions data and the influence of sampling probe location in the exhaust pipe. The influence of leaks in the exhaust system or emissions console are investigated and evaluated in terms of the mathematical model. Experimental data obtained from various facilities are compared and evaluated. 17. Key Words 18. Distribution Statement General Aviation Aircraft Document is available to the U.S. Emissions (Pollution) public through the National Piston Engines Technical Information Service Springfield, Virginia 22151 19. 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price UNCLASSIFIED l UNCLASSIFIED D149 Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

METRIC CONVERSION FACTORS Approximate Conversions to Metric Measures Symbol When You Know Multiply by To Find Sy in ft yd mi inches feet yards miles LENGTH *2.5 30 0.9 1.6 centimeters centimeters meters kilometers AREA in2 ft2 yd2 mi2 square inches square feet square yards square miles acres 6.5 0.09 0.8 2.6 0.4 square centimeters square meters square meters square kilometers hectares MASS (weight) -o mbol reblcm cm - -^ cm kmCM2 m2 ml ml - ml w m3 cm ha. a Ct - cn =r =r 9 _ kg _ —-co = ) eq'= N -- en c0 m -- ao -- - t = e -- - e _, _ = E mm cm m m km millimeters centimeters meters meters kilometers Symbol When You Know Approximate Conversions from Metric Measures Multiply by AREA To Find cm2 h2 m2 km2 ha square centimeters 0.16 square meters 1.2 square kilometers 0.4 hectares (10,000 m2) 2.5 square inches square yards square miles acres in2 yd2 mi2 LENGTH Symbol 0.04 0.4 3.3 1.1 0.6 inches inches feet yards miles MASS (weight) grams 0.035 kilograms 2.2 tonnes (1000 kg) 1.1 in in ft yd mi oz lb ounces pounds short tons (2000 Ib) 28 0.45 0.9 grams kilograms tonnes 9 kg t ounces pounds short tons oz lb VOLUME VOLUME tsp Tbsp fl oz c pt qt gal ft3 yd3 teaspoons tablespoons fluid ounces cups pints quarts gallons cubic feet cubic yards 5 15 30 0.24 0.47 0.95 3.8 0.03 0.76 milliliters milliliters milliliters liters liters liters liters cubic meters cubic meters ml I I 3 I m3 m3 milliliters liters liters liters cubic meters cubic meters 0.03 2.1 1.06 0.26 35 1.3 fluid ounces pints quarts gallons cubic feet cubic yards fl oz pt qt gal ft3 yd3 TEMPERATURE (exact) TEMPERATURE (exact) Celsius 9/5 (then temperature add 32) ~C Fahrenheit temperature oF Fahrenheit 5/9 (after temperature subtracting 32) Celsius temperature OF OF 32 98.6 212 -40 0 40 80 120 160 200 i I. I i I 1 l, I I I a a I I,'', i I I I I I i' I -40 -20 0 20 40 60 80 100 OC 37'1 in = 2.54 (exactly). Foi other exact converseons and more det3zled tables, see NBS Misc. Publ. 2 Units of Weights and Measures, Price S2.25, SD Catalog No. C13.10:286.

PREFACE This investigation was conducted by personnel of the Aerospace Engineering and Mechanical Engineering Departments of The University of Michigan, Ann Arbor, Michigan under contract No. DOTFA74NA-1102. Professor J.A. Nicholls served as Project Director with Professor W. Mirsky as the Principal Investigator. The contract was administered by the National Aviation Facilities Experimental Center, Atlantic City, New Jersey. iii

ABSTRACT comprehensive mathematical analysis for evaluating tne measured emissions from piston type general aviation aircraft engines is presented and discussed. The analysis is used to calculate the fuel-air ratio, molecular weight of the exhaust products, and water correction factor. Farther, a sensitivity analysis is presented which shows the effects of emission measurement errors on calculated fuelai- ratio. The University's test facility is briefly described and the associated emissions instrumentation is discussed in detail. The experimental results obtained in this facility on the AVCO-Lycoming LIO-320 engine are presented. This includes baseline and lean-out emissions data and the influence of sampling probe location in the exhaust pipe. The influence of leaks in the exhaust system or emissions console are investigated and evaluated in terms of the mathematical model. Experimental data obtained from various facilities are compared and evaluated. v

TABLE OF CONTENTS Page 1. Introduction 1-1 2. Data Analysis and Evaluation 2-1 2.1 Development of Combustion Equation Models 2-1 2.1.1 The Simple Combustion Reaction 2-1 Equation 2.1.2 Combustion Air 2-3 2.1.3 Computational Procedure for 2-4 Ambient Air 2.1.3.1 Air Molecular Weight 2-4 2.1.3.2 Inclusion of Atmospheric Moisture 2-6 2.1.3.3 Detailed Expression for 2-6 Combustion Air 2.1.4 The Expanded Combustion Equation 2-6 2.1.5 Methods for Computing Fuel-Air Ratio 2-7 2.1.5.1 Development of Method 1.1 2-8 2.1.5.2 Development of Method 1.2 2-11 2.1.5.3 Development of Method 2.1 2-15 2.1.5.4 Development of Method 3.1 2-16 2.1.5.5 Development of Method 3.2 2-16 2.1.5.6 Matrix Solutions 2-17 2.1.5.7 Effect of Hydrocarbon Loss 2-19 in the Water Trap 2.1.5.8 Effect of Dilution Air 2-19 (Mixing without Reaction) 2.1.5.9 Comments on Computational 2-22 Methods 2.2 Sensitivity Analysis of Fuel-Air Ratio 2-24 Computational Models 2.3 Evaluation of Data Reliability 2-32 2.3.1 Comparison of Michigan and Eltinge 2-35 Methods 2.4 Calculation of Exhaust Molecular Weight 2-43 2.5 Calculation of Water Correction Factors 2-47 for Exhaust Concentration Measurements 3. University of Michigan Test Facility 3-1 vii

4. Instrumentation for Emission Measurements 4.1 Emission Measurement Console 4.2 Instrumentation Problems 4.2.1 CO Infrared Analyzer 4.2.2 C02 Infrared Analyzer 4.2.3 02 Analyzer 4.2.4 Total Hydrocarbon Flame Ionization Detector (FID) 4.2.5 NO/NOX Chemiluminescence Analyzer 4.3 Comments 5. University of Michigan Engine Emission Data 5.1 Avco-Lycoming LIO-320 Baseline Runs 5.2 Avco-Lycoming LIO-320 Lean-Out Runs 5.3 Effect of Probe Location on Air-Dilution of Exhaust Sample 5.4 Check for Air Leaks 5.4.1 Leak Check of Gas Analysis System 5.4.2 Leak Check of Engine Exhaust System 6. Inter-Facility Data Analysis 6.1 Data Analysis Charts - AE versus XTC 6.2 Data Analysis Charts - E(1.2) versus XTC Page 4-1 4-1 4-2 4-4 4-4 4-5 4-5 4-6 4-7 5-1 5-1 5-24 5-38 5-40 5-40 5-41 6-1 6-1 6-5 7-1 8-1 A-1 B-1 C-1 D-1 E-1 F-1 7. Summary 8. References Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F Computer Program FAA Computer Program FARAT Computer Subroutine CRT4 Computer Subroutine CRT12 Computer Subroutine CRT15 Computer Subroutine CRT16 viii

LIST OF ILLUSTRATIONS Figure 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 3.1 3.2 3.3 3.4 3.5 5.1.A 5.1.B 5.1.C 5.2.A 5.2.B 5.2.C 5.3.A 5.3.B 5.3.C 5.4 5.5 5.6 Page Variation of the Water-Gas Equilibrium Constant with Temperature Matrix for the Governing Equations of Method 1.2 Matrix for the Governing Equations of Method 3.2 Specific Sensitivity vs C02 Concentration Specific Sensitivity vs CO Concentration Specific Sensitivity vs 02 Concentration Specific Sensitivity vs HCC Concentration AE vs XTC: Lycoming Data E(1.2) vs XTC: Lycoming Data E(3.1) vs XTC: Lycoming Data Eltinge Chart XTC and AE vs EIE: Eltinge Data Calculated Exhaust Molecular Weight vs Equivalence Ratio Engine Test Stand Engine Control Room Cooling Air Flow Schematic Intake Air Flow Schematic 2-10 2-14 2-18 2-26 2-27 2-27 2-28 2-34 2-36 2 —37 2-38 2-40 2-44 3-2 3-3 3-4 3-5 Exhaust LIO-320 LIO-320 LIO-320 LIO-320 LIO-320 LIO-320 LIO-320 LIO-320 LIO-320 LIO-320 LIO-320 LIO-320 Gas Flow Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline Lean-Out Lean-Out Lean-Out Schematic Results: Results: Results: Results: Results: Results: Results: Results: Results: Results f( Results fc Results fc Run 4, Run 4, Run 4, Run 7, Run 7, Run 7, Run 16 Run 16 Run 16 or CO or UHCC or NOX f r Method Method Method Method Method Method,Method Method Method L.2 2.1 3.1 1.2 2.1 3.1 1.2 2.1 3.1 3-6 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10 5-11 5-25 5-26 5-27 ix

Page 5.7 LIO-320 Lean-Out Results for C02 5-28 5.8 LIO-320 Lean-Out Results for 02 5-29 5.9 Effect of Probe Location on 02 Concentration 5-39 5.10 Effect of Probe Location on Calculated F/A 5-39 6.1 AE vs XTC: Lycoming Data 6-2 6.2 AE vs XTC: Michigan Data 6-3 6.3 AE vs XTC: Eltinge Data 6-4 6.4 E(1.2) versus XTC: Idle Mode 6-6 6.5 E(1.2) versus XTC: Taxi Mode 6-6 6.6 E(1.2) vs XTC: Take-Off Mode 6-7 6.7 E(1.2) vs XTC: Climbout Mode 6-7 6.8 E (1. 2) vs XTC: Approach Mode 6-7 x

LIST OF TABLES Table Page 2.1 Composition of Dry Air 2-3 2.2 Positive and Negative Signs of Specific Sensitivity 2-25 2.3 Values of Specific Sensitivity 2-30 2.4 Effect of Changes of N202 and W on FACAL 231 2.5 Comparison of Michigan and Eltinge Analyses 2-39 2.6 Calculated F/A Errors for Eltinge Zero-EIE Data Points 2-41 2.7 Calculated Exhaust Properties - Lean Mixtures 2-45 5.1 Error Analysis of Runs 4, 7 and 16 5-2 5.2 Computer Print-Out: Run 4 5-12 5.3 Computer Print-Out: Run 7 5-16 5.4 Computer Print-Out: Run 16 5-20 5.5 Computer Print-Out: Lean-Out Results, Mode 2 5-30 5.6 Computer Print-Out: Lean-Out Results, Mode 3 5-33 5.7 Computer Print-Out: Lean-Out Results, Mode 4 5-34 5.8 Computer Print-Out: Lean-Out Results, Mode 5 5-36 5.9 Error Analysis of Exhaust System Leak Tests 5-41 6.1 Computer Print-Out: Run 5 6-8 xi

LIST OF ABBREVIATIONS AND SYMBOLS AA Quantity of air in the combustion equation. Defined by Equation (2.4). AIR02 Moles dry air per mole oxygen in the dry combustion air. ARA Mole-percent argon in the dry combustion air. ARAS Standard value for mole-percent argon in the dry combustion air. AR02 Moles argon per mole oxygen in the combustion air. Cl - (2 + 2 * C0202 + H2002) C2 - C0202 C3 EHCC C4 - 2 * H2002 C5 - HTCR C6 EHCC * EHCR C7 - PSAT/PTRP C8 - 2 * N202 C9 - AR02 C10 K(C02W + C02D + C02DD)/(COW + COD + CODD) Cll 1 + C0202 + (H2002/2) + N202 COW,COD,CODD Measured values of exhaust carbon monoxide concentration (wet, dry and dried). C02A Mole-percent carbon dioxide in the dry combustion air. C0202 Moles carbon dioxide per mole oxygen in the combustion air. CO2W,CO2D, Measured values of exhaust carbon dioxide C02DD concentrations (wet, dry and dried). dA02 Moles dilution air per mole oxygen in the combustion air. xii

E(1.2),E(3.1) EHCC EHCR EIE FACAL FAM F/A FCHC FdA FF H2002 HC HCCW, HCCD, HCCDD Fuel-air ratio errors when using Methods 1.2, 3.1. Moles carbon per mole exhaust hydrocarbon. Exhaust hydrocarbon hydrogen-carbon ratio, mole basis. Eltinge instrument error. See Section 2.3.1. Calculated fuel-air ratio, mass basis. Measured fuel-air ratio, mass basis. Fuel-air ratio. Fraction condensed, exhaust hydrocarbons, in the water trap. Fraction dilution air, mixed with cold non-reacting exhaust sample Quantity of fuel in the combustion equation. Defined by equation (2.3). Moles water vapor per mole oxygen in the combustion air. Hydrocarbon Measured values of exhaust hydrocarbon concentration, carbon base (wet, dry or dried). HTCR K KWD KWDD (M) Moles hydrogen per mole carbon in the fuel. Same as Z. Water-gas reaction equilibrium constant. Water correction factor for dry-to-wet measurements. Water correction factor for dried-to-wet measurements. Used in describing a concentration. M = W when wet; M = D when dry; M = DD when dried. Moles hydrogen per mole fuel. Molecular weight of dry combustion air. Molecular weight of the exhaust. Molecular weight of water. m MWAIR MWEXH MWH20 xiii

N n N2A N2AS N202 NdAM NGD NGDD NGM NGT NOW,NOD, NODD NOXW, NOXD, NOXDD NT NY 02A 02AS 02W, 02D, 02DD PHICAL PHIM PSAT PTRP S x SS W Used as a prefix to indicate number of moles of a substance (e.g. NC02). Moles carbon per mole fuel. Mole-percent nitrogen in the dry combustion air. Standard value for mole-percent nitrogen in the dry combustion air. Moles nitrogen per mole oxygen in the combustion air. Moles dilution air in the measured sample. Moles of gaseous dry products. Moles of gaseous dried products. Moles of gaseous products in the measured sample. Moles of gaseous wet products (total). Measured values of exhaust nitrogen oxide concentrations (wet, dry and dried). Measured values of NOX concentrations (wet, dry and dried). Total moles of products. Moles of any specie Y. Mole-percent oxygen in the dry combustion air. Standard value for mole-percent oxygen in the dry combustion air. Measured values of exhaust oxygen concentrations (wet, dry and dried). Calculated equivalence ratio. Measured equivalence ratio. Saturation pressure of water at the water trap temperature. Measured water trap pressure. Eltinge mixture-distribution parameter. Specific sensitivity. Defined by equation 2.63. Specific humidity of the combustion air. xiv

X Mole-fraction. XD Total mole fraction of dry products (wet basis). Also XD(W). XDD Total mole fraction of dried products (wet basis). Also XDD(W). XGD Total mole-fraction of dry gaseous products (wet basis). Also XGD(W). In the analyzer. XGDD Total mole-fraction of dried gaseous products (wet basis). Also XGDD(W). In the analyzer. XGW Total mole-fraction of wet gaseous products (wet basis). Also XGW(W). By definition XGW(W) = 1. In the analyzer. XT Total mole-fraction of products (wet basis). Also XT(W). XY(D) Mole-fraction of specie Y on a dry gaseous basis. XY(DD) Mole-fraction of specie Y on a dried gaseous basis. XY(W) Mole-fraction of specie Y on a wet gaseous basis. XY(T) Mole-fraction of specie Y on a total mole basis. XYd(M) Mole-fraction of specie Y in the air-diluted sample. (M) indicates wet, dry or dried measurement. Y02 Moles specie Y per mole oxygen. Z Moles hydrogen per mole carbon in the fuel. Same as HTCR. AE Fuel-air ratio error difference. AE = E(3.1) - E(1.2). Z Summation. (jP ~ Equivalence ratio. ( = (F/A)/(F/A)stoich ~* ~ Multiplication sign. XV

1. INTRODUCTION The Environmental Protection Agency (EPA) promulgated aircraft exhaust emission standards for piston engines in the Federal Register of July 17, 1973, Volume 38, Number 136, Part II (the EPA Standards). The Federal Aviation Administration (FAA), in assuming its role assigned by Public Law in implementing and enforcing the EPA standards, had to insure that any attempts to reduce the exhaust emissions from light aircraft piston engines did not result in lowered safety of operation. In accordance with the above FAA contracted with two engine manufacturers, AVCO-Lycoming and Teledyne-Continental, to ascertain the baseline emissions levels actually being produced by a number of their engines. In addition lean-out emissions levels were to be determined. National Aviation Facilities Experimental Center (NAFEC), the experimental arm of FAA,was also to measure the emissions levels from the same engines as tested by the companies. In addition to the above, FAA contracted with The University of Michigan to establish correct emission measurement techniques, to establish correct procedures for analyzing the measured emissions data, and to verify the type of instrumentation that would insure compliance with the EPA regulations. The University was also directed to establish baseline and leanout data for the AVCO-Lycoming LIO-320 engine. This program went into effect on June 1, 1974. This report represents the final formal report on the project. The major thrust of this report, then, is the comprehensive treatment given to the analysis of the measured emissions data. In this way conclusions can then be drawn with confidence as to the sensitivity of the predictions to simplifying assumptions, instrument errors, and measurement errors. Measurements made in the University facility are examined in this light. 1-1

2. DATA ANALYSIS AND EVALUATION An expression for combustion air, which takes into account the variable composition due to ambient carbon dioxide and water vapor, is developed. This is followed by the development of five methods for calculating fuel-air ratio from measured exhaust gas constituents. The sensitivity of these methods to variations of input quantities is then examined and the methods are next applied to a representative sample of data from various sources to illustrate the applicability of these methods in determining data reliability. The calculations of exhaust molecular weights and water correction factors for exhaust measurements are also discussed. 2.1 DEVELOPMENT OF COMBUSTION EQUATION MODELS 2.1.1 The Simple Combustion Reaction Equation The complete combustion of a hydrocarbon fuel C H with air n m in a stoichiometric mixture is represented by the combustion equation, C H + + n) [02 + 3.764 N2] n C02 + m H20 n m 2 + 3.764 ( + n N2 In a non-stoichiometric mixture, leading to incomplete combustion, we have, CHm + + n) [02 + 3.764 N2] - NC02 + NCO + NCXHY + N02 + NH20 + NH2 + NN2 + NNO + NN02 (2.1) where the prefix N before each exhaust product is used to indicate moles of each product. The products NO and N02 are included because of their importance in air pollution. It is desirable to convert the above expression from a mole basis to a mole-fraction basis by dividing through by 2-1

some specified total number of moles, which could be any of the following quantities: 1. NT Total number of moles of exhaust products in the instrument analyzers, including both gaseous and solid products. The mole fraction would be on a total-mole basis and would be indicated by symbols such as XC02(T). 2. NGW Total number of moles of wet gaseous exhaust products in the instrument analyzers. The mole fraction would be on a wet basis and would be indicated by XC02(W). Since most of the development in this report will be on a wet basis, we shall drop the (W) for convenience and simply use XC02. Mole fractions on any other basis shall be properly identified. 3. NGDD Total number of moles of dried gaseous exhaust products in the instrument analyzers, containing saturated water at the water trap temperature. Indicated by XC02(DD). 4. NGD Total number of moles of dry gaseous exhaust products in the analyzers (all water removed). Indicated by XC02(D). The need for these distinctions arises because different instruments make measurements on different bases. For example, the instrument cart at The University of Michigan makes the following measurements: C02, 02 dried basis CO dry basis HCC,NO,NOX wet basis Converting equation 2.1 to mole-fractions based on wet gaseous products, we have NGW nm N GW + n) [02 + 3.764 N2] - XCO2 + XCO + XCXHY + X02 + XH20 + XH2 + XN2 + XNO + XN02 (2.2) where the prefix X is used to indicate mole-fractions. Next let 1 CH =*n FF CHZ (2* 3) NGW nm NGW /n FF * CHZ (23) where the symbol * is used as the multiplication sign, Z is the molar hydrogen-to-carbon ratio (m/n) of the fuel, and 2-2

N ( + n) = AA (2.4) Note that both AA and FF are defined on a wet gaseous basis. The simple form of the combustion reaction then becomes, FF * CHZ + AA [02 + 3.764 N2] + XC02 + XCO + XCXHY + X02 + XH20 + XH2 + XN2 + XNO + XN02 (2.5) HTCR shall also be used for the molar hydrogen-to-carbon ratio of the fuel. 2.1.2 Combustion Air The treatment of combustion air as consisting of 3.764 moles of N2 per mole of 02 lumps all of the inert gases with the nitrogen. In this report nitrogen shall be treated as a pure gas and the only inert gases to be considered will be argon and carbon dioxide. Other inerts in atmospheric air such as neon and helium will be neglected because of their very low concentrations. A search of the literature shows lack of agreement on the exact composition of air, two examples being given in table 2.1. These differences are negligibly small for our purposes, and the values from reference 1 shall be used. The suffix AS in the symbols in table 2.1 is used to indicate the standard value for atmospheric air. TABLE 2.1. COMPOSITION OF DRY AIR MAJOR CONSTITUENTS: MOLE PERCENT Constituent Symbol Ref. 1 Ref. 2 N2 N2AS 78.09 78.084 02 02AS 20.95 20.946 AR ARAS 0.93 0.934 C02 C02A 0.03 0.033 2-3

The amount of C02 in the atmosphere will vary from locationto-location, being somewhat higher in urban areas (reference 3). At locations where engines are being tested, the C02 levels may be even higher. However, since calculated fuel-air ratios are insensitive to ambient C02 (see table 2.3 for C02A specific sensitivity values), a background value in the range 0.03 to 0.05 mole percent can be used when ambient measurements are not made. The treatment of air involving the more accurate composition and possible variation in C02 levels will lead to more accurate atom-balances when calculating fuel-air ratios and a better value for the calculated molecular weight of air. 2.1.3 Computational Procedure for Ambient Air 2.1.3.1 Air Molecular Weight Let N2AS = percent N2 in the standard dry intake air 02AS = percent 02 in the standard dry intake air ARAS = percent AR in the standard dry intake air C02A = percent C02 in the existing dry intake air Then define, moles N2 N2AS N202 = mole 2 2AS (2.6) mole 02 02 AS moles AR ARAS ARO2 = mole 02 02AS (2.7) moles C02 C02A C0202 = moles C02 = 02A (2.8) mole 02 02A For any ambient C02 level, the following relations must hold for dry air (the actual value will be slightly less than 100% in the first relation because of the neglect of other minor constituents of air). N2A + 02A + ARA + C02A = 100 (2.9) The symbols represent the mole percent of each constituent in the dry ambient air, allowing for variable C02 concentration. For the fixed constituents, 2 -4

N2A _ 02A ARA (2.10) N2AS 02AS ARAS.) Then 02A = N2AS * N2A (2.11) N2AS and ARA = ARAS N2A. (2.12) N2AS Substituting in equation 2.9, N2A + 2AS * N2A + N2AS * N2A = 100 - C02A (2.13) N2AS N2AS we get 100 - C02A N2A =..... (2.14) 02AS + ARAS (2 N2AS N2AS Using the following atomic weights based on carbon-12 (reference 2), ATOM ATOMIC WEIGHT AR 39.948 C 12.01115 H 1.00797 N 14.0067 0 15.9994 the molecular weights for the various exhaust gas constituents become, MOLECULE MOLECULAR WEIGHT C02 44.00995 N2 28.0134 02 31.9988 H20 18.01534 The molecular weight of dry combustion air is then given by: MWAIR = 0.319988 * 02A + 0.280134 * N2A + 0.39948 * ARA + 0.4400995 * C02A (2.15) 2-5

2.1.3.2 Inclusion of Atmospheric Moisture From the definition of specific humidity (W) we have W ilbm atmospheric moisture lbm dry air (moles H20) (MWH20) (moles dry air) (MWAIR) (2.16) Multiplying by AIR02, which is defined as, AIR02 = moles dry air mole atmospheric 02 (2.17) we have W * AIR02 _- (moles H20) (MWH20) W A = (moles dry air) (MWAIR) moles H20 MWH20 mole 02 MWAIR (moles dry air) (mole 02) (2.18) Solving for (moles H20/mole 02) = H2002, we get moles H20 MWAIR H2002 moles H20 * R02 mole 02 MWH20 where AIR02 = 1 + N202 + AR02 + C0202 2.1.3.3 Detailed Expression for Combustion Air (2.19) (2.20) From the above analysis, the detailed expression for the number of moles of wet combustion air per mole of 02 becomes: 1 * 02 + N202 * N2 + AR02 * AR + C0202 MWAIR * C02 + W * AIR02 * MWAIR *H20 MWH20 2.1.4 The Expanded Combustion Equation _qqt1o By expanding the combustion equation to include the more accurate composition of air, we more accurately model the combustion process. Furthermore, in addition to introducing argon into the products, we shall also allow for the possibility of atomic carbon in the products. A further complication is introduced by considering the exhaust products in the three different states, "wet", "dried" and "dry". The expanded combustion 2-6

equation is then written as, FF [CHZ] + AA [1 * 02 + N202 * N2 + AR02 + H2002 * H20] + * AR + C0202 * C02 Wet Products XC02 XCO XHC X02 XH20 XH2 XN2 XNO XN02 XAR XC EX = XT Dried Products XC02 XCO XHC X02 XH20DD XH2 XN2 XNO XN02 XAR XC X = XDD Dry Products XC02 XCO XHC X02 XH2 XN2 XNO XN02 XAR XC EX = XD (2.21) where the sums of mole fractions (EX) include carbon. When carbon is in the solid state, we have for the sum of mole-fractions of gaseous products XGW = total mole-fraction of wet gaseous products XGDD = mole-fraction of dried gaseous products XGD = mole-fraction of dry gaseous products 2.1.5 Methods for Computing Fuel-Air Ratio Five methods for computing fuel-air ratio will be considered. These will be divided into: Group 1. Group 2. Group 3. Those methods based on the use of the water-gas reaction equilibrium constant.K. The method based on the sum of the gaseous-product mole-fractions XGW. The methods which combine the use of K and XGW. To illustrate the computational procedure, we shall start with the simple case and progress to the more complex conditions. 2-7

2.1.5.1 Development of Method 1.1 Consider the combustion reaction in the simple form, FF [CHZ] + AA [1 * 02 + 3.764 N2] + XC02 + XCO + XHC + X02 + XH20 + XH2 + XN2. (2.22) In this case, the simplified air composition is used and we neglect NO, N02, AR and C in the exhaust. We assume that measurements are made of C02, CO, HC on a mole carbon basis (HCC),and O2which give or can be coverted to XC02, XCO, XHCC and X02 (i.e. a wet basis). The calculated fuel-air ratio, FACAL, can then be determined from FF * [12.011 + 1.008 * ZI AA AA * [31.999 + 3.764 * 28.013] (2.23) The unknown quantities are FF and AA, so we proceed to determine these from the known measurements. We have the following governing equations: (1) C-Balance FF = XC02 + XCO + XHCC (2) 0-Balance AA * 2 = XCO + XH20 + 2 * (XC02 + X02) (3) H-Balance FF * Z = XHCC * EHCR + 2 * (XH20 + XH2) In addition to the unknown quantities FF and AA, these equations introduce the unknown quantities XH20 and XH2. Since we now have four unknowns (FF, AA, XH20 and XH2) and only three equations in these unknowns, it becomes necessary to find one additional equation. At this point we introduce the equilibrium constant for the water-gas reaction, C02 + H2 + CO + H20. (2.24) The equilibrium constant is given by [XCO] [XH20] K - [XCO][XH20] * (2.25) [XCO2] [XH2] 2-8

Even though the equilibrium constant varies considerably with temperature, as shown in figure 2.1, the reaction tends to freeze out at a relatively constant temperature during the expansion stroke. This permits the use of a fixed value for K and values of 3.5 (reference 4) and 3.8 (reference 5) appear in the literature. We shall use K = 3.5. Table 2.3 shows how changes in K will affect the calculated fuel-air ratio. It should be recognized that some variation in freeze-out temperature will occur so that equilibrium conditions may not be reached, necessitating some changes in the value of K to get good agreement between calculated and measured fuel-air ratios. At this point we have a system of four equations in the four unknowns, so that the equations may be solved for these four unknowns. To accomplish this, and to establish the procedure for the more complex system of equations to come, we set up the equations in matrix form for solution. The matrix is derived from the system of four equations, each equation being written in terms of the four unknown and a constant for the right-hand-side of the equation, i.e. having the general form, l * AA + Ci2 * FF + C * XH20 + Ci * XH2 = Const C il i2 13 i4 (2.26) where i is the equation number. The system of four equations becomes: 0-Balance 2 * AA + 0.0 * FF - 1 * XH20 + 0.0 * XH2 = XCO + 2 * (XC02 + X02) (2.27) C-Balance 0.0 * AA + 1 * FF + 0.0 * XH20 + 0.0 * XH2 = XC2 + XCO + XHCC (2.28) H-Balance 0.0 * AA + Z * FF - 2 * XH20 - 2 * XH2 = XHCC * EHCR (2.29) K-Equation 0.0 * AA + 0.0 * FF + 1 * XH20 - (K * XC02/XCO) * XH2 = 0.0. (2.30) 2-9

4) 0.r.r, -, 5 4 3 2 1 00 1,000 2,000 3,000 Temperature (OF) 4,000 a a. I a a I a I m m I a 1,000 2,000 Temperature (K) Figure 2,1. Variation of the Water-Gas Equilibrium Constant with Temperature. 2-10

In matrix form this becomes: AA FF XH20 XH2 Const 0-Balance 2 0.0 - 1 0.0 XCO + 2 * (XC02 + X02) C-Balance 0.0 1 0.0 0.0 XC02 + XCO + XHCC H-Balance 0.0 Z - 2 - 2 XHCC * EHCR K-Equation 0.0 0.0 1 K * XCO 0.0 (2.31) XCO Solutions for AA, FF, XH20 and XH2 can then be obtained for given measured quantities of XCO, XC02, X02 and XHCC. A value for EHCR (exhaust hydrocrabon hydrogen-to-carbon ratio) is assumed and is usually taken to be 1.85, as recommended in the Federal Register. The values of AA and FF are used in computing fuel-air ratio using equation 2.23. In addition the water correction factor KWD, which is used to correct dry-to-wet exhaust gas measurements, is obtained from KWD = 1 - XH20. (2.32) The above method, although developed in a different manner, essentially corresponds to the solution presented by Spindt (reference 4). A comparison of his results, with results obtained by the method developed in this section, shows excellent agreement. 2.1.5.2 Development of Method 1.2 The method developed in the previous section will now be expanded to include the following features: 1. Detailed expression for the combustion air. 2. Addition of products NO, N02 and AR, but not atomic carbon. 3. Use of concentrations based on wet, dried or dry measurements. The combustion reaction is as given by equation 2.21, with the exclusion of atomic carbon. For this case, the number of unknown quantities grows to fifteen. These are: 2-11

1. 2. 3. 4. 5. XGD XGDD AA FF XC02 6. XCO 7. XHC 8. X02 9. XNO 10. XN02 11. 12. 13. 14. 15. XH20 XH20DD XN2 XAR XH2 The required fifteen equations which govern these unknowns are: 1. Equation defining XGD XGD + XH20 = XGW (2.33) 2. Equation defining XGDD XGD + XH20DD = XGDD (2.34) 3. Oxygen balance AA [2 + 2 * C0202 + H2002] = 2 * XC02 + XCO + 2 * X02 + XH20 + XNO + 2 * XN02 4. Carbon balance FF + C0202 * AA = XC02 + XCO + EHCC * XHC (2.35) (2.36) 5. C02 measurement (measured C02W = XC02 or C02DD = XC02/XGDD or C02D = XC02/XGD 6. CO measurement (measured COW = XCO or CODD = XCO/XGDD or COD = XCO/XGD value on left) (if wet measurement) (if dried measurement) (if dry measurement) value on left) (if wet measurement) (if dried measurement) (if dry measurement) (2.37a) (2.37b) (2.37c) (2.38a) (2.38b) (2.38c) (2.39a) (2.39b) 7. HCC measurement (measured value on left) HCCW = XHC * EHCC (if wet measurement) or HCCDD = XHC * EHCC/XGDD (if dried measurement) or HCCD = XHC * EHCC/XGD (if dry measurement) 8. 02 measurement (measured value on left) 02W = X02 (if wet measurement) or 02DD = X02/XGDD (if dried measurement) or 02D = X02/XGD (if dry measurement) (2.39c) (2.40a) (2.40b) (2.40c) 2-12

9, NO measurement (measured value on left) NOW = XNO (if wet measurement) (2.41a) or NODD = XNO/XGDD (if dried measurement) (2.41b) or NOD = XNO/XGD (if dry measurement) (2.41c) 10. NOX measurement (measured values on left) (NOXW - NOW) = XN02 (if wet measurement) (2.42a) or (NOXDD - NODD) = XN02/XGDD (if dried measurement) (2.42b) or (NOXD - NOD) = XN02/XGD (if dry measurement) (2.42c) 11. Hydrogen balance HTCR * FF + 2 * H2002 * AA = EHCR * EHCC * XHC + 2 * XH20 + 2 * XH2 (2.43) 12. Condition in water trap XH20DD/XGDD = PSAT/PTRP (2.44) 13. Nitrogen balance 2 * N202 * AA = 2 * XN2 + XNO + XN02 (2.45) 14. Argon balance AR02 * AA = XAR (2.46) 15. Water-gas equilibrium K = (XCO * XH20)/(XC02 * XH2) (2.47) This system of equations is shown in matrix form in figure 2.2. Symbols are defined in the List of Abbreviations and Symbols. Since we have fifteen equations involving the fifteen unknowns, a solution of the matrix will give values for the fifteen unknowns for the given input values of (a) Measured C02, CO, HCC, 02, NO and NOX. (b) Fuel HTCR and exhaust hydrocarbon EHCC and EHCR. (c) Water trap conditions PSAT and PTRP (saturation pressure and total pressure of sample in the water trap). (d) Computed air properties N202, AR02, C0202 and H2002. (e) Water gas equilibrium constant K. 2-13

XGD XGDD AA FF XCO2 XCO XHC X02 XNO XNO2 XH20 XH20DD XN2 XAR XH2 CONSM XGD 11 XGW XGDD 1 -1 10 O-Bal Cl* 2 1 2 1 2 1 0 C-Bal C2 -1 1 1 C3 0 C02 -CO2D -CO2DD 1 C021 Co -COD -CODD 1 COW HCC -HCD -HCDD 1 HCW 02 -02D -02DD 1 02W NO -NOD -NODD 1 NOW N02 -NOXD -NOXDD 1 NOXY +NOD +NODD -NOW H-BalC4 C5 C6 2 2 0 Trap C7 04 N-Bal C8 1 1 2 0 AR-Bal C9 1 0 Water —1 C10 0 Gas r 4 q I I *See List of Abbreviations and Symbols. Figure 2.2. Matrix for the Governing Equations of Method 1.2.

It should be pointed out that Method 1.2 will reduce to Method 1.1 by proper selection of some of the input quantities. This is accomplished when N202 = 3.764 H2002 = 0 ARAS = 0 NO = 0 C02A = 0 NOX = O Since Method 1.2 is more general than Method 1.1, it is used as one of the four methods in The University of Michigan data reduction program FAA (see appendix A). The other three methods, Methods 2.1, 3.1, and 3.2, are developed in the following sections. 2.1.5.3 Development of Method 2.1 In Methods 1.1 and 1.2 we introduced the equation for the water-gas equilibrium constant to come up with an additional equation governing the unknowns. This was done so that the number of equations equaled the number of unknowns. We can also use other reasonable constraints. The one selected for study in what we call Method 2.1 is that the sum of the molefractions of the gaseous wet products is equal to XGW, i.e. EXY(W) = XGW (2.48) The value of XGW is generally taken to be 1, but can be less because of omitted unknown minor gaseous products. This appeared to be a more reasonable constraint than the water-gas equilibrium equation, because of the possible variation of the equilibrium constant K due to changes in freeze-out temperature. In addition, all of the major stable gaseous species are accounted for in the products, making it reasonable to assume that the summation of the gaseous mole fractions should be very nearly equal to 1. We again have 15 equations for the same 15 unknowns shown in Section 2.1.5.2, and the corresponding matrix is similar to 2-15

that shown in figure 2.2. The only change occurs when equation 2.47 for the water-gas equilibrium constant is replaced by the summation XC02 + XCO + XHC + X02 + XNO + XN02 + XH20 + XN2 + XAR + XH2 = XGW = 1. (2.49) 2.1.5.4 Development of Method 3.1 This method was developed after finding that Method 2.1 often led to negative values of XH2. It was felt that this occurred because of the neglect of carbon in the products. By including carbon as an additional unknown, an additional equation also had to be introduced to make the number of governing equations equal to the number of unknowns. Therefore, the equation for the water-gas equilibrium constant was re-introduced to the system of equations in Method 2.1. We further assume that by the time the exhaust measurements are made, the carbon would be in solid form and would be filtered from the sample stream. Thus, the equations involving mole fractions of gaseous products are not affected by the presence of solid carbon and only the carbon balance equation is affected. The addition of solid carbon, XC, and the introduction of the water gas equilibrium constant equation gives us a system of 16 unknowns and 16 equations. The resulting matrix is similar to that shown in figure 2.2, with the addition of equation 2.49. 2.1.5.5 Development of Method 3.2 This method is a modification and expansion of the method presented by Stivender (reference 5). Its value lies in the fact that it does not require an oxygen measurement of the exhaust products. An examination of Stivender's paper shows that the method falls into the category of Group 3, in that both the water-gas-equilibrium-constant and sum-of-mole-fraction equations are used. Being the second method in Group 3, it is identified as Method 3.2. 2-16

Development of this method starts with the combustion reaction equation as given by equation.2.21 and the system of sixteen unknowns and governing equations of Method 3.1. The development then proceeds as follows: 1. Equation 2.48 is solved for X02 and the result is substituted into the other governing equations, eliminating two equations [equation2.48 and equation 2.40] and one unknown (X02). Two of the resulting equations of interest are the 0N-balance equations. From the 0-balance we get, AA(2 + 2 * C0202 + H2002) = 2 * (XGW - XHC - XH2 - XAR) - XCO - XH20 - (2 * XN2 + XNO) (2.50) while the N-balance equation remains unchanged, AA(2 * N202) = (2 * XN2 + XNO) + XN02 (2.51) 2. Equation 2.51 is solved for (2 * XN2 + XNO), the result is substituted in equation 2.50and the equation is divided by 2 to give, H2002 AA(l + C0202 + H202 + N202) = (XGW - XHC - XH2 - XAR) 2 1 + (XN02 - XCO - XH20) (2.52) This step eliminates the unknowns XN2 and XNO as well as equation 2.45 or 2.51 and 2.41.. Thus, this procedure has eliminated four equations [2.48, 2.40, 2.45, and 2.41 ] but only three unknowns (X02, XN2 and XNO). An additional unknown has to be eliminated and we select the mole fraction of carbon, XC, thereby ending up with a system of twelve equations in twelve unknowns. The corresponding matrix is shown in figure 2.3. 2.1.5.6 Matrix Solutions The matrices thus formed in Methods 1.1, 1.2, 2.1, 3.1, and 3.2 represent systems of linear equations in the unknown quantities. Standard methods are available for the solution of such a system of equations. The method selected for our programs is called Crout's Method and the subroutines are included with our programs - FAA and FARAT (for fuel-air ratio), and are listed 2-17

XGD XGDD AA FF XC02 XCO XHC XNO2 XH20 XH20 XAR XH2 CONST _DD XGD 1 1 XGW XGDD -1 1 -1 0 0-Bal Cll* 0.5 1 -0.5 0.5 1 1 C-Bal -C2 1 -1 1 -C3 0 XC02 -CO2D -CO2DD 1 C02W XCO -COD -CODD 1 COW XHC -HCD -HCDD 1 HCW XNO2 -NOXD -NOXDD 1 NOXW +NOD +NODD -NOW H-Bal -C4 -C5 -C6 -2 -2 0 Trap C7 1 0 Ar-Bal -C9 -1 0 Water- -1 C10 0 Gas o o00 *See List of Abbreviations and Symbols. Figure 2.3. Matrix for the Governing Equations of Method 3.2.

in the appendices. They are, SUBROUTINE CRT4 SUBROUTINE CRT12 SUBROUTINE CRT15 SUBROUTINE CRT16 for solving the system of 4, 12, 15 and 16 equations, respectively. 2.1.5.7 Effect of Hydrocarbon Loss in the Water Trap The question of possible loss of some of the exhaust sample hydrocarbons by condensation in the water trap and the resulting effect on calculated fuel-air ratio is considered next. It turns out that the required modification to the computer program FARAT is extremely simple. It involves only a redefinition of the sum-of-mole-fractions of dry gaseous products in the analyzers from XGD + XH20 = XGW (2.33) to XGD + XH20 + FCHC * XHC = XGW (2.53) where FCHC = fraction condensed hydrocarbons = 0 for zero condensation = 1 for total condensation of exhaust hydrocarbons. That is, the total mole-fraction of dry gaseous products in the instrument analyzers consists of what is left of the gaseous exhaust sample after all of the water and a portion of the hydrocarbons have been removed from the exhaust sample. The effects of FCHC on FACAL are presented in table 2.3 in terms of specific sensitivities. 2.1.5.8 Effect of Dilution Air (Mixing without Reaction) The possibility of dilution of the cooled exhaust sample with air without further reaction, such as might result from an air leak in the instrumentation package, was examined. This was accomplished by means of a modification to the computer program FARAT. Measured concentrations are modified to simulate the 2- 19

effect of air dilution, and the resulting diluted concentrations are used to compute fuel-air ratio, In this manner, the effect of varying degrees of dilution on computed fuel-air ratio can be determined. The development begins with a definition of fraction dilution air (FdA), FdA = moles wet dilution air/moles gaseous wet products in the undiluted sample or FdA = NdAW/NGW (2.54) Next, recalling that the composition of air per mole of oxygen is given by, 1 mole oxygen per mole oxygen N202 moles nitrogen per mole oxygen AR02 moles argon per mole oxygen C0202 moles carbon dioxide per mole oxygen H2002 moles water vapor per mole oxygen we get for the moles dilution air per mole oxygen, in dilution air, dA02 = 1 + N202 + AR02 + C0202 + H2002 = AIR02 + H2002 (2.55) It is assumed that the dilution air has the same composition as the combustion air, so that the value of AIR02 used in this section is the same as used in section 2.1.3.2 for the combustion air. In the diluted sample the concentration of any specie Y will be given by NY + NdAW * (Y02/dA02) = XY(M) (2.56) NGM + NdAM where M is used to indicate the "measurement" condition, i.e. either wet, dry or dried. The various terms are defined by, 2-20

NY NdAW * CY02/dA02) NGM NdAM XYd CM) moles of specie Y in the undiluted sample moles of specie Y in the dilution air moles of gas in the undiluted sample moles of dilution air in the diluted sample mole-fraction of specie Y in the diluted sample. Dividing numerator and denominator by NGW gives, XY(W) + FdA * (Y02/dA02) XYd(M) XGM(W) + (NdAM/NGW) (2.57) For dry or dried measurements, the wet mole fraction XY(W) must be replaced by its equivalent in terms of the dry or dried measurement. To accomplish this we use NY NY NGD NGW NGD NGW to get XY(W) = XY(D) * XGD(W) (2.58) for dry measurements, and in a similar manner we get XY(W) = XY(DD) * XGDD(W) (2.59) for dried measurements. Substitution leads to the following set of equations for wet, dry and dried measurements. For wet measurements, we have XY (W)+ FdA * (Y02/dA02) 1 + FdA = XYd(W) (2.60) For dry measurements, from equations 2.57 and 2.58, XY.jD) * XGD(W) + FdA * (Y02/dA02) XYd(D) NdAD XGD(W) + NdAD NGW But the number of moles of dry dilution air is given by NdAD = FdA * NGW * (AIRO2/dAO2) Therefore, for dry measurements, XYID) * XGD(W) + FdA * (Y02/dA02) XYd(D) XGD(W) + FdA * (AIR02/dAO2) (2.61) 2-21

Finally, for dried measurements, from equations 2.57 and 2.59, XY(DD)* XGDD(W) + FdA * (Y02/dAO2) XYd(DD) -- = XYd DD) XGDD(W) + NdADD To simplify the computation without introducing a serious error, we can assume that the number of moles of dried dilution air is equal to the number of moles of dry dilution air, so that NdADD = NdAD= FdA * (AIR02/dAO2) NGW - NGW Therefore, for dried measurements, XY(DD)* XGDD(W) + FdA * (Y02/dA02) XYd(DD) (262) XGDD(W) + FdA * (AIR02/dA02) To determine the effects of dilution air on calculated fuel-air ratio, the actual measurements, XY(W),XY(D) and XY(DD), of the undiluted sample are used to compute fuel-air ratio, XGD(W) and XGDD(W). With these values and assured values of FdA and Y02, the diluted concentrations are computed using equations 2.60, 2.61 and 2.62. These are then used to calculate the fuel-air ratio as determined from the diluted concentrations. The results of this analysis are presented in table 2.3 in terms of specific sensitivities for the variable FdA f(raction dilutionair);. 2.1.5.9 Comments on Computational Methods Each of the methods developed above possesses unique desirable properties to be considered when selecting one method over the other. Method 1.1 is the easiest to use and gives results equal to those obtained by the conventional Spindt method(reference 4). In addition the mole fractions of H2 and H20 are computed and the latter can be used to compute the dry-to-wet water correction factor using equation 2.32. One drawback is that the method, as developed, requires that all concentration measurements be on a "wet" basis. However, modifications to permit the use of any combination of "wet" and "dry" measurements could easily be made. Method 1.2 is based on a more accurate combustion model and was used as the principal means for calculating fuel-air ratio at Michigan. The main features of this method are: 2-22

1. Any combination of "wet", "dry" or "dried" measurements can be used. Conversions to the "wet" measurement are handled within the program. 2. Mole fractions of the principal stable exhaust species, except solid carbon, are computed. This information is used when computing exhaust molecular weight (see section 2.4). 3. The computed sum of exhaust mole-fractions (XTC) serves as an excellent internal check on data validity. A value of XTC which deviates by more than+3% from a value of about 1.02 (a value that should be established by each test facility and should be based on the average value from a large number of test data) is a good indication of poor data. This last feature has been used extensively at Michigan to quickly spot poor data and is the main reason for adopting this as the principal method at Michigan. Method 2.1 has most of the features of Method 1.2 except that XTC is not computed and is thus not available as an internal check. This is considered to be a major deficiency of this method. However, the method is one of the more sensitive to errors in concentration measurements (see figures 2.4 to 2.7) and the use of XTC in place of the water-gas reaction equilibrium constant may be desirable in some cases. Method 3.1 is similar to Method 2.1 in that XTC is assigned a fixed value and is thus not available as an internal check on data validity. The added feature of this method is that the mole-fraction of solid carbon is computed. Visual checks of carbon deposited on filter paper from sampling line filters shows good qualitative agreement with calculated concentrations of solid carbon. The main feature of Method 3.2 is that it does not require an 02 concentration measurement. Neither XTC nor solid carbon concentrations are computed by this method. 2-23

2.2 SENSITIVITY ANALYSIS OF FUEL-AIR RATIO COMPUTATIONAL MODELS The four principal models for calculating fuel-air ratio were subjected to a sensitivity analysis to determine how strongly small changes in the various input quantities affected the calculated fuel-air ratio. This was accomplished by selecting several runs covering a broad range of exhaust pollutant concentrations and then calculating fuel-air ratio while varying one of the input variables at a time. The effects of the following thirteen variables on all four models were determined and the results are given in figures 2.4 to 2.7 and in table 2.3. Variable Name 1. Measured C02 concentration C02DD 2. Measured CO concentration COD 3. Measured 02 concentration 02DD 4. Measured HCC concentration HCCW 5. Measured NO concentration NOW 6. Combustion air nitrogen-oxygen ratio N202 7. Combustion air C02 content C02A 8. Combustion air water vapor content W 9. Fuel hydrogen-to-carbon ratio HTCR 10. Exhaust hydrocarbon carbon number EHCC 11. Exhaust hydrocarbon hydrogen-carbon ratio EHCR 12. Sum of wet gaseous exhaust mole-fractions XGW 13. Water gas reaction equilibrium constant K Results are reported in terms of what we shall call specific sensitivity (SS) for the particular variable. Specific sensitivity is defined by S Percent change in calculated fuel-air ratio 1% increase in variable (2.63) Specific sensitivity is strongly dependent upon the method used for computing fuel-air ratio, somewhat less dependent upon the magnitude of the variable being tested (e.g. the level of concentration of a pollutant) and to a lesser extent upon the magnitude of the other pollutant concentrations. 2-24

Figures 2.4 through 2.7 show plots of specific sensitivity versus concentration for the exhaust products C02, CO, 02 and HCC. The fact that the specific sensitivity shows various combinations of being plus and minus for the various pollutants, as shown in table 2.2, introduces the possibility of determining which pollutant measurement contributes most strongly to the calculated fuel-air ratio error. TABLE 2.2. POSITIVE AND NEGATIVE SIGNS OF SPECIFIC SENSITIVITY Method 1.2 2.1 3.1 3.2 C02 + CO + + 02 + HCC + + + + + + ** **The 02 measurement is not involved in Method 3.2. As an example, one test run of the Lycoming 0-320 engine resulted in the following fuel-air ratio errors: Method 1.2 2.1 3.1 3.2 Original Error Percent 3.030 24.733 -10.053 10.477 For the concentrations involved, the specific sensitivities are: C02 CO 02 HCC Concentration 67022 129820 4310 15688 (PPM) Method 1.2 2.1 3.1 3.2 -0.15 +1.10 -1.28 +0.32 +0.24 +1.77 -0.95 +0.78 -0.02 +0.05 -0.08 0.00 +0.094 +0.150 +0.054 +0.115 2-25

I I I I I Method + 2.1 >Ul z w UI W - W LU + + 4+ +,+~++ ~~+H* l( I - ++ ++ + ++ + + + +f + 3.2 44 +4+ ++3 +++~ ++ 0 + + *++ *+ + 1. 2 +149~H I I a ++~ +++ ++ 3 ++ ++ \ IL +4++ + 4.f + 3.1 + a ft a a a a a a a rE; - II- E.... 5......!... 10R 12 C2z CQNCE:NTRFIT I N H I -T — I Figure 2.4. Specific Sensitivity vs C02 Concentration 2-26

m-m. w In Ln W Ul VL 1 4*++ Method +* + 2.1 +.14+* +3.2 + 4+ + +1.2 ++ + W* -1~ 4* 4*m +~~44 -I T + +44+ +3.1 tE.I II- - -- 1-II I L I..! CO CDNCENTRRT I ON-X Ii0 Figure 2.5. Specific Sensitivity vs CO Concentration I Z Ln z In V LJ IL in Method 2.1+ "t+++ ++ *+ $$ ++ ++. + + + 3.2+. 1.2 + + -1 3.1 +. %0 IL -- -L L _ L__- I ---- I I 2 C3t D2 CONCENTRRT I DN-S Figure 2.6. Specific Sensitivity vs 02 Concentration 2-27

E.3 Ul z Ul y Ul \ IL + + Method + 2.1 + |+ + 3.2 + + + + 1.2 + + ++ 4++' + 3.1 ~t +++ + I t+I I a A 1+ m 1 t 4..[,. I - I.. I I 0 20 THDUSRFND PPM HCC Figure 2.7. Specific Sensitivity vs HCC Concentration 2-28

The data is next examined for a possible change in one concentration measurement which would reduce fuel-air ratio errors from all four methods to essentially zero. The required changes in concentration is determined by dividing each fuelair error by the corresponding specific error and taking the negative of these values. Percent C e fuel-air ratio error specific sensitivity REQUIRED CONCENTRATION CHANGES (%) Method C02 CO 02 HCC 1.2 20.20 -12.63 151.5 -32.33 2.1 -22.48 -13.97 -494.66 -164.89 3.1 - 7.85 -10.58 -125.66 186.17 3.2 -32.74 -13.43 -- -91.10 Only the CO changes are reasonably consistent. Therefore, considering the fact that the CO specific sensitivity for Method 2.1 is much larger than the others and deserves a higher weighting factor, a CO concentration correction of about -12% is chosen. A computer check using a CO reduction of 11.8% did in fact reduce all errors to below 1% as shown. ERROR AFTER AN 11.8% REDUCTION IN CO Method Percent 1.2 0.632 2.1 0.850 3.1 0.483 3.2 0.717 Shown in table 2.3 are the values for specific sensitivity for the remaining variables checked. As stated earlier, these will vary somewhat from one test case to another, but in general the magnitudes are accurate enough for comparative predictions. 2-29

Given in the table are the maximum values obtained from a large number of test runs. TABLE 2.3. VALUES OF SPECIFIC SENSITIVITY Specific Sensitivity Variable NOW N202 CO2A W HTCR EHCC EHCR XGW K Method 1.2 0.0080 -0.78 -0.0012 0.012 -0.20 0.0 0.048 -0.16 -0.093 Method 2.1 -0.0075 1.3 -0.0082 0.0025 0.69 -0.082 -0.076 -0.25 0.0 Method 3.1 Method 3.2 0.023 0.0016 -3.0 0.0027 0.0064 -0.0037 0.020 0.0075 -0.85 0.15 0.074 -0.032 0.16 0.0031 -0.088 1.2 -0.16 -0.058 An examination of the specific sensitivity values for Method 1.2 shows that the method is most sensitive to changes in the N202 ratio (the ratio of atmospheric nitrogen to oxygen). If we consider the effect of going from a value of 3.7274 to a value of 3.76 (the value in common use), where the change in N202 is a +0.875 percent change, we find that the resulting contribution to the Method 1.2 fuel-air error is about -0.6%. Neglect of combustion air humidity, at a specific humidity level of about 0.008, would contribute approximately another -1.0% to the error. Together, these two contributions would amount to approximately -1.6%. The actual computed results are shown in table 2.4 where the original FACAL of 0.05145 was reduced to 0.05111 by assuming that N202 is 3.76 and was further reduced to 0.05079 by neglecting atmospheric moisture. Thus, the non-negligible effects on calculated fuel-air ratio of seemingly minor assumptions becomes obvious. In this example the effect was to reduce the calculated fuel-air ratio by -1.28%. 2-30

TABLE 2.4. EFFECTS OF CHANGES OF N202 AND W ON FACAL RUN: 5. 1 DRY MEASUREMENTS DR I ED MEASUREMENTS WET MEASUREMENTS HTCR EHCC 2.190 1. 000 XC02 XCO XHC 0. 0474 0.0163 0.0318 MTD XTC K 1. 2 1. 0013 3.5000 C02 0. 51214. 0. EHCF 1. 85C X02 0. 1014 FCHC 0. 0000 CO 17656 0 0 t C02 0. 03 XH20 0. 0788 0. FDA. 1 A 0 0 XH2 0077 PHI 02 HCC 0. 0. 09523. 0. 0. 31808. 1 PSAT PTRP. 08866 19. 000 0. C XN2 XNO XN02 0. 7091 0.0002 0. 0001 0. MWEXH KWD FACAL 27. 8375 0. 9211 0. 05145 NO 0. 0. 173. W )081: XAR 0084 0. FAM 0. 05251 NOX 0. 0. 223. N202 3. 7274 XC O000 ERROR -2. 011 0. 0000 0. 7742 RUN: 5. 1 DRY MEASUREMENTS DRIED MEASUREMENTS WET MEASUREMENTS HTCR EHCC 2. 190 1. 000 XC02 XCO XHC 0. 0474 0. 0163 0. 0318 MTD XTC K 1. 2 1. 0075 3. 5000 C02 0. 51214. 0. EHCR 1. 850 X02 176 C 0. XH20 CO 02.56. 0. 0. 109523. 0. 0.:02A PSAT 030 0. 08866 XH2 XN2 0. 0077 0. 7152 0. PHI MWEXH HCC 0. 0. 31808. 1 PTRP 19. 000 0. C XNO XN02 0002 0. 0001 0. K.WD FACAL NO 0. 0. 173. W )081: XAR 0085 0. FAM NOX 0. 0. 223. N202 3. 7600 XC E000 ERROR 0. 1014 0. 0789 FCHC FDA 0. 0000 0. 0000 0. 7743 27. 8384 0. 9211 0. 05111 0. 05251 -2. 655 RUN: 5. 1 C02 DRY MEASUREMENTS 0. 174 DRIED MEASUREMENTS 51214. WET MEASUREMENTS 0. HTCR EHCC EHCR 2. 190 1. 000 1. 850 0. XC02: XCO XHC X02 XH20 0. 0479 0. 0164 0. 0318 0. 1025 0. 0688 MTD XTC K FCHC FDA 1. 2 1. 0081 3. 5000 0.0000 0.0000 CO 02 656. 0. 0. 109523. O. 0. C02A PSAT 030 0. 08866 XH2 XN2 0. 0067 0. 7250 0. PHI MWEXH HCC 0. 0. 31808. 1 PTRP 19. 000 0. C XNO XN02 0002 0. 0001 0. KWD FACAL NO 0. 0. 173. W )000: XAR 0086 0. ( FAM NOX 0. 0. 223. N202 3. 7600 XC )000 ERROR 0. 7694 27. 9789 0. 9312 0. 05079 0. 05251 -3. 27C 2-31

2.3 EVALUATION OF DATA RELIABILITY An important aspect of this study was the problem of determining the uncertainty associated with the reliability of the collected engine emission test data. It is implicit in the Federal Register that agreement between the measured and calculated values of fuel-air ratio would be taken as a measure of data reliability. However, as the study at The University of Michigan progressed and the study led to the development of four seemingly equally reliable methods for calculating fuel-air ratio, the question arose as to which of the four calculated fuel-air ratios was to be compared with the measured value. Analysis of engine emission data demonstrated that quite frequently the four computational methods led to four appreciably different values of fuel-air ratio. At times the error from Method 1.2 (essentially an expanded Spindt method) would be acceptably very low while the other methods gave errors that were unacceptably very high. Values for an extreme case are shown. (See table 5.4, run 16, mode 4.) Fuel/Air Method Error Percent XTC 1.2 0.570 0.73928 2.1 -51.906 3.1 56.095 -- 3.2 -28.482 -- Since the Spindt method is quite commonly used to calculate fuelair ratio, it is important to realize that cases can arise where the calculated Spindt error is not in itself a sufficient check of data reliability. (Note that XTC differs appreciably from 1.0.) In the search for a more acceptable method for determining data reliability, the following factors were taken into consideration: 1. Since all four fuel-air calculation methods are based on sound chemical and mathematical principles, all errors should be essentially zero when the correct input 2-32

quantities are used. However, because of the)different specific sensitivity values for the different methods (see section 2.2) all four errors would change at different rates as one of the input quantities is changed from its correct value. Therefore, it appeared that the difference between two errors quantities would be a measure of how far the input variables were from their correct values. This was tested by selecting the errors of Methods 1.2 and 3.1 for evaluation. Method 1.2 was selected because of its common usage and low sensitivity to variable changes and Method 3.1 was selected because it constituted the most complete specification of the system. The error difference [E(3.1) - E(1.2)] is identified by AE in this report. 2. The sum of mole fractions (XTC) was also selected as a possible indicator of data reliability because it seemed reasonable to assume that the value should be close to unity since all major stable species are included in the analysis. Because the mole fractions normally referred to in this report are based on the sum of gaseous wet products, the total sum XTC should have a maximum value of unity when only gaseous products are included, i.e. not including solid carbon. It is this value of XTC which is calculated by Method 1.2 and which is used in the following test of data reliability. Data from various sources were next examined by plotting AE versus XTC as shown in figure 2.8. The result shows that the data is well correlated by a straight line. 2 -33

4 a ff- N I -a w'a I' I' I 1 0 -4 AE -8 -12 -16 -20.96 1.00 1.04 1.08 XTC Figure 2.8. AE vs XTC: Lycoming Data. (Reference 12) Runs 153-159, 448-454, 467-473 (all modes included). 2-34

Additional plots were made to determine whether any correlations existed between fuel-air errors from the other methods and XTC. Figure 2.9 for Method 1.2 (expanded Spindt Method) shows no correlation while figure 2.10 for Method 3.1 shows a reasonable correlation, although not as good as that in figure 2.8 for AE vs XTC. Our conclusion is that either XTC or AE is a better indicator of data validity than either the Spindt or Method 3.1 fuelair errors alone. Since XTC can be obtained from the application of only one method, Method 1.2, it is considered to be the more practical indicator of good data. 2.3.1 Comparison of Michigan and Eltinge Methods A limited comparison of the Michigan method and the method reported by Eltinge(reference 7) was made. In the Eltinge method one enters one of several charts, see figure 2.11, with corrected (for UHC) values of percent C02, 02 and CO. The lines representing these values form a triangle such that the centroid falls on a line representing the calculated fuel-air ratio and the height of the triangle gives an indication of "instrument error" in terms of percent CO. In this report EIE shall be used when referring to the Eltinge instrument error. In figure2.11 the fuel-air ratio for the example is 0.0669 and the EIE is +0.45, which are in good agreement with Eltinge's results (reference 7). The initial part of the comparison consisted of analyzing some of Eltinge's engine data using the Michigan method and comparing the Eltinge and Michigan results. These results are tabulated in table 2.5 while figure 2.12 shows both AE and XTC plotted against EIE. 2 -35

4 2 0 E(1.2) -2 -4 -6 -8 V I 0 0 o 0 0 0 0 0 ON 0 a T+ to 0 0 a 0 0 0 ~ w ~ 0 0 0 ~. I.96 1.00 1.04 1.08 XTC Figure 2.9. E(1.2) vs XTC: Lycoming Data (Reference 12) Runs 153-159, 448-454, 467-473 (all modes included). 2-36

2 0 -4 -8 E(3.1) -12 -16 -20 -24.... I v V 0 0 00 0 o a No w 0 0 t 0 1 I I..96 1.00 1.04 1.08 XTC Figure 2.10. E(3.1) vs XTC: Lycoming Data (Reference 12) Runs 153-159, 448-454, 467-473 (all modes included) 2-37

LI C'Cmn rrTInnc 1r %bCO 0%072 i.....Fuel H/C Atom Ratio =1.90, 0.072 0,.,I —.........'',.'. Water Gas Constant = 3.5 ~-I I ~.: -,: i i:-~~,~ ~No Unburned Fuel i —. —-,Stoichiometric Fuel-Air Ratio 0.0683 i,:t, t..... I't4-1lh'ii -1 - 0'0680 0.0660 7 ~~~~~~~~~~~~~'640~ 0.......... I.... 036~~~~~~~~~~~~~~~~~~~~~~6 0~~~00 I-~~~~~~ ~ ~~~~ ~ ~ ~~~~~~~~~~.._1:_..... -...., _ _ _te................-.... —i —,- --,.-.-. -—. —-- -.-[ I~~~j..l ---—;- I —J-.... -.!-[.. " F4!-' t.., —--—'-' —...i.: -....:....;...-.... ~-* -!'...~t'; r I, I::~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~,,I — Ii: t I',., 1- t~~~~~?-~;8 =-:-~ —- - Jr — t-t'-.,_.... iI i —- i ~~~~~~~~~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~.-! —- r-,~i..,l-......_~_. L I -.4 i I c: I-i t' 1- ~~~~~~ ~~~~~ ~~ ~ ~~~~~~~~~~~~! —-i —l i- Jt1. f ~~~~~~~~~~~i'' J' -...i ___, i ii - ~:-c'' -~ C~ ~ ~ ~...'... _- i " -----: —r..t:,: i-,..,._'t L i i~~~~ ~~~~~~~~~~~-~;C -i-.L.~!i..~- 1' -. -~:- X;~~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'' d.0dsoI ~ ~~~~ 17' i;.i' _l!I-` -... i~~~~~~~~~~~~~~~~~~~~~~~~''.!...C..._ i.;; ~ ~ ~ - + 1-1,,,, i-.,.~l-i,. \IX~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~,-~ I' [~ I'_''~. i ~ -f -— t ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I~ ~ ~ ~ ~ ~ ~ ~ ~~~ii-, —oo'":-'~~~ ~ -~' -I —,, I-7'. -1~ ~ ~ ~ ~,;'' -'. r.. — i I-~~~~~~ i~_:::.. ~~~~~~~~~~~~~~~~V ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ _............~'......-_.... C) ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. I t o -1 —- 1 -— r —!-~~~~~~~~~~~~~~56 h~~ -~ ~,%ro J I. f-, i-' -, -..'7-t _.t;-'' i,. ~'1 0 i.. — i. 0 O.G6 1 2 3 4 Figure 2.11- Eltinge Chart (Reference 7). cHAR7J 3

TABLE 2.5. Eltinge Run * 1 2 3 4 5 6 7 8 9 10 11 12 13 COMPZ kRISON OF MICHIGAN Eltinge Spindt Error AND ELTINGE ANALYSES Michigan EIE +0.4 +0.4 +0.3 -0.2 +0.6 +0.1 +0.1 +0.4 +0.3 +0.5 +0.3 -0.1 -0.1 1.671 0.600 1.356 0.887 1.751 0.156 1.727 -1.560 1.605 2.087 2.100 1.902 1.170 E(1.2) 1.667 0.567 1.214 0.858 1.639 0.009 1.625 -1.672 1.510 2.128 1.906 1.973 1.169 AE 4.394 5.384 5.030 -0.494 8.437 1.640 2.395 5.777 3.561 7.243 4.653 0.517 -0.400 XTC.983.982.985 1.002.977.995.994.982.989.977.986.998 1.001 The data spread in figure 2.12 is due in part to Eltinge reports EIE only to the first decimal place. the fact that Table 2.5 shows good agreement between Eltinge's Spindt error and the error E(1.2). Furthermore, an examination of figure 2.12 shows that both AE and XTC correlate well with EIE, so that any one of the three parameters EIE, AE or XTC could be used as an indicator of "instrument error." Having related AE and XTC to EIE, the second part of the comparison was made in order to answer the following question. If we were to select an ideal run according to the Eltinge criteria, i.e. one having zero instrument error, and use the corresponding exhaust concentrations in the four Michigan methods, would there be differences in the calculated fuel-air ratio and what would be the magnitudes of the errors? Five points were selected from chart 5 of reference 7. These points were along the line of constant F/A equal to 0.066 and at C02 concentrations of 14.0, 13.5, 13.0, 12.5 and 12.0 percent. Corresponding *See table 1 in reference 7. 2-39

1.04 1.03 ~ 1.02 / XTC 1.01 0 / 1.00'+ 0.99.q 0.98 +_ 1", i i.. - I.i -. -0.2 0.0 0.2 0.4 EIE Figure 2.12. XTC and AE vs EIE: Eltinge Data (Reference 7) 2-40

values of percent CO and 02 were selected from the chart and these values were used in computing fuel-air ratio using the four Michigan methods. The results, together with AE and XTC are shown in Table 2.6. TABLE 2.6. CALCULATED FUEL/AIR ERRORS FOR ELTINGE ZERO-EIE DATA POINTS* F/A Percent Error Method Point 1 Point 2 Point 3 Point 4 Point 5 1.2 0.143 -0.061 -0.234 -0.316 -0.426 2.1 -0.392 -0.534 -0.638 -0.670 -0.626 3.1 0.410 0.343 0.116 -0.006 -0.249 3.2 -0.119 -0.237 -0.384 -0.447 -0.500 AE 0.367 0.404 0.350 0.310 0.177 XTC 0.9985 0.9984 0.9986 0.9988 0.9993 *See chart 5 in reference 7. The fact that all fuel-air errors are below one percent indicates excellent agreement between the Eltinge and Michigan methods over the region checked. On the basis of the above analysis, we come to the following conclusions: 1. There is excellent agreement between the Eltinge and Michigan methods for calculating fuel-air ratio and determining data validity. 2. When valid emission data is obtained, all four of the Michigan methods will give essentially the same calculated fuel-air ratio. 3. An indication of data validity is given by either XTC, AE or EIE. Ideal runs will result in the following values: XTC ~ 1.00 AE - 0.0 EIE ~ 0.0 2-41

4. The Spindt error, in itself, is not a good indicator of data validity since some runs showing small Spindt errors can have excessively large fuel-air errors when calculated by the other Michigan methods. Under these conditions, values of XTC will be appreciably different from 1.0 (see section 2.3) and values of both AE and EIE will differ appreciably from 0.0. 2-42

2.4 CALCULATION OF EXHAUST MOLECULAR WEIGHT One of the benefits of the Michigan computational procedure is the ability to compute exhaust molecular weight. This is made possible because the procedure determines the mole-fraction values of the ten major stable gaseous species in the exhaust. With these values, exhaust gas molecular weight is computed using the sum of products of mole fractions and molecular weights, MWEXH = Z X(i) * MW(i) (2.64) i Figure 2.13 shows calculated exhaust molecular weights, based on emission data from several sources, versus equivalence ratio. Also included is a curve based on equilibrium calculations by Teledyne-Continental Motors (reference 8) and a slightly modified curve used by AVCO-Lycoming (reference 9). It is evident that all values tend to agree within + 1% at the high equivalence ratios. However, there is appreciable differences at the low equivalence ratios. Molecular weights calculated by the Michigan method using Eltinge's data, from automotive engine measurements, show excellent agreement with the curve based on the TCM equilibrium calculations. Results from lean-mixture runs at Michigan show much lower values. Lean runs from other sources were not examined. The reason for the differences for lean mixtures becomes apparent when one examines the data in table 2.7. Eltinge's data, which was obtained for a 389 in. V-8 engine, shows high values of C02 concentration (11.25%) and low values of UHC and 02. This indicates relatively complete combustion. However, the Michigan data for the LIO-320 shows relatively low C02 and high CO, UHC and 02. This results from poor combustion because of poor mixing during the idle operation. Therefore, this difference will affect the relative amounts of light and heavy molecular components in the exhaust, as also shown in table 2.7. The Michigan data shows a much lower mole-fraction of the heavy molecular specie C02 and higher mole-fractions of the lighter species H2 and UHC. This will naturally result in a lower exhaust molecular weight. 2-43

T I I a - - I! 29 29 --- ~ — T orw ~ M\^TCM (Ref. 8) + — 19 Lycoming (Ref. 9) 4- 28 U a <b o a ".^ + Runs 154-159, 449-453, 468-473 O Mi, Rs 4,27 250.6 0.8 1.0 1.2 1.4 16 S 26 X Lycoming, Original data from Ref. 12 + Runs 154-159, 449-453, 468-473 0 Eltinge, Ref. 7 25 o 0 Michigan, Runs 4,5,7 Equivalence Ratio Figure 2.13. Calculated Exhaust Molecular Weight vs Equivalence Ratio 2-44

TABLE 2.7. CALCULATED EXHAUST PROPERTIES-LEAN MIXTURES A. Eltinge Data RUN: 7. 0 DRY MEAS;UREMENTS DRIED MEASUREMENTS WET MEASU;3REMENTS; HTCR EHCC: 1. 9:00 1. 000 C02 112500. 0. 0. EHCR 1. 850 CO 1000. 0. 0. C02A 0. 030 02 53000. 0. 0. PSAT 0. 08866 HCC 0. 0. 1788. PTRP 19. 000 NO 0. 0. 0. W 0. 0000 NOX 0. 0. 0. N202 3. 7274 MTD XTC 1. 2 0. 99',64 X C:0 2 X: C C). 1016 60. 0009 K:3. 5000 XHC 0). )00) 1:8 KWDD MwEID 0. 9-C073 X02 0. 0479 KWD 0 90:31 XH20 0. 0969 PHIM MWEXH PHICAL FACAL FAM ERROR 0. 7629 28. 9371 0. 7745 P. 05289 0. 05210 1 515 XH2 XN2 XNO XN02 XA X C 0. 0002 0. 733 0. 0000 0. 000 0..0087 0. 0000 B. Michigan Data RUN: 5. 1 DRY MEASUREMENTS DRIED MEASUREMENTE. WET MEA';UREMENTES HTCR EHC C 2. 1'0.' 1 000 C02 512.14. 0. EHCR 1. 850 CO 17656. 0. 0. C02A 0. 030 02 0. 10952:3. 0. PSAT 0. 08866 HCC 0. 0. 31808. PTRP 19.000 NO 0. 0. 173. W 0of8 1 NOX ). 0. 3 7274 MTD XTC 1. 2_ 1 01:13 XC: 021 XC:O 0. 0474 0. 0163 K 3. 5000 XHC 0 031 8. 9W254 0. 1014 iD tr 4 KWD 0. 9211 XH20 0. 0788 PHIM 0. 79'01 XH2 0. 0077 MWEXH PHIC:AL FACAL FAM ERROR 27. 8375 0. 7742 0. 05145 0 05251 -2. 011 XN2 XNO XN02 XAR XC. 0 7.091 0. 002 0. 0001 C). 00:84. 0000 2-45

This leads to the conclusion that reasonably large differences in exhaust molecular weights can occur at low equivalence ratios, depending on the completeness of combustion. It appears that any value is possible in the range from about 27.75 to 28.95. Therefore, values based on equilibrium calculations are valid only when combustion is reasonably complete while a method such as the Michigan method, which is applicable under all conditions, should give better values of molecular weights over a broad range of combustion conditions. These results therefore indicate that exhaust molecular weight can be used as an indicator of completeness of combustion. For any equivalence ratio, the exhaust molecular weight tends to approach the value given by the equilibrium calculation as the completeness of combustion improves. This is also brought out inour analysis of the data in chart 5, reference 7, wherea direct correlation was found between Eltinge's mixture distribution parameter S and the calculated exhaust molecular weight. The results, for a fixed fuel-air ratio of 0.0660, show that as the mixture distribution improves (lower S ), the molecular weight x increases. S MWEXH x 0.0116 28.356 0.0092 28.430 0.0067 28.503 0.0044 28.573 0.0022 28.643 2-46

2.5 CALCULATION OF W1ATER CORRECTION FACTORS FOR EXHAUST CONCENTRAT ION MEASUREMENTS The computational procedures as set up in Section 2.1.5 of this report eliminate the need for water correction factors since the methods permit the use of either wet, dry or dried measurements. However, when desired for comparison purposes, water correction factors can be easily obtained from the computed values of XGD and XGDD since KWD = XGD = 1 - XH20 (2.65) and KWDD = XGDD = XGD + XH20DD (2.66) The dry-to-wet correction factor is given by KWD and the driedto-wet by KWDD. Some values are shown in table 2.7. Values for KWD are also shown in the various computer print-outs throughout this report. 2-47

3. UNIVERSITY OF MICHIGAN TEST FACILITY The engine emissions test facility is located in a two room concrete structure within the Gas Dynamics Laboratories of the Department of Aerospace Engineering. The engine, dynamometer, and related instrumentation are located in a 22 ft x 13 ft test cell (figure 3.1) while the test operator, data acquisition system, and emission instrumentation are located in an adjacent 22 ft x 10 ft air conditioned control room (figure 3.2). Support equipment for the facility includes a 3000 psi high pressure air supply, water, electrical power (440, 220, and 110 volt circuits), and a Data General Nova computer. Engines requiring dynafocal or bed mounts can be easily installed in the test stand. The present engine (Lycoming LIO320-B1A), which required dynafocal mounting, was installed using a production aircraft engine mount with machined aluminum bushings in place of the standard rubber Lord bushings. An eddy current —dry gap dynamometer with a 350 HP and 5000 RPM continuous operation capability is used as a solid state blending type system which allows the dynamometer to be operated in speed control, load control or a blend of these two modes. In the speed control mode the controller holds a desired RPM by varying the load in conjunction with engine power changes. In the load control mode the operator selects a given constant load level to apply to the engine regardless of speed. The blending option allows the selection of any combination of load and speed control. The air flow distribution system, which includes the cooling air and engine induction air, is shown schematically in figures 3.3 - 3.5. The cooling air is supplied by a ceiling mounted centrifugal blower which has a capacity approaching 10,000 CFM at 10 in. H20. A damper system on the blower allows control of the blower pressure output over the range of 0 - 10 in. H20. The cooling air temperature can be controlled over a limited range by using two air intakes for the blower system, one intake drawing outside 3-1

X *:............~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:................................ I~ k'I.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.......49 Ii~~~~~~~~~~~~~mv 0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~...... CI).....4. rI~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~....... ~~~~~~~~~~~~~~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~~~' __~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~........ IJ t~~ K / V.~~~~~~~~~~~~~~~~[~ -Mg4 i4,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.....'4<~~~~~~~~~~~~~~~..... Hfll::ii i:: r ~~ ~ ~: i:: i:.:: j

i-~~~~~~~~~ Ia....>....... i:.1 l............ I. -...................~~:..".-.; k.~;I"" ~'~ ~~~E.::.s i 0 ig0 ~:???: i R:i?? ~.~~~~~~' ~ N o C) I S 4''.' A.-' ):::'.'';:S: 0 c.:'' ~: RW %:S4 S \:'' o~' \>o And "' 5 R5:. ho,iiiiii~iii.i...!!?,S,'', —'..~:z..: i:i ffi::::-:, f.R': —;~::::-::::::i:. 3-3

fr - - > Outside Cooling Air. d - Intake L, --- Test Cell Air HI j A Intake and Temperature Controlled Damper K. -Cooling Air Blower I Test Cell Structure E,r / ~"Damper to Control Cooling Air Pressure l Test Cell Exhaust ___ A-LIO-320-BlA *__'J \J Aircraft Engine Lu -_ e / - -111 Ground Level.... ~ ~... a- a- - - - - - - % % \\\\~~~~\\w - - - -- --- - Figure 3.3. Cooling Air Flow Schematic

N N L Ns High Pressure Air Source for.0 _..I \Intake Air Bled From Cooling Flow Test Cell Structure LA) I tn 1N Air Injector Nozzle Meriam Laminar Flow LIO-320-B1A Mete r Intake Air ISettlingI -Engine Air Intake Chamber Ns S Ground Level \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Figure 3.4. Intake Air Flow Schematic

-Exhaust Stack, Used to Carry Exhaust Gas Away From Cooling Air Intake rs N K 2 Test Cell Structure lA 0N flt I I I ~ ~ ~ ~ ~ E E I ~ ~ ~ ~ ~ ~ ~ ~ E ~ ~ ~ ~ ~ F~ ~ 0. Ns Ns N N LIO-32 0-BlA Aircraft Engine UI n.4 Exhaust Manifold. _ — I N N, I_ 1 I, Ground Level L- - - I - -.J \ - le qq \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ^ Figure 3.5. Exhaust Gas Flow Schematic

air and the other drawing air from inside the test cell. By varying the mixture of the test cell air and the outside air, it is possible to obtain a cooling air temperature in the range between the test cell temperature and the outside air temperature. To minimize any temperature differences between the induction air and cooling air, the induction air is obtained by bleeding air from the cooling air system. Induction air flow rates are measured using a 2 in. Meriam laminar flow meter. Air flow rates are obtained by measuring the pressure drop across the meter and utilizing the previously obtained meter calibration curve. Calibration tests were periodically performed to check accuracy. A 2 in. flow meter was chosen to insure accuracy of the low air flow rates encountered in the idle and taxi modes. Due to the small size of this device, large pressure drops result from the high air flow rates encountered during the takeoff, climbout, and approach modes. These high pressure drops across the meter cause a low engine intake air pressure. In order to correct for this low pressure, a supersonic air injector was installed upstream of this device. By varying the flow through this injector, it is possible to set the induction air total pressure at the engine intake to the desired pressure level for all test conditions. This pressure is usually set to ambient pressure. Fuel flow rates are measured using an electronic timer and a weight and balance system. As a check on this method, flow rotameters have been installed and are monitored during testing. The following pressure and temperature measurements are also recorded during engine operations. Pressure Temperature 1. Intake Air AP 1. Cylinder Head 2. Intake Air, Total 2. Exhaust Gas 3. Intake Air, Static 3. Cooling Air 4. Engine Manifold 4. Intake Air, Dry Bulb 5. Fuel 5. Intake Air, Dew Point 6. Cooling Air, Total 6. Fuel Intake 7. Engine Oil 7. Oil 8. Induction Air 8. Dynamometer Cooling Water Injector, Upstream 9. Ambient (Barometer) 9. Barometric 3-7

A high speed data acquisition system is being integrated into the facility. This system consists of a high speed analog processor, an analog to digital converter, a small mini-computer, and a high speed paper tape punch. This system has the capability of obtaining two to three high speed (up to 20,000 samples/sec) data scans for a given steady state operating level and storing these points in memory. While in memory, the capability is available to perform some data scaling or reduction. This data can then be transferred to the paper tape punch for further data reduction using either the laboratories' "in-house" computer system or by using the University's time sharing computer system. The emissions measuring system used in this facility is a modified Scott model 108-H and is described in Section 4 of this report. This system was designed to meet the specifications pertaining to sampling procedures, particularly with regard to response times, as given in the Federal Register (reference 6). A more detailed description and discussion of this equipment is given in section 4 of this report. To provide the capability of rapidly changing from one probe position to another from which the exhaust sample is to be taken, an electrically heated system of stainless steel valves was assembled. This valving system allows convenient selection during a test of any one of four gas sample probes, located at different positions in the exhaust system. The valve system is controlled from the control room of the test facility, thereby allowing maximum safety and flexibility during the sampling procedure. A variable position sampling probe, which allows an exhaust gas sample to be taken at any position within the engine exhaust tailpipe, is also available. 3-8

4. INSTRUMENTATION FOR EMISSION MEASUREMENTS The objectives of this program are met only when reliable emission measurements are made. Therefore, a considerable portion of our effort was directed at the problems associated with the instrumentation, which included problems of design, construction and usage. Examples of problem areas are: 1. Reliable NOX-converter performance. 2. Water condensation at various points in the system. 3. Response times associated with sample flow rates and possible reactions in the sampling line. 4. Manufacturing quality control. 5. Reliability and frequency of repair. Our conclusion is that some efforts should be made to improve the overall reliability of the instrumentation package and to standardize the instrument package and operating procedures. 4.1 EMISSION MEASUREMENT CONSOLE A Scott Laboratories Emission Measurement Console, a modified Model No. 108-H, was used in this test program. The unit is pictured in figure 3.2 and houses the following five major analytical components. 1. Beckman Model 864 Infrared Analyzer for C02. 2. Beckman Model 865 Infrared Analyzer for CO. 3. Beckman Model 741 Oxygen Analyzer. 4. Scott Model 125 Chemiluminescence Analyzer for NO/NOX. 5. Scott Model 415 Hydrocarbon Analyzer. The sample gas, after entering the console, is split three ways. One portion passes directly to the total hydrocarbon analyzer resulting in a wet hydrocarbon measurement. The second portion passes to the NOX analyzer, where it can go directly to the analzer or can first pass through the NOX converter. This provides wet measurements of either NO or 4-1

NOX. The third portion passes through the water trap where most of the water vapor is condensed, resulting in a dried sample, and then the sample is further split. One portion passes in series through the C02 and 02 analyzers to give dried measurements, the other portion passes through a drier and then to the CO analyzer, resulting in a dry measurement. The sample lines are either heated or insulated to minimize condensation, the temperatures being in the range from 300 to 390~F. 4.2. INSTRUMENTATION PROBLEMS A large number of problems were encountered with the emissions measurement console, some of which were the result of poor quality control during assembly while others were because of inadequate design. Following is a list of major problems encountered and their solutions if found: 1. Fittings must be checked periodically for tightness to eliminate leakage. Fittings covered with insulation are difficult to check. 2. The reed valve in the external pump requires frequent checks for failure. Heat at the pump distorts the teflon seal such that the reed valve is stuck open and the pump's efficiency is drastically reduced. Also, air leakage may occur past the teflon seal diluting the sample. 3. After several months of operation the two internal pumps began an on-off cycle during operation due to overheating. This produced drastic changes in flows throughout the system requiring the operators to continually correct flows. This problem can be avoided by eliminating the internal pumps from the system and increasing the external pump capacity. This solution is desirable since it will decrease the possible problems of emission sample dilution due to air leakage since the system will be under positive pressure. 4-2

4. Valves were insufficient to hold pressure resulting in leakage when spanning and zeroing. 5. Excessive dirt accumulation led to valve failures. See item 9. 6. Water condensation in the flow lines occurred during initial emissions sampling. System corrections were required. 7. The emissions measurement system contained two pumps internal to the console and an external boost pump was added to increase the sample flow rates and thus meet the response times required by the Federal Register. The resulting increased flow through the system exceeded the capacity of the condensation coils in the trap causing condensation at various points in the measurement system. The condensation problem was partially alleviated by using two traps in series. 8. Bypass vents are required because the analyzer flow requirements are much smaller than the sample flow rates. This was especially true on our system since its sample flow rate was increased to reduce system response time. These bypass systems were not heated nor sized to the higher flow rates. Hence they served as condensation points in the system. Since all bypasses but one have a flow meter, condensed droplets passing through the meter would strike the floats and induce an oscillation in the measurement systems. When this would occur data taking had to be stopped and the system purged with dry nitrogen. After the system was dried out, data could again be taken. This condensation particularly affected the NO/NOX line. The problem has been effectively overcome by adding insulation to some lines and heating additional lines. The NO/NOX line temperature was increased to 390~F and the external sample line temperature was increased to 370~F. 4-3

9. The probe-purge system as originally designed bypassed the external filter. Valving did not allow for sufficient purge pressure to avoid drawing exhaust gases into the measurement console bypassing the filter. This resulted in dirt accumulation in some valves, during purging, leading to leakage. This system was redesigned using a 1500 psi valve and directing all flow through the filter. 4.2.1. CO INFRARED ANALYZER We have found two main causes for failure of the CO measurement system. First, dirt accumulation in the check valves between the CO flow line and the C02 flow line resulted in a leak between the two lines causing the CO analyzer to be very sensitive to the sample flow rate. This problem was corrected by cleaning the check valves. This problem could occur in field tests if the operating personnel are unaware of the problem. The second problem was leakage between the high concentration sample cell and the low concentration sample cell resulting in a continuously increasing CO reading as sample gas (or span gas) leaks from the HI cell to the LO cell. The analyzer cannot be properly zeroed unless both cells are then purged with N2. This problem, due to a poorly cemented window between the two cells, occurred twice within nine months. A temporary fix consisting of a slow purge of the low concentration cell with N2 permits satisfactory operation. C02 interference with the CO analyzer was tested by passing a 13.1.1% C02 span gas through the CO analyzer after initial calibration. A zero reading was obtained indicating no interference at this concentration level. Thereafter, the use of Ascarite for removal of C02 as an interference gas was discontinued. 4.2.2. C02 INFRARED ANALYZER No problems have been encountered with the C02 analyzer 4-4

in our testing. CO interference with the C02 analyzer was tested by passing a span gas of 10.70% CO through the C02 analyzer after initial calibration. This resulted in a reading of approximately 0.2 of a chart unit. This indicates that during emissions measurement CO interference would be within the noise level of the recorder trace. This error can be neglected since the span gas for calibration is accurate to within only + 5.0%. 4.2.3. 02 ANALYZER In terms of the instrumentation sensitivity, the 02 detector does not have the sensitivity required to make good measurements in the fuel rich environment of an aircraft engine. The 02 detector has the slowest response time of all the components, on the order of 2.5 seconds, somewhat higher than the 2 second response time required by the Federal Register. 4.2.4. TOTAL HYDROCARBON FLAME IONIZATION DETECTOR (FID) The FID is very sensitive to sample pressure. A change in sample pressure of 2 or 3 inches of water out of 40 inches of water can result in a 10% to 15% change in the total hydrocarbon (HCC) reading when sampling or spanning. Careful regulation of this pressure is required. Condensation was a problem encountered with the FID when sampling at engine high power modes. To alleviate this problem a bleed valve was installed immediately ahead of the FID to allow only necessary flow through the FID. Also a surge tank (6 ounce volume) was installed between the bleed valve and the FID to collect the small amount of condensed water. The valve and upper section of the surge tank were insulated. At idle and taxi modes, chart readings consisted of a wide band of "hash" occupying up to 70% of the chart scale. The surge tank afforded better mixing of the low and high 4-5

THC concentration pulses allowing easier and more accurate determination of the average of the chart reading. 02 interference with the HCC measurement was tested. The FID was calibrated on range 1K and a 99.6% 02 span gas was passed through the FID resulting in a HCC reading of approximately 75 ppm carbon. At a concentration of 5% 02 (roughly equivalent to the 02 level at idle and taxi) interference would result in an increase of the HCC measurement of only about 3 ppm carbon. This compares with measurements on the order of 25000 ppm carbon at idle. At higher power levels the 02 concentration falls to about 0.15%, so the effect is negligible. 4.2.5. NO/NOX CHEMILUMINESCENCE ANALYZER The central problem encountered with the NO analyzer was condensation and the resultant oscillations as mentioned previously. Heating and insulating additional segments of the sample lines, increasing the line temperature to 390~F and increasing the external sample line temperature to 370~F has largely eliminated the condensation problem. The flow lines in the interior of the NO analyzer were also insulated and heated, helping to decrease the effect of changes of viscosity between sampling hot exhaust gases and spanning with gas at room temperature. Pre-heating of the span gas should also improve performance, decreasing span drift, but as yet has not been tried. Efforts at EPA, Ann Arbor, Michigan, have shown that for accurate measurement of NO/NOX in exhaust gases the sample flow supplied by the external pump should be, at a minimum, 60 scfh. Otherwise, reactions will significantly reduce the concentrations of NO/NOX. Also, EPA testing has shown that no effects on NO/NOX measurements result by passing the sample through a condenser which would alleviate the condensation problem. This needs to be looked into further at varying levels of NO/NOX. Measurement of NOX has been generally unsuccessful. Only at high power modes is a NOX reading usually obtainable. At idle and taxi the NOX reading is usually lower than the sep arate NO reading indicating other reactions are taking place other than conversion of NOX to NO. Some tests reported in 4 -6

the literature indicate that NOX reacts with CO to eliminate N02 in a sample. We have run testsmixing known amounts of CO with an NO/N02 span gas to determine the extent of this effect. CO dilution of the NO/NO2 gas was increased for a series of experiments. The results show that very high concentrations of CO are required in order for an appreciable effect to occur. However, these experiments were conducted with cold gases and the possibility remains that hot sample gases would lead to a different conclusion. While this problem is worth further investigation, it is not critical to the problem at hand in that NOX levels are well below EPA standards and, further, our sensitivity analysis shows that NO has no significant effect on calculated fuel/air ratio. 4.3. COMMENTS 1. To obtain accurate measurements, constant control is required of the flow rates and engine temperatures. Constant monitoring is also required for the detection of partial failures which are not always obvious, e.g. small leaks in flow lines or analyzers. 2. When an open engine exhaust pipe is used, probe location is important, especially during the idle and taxi modes. If the probe is not far enough upstream of the open end of the exhaust, engine pulsations will draw ambient air into the region of the probe and dilute the sample. 3. An automated data acquisition system is highly desirable since the time consumed in manual reduction of the data on the recorder charts is great. It is also desirable to have on-line capabilities to obtain quick feedback of the computed fuel/air ratio in order to have quick evaluation of the test run. 4. Experience has demonstrated that the emission instrument console should be checked at frequent intervals for leaks and other malfunctions. 4-7

5. There is a need for a standardized design for the emissions measurement console and for greatly improved quality control in its manufacture. 6. A standardized test procedure should be developed specifying the operational steps for both the instrument console and the engine. 7. If the emission measurement package is viewed in its entirety, a number of shortcomings were found which would reflect not only on the accuracy of the data taken but also on whether or not data taken by other systems is indeed comparable. This included those data taken from emission systems made by the same manufacturer. It was found that the emission packages made by the same manufacturer varied as a function of when they were made. We found different types of NO and HC detectors used on supposedly identical systems. Different recorders were used. And, most importantly, if the sample lines flow rates vary between units, the time response and effect of condensation will be a strong variable. 8. It was found that when spanning the CO, FID, and NO/NOX analyzers, particularly after sampling hot exhaust gases, that the span reading would quickly respond towards the correct span reading until reaching about 90% of the span value, after which the reading gradually increases approaching the correct span reading. This could be cause for error in the chart readings. Heated span gas should be tested to determine the effect on readings. 4-8

5. UNIVERSITY OF MICHIGAN ENGINE EMISSION DATA 5.1 AVCO-LYCOMING LIO-320 BASELINE RUNS Test results for two low error baseline runs (runs 4 and 7) and one high error baseline run (run 16) on the AVCO-Lycoming LIO-320 BlA engine are included in the form of bar charts, figures 5.1.A-5.3C, and computer outputs,tables 5.2-5.4, at the end of this section. Test facilities for running the tests are shown in figures 3.1 and 3,2 in section 3 of this report. The bar charts show the fraction of EPA standard contributed by each of the modes for each of the pollutants. At the extreme right are the total emissions relative to the EPA standard for the 7-mode cycle. The Federal Standards used are: Hydrocarbons 0.00190 lb/rated power/cycle Carbon Monoxide 0.042 lb/rated power/cycle Oxides of Nitrogen 0.0015 lb/rated power/cycle A separate chart is shown for each of the computational procedures, Methods 1.2, 2.1, and 3.1, and it is obvious that the three methods show good agreement for the low error runs but poor agreement for the high error run. Table 5.1 shows the results of an error analysis of these runs. Shown are the fuel-air percent errors for Methods 3.1 and 1.2, the differences between these values (AE) and the sums of gaseous mole-fractions (XTC). An examination of E(1.2) values for the three baseline runs shows relatively small differences. Neglecting the idle runs, the values are in general below about 2.5%, implying that the Spindt error shows these runs to be of equal reliability. However, an examination of AE and XTC values shows that only runs 4 and 7 have acceptable values, but that run 16 does not. This is further evidence that the Spindt error in itself is not a good indicator of data reliability. The bar chart results for runs 4 and 7 show that the levels of CO far exceed the Federal Standards, that HC is a borderline pollutant which may measure above or below the Standard and that NO is far below the Standard. x 5-1

TABLE 5.1. ERROR ANALYSIS OF RUNS 4, 7 AND 16 Run 4.1 4.2 4.3 4.4 4.5 4.6 4.7 E(3.1) E(1.2) 17.332 2.707 1.918 -1.128 -2.572 1.671 21.718 7.204 -2.099 0.678 -1.198 -2.202 -1.443 11.484 AE 10.128 4.806 1.240 0.070 -0.370 3.114 10.234 XTC 0.969 0.980 0.995 0.999 1.002 0.987 0.970 7.1 7.2 7.3 7.4 7.5 7.6 7.7 -11.579 -5.565 3.746 -0.059 -0.711 -6.991 -8.582 60.171 48.539 56.581 56.095 51.188 47.140 52.759 1.884 -2.180 1.537 -0.295 -1.249 -1.354 0.107 -14.658 0.043 2.815 0.570 -1.157 -5.785 -15.091 -13.463 -3.385 2.209 0.236 0.538 -5.637 -8.689 74.829 48.496 53.766 55.525 52.345 52.925 67.850 1.039 1.013 0.990 0.999 0.998 1.023 1.028 0.763 0.784 0.752 0.739 0.751 0.770 0.776 16.1 16.2 16.3 16.4 16.5 16.6 16.7 Attention is called to run 7.4 in the computer print-outs at the end of this section. Note that the four methods of computation give excellent agreement, not only for fuel-air ratio, but for all computed values as well. Because of such runs it is felt that all four methods of computation will give similar results if measurements of exhaust concentrations are accurate. However, it is possible that slight changes of the water gas equilibrium constant may be required for the different modes of operation to reflect possible differences in freeze-out temperatures of the exhaust products. This may be most important at idle and taxi modes. Because of the complex interaction of the many input variables, the problem of selecting the proper value of the equilibrium constant for the various operating modes cannot be solved without further study. 5-2

TLr _i C I IKI T \ / 1- T I T -% A K I 2., 00- n'r UIN VL t:rl I T U- 1I i L L UAJN EMISSION CHARACTERISTICS " 1.80 ENGINE TYPE LIO-320-B1A I, - RUN NO. 4 (n 1.60 METHOD 1.2 L0 1.4LUi -O 1.2 Ld 120J 0-80 —I ^Oa 0 — D 0.6O.~-J o 0.4 0.2 oo- oo oJo oJoS 00 oX ooS oXoS IDLE TAXI TAKE-OFF CLIMB APPROACH TAXI IDLE TOTAL EMISSIONS MODE Figure 5.1.A. LIO-320 Baseline Results: Run 4, Method 1.2. 5-3

T- 1 I l I T \r —- T T -\/ - r- T r -I I T f A K I 2. 00 I lE- UIN1 VLtrD i I T Ul 11LH I AIN E I SS I ON CHARACTER I ST I CS b 1.8 - ENGINE TYPE LIC-320-B 1A F - - "RUN NO. 4 Uo 1.6 0- METHOD 2.1 < 2 | n- 1. 40 — Li _- 1.2 - LUJ _L 1.007 0.80< —c 0.40.20.0 E~MO E IISI X o oX oX ox x O x o u S 03:: Z.r Z 0 Z 0: Z 0' SZ:Z:Z O.z:0 = Z IDLE TAXI TAKE-OFF CLIMB APPROACH TAXI IDLE TOTAL EMISSIONS MODE Figure 5.1.B. LIO-320 Baseline Results: Run 4, Method 2.1. 5-4

2.01 1.81 1.61 THE UNIVERSITY OF MICHIGAN EMISSION CHARACTERISTICS ENGINE TYPE LIO-320-B1A RUN NO. 4 METHOD 3. 1 L LL I LU1 -_ 1.41 1.21 1. 01 0.81 0. 6 0.41 0.2I 0.0 x x x x UOU. o o ouC 0 0 =ox oUO oUO DLE:: z z T -OFF Iz U AP ACH TI z I IDLE TAXI TAKE-OFF CLIMB APROACH TAXI IDLE TOT: TOTAL EMISSIONS MODE Figure 5.1.C. LIO-320 Baseline Results: Run 4, Method 3.1. 5-5

TLiF I IkT T /Ir T / rV nr KA T -% T f% A K 2.0 r In UIN lV C.R I I U F I'IL iUOnIN EMISSION CHARACTERISTICS 1.80- ENGINE TYPE LIO-320-BIA F- RUN NO. 7 tn 1.GO- METHOD 1.2 a 1.4 0- l 40 —-J "R 20LUJ IjJ 1.2.j 1.00 mJ z 0.80_J 3 6 o 0.4, 0,. 2 0,0 o< 0 ^i ot 01 o 0 8O1 8,1 8^C 81 81 8 — 8- == IDLE TAX? TAKE-OFF CLIMB APPIACH TAXI IDLE TOTAL El ISSIONS MODE Figure 5.2.A. LIO-320 Baseline Results: Run 7, Method 1.2. 5-6

2. 1. 1. THE UNIVERSITY OF MICHIGAN EMISSION CHARACTERISTICS ENGINE TYPE LIO-320-B1A RUN NO. 7 METHOD 2. 1 QIU LLJ > _J.i 1. 1. 1. 0. O. 0. O. 0. D6 8uE 8TA TAK 8 1 8x1 8ID IDLE TAXI TAKE-OFF CLIMB APROAC TAXI tDLE TOTAL E.I3SIONS MODE Figure 5.2.B. LIO-320 Baseline Results: Run 7, Method 2.1. 5-7

2. THE UNIVERSITY OF MICHIGAN EMISSION CHARACTER ISTICS ENGINE TYPE LIO-320-B1A RUN NO. 7 METHOD 3. 1 a 0 U) 0,n LU LLJ LUJ LU H.i z H D -j -J 0~ 1.8( 1.6( 1.4k 1.21 1.01 0.81 0.6 0.41 0.21 0.0 8U 8iW 8Pa 8.1 8a1 8ii IDLE TAXI TAKs-OFF CLIU APPRWACH TAXI MODE SDL. 8u1 TOTrn E1tS3tONO Figure 5.2.C. LIO-320 Baseline Results: Run 7, Method 3.1. 5-8

TU I IIKl T \/CDO T TV ncE M T f'U T ( A K 2. OI I lL- UIN I v FrA\ I I I Ur 1- I Un i uLAIN EM I SS I ON CHARACTER I ST I CS 1.80- ENGINE TYPE LIO-320-B1A H - - RUN NO. 16 U) 1. 60 METHOD 1.2 - 1.40 LU _LU 1.2C > H- 0.80 D 0.6 oCZ Q Q Z Oo S Z SoZ LoZ S2 IDLE TAXi TAK-OFF CLIMB APPROACH TAxr IDLE TOTAL EMISION8 MODE Figure 5.3.A. LIO-320 Baseline Results: Run 16, Method 1.2. 5-9

2. THE UNIVERSITY OF MICHIGAN EMISSION CHARACTERISTICS ENGINE TYPE LIO-320-B1A RUN NO. 16 METHOD 2.1 0 1CL LJ (n 1 LI I -J z D._J.J 0 CL 0Q_ 1 1. 1. 1. 1. 0O 0. 0. 0. 0. oUt out out L0= 39 LI$ = UC.)=2= f. Z0 IDLE TAXI TAKI-OF CLIMt APPIRCH TAXI IDLE TOTAL EISSrONS Figure 5.3.B MODE LIO-320 Baseline Results: Run 16, Method 2.1. 5-10

"TLJr I 1M T l/r-r' " T TrV rnc Ml T r 2. 0 InIr UINl vc.3 I T ur I'll r EMISSION CHARACTERIS' 1.80- ENGINE TYPE LIO-320-B1A RUN NO. 16 1.6- METHOD 3.1 1.40 1.2 1. 00O 0.80 O. 6 0.400.20O.o IDOL TAXI TAKE-OFF CL tm APPROACH TAXI IT MODE Figure 5.3.C. LIO-320 Baseline Results: Run 16, Method 3.1. IGAN TICS i~ 8 t DLE TOTAL EMISSIONS ~"S"SrO)SS 5-11

TABLE 5.2. COMPUTER PRINTOUT: RUN 4 DATE: 8-11-75 ENGINE TYPE: LIO-320-B1A LOCATION: UNIV OF MIC:H SERIAL NUMBER: L-287-66A IOPERATORS: PACE, PERRY, PON;ONBY, LEO FUEL H/C RATIO = 2. 190 IGNITION TIMING= 25DEG RUN NO. 4 MODE: 1 COMMENTS: BASELINE DATA RUN4. 1 TEMP'( IB) ='96. /06-F FUEL RATE= TEMP(DF) = 67. OOF AIR RATE = TEMP(BAR) = 85. OOF F/A RATIO= BAR PRESS(OB)= 29. 11"H FPHIM BAR PRESS(C:R)= 28.: 96"HG SPEC: HUMIDITY=0. 0146#/'# C:02 CONC ( PM ) 68368. MK.WD XTC METHOD 1.2. 935 0.::93.'. 02 MAS -;/'MODE ( LBM) 0. 1:3535 MASS./RATED HP(#./'HF) 0. 00084 KtWD XTC: METHOD 2. 1 0. 86278 1. 0000 MASS/MODE( LBM) 0. 1:32r82 MASS/RATED HP(#./HF') 0. 00083 KWD XTC METHOD 3.E 1 0. 879-42 1. 01530 MASS/MODE( LBM) O. 13743 MASS/RATED HP (#./HP) 0. 000:8:5 KWD XTC METHOD 3. 2 0 89298 0. 241 1 MASS/MODE( LBM) 0. 1:3560 MA;SS/RATED HP (#/'HP) 0. 00084 r12 69080. MWEXH 27. 55150 0. (99139 0. 00062 MWEXH 28. 07666 0. 09753 0. 00061 MWEXH 27. 1:3356 0. 10092 0. 0006:3 MWEXH 27. 50000 0. r.09958 0. 00062 4. 2595#./HR 70. 0810#./HR 0. 0608#/# 0. 9144 UHC:C: 27:388. EXH FLOW 1040. 114 0. 01704 0. 00011 EXH FLOW 1020. 660 0. 0167.:. 0. 00010 EXH FLOW 1056 135 017:31 0 00011 EXH FLOW 1042. 062 0. 01708 0. 00011 MAN MAN CID 277:35. FACAL 0. 06515 0. 03491 0. 00022 FACAL 0. 06004 0. 0:3425 0. 00021 FACAL 0. 071:31 0. 03544 0. 000 22 FACAL 0. 06289'l 0. 03497 0 00022 VAC: (EOBS) =17. 00" HO PRE'.;S (CORR)=- 0. 00"HG NO NOX 192. 219. FAM ERROR 0. 06078 7 204 0. 000C26 0. 0(0045 0. 00000 0. 00000 FAM ERROR 0. 06078 -1 214 0. 00025 0. 00044 0. 00000 0. 00000 FAM ERROR 0. 06:078 17.:332 0. 00026 0. 00046 0. Cr0OC00 0 0000 FAM ERROR 0. 06078 3. 473 0. 00026. 0 00045 0. 00000 0. 00000 ENG I NE RPM( NOM ) EN I NE RPM ( AC:T)= BHF' (OBES) EHP(CORR) 700 RPM 744. RPM 2. OHP 0. OHP RUIN NCO. 4 MODE: 2 COMMENT'-: BASEL I NE TEMP(DB) = 96. TEMP(DPF) = 66: TEMP(BAR) = 85 BAR PRESS(OB) = 29 DATA RUN4. 2 27F FUEL RATE= OOF AIR RATE = OOF F/A RATIO= 11 "HG PHIM 7 9051 #./HR 101. 5497#/'HR 0. 0778#./'# 1. 1712 ENGINE RPM(NNOM) -12700 RPM ENG I NE RPM (:ACT) = 120 1. RPM BHP(OBS) = 6. 2HF' BHF'( C:ORR ) =. OHP BAR PRESS(CR)= 28..96"HG SFEC HUMIDITY=O 0141#./# C02 CONC F'F'M) 9'2875. K WED XTC: METHOD 1 2 0. 86498 0. 98035 MASS./MODE( LBM) 2. 9'8862 MA'; S/RATED HPF( #./HF ) ). 0186:8 K:WD X TC: METHOD 2. 1 0. 84542 1. 00000 MASS;./MODE (LBM) 2.'9C5022 MASS/RATED HP( #/HF') 0. 018:44 KWDI XTC: METHOD 3. 1 0 856:34 1 01002 MASS/MODE (LBM ):3. 0 1865 MAS-;S/RATED HP( #./HP) 0. ()1887 KWD XTC METHOD:3. 2 0. 86466 0) 29629 MAS'-S/'MODE( LBM) 2.':'8:3::7 MASS/RATED HP(#./HF') 0 01865 02 21854. MWEXH 27. 45172 0. 51112 0. 00319 MWEXH 27 80904 0 50455 0. 00315 MWEXH 27. 17859 0. 51626 0. 00:2:3 MWEXH 27. 50000 0. 51022 0. 00319 IJHC:C: 9600. EXH FLOW 1536. 971 0. 09711 0 00061 EXH FLOW 1517. 223 0. 09586: 0. 00060 EXH FLOW 1552. 417 0. 09808 0. 00061 EXH FLOW 1534 27:3 0. 096.:94 0. 00061 MAN VAC (OBS ) = 19. 00" IHG MAN PRESS( C:ORR)= 0. 00"HG CO NO NOX 48817. 214. 2:37 FACAL FAM ERROR 0. 07621 0. 07784 -2. 099 0.:9986t4 0. 00C470 0. 007'94 0. 0C062 4 0. 00003 0 0 )00 FACAL FAM ERROR 0. 07191 0. 077:84 -7. 61': 0.'858,,1 0. 00464 0 00784 0. )00616 0 000003 0. )00005 FAC:AL FAM ERROR 0. 07995 0. 077:84 2. 707 1. 00868 0. 00475 0. (!0802 0. 006: 30. C000:3 0 C0005 FACAL FAM ERROR 00. 07450 0. 07784 — 4. 296 0. 9.9:.689 0. 0046.- 0 0079-:. 0. 0062:3 0. 00C0:3: 000:)05 5-12

TABLE 5.2. Continued RUN NO. 4 MODE 3 COMMENTS: BASELINE DATA RUN4. 3 TEMP ( DB) TEMP(DP) TEMP(BAR) = 89. 27F = 61. OOF = 86. OOF FUEL RATE= AIR RATE = F/A RATIO= 75. 859. 0. 1. 1880#/HR 1758#/HR 0875#./# 3166 ENGINE RPM(NOM)=2700 RPM ENGINE RPM(ACT)=2695. RPM BHP (OBS) =138. 4HP BHP( CORR) =153. 4HP BAR PRESS(OB)= 29. 11"HG BAR PRESS(C:R)= 28. 96"HG SPEC HUMIDITY=O. 0118#/# PHIM = C02 CONC( PPM) 87484. KWD XTC METHOD 1. 2 0. 85993 0. 99461 MASS/MODE( LBM) 0. 66949 MASS/RATED HP ( #/HP). 00418 KWD XTC METHOD 2. 1 0. 85449 1. 00000 MASS/MODE (LBM) 0. 66678 MAS.;S/RATED HP ( #/HP) O. 00417 KWD XTC METHOD:3. 1 0. 85771 1. 00292 MA;SS/MODE(LBM) 0. 67144 MASS/RATED HP(#/'HP) O. 00420 KWD XTC METHOD 3. 2 0. 85987 0. 33790 MASS/MODE ( LBM) 0. 65426 MASS/RATED HP (#/HP) O. 00409 02 1758. MWEXH 26. 87442 0. 00978 0. 00006 MWEXH 26. 98341 0. 00974 0. 00006 MWEXH 26. 79637 0. 00980 0. 00006 MWEXH 27. 50000 0. 00955 0. 00006 UHCC 1746. EXH FLOW 13402. 240 0. 00420 0. 00003 EXH FLOW 13348. 100 0. 00418 0. 00003 EXH FLOW 13441. 270 0. 00421 0. 00003 EXH FLOW 13097. 360 0. 00410 0. 00003 MAN MAN CO 85456. FACAL 0. 08810 0. 41574 0. 00260 FACAL 0. 08661 0. 41406 0. 00259 FACAL 0. 08919 0. 41695 0. 00261 FACAL 0. 08754 0. 40629 0. 00254 VAC(OBS) = 0. 70"HO PRESS( CORR)=29. 00"HG NO NOX 201. 205. FAM ERROR 0. 08751 0. 678 0. 00105 0. 00164 0. 00000 0. 00001 FAM ERROR 0. 08751 -1 031 0. 00104 0. 00163 0. 00000 0. 00001 FAM ERROR 0. 08751 1. 918 0. 00105 0. 001,4 0. 0000 0. 00001 FAM ERROR 0. 08751 0. 038 0. 00102 0 00160 0. 00000 0 00001 RUN NO. 4 MODE: 4 COMMENTS: BAS;EL INE DATA RUN4. 4 TEMP(DE:) = 93. 06F FUEL RATE= TEMP(DP) = 6:3. OOF AIR RATE = TEMP(BAR) = 85. OOF F/A RATIO= BAR PRESS-(OB)= 29. 12"HG PHIM BAR PRESS(CR)= 28. 97"HG SPEC HU MIDITY=O. 012'7#/'# 57 655. 0. 1. 4712#/'HF 3093#/HF 0877#/# 3194 C02 CONC (PF'M) 91052. KWD XTC METHOD 1. 2 0 85711 0.'99969 MA-SS/MOCDE LBM) 8. 82815 MASS/RATED HP(#./'HP) 0. 05518 KWD X TC METHOD 2. 1 0. 85680 1. 00000 MA'=;SS/MODE(LBM ) 8. 82612 MA-SS/RATED HP (#./HP) O. 05516 KWD XTC METHOD 33 1 0. 85698 1. 00017 MA'S-;S/MODE( LBM) 8. 8292- -. MAS-;.S/'RATED HP (#/HF) 0. 05519 KWD X T: METHOD 3. 2 0. 85711 0. -336,85 MASS/MODE( LBM) 8. 65764 MASS';./'RATED HP( #./HP) 0. 05411 02 1758. MWEXH 26. 96886 0. 12391 0. 00077 MWEXH 26. 97507 0. 12:388 0. 00077 MWEXH 26. 964:39 0. 12393 0. 00077 MWEXH 27. 50000 0. 12152 0. 00075 UHCC 1742 EXH FLOW 10188. 110 0. 05308 0. 00033 EXH FLOW 10185. 770 0. 05:307 0. 00033 EXH FLOW 10189. 800 0. 05309 0. 00033 EXH FLOW 9991. 336 0. 05206 0. 00033.ENGINE RPM(NOM)=2430 RPM ENGINE RPM(AC:T)=2449 RPM BHP ( OBS ) =104 2HP BHP(CORR) = 0. OHP MAN VAC(OBS) =. 50" HG MAN PRESS-;(C:ORR) = 0. 00"HG C:O NO NOX 81134. 245.253 FACAL FAM ERROR 0. 08665 0. 08770 -1. 198 5. 00097 0. 01617 0. 02559 0. 03126 0. 00010 0. 00016 FACAL FAM ERROR 0. 08656 0. 08770 -1 294 4. 99982 0. 01617 0 )02558 0. 03125 0. 00010 0 00016 FACAL FAM ERROR 0. 08671 0. 08770 -1 128 5.. 00180 0. 01617 0 02559 0. 03126 0 00010 0. 00016 FACAL FAM ERROR 0. 08661 0. 08770 -1. 2:3:3 4. 90438 0. 01586 0. 02509 0. 03065 0. 00009 0 00016 5 -13

TABLE 5.2. Continued RUN NO. 4 MODE: 5 COMMENTS: BASEL I NE DATA RUN4. 5 TEMP(DB) TEMP( DP) = TEMP(BAR) BAR PRE;SS(O)= 98. 79F 65. OOF 88. OOF 29. 12"HG FUE AIF F/P PHi BAR PRESS(C:R)= 28. 96"HG SPEC HUMIDITY=0. 0136#./# C02 CONC (PPM) 92861. KWD XTC: METHOD 1.2 0. 85528 1. 00164 MASS/MODE(LBM) 6. 52609 MASS/RATED HP(#/HP) 0. 04079 KWD XTC METHOD 2. 1 0. 85696 1. 00000 MASS/MODE(LBM) 6. 53405 MASS/RATED HP(#/HP) O. 04084 KWD XTC METHOD 3. 1 0. 85597 0. 99912 MASS/MODE(LBM) 6 520:36 MASS/RATED HP(#/HP) 0. 04075 KWD XTC METHOD 3. 2 0. 85531 0. 33670 MA$S./MODE( LBM) 6. 40920 MASS/RATED HP(#/'HP) 0. 04006 EL RATE= R RATE =' Q RATIO= IM 02 1758. MWEXH 27. 00743 0. 08981 0. 00056 MWEXH 26. 97456 0. 08992 0. 00056 MWEXH 27. 03120 0. 08973 0. 00056 MWEXH 27. 50000 0. 08820 0. 00055 34. 8432#/HR 396. 3127#/HR 0. 0879#/# 1. 3227 UHCC 1768. EXH FLOW 6153. 914 0. 03905 0. 00024 EXH FLOW 161. 414 0. 03910 0. 00024 EXH FLOW 6148. 504 0. 03902 0. 00024 EXH FLOW 6043. 687 0. 03835 0. 00024 ENGINE RPM(NOM) =2350 RPM ENGINE RPM(ACT)=2358. RPM BHP(OBS) " 53. OHP BHP(CORR) = 0. OHP MAN VAC(OBS;) =11. 50"HG MAN PRESS(C:ORR)= 0. 00"HG CO NO NOX 78852. 207. 213. FACAL FAM ERROR 0. 08598 0. 08791 -2 202 3. 52292' 0. 00992 0. 01561 0. 02202 0. 00006 0. 00009 FACAL FAM ERROR 0. 08643 0. 08791 -1. 692 3. 52722 0. 00993 0. 01563 0. 02205 0. 00006 0. 00009 FACAL FAM ERROR 0. 08565 0. 08791 -2 572. 3. 51983 0. 00991 0. 01560 0. 02200 0. 00006 0 00009 FACAL FAM ERROR 0. 08614 0. 08791 -2. 014 3 45982 0. 00974 0 01534 0. 02162 0. 00006 0. 00009 RUN NO. 4 MODE. 6 C:OMMENT': BASEL I NE TEMP( DB) =100. TEMP(DF) = 66. TEMF'(BAR) = 88. BAR PRESS(O B)= 29. DATA RUN4. 6 35F FUEL RATE= OOF AIR RATE = OOF F/A RATIO= 12"HG PHIM = BAR PRESS(C:R)= 28. 96"HG SPEC HU MIEDITY=O. 0141#./# C02 C:ONC: ( PPM) 92260. KWD XTC METHOD 1. 2 0. 86504 0. 98720 MASS/MODE( LBM) 0. 79499 MASS/RATED HP(#/HP) O. 00497 KWD XTC METHOID 2. 1 0. 8522:3 1. 00000 MASS/MODE ( LBM) 0. 78825 MASS/'RATED HP ( #/HP) O. 0049:3 K:WD XTC METHOD:3. 1 0. 85940 1. 00654 MASS/MODE ( LBM) 0. 80019 MAS;.S/RATED HP.(#/HP) 0. 00500 KWD XT'C METHOD:3. 2 0. 86482 0. 298'66 MASS/MODE ( LBM) 0. 79236 MASS/RATED HP(#./HP) O. 00495 02 23362. MWEXH 27. 40898 0. 14630 0. 00091 MWEXH 27. 64326 0. 14506 0. 00090 MWEXH 27 2:3067 0. 14726 0. 00092 MWEXH 27.50000 0. 14582 0. 00091 7. 7963#/HR 9. 5044#/HR 0. 0783#./# 1. 1788 UHCC 12300. EXH FLOW 1509. 072 C 0. 03332 0. 00021 EXH FLOW 1496. 282 C 0. 03304 0. 00021 EXH FLOW 1518. 953 C 0. 03354 0. 00021 EXH FLOW 1504 077 C 0. 03321 0. 00021 MAN MAN CO 49025. FACAL ). 07722 0. 26855 0. 00168 FACAL ). 07436 0. 26628 0. 00166 FACAL ). 07966 0. 27031 0. 00169 FACAL ). 07608 0. 26766 0. 00167 VAC (OBS) 19. 10" H3 PRESS( C:ORR)= 0. 00"Hi NO NOX 204 229. FAM ERROR 0 07835 -1 443 0 00120 0. 00206 0 00000 0. 00001 FAM ERROR 0. 078:35 -5. 083 0. 00119 0. 00204 0. 00000 0. 00001 FAM ERROR 0. 07835 1.671 0. 00121 0 00207 0. 00000 0. 00001 FAM ERROR 0 07835 -2. 889 0. 00120 0. 00205 0. 00000 0. 00001 ENGINE RPM(NOM)=1200 RPM ENGINE RPM (ACT)=1222. RPM BHP(OBS) = 4. 3HP BHP(CORR) = O. OHP 5- 14

TABLE 5.2. Continued RUN NO. 4 MODE: 7 COMMENTS: BASELINE DATA RUN4. 7 TEMP(DE) = 98. 40F FUEL RATE= TEMP(DP) = 66. OOF AIR RATE = TEMP(BAR) = 88. OOF F/A RATIO= BAR PRESS(OB)= 29. 12"HG PHIM BAR PREeSS(CR)= 28. 96"HG SPEC HUMIDITY=0. 0141#/# C02r CONC (PPM) 80621. K:WD XTC METHOD 1. 2 0. 88312 0. 97038 MASS./MODE(LBM) 0. 15465 MASS/RATED HP (#/HP) O. 0009,6 MASS./HP/CYC ( #/HP/C:) 0. 12561 KWD XTC METHOD 2. 1 0. 85348 1. 00000 MASS/MODE( LBM) 0. 15186. MASS/RATED HP (#/HP) O. 000-94 MASS/HPF/C:YC ( #/HP/C) 0. 125:31 KWD XTC METHOD:3. 0. 86963 1. 01474 MASS/MODE( LBM) 0. 15697 MASS/RATED HP(# /HP) 0. 00098 MASS/HPF/CYC: (#/HP/C) 0. 12584 KWD XTC METHOD 3. 2 0. 88259 0. 25013 MASS/MODE (LBM) 0. 15607 MASS/RATED HP ( #/HP) O. 00097 MA'S;S/HP/CYC ( #./HP/C) 0. 12:368 02 5:3003. MWEXH 27. 75290 0. 07:389 0. 00046 0. 00658 MWEXH 28. 26257 0. 07256 0. 00045 0. 00652 MWEXH 27. 34329 0. 07500 0. 00047 0. 00664 MWEXH 27. 50000 0. 07457 0. 00047 0. 00655 3.9002#/HR 68. 6606#/HR 0. 0568#/# 0. 8546 UHCC 12700. EXH FLOW 1007. 845 0. 00765 0. 00005 0. 00157 EXH FLOW 989. 670 ( 0. 00752 0. 00005 0. 00156 EXH FLOW 1022. 943 ( 0. 00777 0. 00005 0. 00158 EXH FLOW 1017. 114 ( 0. 00772 0 00005 0. 00156 MAN MAN CO 30954. FACAL ). 06332 0. 03775 0. 00024 0. 06424 FACAL 0. 05826 0. 03707 0. 00023 0. 06415 FACAL ). 06914 0. 038:31 0. 00024 0. 06432 FACAL 0. 06123 0. 03809 0. 00024 0. 06317 ENGINE RPM(NOM)= 680 RPM ENGINE RPM(ACT)= 6:39. RPM BHP(OBS) = 1. 9HP BHP(CORR) = 0. OHP VAC(OBS) =16. 80"HG PRESS( CORR)= 0. 00"HG NO NOX 258. 300. FAM ERROR 0. 05680 11. 484 0. 00034 0 00060 0. 00000 0.00000 0. 00021 0. 00034 FAM ERROR 0. 05680 2. 566 0. 00033 0. 00059 0. 00000 0. 0000 0. 00021 0. 00034 FAM ERROR 0. 05680 21 718 0. 00034 0. 00061 0. 00000 0. 00000 0. 00021 0. 00034 FAM ERROR 0. 05680 7. 797 0. 00034 0 00061 0. 00000 0. 00000 0. 00021 0. 00033 5-15

TABLE 5.3. COMPUTER PRINTOUT: RUN 7 DATE: 8-14-75 ENGINE TYPE: LIO-320-BIA FUEL H/C RATIO = 2. 190 LOCATION: UNIV OF MICH SERIAL NUMBER: L-287-66A IGNITION TIMING= 25DEG OPERATORS: PACE, PONSONBY, LEO, CARLOS RUN NO. 7 MODE: 1 COMMENTS: 4TH BASELINE RUN TEMP(DB) =102. 08F FUEL RATE= TEMP(DP) = 54. OOF AIR RATE = TEMP(BAR) = 82. OOF F/A RATIOBAR PRESS(OB)= 29. 32"HG PHIM = BAR PRESS( CR)= 29. 18"HG SPEC HUMIDITY=0. 0090#/# C02 02 CONC( FPM) 66000. 98219. KWD XTC MWEXH METHOD 1. 2 0. 90,611 1. 03925 27. 78641 MASS/MODE( LBM) 0. 11904 0. 12875 MASS/RATED HP(#./HP) 0. 00074 0. 00080 KWD XTC MWEXH METHOD 2. 1 0 94739 1. 00000 27. 09962 MASS/'MODE (LBM) 0. 12206 0. 13201 MASS/RATED HP(#/HP) O. 00076: 0. 00082 KWD XTC MWEXH METHOD:3. 1 0. 92503 0. 98058 28. 33650 MASS/MODE (LBM) 0. 11673 0. 12625 MASS/RATED HP(#/HP) O. 00073 0. 00078 KWD XTC MWEXH METHOD 3. 2 0..90659 0. 22023 27. 50000 MASS./MODE(LBM) 0. 12028 0. 13009 MASS/RATED HP ( #/HP) O. 00075 0. 00081 3. 7585#/HR 64. 5482#/HR 0. 0582#/# 0. 8760 ENG I NE RPM(NOM) = ENGINE RPM(ACT)= BHP( OBS) BHP(CORR) 650 RPM 650. RPM 0. 4HP 0. OHP UHCC 40787. EXH FLOW 947. 613 0. 02313 0. 00014 EXH FLOW 971. 628 0. 02371 0. 00015 EXH FLOW 929. 217 0. 02268 0. 00014 EXH FLOW 957. 482 0. 02337 0. 00015 MAN VAC(OBS) =17. 50"HG MAN PRESS(CORR)= O. 00"HG CO NO NOX 13423. 120. 120. FACAL FAM ERROR 0. 05932 0. 05823 1. 884 0. 01539 0. 00015 0. 00022 0. 00009 0. 00000 0.00000 FACAL FAM ERROR 0. 06544 0. 05823 12. 393 0. 01578 0. 00015 0. 00023 0. 00009 0 00000 0. 00000 FACAL FAM ERROR 0. 05149 0. 05823-11. 579 0. 01509 0. 00014 0.00022 0. 00009 0. 00000 0. 00000 FACAL FAM ERROR 0.06192 0. 05823 6. 339 0. 01555 0. 00015 0. 00023 0. 00009 0. 00000 0. 00000 RUN NO. 7 MODE: 2 C:OMMENTS 4TH BASELINE RUN TEMP(DB) =101. 73F TEMP(DP) = 56. OOF TEMP(BAR) = 81. OOF BAR PRESS(OB)= 29. 30"HG BAR PRESS< (CR)= 29. 16"HG SPEC HUMIDITY=O. 0097#/# FUEL RATE= AIR RATE = F/A RATIO= PHIM = 8. 1544#/HR 114. 4802#/HR 0. 0712#/# 1. 0716 ENGINE RFPM(NOM)=1200 RPM ENGINE RPM(ACT)=)?:) -0 RPM BHP(OBS) = 5 4HP BHP(CORR) = 0 OHP C02 CONC ( PPM) 98093. KWD XTC METHOD 1. 2 0. 87097 1 01283 MASS/MODE ( LBM):3 49107 MASS/RATED HP(#/HP) 0. 02182 KWD XTC METHOD 2. 1 0. 88404 1. 00000 MASS./MODE( LBM) 3. 52044 MASS/RATED HP (#/HP) O. 02200 KWD XTC METHOD::. 1 0. 87681 0. 99352 MASS./MODE( LBM) 3. 46828 MASS/RATED HP( #/'HP) O. 02168 KWD XTC: METHOD 3. 2 0 87112 0 27754 MASS/MODE (LBM):3 5:3043 MA.SS/RATED HP(#/'HP) 0 02207 02 35921. MWEXH 27. 81004 0. 92915 0. 00581 MWEXH 27. 57799 0. 9:3697 0. 00586 MWEXH 27 99283 0 92308 0. 00577 MWEXH 27. 50000 0. 93962 0. 00587 UHCC 13902. EXH FLOW 1699. 855 0. 15553 0. 00097 EXH FLOW 1714 158 0. 15684 0. 00098 EXH FLOW 1688. 755 0. 15452 0. 00096 EXH FLOW 1719. 020 0 15728 0. 00098 MAN VAC(OBS) =18. 90"HG MAN PRESS(CORR)= 0. 00"HG CO NO NOX 32589. 152. 180 FACAL. FAM ERROR 0. 06967 0. 07123 -2 180 0. 73733 0. 00368 0 00668 0. 00461 0. 00002 0. 00004 FACAL FAM ERROR 0. 07229 0. 07123 1 499 0. 74353 0. 00372 0. 00674 0. 00465 0. 00002 0. 00004 FACAL FAM ERROR 0. 06726 0. 07123 -5. 565 0. 73251 0. 00366 0. 00664 0. 00458 0. 00002 0. 00004 FACAL FAM ERROR 0.07068 0. 07123 -0. 769 0. 74564 0. 00:37:3 0 00676 0. 00466 0. 00002 0 00004 5-16

TABLE 5.3. Continued RUN NO. 7 MODE: 3 COMMENTS:4TH BASELINE RUN TEMP(DB) = 92. 75F TEMP(DP) = 52. OOF TEMP(BAR) = 82. OOF BAR PRESS(OB)= 29. 30"HG BAR PRESS(CR)= 29. 16"HG SPEC HUMIDITY=O. 0084#/# FUEL RATE= AIR RATE = F/A RATIO= PHIM = C02 CONC(PPM) 86102. KWD XTC METHOD 1. 2 0. 86403 0. 99042 MASS/MODE(LBM) 0. 67002 MASS/RATED HP(#/HP) 0. 00419 KWD XTC METHOD 2. 1 0. 85449 1. 00000 MASS/MODE(LBM) 0. 66524 MASS/RATED HP(#/HP) 0. 00416 KWD XTC METHOD 3. 1 0. 86014 1 00517 MASS/MODE(LBM) 0. 67349 MASS/RATED HP(#/HP) 0. 00421 KWD XTC METHOD 3. 2 0. 86395 0. 33392 MASS/MODE(LBM) 0. 65546 MASS/RATED HP(#/HP) 0. 00410 02 1758. MWEXH 26. 90207 0. 00994 0. 00006 MWEXI 27. 09535 0. 00987 0. 00006 MWEXH 26.7637C 0. 00999 0. 00006 MWEXH 27. 5000C 0. 00972 0. 00006 76. 0456#/HR 875. 0493#/HR 0.0869#/# 1. 3074 UHCC 1635. 4 EXH FLOW 13628. 200 < 0. 00400 0. 00002 4 EXH FLOW 5 13530. 990 0. 00397 0. 00002 4 EXH FLOW )13698.660 0. 00402 0. 00003 i EXH FLOW ) 13331. 890 Z 0.00391 0. 00002 MAN MAN CO 86374. FACAL ). 08824 0. 427:30 0. 00267 FACAL 0. 08561 0. 42425 0. 00265 FACAL 0. 09016 0. 42950 0. 00268 FACAL 0. 08724 0. 41800 0. 00261 ENGINE RPM(NOM)=2700 RPM ENGINE RPM(ACT)=2700. RPM BHP(OBS) =140. 4HP BHP( CORR) =154. 3HP VAC(OBS) = 0. 60"HG PRESS( CORR) 29. 10"HG NO NOX 216. 211. FAM ERROR 0.08690 1..537 0.00115 0.00171 0. 00000 0. 00001 FAM ERROR 0. 08690 -1. 485 0.00114 0.00170 0.00000 0.00001 FAM ERROR 0. 08690 3. 746 0.00115 0.00172 0.00000 0. 00001 FAM ERROR 0.08690 0. 395 0.00112 0.00168 0. 00000 0. 0001 RUN NO. 7 MODE: 4 COMMENTS. 4TH BASELINE RUN TEMP(DB) = 94. 75F TEMP(DP) = 52. OOF TEMP(BAR) = 82. OOF BAR PRESS( O)= 29. 30"HG BAR PRESS(CR)= 29. 16"HG SPEC HUMIDITY=0. 0084#*/# FUEL RATE= AIR RATE = F/A RATIO= PHIM = C02 CONC PPM) 90052. KWD XTC METHOD 1. 2 0. 86169 0. 9989'6 MASS/MODE(LBM) 9 02598 MASS/RATED HP(#./HP) 0. 05641 KWD XTC METHOD 2. 1 0. 86065 1. 00000 MASS/MODE(LBM) 9. 01899 MASS/'RATED HP(#/HP) 0. 05637 KWD XTC METHOD 3. 1 0. 86127 1. 00056 MASS/MODE(LBM) 9. 03101 MASS/RATED HP(#/HP) 0. 05644 KWD XTC METHOD 3. 2 0. 86169 0. 33258 MASS/MODE(LBM) 8.86786 MASS/RATED HP(#/HP) 0 05542 02 2010. MWEXH 27. 01823 0. 14639 0. 00091 MWEXH 27. 03915 0. 14628 0. 00091 MWEXH 27. 00317 0 14647 0.00091 MWEXH 27. 50000 0. 14383 0. 00089 58. 9970#/HR 679. 1985#/HR 0. 0868#/# 1. 3068 UHCC 1752. EXH FLOW 10532.100 0. 05520 0. 00035 EXH FLOW 10523. 950 0. 05516 0.00034.EXH FLOW 10537. 970 0. 05523 0. 00035 EXH FLOW 10347. 590 0. 05424 0. 00034 MAN MAN CO 81991. FACAL 0. 086160 5. 22438 0. 03265 FACAL 0. 08632 5. 22034 0. 03263 FACAL 0. 086581 5. 22730 0. 03267 FACAL 0. 08650 5. 13286 0. 03208 ENGINE RPM(NOM)=2440 RPM ENGINE RPM(ACT)=2440. RPM BHP(OBS) =108. 5HP BHP (CORR) = 0. OHP VAC(OBS;) = 3. 30"HG PRESS(CORR)= 0. 00"HG NO NOX 251. 250. FAM ERROR 0. 08686 -0;. 295 0.01716 0.02615. 00011 0.00016 FAM ERROR 0. 08686 -0.'621 0.01715 0.02613 0 00011 0. 00016 FAM ERROR 0. 08686 -0. 059 0. 01717 0. 02617 0. 00011 0. 00016 FAM ERROR 0. 08686 -0 416 0. 01686 0. 02569 0. 00011 0.00016 5-17

TABLE 5.3. Continued RUN NO. 7 MODE: 5 COMMENTS: 4TH BASELINE RUN TEMP(DB) =101. TEMP(DP) = 54 TEMP(BAR) = 84. BAR PRESS(OB)= 29 08F OOF OOF 30"HC FUEL RATE= AIR RATE = F/A RATIO= PHIM = BAR PRESS(CR)= 29. 15"HG SPEC HUMIDITY=O. 0090#/# C02 CONC(PPM) 92065. KWD XTC METHOD 1.2 0. 86035 0. 99762 MASS/MODE(LBM) 6. 58094 MASS/RATED HP(#/HP) 0.04113 KWD XTC METHOD 2. 1 0. 85796 1. 00000 MASS/MODE(LBM) 6. 56941 MASS/RATED HP(#/HP) O. 04106 KWD XTC METHOD 3. 1 0. 85936 1. 00127 MASS/MODE( LBM) 6. 58932 MASS/RATED HP(#/HP) 0.04118 KWD XTC METHOD 3. 2 0. 86032 0. 33079 MASS/MODE(LBM) 6. 47982 MASS/RATED HP(#/HP) 0. 04050 02 1758. MWEXH 27. 07744 0. 09135 0. 00057 MWEXH 27. 12497 0. 09119 0. 00057 MWEXH 27. 04303 0. 09146 0. 00057 MWEXH 27. 50000 0. 08994 0. 00056 35. 1288#/HR 404. 5498#/HR 0. 0868#/# 1. 3064 UHCC 1674. EXH FLOW 6259. 336 0. 03761 0. 00024 EXH FLOW 6248. 367 4 0. 03754 0. 00023 I EXH FLOW 6267. 301 0. 03766 0. 00024 EXH FLOW 6163 156 0. 03703 0. 00023 MAN MAN CO 78783. FACAL 0. 08575 3. 58011 0. 02238 FACAL 0. 08511 3. 57383 0. 02234 FACAL 0. 08621 3. 58466 0. 02240 FACAL 0. 08551 3. 52510 0 02203 VAC(OBS) =11 50"HC PRESS(CORR)= O. 00"HO NO NOX 252. 248 FAM ERROR 0. 08683 -1. 249 0. 01228 0. 01848 0. 00007 0. 00012 FAM ERROR 0. 08683 -1. 986 0. 01226 0. 01845 0. 00007 0 00012 FAM ERROR 0. 08683 -0. 711 0. 01229 0 01850 0. 00007 0. 00012 FAM ERROR 0. 08683 -1. 524 0. 01209 0. 01820 0. 00007 0. 00011 ENGINE RPM(NOM)=2350 RPM ENGINE RPM(ACT) 2350. RPM BHP(OBS) = 55. 6HP BHP(CORR) =. OHP RUN NO. 7 MODE: 6 COMMENTS: 4TH BASELINE RUN TEMP(DB) =107. 22F TEMP(DP) = 53. OOF TEMP(BAR) = 83. OOF BAR PRESS(OB)= 29 30"HG BAR PRESS(CR)= 29. 16"HG SPEC HLIMIDITY=0. 0087#/# FUI AIl F/i PH C02 CONC(PPM) 88252. KWD XTC METHOD 1. 2 0. 87100 1. 02314 MASS/MODE(LBM) 0. 84043 MASS/RATED HP(#/HP) 0. 00525 KWD XTC METHOD 2. 1 0. 89465 1. 00000 MASS/'MODE (LBM) 0 85432 MASS/RATED HP(#./HP) O. 00534 KWD XTC METHOD 3. 1 0. 88112 0. 98790 MASS/MODE(LBM) 0. 83026 MASS/RATED HP(#/HP) 0. 00519 KWD XTC METHOD 3. 2 0. 87124 0. 30238 MASS/MODE(LBM) 0. 83529 MASS/RATED HP(#/HP) 0. 00522 EL RATE= R RATE = A RATIO= IM 02 30897. MWEXH 27. 33202 0. 21385 0. 00134 MWEXH 26. 88763 0. 21738 0. 00136 MWEXH 27. 66672 0. 21126 0. 00132 MWEXH 27. 50000 0. 21254 0. 00133 8. 7566#/HR 109. 4959#/HR 0. 0799#/# 1. 2031 UHCC 18375. EXH FLOW 1667. 781 C 0. 05501 0. 00034 EXH FLOW 1695. 345 C 0. 05592 0. 00035 EXH FLOW 1647. 605 C 0. 05434 0. 00034 EXH FLOW 1657. 593 C 0. 05467 0.00034 C( 54: FA( ). 07iE 0. 32 O. 0O FA( ). 084 0. 3. O. 0C FAC ). 074 0. 3: O. OC FAC ). 08( 0. 32 0 0O ENGINE RPM(NOM)=1200 RPM ENGINE RPM(ACT)=1200. RPM BHP(OBS) = 5. 4HP BHP(CORR) = O. OHP MAN VAC(OBS) =19 30"HG MAN PRESS(CORR)= 0. 00"HG 3 NO NOX 301. 135. 139 -AL FAM ERROR 388 0. 07997 -1. 354 2874 0. 00087 0 00138 )205 0. 00001. 00000 =AL FAM ERROR 442 0. 07997 5. 572 3417 0. 00088 0. 00140 )209 0. 00001 0. 00000::AL FAM ERROR 438 0. 07997 -6. 991 2476 0. 00086 0. 00136 )203 0 00001 0. 00000 -AL FAM ERROR )99 0. 07997 1. 279 2673 0. 00086 0. 00137 )204 0. 00001 0 00000 5 -18

TABLE 5.3. Continued RUN NO. 7 MODE: 7 COMMENTS:4TH BASELINE RUN TEMP(DB) =105. 49F TEMP(DP) = 54. OOF TEMP(BAR) = 83. OOF BAR PRESS(OB)= 29. 30"HG BAR PRESS(CR)= 29. 16"HO SPEC HUMIDITY=O. 0090#/# FUEL RATE= AIR RATE = F/A RATIO= PHIM = C02 CONC(PPM) 77579. KWD XTC METHOD 1.2 0. 89368 1. 02850 MASS/MODE(LBM) 0. 14187 MASS/RATED HP(#/HP) 0. 00088 MASS/HP/CYC(#/HP/C) 0. 13043 KWD XTC METHOD 2. 1 0. 92318 1. 00000 MASS/MODE(LBM) 0. 14448 MASS/RATED HP(#/HP) O. 00090 MASS/HP/CYC( #./HP/C) 0. 13059 KWD XTC METHOD 3. 1 0. 90711 0. 98583 MASS/MODE(LBM) 0. 13985 MASS/RATED HP(#/HP) 0. 00087 MASS/HP/CYC(#/HP/C) 0. 13031 KWD XTC METHOD 3. 2 0. 89402 0. 24180 MASS/MODE(LBM) 0. 14332 MASS/RATED HP(#/HP) 0. 00089 MASS/HP/CYC ( #/HP/C) 0. 12895 02 75862. MWEXH 27. 78122 0. 10083 0. 00063 0. 01013 MWEXH 27. 27859 0. 10269 0. 00064 0. 01023 MWEXH 28. 18137 0. 09939 0. 00062 0. 01005 MWEXH 27. 50000 0. 10186 0. 00063 0. 01017 4. 1557#/HR 65. 0877#/HR 0. 0638#/# 0. 9606 UHCC 33092. EXH FLOW 960. 788 0.01902 0.00012 0. 00218 EXH FLOW 978. 491 < 0.01937 0.00012 0.00220 EXH FLOW 947. 145 0. 01875 0. 00012 0. 00217 EXH FLOW 970. 613 0. 01922 0. 00012 0. 00219 MAN MAN CO 19262. FACAL 0. 06391 0. 02239 0. 00014 0. 06459 FACAL 0. 06887 0. 02281 0. 00014 0. 06459 FACAL 0. 05837 0. 02208 0. 00014 0. 06459 FACAL 0. 06595 0. 02262 0. 00014 0. 06366 VAC(OBS) =17. 00"HG PRESS( CORR)= 0. 00"HG NO NOX 93. 105 FAM ERROR 0. 06384 0. 107 0. 00012 0. 00020 0. 00000 0 0000 0. 00022 0. 00034 FAM ERROR 0. 06384 7. 877 0. 00012 0. 00020 0.00000 0. 00000 0. 00022 0. 00034 FAM ERROR 0. 06384 -8. 582 0. 00011 0. 00020 0. 00000 0. 00000 0. 00022 0. 00034 FAM ERROR 0 06384 3. 299 0. 00012 0. 00020 0. 00000 0. 00000 0. 00022 0 00034 ENGINE RPM(NOM)= ENGINE RPM(ACT)= BHP ( OBS) BHP(CORR) = 650 RPM 650. RPM 1. 7HP 0. OHP 5-19

TABLE 5.4. COMPUTER PRINTOUT: RUN 16 DATE: 10/2/75 ENGINE TYPE: LIO-320-B1A LOCATION: UNIV OF MICH SERIAL NUMBER: L-287-66A OPERATORS: PACE, PONSONBYGRIFF IN FUEL H/C RATIO = 2. 190 IGNITION TIMING= 25DEG RUN NO. 016 MODE. 1 COMMENTS: BASELINE DATA RUN#16 TEMP(DB) = 81. 40F FUEL RATE= TEMP(DP) = 29. OOF AIR RATE = TEMP(BAR) = 75. OOF F/A RATIO= BAR PRE.SS(OB)= 29. 53"HG PHIM BAR PRESS(CR)= 29. 41"HG SPEC HUMIDITY=0. 0033#/# C02 CONC(PPM) 44726. KWD XTC METHOD 1.2 0. 93159 0. 76304 MASS/MODE(LBM) 0. 07019 MASS/RATED HP(#/HP) 0. 00044 KWD XTC METHOD 2. 1 0. 73639 1. 00000 MASS/MODE(LBM) 0.06305 MASS/RATED HP(#/HP) 0. 00039 KWD XTC METHOD 3. 1 0. 83071 1. 10457 MASS/MODE(LBM) 0. 07778 MASS/RATED HP(#/HP) 0. 00049 KWD XTC METHOD 3. 2 0. 93055 0. 14801 MASS/MODE(LBM) 0. 07200 MASS/RATED HP(#/HP) 0. 00045 02 72373. MWEXH 28. 20909 0. 08254 0. 00052 MWEXH 31. 40211 0. 07415 0. 00046 MWEXH 25. 45438 0. 09148 0. 00057 MWEXH 27. 50000 0. 08467 0. 00053 3. 3925#/HR 56. 9457#/HR 0. 0596#/# 0. 8963 UHCC 19556. EXH FLOW 824. 525 C 0. 00964 0.00006 EXH FLOW 740. 686 0. 00866 0. 00005 EXH FLOW 913.756 C 0.01069 0. 00006 EXH FLOW 845. 785 ( 0. 00989 0. 00006 MAN MAN CO 12661. FACAL >. 05084 0. 01263 0. 00007 FACAL ). 02882 0. 01135 0. 00007 FACAL ). 09542 0. 01400 0. 00008 FACAL ). 03803 0. 01296 0. 00008 VAC(OBS) =17. 00"HG PRESS(CORR)= 0. 00"HG NO NOX 118. 151. FAM ERROR 0.05957-14. 658 0. 00013 0. 00025 0.00000 0.00000 FAM ERROR 0.05957-51. 626 0.00011 0.00022 0.00000 0. 00000 FAM ERROR 0. 05957 60. 171 0. 00014 0. 00027 0.00000 0.00000 FAM ERROR 0. 05957-36. 158 0. 00013 0. 00025 0. 00000 0. 00000 ENGINE RPM(NOM)= ENGINE RPM(ACT)= BHP( OBS) BHP(CORR) 640 RPM 633. RPM O. 5HP 0. OHP RUN NO. 016 MODE: 2 COMMENTS: 1 TEMP(DB) = 69. 47F FUE TEMP(DP) = 28. OOF A IF TEMP(BAR) = 74. OOF F./ BAR PRESS(OB)= 29. 53"HG PH: BAR PRESS(CR)= 29. 41"HG SPEC HUMIDITY=0. 0032#/# C02 CONC ( PPM) 69065. KWD XTC METHOD 1. 2 0. 89862 0. 78428 MASS/MODE( LBM) 2. 48164 MASS/RATED HP(#/HP) O. 01551 KWD XTC METHOD 2. 1 0 72254 1. 00000 MASS/MODE(LBM) 2. 21949 MASS/RATED HP ( #/HP) 0. 01387 KWD XTC METHOD 3. 1 0. 81257 1. 10074 MASS/MODE (LBM) 2. 73335 MASS/RATED HP ( #/HP) 0. 01708 KWD XTC METHOD 3. 2 0. 89782 0 23312 MASS/MODE(LBM) 2. 48761 MASS/RATED HP(#/HP) 0. 01555 EL RATE= R RATE = A RATIO= IM 02 16506. MWEXH 27. 56613 0. 43106 0. 00269 MWEXH 30. 82196 0. 38552 0. 00241 MWEXH 25. 02763 0 47478 0. 00297 MWEXH 27. 50000 0. 43209 0. 00270 8. 9153#./H 113. 8139#/HR 0. 0783#/# 1. 1785 UHCC 11111. EXH FLOW 1716. 218 0.12551 0. 00078 EXH FLOW 1534. 928 0.11225 0. 00070 EXH FLOW 1890. 291 0. 13824 0. 00086 EXH FLOW 1720. 346 0. 12581 0. 00078 ENGINE RPM(NOM)=1201 RPM ENGINE RPM(ACT)=1201 RPM BHP(OBS) = 8. 7HP BHP(CORR) = 0 OHP MAN VAC(OBS) =18. 80"HG MAN PRESS(CORR)= O. OO0"HG CO NO NOX 41059. 320. 326 FACAL FAM ERROR 0. 07836 0. 07833 0. 043 0. 93790 0. 00783 0. 01221 0 00586 0. 00005 0. 00007 FACAL FAM ERROR 0. 04377 0. 07833-44. 125 0. 83883 0. 00700 0. 01092 0. 00524 0. 00004 0. 00006 FACAL FAM ERROR 0.11635 0. 07833 48. 539 1. 03303 0. 00862 0. 01345 0. 00645 0. 00005 0. 00008 FACAL FAM ERROR 0.05969 0. 07833-23. 797 0. 94016 0. 00785 0. 01224 0. 00588 0. 00005 0. 00007 5- 2 0

TABLE 5.4. Continued RUN NO. 016 MODE: 3 COMMENTS: 1 TEMP(DB) TEMP(DP) TEMP(BAR) BAR PRESS(OB)= 64. 38F 32. OOF 74. OOF 29. 52"HG FUEL RATE= AIR RATE = F/A RATIO= PHIM = 77. 2798#/HR 932. 1025#/HR 0. 0829#/# 1. 2473 ENGINE RPM(NOM)=2688 RPM ENGINE RPM(ACT)=2689. RPM BHP (OBS) BHP ( CORR) =151. 5HP =156. 2HP BAR PRESS(CR)= 29. 40"HG SPEC HUMIDITY=0. 0038#/# C02 CONC(PPM) 67432. KWD XTC METHOD 1. 2 0. 89779 0. 75240 MASS/MODE(LBM) 0. 55089 MASS/RATED HP(#/HP) 0. 00344 KWD XTC METHOD 2. 1 0. 69915 1. 00000 MASS/MODE(LBM) 0. 48251 MASS/RATED HP(#/HP) 0. 00302 KWD XTC METHOD 3 1 0.80301 1.11823 MASS/MODE(LBM) 0. 61603 MASS/RATED HP(#/HP) 0.00385 KWD XTC METHOD 3.2 0.89676 0.24859 MASS/MODE(LBM) 0.54479 MASS/RATED HP(#/HP) 0.00340 02 635. MWEXH 27. 19536 0. 00377 0. 00002 MWEXH 31. 04938 0. 00330 0. 00002 MWEXH 24. 31953 0. 00422 0. 00003 MWEXH 27. 50000 0. 00373 0. 00002 UHCC 1047. EXH FLOW 14307. 420 0. 00269 0. 00002 EXH FLOW 12531. 500 0. 00236 0. 00001 EXH FLOW 15999.:300 0. 00301 0. 00002 EXH FLOW 14148. 930 0. 00266 0. 00002 MAN VAC(OBS) = 0. 70"HG MAN PRESS(CORR)=29. 09"HG CO NO NOX 56747. 238. 231. FACAL FAM ERROR 0.08524 0.08290 2.815 0.29472 0. 00133 0.00197 0.00184 0. 00000 0.00001 FACAL FAM ERROR 0.04205 0. 08290-49. 285 0.25814 0.00116 0.00172 0. 00161 0. 00000 0. 00001 FACAL FAM ERROR 0. 12982 0. 08290 56. 581 0. 32957 0. 00148 0. 00220 0. 00206 0. 00000 0. 00001 FACAL FAM ERROR 0.06169 0. 08290-25.598 0. 29145 0. 00131 0. 00194 0. 00182 0. 00000 0. 00001 RUN NO. 016 MODE: 4 COMMENTS:1 TEMP(DB) TEMP(DP) = TEMP(BAR) BAR PRESS(OB)= 65. 90F 30. OOF 74. OOF 29. 52"HG FUE AIF F/; PH: BAR PRESS (CR) = 29. 40"HG SPEC HUMIDITY=0. 00:35#/# C02 CONC(PPM) 68709. KWD XTC METHOD 1. 2 0. 8992:3 0. 7:3928 MASS/MODE(LBM) 6. 82518 MASS;/RATED HP(#/HP) 0. 04266 KWD XTC METHOD 2.1 0. 69241 1. 00000 MASS/MODE(LBM) 5. 96408 MASS/RATED HP(#/HP) 0. 03728 KWD XTC METHOD 3. 1 0. 79867 1. 122:33 MASS/MODE(LBM) 7. 66120 MASS/RATED HP(#./HP) 0.04788 KWD XTC METHOD 3.2 0.89821 0.23986 MASS/MODE( LBM) 6. 78693 MASS/RATED HP(.#/HP) 0. 04242 EL RATE= R RATE = ^ RATIO= IM 02 1270. MWEXH 27. 34585 0 09166. 0. 00057 MWEXH 31. 29414 0. 0801C. 0005C MWEXH 24. 36182 0. 1029C 0. 00064 MWEXH 27 5000C 0. 0.911= 0. 00057 56. 4972#/HR 683. 9753#/HR 0. 0826#/# 1. 2427 UHCC 1182. 1 EXH FLOW 10438. 000 0. 03691 0. 00023 EXH FLOW; 9121. 082 ) 0.03225 ) 0. 00020 EXH FLOW 11716. 550 0. 04143 % 0.00026 1 EXH FLOW ) 10379. 510 0. 03670 0. 00023 MAN MAN CO 50737. FACAL 0. 08307 3. 20402 0. 02003 FACAL 0. 0397:3 2. 79978 0. 01750 FACAL 0. 12894 3.59648 0. 02248 FACAL 0. 05907 3. 18606 0. 01991 VAC(OBS) = 3 60"HG PRESS(CORR)= 0. 00"HG NO NOX:326. 320. FAM ERROR 0. 08260 0. 570 0 022 07 0. 03:311 0. 00014 0. 00021 FAM ERROR 0. 08260-51 906 0. 01929 0. 02894 0.00012 0. 00018 FAM ERROR 0.08260 56. 095 0. 02478 0. 03717 0. 00015 0. 0002:3 FAM ERROR 0. 08260 —28. 482 0 02195 0. 0:3293 0.00014 0. 00021 ENGINE RPM(NOM) =24:34 RPM ENGINE RPM(ACT)=2434. RPM BHP (OBS) =111. OHP BHP(CORR) = O. OHP 5-21

TABLE 5.4. Continued RUN NO. 016 MODE: 5 COMMENTS: 1 TEMP(DB) TEMP(DP) = 69. 07F = 32. OOF FUE AIF F/; EL RATE= 34. 6021#/HR R RATE = 413. 1118#/HR A RATIO= 0. 0837#/# IM = 1. 2601 ENGINE RPM(NOM).=2353 RPM ENGINE RPM(ACT)=2354. RPM BHP(OBS) = 58. SHP BHP(CORR) = O. OHP TEMP(BAR) = 74. OOF BAR PRESS(OB)= 29. 52"HG PH] BAR PRESS(CR)= 29. 40"HG SPEC HUMIDITY=0. 0038#/# C02 CONC(PPM) 70433. KWD XTC METHOD 1. 2 0. 89723 0. 75093 MASS/MODE(LBM) 5. 07313 MASS/RATED HP(#/HP) 0. 03171 KWD XTC METHOD 2. 1 0. 69783 1. 00000 MASS/MODE(LBM) 4. 45441 MASS/RATED HP(#/HP) 0. 02784 KWD XTC METHOD 3. 1 0. 80060 1. 11724 MASS/MODE(LBM) 5. 66869 MASS/RATED HP(#/HP) 0. 03543 KWD XTC METHOD 3. 2 0. 89616 0. 24327 MASS/MODE(LBM) 5. 04789 MASS/RATED HP(#/HP) 0. 03155 02 1270. MWEXH 27. 36317 0. 06646 0. 00042 MWEXH 31. 16397 0. 05836 0. 00036 MWEXH 24. 48836 0. 07427 0. 00046 MWEXH 27. 50000 0. 06613 0. 00041 UHCC 1155. EXH FLOW 6307. 168 0. 02615 0. 00016 EXH FLOW 5537 941 0. 02296 0. 00014 EXH FLOW 7047. 602 0. 02922 0. 00018 EXH FLOW 6275. 789 0. 02602 0. 00016 MAN MAN CO 50870. FACAL 0. 08279 2. 32934 0. 01456 FACAL 0. 04087 2. 04525 0. 01278 FACAL 0. 12663 2. 60280 0. 01627 FACAL 0. 05992 2. 31775 0. 01449 VAC(OBS) =11. 50"HG PRESS(CORR)= 0. 00"HG NO NOX 279. 276. FAM ERROR 0. 08376 -1. 157 0. 01367 0. 02072 0.00008 0. 00013 FAM ERROR 0. 08376-51. 210 0.01200 0. 01819 0. 00007 0. 00011 FAM ERROR 0. 08376 51 188 0. 01527 0. 02315 0.00009 0. 00014 FAM ERROR 0. 08376-28. 467 0. 01360 0. 02061 0.00008 0 00013 RUN NO. 016 MODE 6 COMMENTS 1 TEMP DB) - TEMP(DP) TEMP(BAR) BAR PRESS(OB)= 69. 73F 26. OOF 74. OOF 29. 52"HG FUEL RATE= AIR RATE = F/A RATIO= PHIM = 8. 4986#/HR 110. 4127#/HR 0. 0769#/# 1. 1580 BAR PRESS(CR)= 29. 40"HG SPEC HUMIDITY=0. 0029#/# C02 CONC( PPM) 67856. KWD XTC METHOD 1. 2 0. 90406 0. 77050 MASS/MODE( LBM) 0. 64025 MAS- S/RATED HF'( # HP) 0 00400 KWD X TC METHOD z 1 0: 17:39 1. 00000 MAS-;'_; MO1DE L. E:M) 0 57 O1'67 MA';.. PE F' RTE H F (#/HF). 003:' 57 KHWD XTC METHOD 3 1 0 81176 1. 10596 MASS/MODE ( LBM) 0. 70909 MASS/RATED HP (#/HP) O. 00443 KWD XTC METHOD 3. 2 0 90328 0. 21786 MASS/MODE ( LBM) 0. 64583 MA'-;S/'RATED HP (#./'HP) 0 00404 02 21585. MWEXH 27. 73962 0. 14802 0. 00092 MWEXH 31 12189 0). 1:31 9:3 0. 00082 MWEXH 25. 04637 0 16394 0 00102 MWEXH 27. 50000 0 14931 0. 0009: UHCC 7500. EXH FLOW 1652 429 0. 02225 0. 00014 EXH FLOW 1472. 846 0.. 01983 0. 00012 EXH FLOW 1830. 116 0. 02464 0. 00015 EXH FLOW 1666. 828 0. 02244 0. 00014 CC 35E FAC 0. 072 0. 21 O. OC FAC 0 036 O. 1.O). () C FAC 0. 11:1 O. 20. OC FAC O. 054 0. 21 O. OC ENGINE RPM(NOM)=1194 RPM ENGINE RPM(ACT)=1202. RPM BHP(OBS) = 7 9HP BHP( CORR) - O. OHP MAN VAC(OBS) =18. 80"HG MAN PRES;S(CORR)= 0 00"HG: NNO NOX:62. 271. 276.::AL FAM ERROR.51 0. 07697 -5. 785.511 0 00174 0 00271 1:34 0 00001 0 00002:AL. FAM ERROR:.5. 076,.-77-4':':'Z 1 74 0). 0015=. ('),4. )i 2) C, ) C) OC)0C 00 0 0l.(02:AL. FAM ERROR 325 0. 07697 47. 140?:825 0. 0 0193 0. 00301 )149 0. 00001 0 00002::AL FAM ERROR:32 0. 07697-29. 424 L699 0. 00176 0. 00274 1:36 0. 00001 0 C)C00002 5-22

TABLE 5.4. Continued RUN NO. 016 MODE: 7 COMMENTS:1 TEMP(DB) = 70. 13F TEMP( DP) = 34. OOF TEMP(BAR) = 74. OOF BAR PRESS (OB) = 29. 52"HO BAR PRESS(CR)= 29. 40"HG SPEC HLMIDITY=0. 0042#/# FUE AIF F/i PH; CONC( PPM) Kl METHOD 1. 2 0. 927: MASS/MODE ( LBM) MASS/RATED HP (#/HP) MASS/HP/CYC ( #/HP./'C) Kl METHOD 2 1 0. 741, MASS/MODE( LBM) MASS/RATED HP (#/HP) MASS/HP/CYC ( #/HP/C) K~ METHOD 3. 1 0. 831 MASS/MODE(LBM) MASS/RATED HP (#/HP) MASS/HP/CYC: ( #/HP/C) METHOD 3. 2 0. 925! MASS/MODE( LBM) MAS'-;/RATED HP(#./HP) MASS/HP/CYC ( #/HP/C) C02 48153. WED XTC 14 0. 77648 0. 07442 0. 00047 0. 09822 WD XTC 20 1. 00000 0. 06716 0. 00042 0. 08638 WED XTC 46 1. 09909 0. 08204 0. 00051 0. 10968 WD XTC 91 0. 15601 0. 07630 0. 00048 0 09788 EL RATE= R RATE = A RATIO= M = 02 69833. MWEXH 28. 19276 0.07844 0. 00049 0. 00564 MWEXH 31. 23962 0. 07079 0. 00044 0. 00503 MWEXH 25. 57610 0. 08647 0. 00054 0. 00624 MWEXH 27. 50000 0. 08042 0. 00050 0. 00567 3. 4463#/HR 55. 9467#/HR 0.0616#/# 0. 9267 UHC:C 19405. EXH FLOW 812. 079 ( 0.00942 0. 00006 0. 00145 EXH FLOW 732. 875 0. 00850 0. 0005 0. 00129 EXH FLOW 895.162 0.01039 0.00006 0. 00161 EXH FLOW 832.536 0. 00966 0. 00006 0. 00146 MAN MAN CO 13124. FACAL 0. 05230 0. 01290 0. 00008 0. 04379 FACAL ). 03046 0. 01164 0. 00007 0. 03848 FACAL 0. 09409 0. 01422 0. 00008 0. 04893 FACAL >. 03984 0. 01322 0. 00008 0. 04362 VAC(OBS) =17. 50"HG PRESS- (CORR)= 0. 00 "HG NO NOX 138. 138 FAM ERROR 0. 06160-15. 091 0. 00015 0. 00022 0.00000 0.00000 0. 00029 0. 00044 FAM ERROR 0. 06160-50. 549 0. 00013 0. 00020 0.00000 0. 0000 0. 00026 0. 00039 FAM ERROR 0. 06160 52. 759 0. 00016 0. 00025 0.00000 0.00000 0 00033 0. 00050 FAM ERROR 0 06160-35. 325 0. 00015 0. 00023 0. 00000 0.00000 0. 00029 0. 00044 ENGINE RPM(NOM)= ENGINE RPM(ACT)= BHP(OBS) BHP(C ORR) = 662 RPM 663. RPM 0. 7HP O. OHP 5- 23

5.2 AVCO-LYCOMING LIO-320 LEAN-OUT RUNS The purpose of this test was to observe the effect of fuelair ratio on emission levels. The standard test setup was used for this series of measurements except for the addition of a knock sensor to detect the onset of detonation. The test procedure consisted of operating the engine atthe five modes of the seven mode test cycle. The fuel-air ratio was varied within each mode. The first data point taken for each mode was with the mixture set full-rich. This data point was used to establish the baseline emission levels and to establish the cooling air requirements necessary to hold the cylinder heads at the maximum continuous operating temperature. This cooling air flow rate was held constant throughout the leaning process. Other values held constant throughout leaning were engine RPM and engine power output. There were three criteria used to judge the lean limit for this engine. They were engine cylinder head temperature exceeding the maximum continuous operating temperature, the onset of detonation (either audible or by means of the knock sensor), and severe power and RPM drops. During testing, large power and RPM drops were encountered before the knock or cylinder head temperature limits were exceeded. The results from these tests are plotted in figures 5.4 to 5.8, which are taken from reference 10. CO and C02 concentrations are shown to be dependent on fuel-air ratio only and independent of operating mode. This is also true for 02 concentrations at mixture ratios leaner than stoichiometric. However, NOX levels are strongly dependent upon both operating mode and mixture ratio, the peak levels for all modes occurring at about a fuel-air ratio of 0.065. The strong dependence of NOX concentration on mixture ratio is clearly illustrated. "Computer print-outs from these tests are given in tables 5.5-5.8." 5 -24

t Ir Ii' ~ t~ 1. L LL 1~~~~~~~~~~~1 i1111 I f~~~~~~~~~~~~~~~~H1 ktt 1( i~~~~~~~~~~tl-fl ~~ ~ HI-IId t.111N 1t1 I It II It 1 I _Rt t 4 lll I~) ~ IIC!)- II I II Ili l if IK II9 I i i I im. I I I ll 10 TH Ijr INN 4+ 0 U p 0 44 co 4.) H En a) I 0 rS rI (d a) 4),4 E) r4 N pk i 44 owa) H P4l 14 %-. in I L. r4 Fz4 (1) p:j U)

t I 1 11111111l 1l ITTrmTIT III lilll l't i t! 111 111111 f ~ r 111MM Mt HIM J t I I I [1 1 I 1 j r 111 i I t~~~~~~~~~~~~~~~~~~~~~~~ I if ill f tl I t I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i t ) I t IIr im 1 H~ ~ ~~~~~~Iij Ii 1 1 it rj tr; t~~~~~~~~~1 IM 1 1 W LLL' I i 1;. (,~~~~~~~~~HHll I tI!! " ( il-(~~~~~~~~~~~~~-Jl I o -. I I I I I i I i I I I I I I I I I I I I I I I I I I T F - I I I I I I I I I I I I III I I th T I I p v II U tCl) u Wo 0 4-) 03 -J:I tn (. I a) O H F4 r) 0) 0-) U a) %-. (C I Ln LC L( 0) 04:j M~. r ii/ I 1111!ill t,! - 1 -1tll 1 1 I'i I' 11I A I i II cIr!! i,.i I t: l,! i! I, ti

4i: I - --- t- -—. --— l - -- - I --- -I —......-....-......'U.- - - - - I —t e T Ft A Approach C Climb I Idle O Takeoff T Taxi I I~ 4 I I-* k: r i I I... -. -I._ _ —. — - - -. L 4I -+! -f __ -* -! e -- - l- --:j ---- -- 1l1'A.! r -_ir ~ I;: j -:. i-_y', 1__ _ 2 > — OR lH Wr-_m AddR i —— t — t I- - - r - -1'FC-L- 77 —E-r-tFt;;l-~~: L Figure 5.6. LIO-320 Lean-Out Results for NOX (Reference 10) 5-27

I'' I 1 1 1 I t I T t I I I I r I U I I t IT t I I I I r t I f I I I ft f I If riI N t TI I~-TT1 ~-Ttl - 1 V I tTI f I I ri I t i i t I y I I I I I i I I I- j i i I j ~i i; t,; 1 1~ ~~~~~~~~~~~~~~~~~ -liliiii~~~~~~~~Hilllllttiilil~~~.111114 1 t c t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- 4J i -1-1 ~~~~I ITT I - F T 1 I T ~ili t t -'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i It~~~~~~~~~~~~~~~~~~~~ CN 0 u vl 0 U) LH U-) r-p El) a) I4I: lri CO (N In -I iFf l.:fl,.I J. l- fii ll irH mtt jI hiN 1 i i I tt j( til IU ti.-;I. rI T I

- —' - - - I -T:ii I —'I f, *E -su 4-1 -L I I c -- i 4-, I -i.- - 7- -.r. 7-.0- - I —. —-- - - f A- - I- - I.W - 4-.- --- a: if - -- -t - - ~= =_ - -.. _ I-C - -I~ to I - 1-'' —'~.... _-1-. ---- a — T.- - - ~T - H I - — f. — _. __ Figure 5.8. LIO-320 Lean-Out Results for 02 (Reference 10) 5 -29

TABLE 5.5. COMPUTER PRINTOUT: LEAN-OUT RESULTS, MODE 2. DATE: 12/11/75 ENGINE TYPE L I 0-320-B 1A LOCATION: UNIV OF MICH SERIAL NUMBER L-287-66A OPERATORS: PACEGRIFFIN, DRAXLER FUEL H/C RATIO = 2. 180 IGNITION TIMING= 25DEG RUN NO. 24 MODE: a Z COMMENTS:LEAN OUT TEMP(DB) = 95. TEMP(DP) = 36. TEMP(BAR) = 76. BAR PRESS(OB)= 29. TESTS-TAX I MODE 93F FUEL RATE= OOF AIR RATE = OOF F/A RATIO= 34"HG PHIM BAR PRESS (CR)= 29. 21"HG SPEC HUMIDITY=0. 0045#/# C02 CONC(PPM) 102873.. KWD XTC METHOD 1. 2 0. 86407 1. 04070 MASS/MODE(LBM) 3. 63719 MASS/RATED HP(#/HP). 02273 KWD XTC METHOD 2.1 0. 90621 1. 00000 MASS/MODE(LBM) 3.74585 MASS/RATED HP(#/HP) 0.02341 KWD XTC METHOD 3.1 0.88191 0. 97848 MASS/MODE(LBM) 3. 55851 MASS/RATED HP(#/HP) 0.02224 KWD XTC METHOD 3. 2 0. 86428 O. 30780 MASS/MODE ( LBM) 3. 6547:3 MASS/RATED HP(#f/HP) 0. 02284 02 16986. MWEXH 27. 63261 0. 43650 0. 00273 MWEXH 26. 83102 0. 44954 0. 00281 MWEXH 28. 24356 0. 42705 0. 00267 MWEXH 27 50000 0. 43860 0. 00274 8. 9847#/HR 112. 0691#/HR 0. 0801#/# 1. 2051 UHCC 6000. EXH FLOW 1688. 718 0. 06668 0. 00042 EXH FLOW 1739. 169 0. 06868 0. 00043 EXH FLOW 1652. 189 0. 06524 0. 00041 EXH FLOW 1696. 862 0. 06700 0. 00042 MAN MAN CO 55262. FACAL 0. 07625 1. 24210 0. 00776 FACAL 0. 08637 1. 27921 0. 00799 FACAL 0. 06847 1. 21523 0. 00759 FACAL 0. 07979 1. 24809 0. 00780 VAC(OBS) =18. 20"HG PRESS(CORR)= 0. 00"HG NO NOX 387 387. FAM ERROR 0. 08017 -4. 882 0.00933 0. 01428 0. 00006 0. 00008 FAM ERROR 0. 08017 7. 7:31 0. 00961 0. 01470 0. 00006 0. 00009 FAM ERROR 0. 08017-14. 595 0. 00913 0.01397 0. 00006 0. 00008 FAM ERROR 0. 08017 -0. 47:3 0. 00937 0. 01435 0. 00006 0. 00009 ENGINE RPM(NOM)=1207 RPM ENGINE RPM(ACT)=1206. RPM BHP( OBS) = 8. OHP BHP ((CORR) = O. OHP RUIN NO. 24 MODE: 2 COMMENTS: TAXI MODE-. 5 IN. TEMP( DB) = 96. 62F TEMP( DP) = 36. OOF TEMP(BAR) = 76. OOF BAR PRESS ( OB )= 29. 34"HG BAR PRESS(CR)= 29. 21"HG SPEC HUMIDITY=O. 0045#/# LEANED FUEL RATE= AIR RATE = F/A RATIO= PHIM 8. 8679#/HR 108. 72655#/HR 0. 0815#/# 1. 2259 ENGINE RPM(NOM)=1204 RPM ENGINE RPM(ACT)=1197. RPM BHP( OBS) = 8. OHP BHP ( CORR) = O. OHP C02 CONC: (PPM) 101772 KWD XTC METHOD 1 2 0. 86542 1. 02855 MASS/MODE( LBM) 3. 49505 MASS/RATED HP(#f/HP) 0. 02184 KWD XTC METHOD 2. 1 0. 89461 1. 00000 MASS./'MODE( LBM) 3. 56661 MASS/RATED HPF'#./HF') O. 02229 KWD XTC METHOD:3. 1 0. 87788 0. 98499 MASS/MODE(LBM) 3. 442:34 MASS/RATED HP(#/fHP) O. 02151 KWD XTC METHOD 3.. 2. 86557 0. 30464 MASS/MODE( LBM) 3. 51230 MASS/RATED HP(#./HP) O. 02195 02 16357. MWEXH 27 63574 0. 40827 0. 00255 MWEXH 27 08130 0. 4166:3 0. 00260 MWEXH 28. 05896 0. 40211 0. 00251 MWEXH 27. 50000 0. 41029 0. 00256 UHCC 5700. EXH FLOW 1640. 272 0. 06154 0. 00038 EXH FLOW 1673. 854 0. 06279 0. c0039 EXH FLOW 1615. 532 0. 06061 0. 00038 EXH FLOW 1648. 369 0. 06184 0. 00039 MAN VAC(OBS) =18. 30"HG MAN PRESS(CORR)= 0. 00"HG - CO NO NOX 54562. 412. 412. FACAL. FAM ERROR 0. 07626 0.08156 -6. 499 1.19121 0. 0965 0. 01476 0. 00744 0.0006 0. 00009 FACAL FAM ERROR 0. 08317 08156 1. 980 1. 21560 0. 00984 0.01506 0. 00759 0 00006 0.00009 FACAL FAM ERROR 0. 07082 0. 08156- 13. 166 1. 17324 0. 00950 0. 01454 0. 00733 0. 00006 0. 00009 FACAL FAM ERROR 0. 0787:3 0. 08156 -3. 464 1. 19709 0. 00969 0. 01483 0. 00748 0 00006 0. 00009 5- 30

TABLE 5.5. Continued RUN NO. 24 MODE: 2r Z COMMENTS: TAXI MODE-1 IN. TEMP(DB) = 97. 40F TEMP(DP) = 36. OOF TEMP(BAR) = 76. OOF BAR PRESS(OB)= 29. 34"HG BAR PRESS(CR)= 29. 21"HG SPEC HUMIDITY=0. 0045#/# LEANED FUEL RATE= AIR RATE = F/A RATIlO= PHIM = C02 CONC(PPM) 102873. KWD XTC METHOD 1 2 0. 86416 1.04490 MASS/MODE(LBM) 3. 43838 MASS/RATED HP(#./HP) 0. 02149 KWD XTC METHOD 2. 1 0. 91088 1. 00000 MASS/MODE(LBM) 3.55247 MASS/RATED HP(#./HP) 0. 02220 KWD XTC METHOD 3. 1 0. 88390 0. 97621 MASS/MODE (LBM) 3. 35615 MASS/RATED HP(#./HP) 0. 02098 KWD XTC METHOD 3. 2 0. 86439 0. 30756 MASS./MODE(LBM) 3. 45580 MASS/RATED HP(#/HP) 0. 02160 02 18245. MWEXH 27. 63931 0. 4432C 0. 00277 MWEXH 26. 7516: 0. 45791 0. 00286 MWEXH 28. 31651 0. 4326C 0. 0027C MWEXH 27.5000C 0. 4454. 0. 00277 8. 5837#/HR 105 8810#/HR 0. 0810#/# 1. 2186 UHCC 6300. I EXH FLOW 1596. 412 ( ) 0. 06619 0. 00041 i EXH FLOW 1649. 384 0. 06839 0. 00043 i EXH FLOW 1558. 233 0.06461 ) 0. 00040 EXH FLOW 1604. 499 0. 06653 3 0. 00042 MAN MAN CO 54911. FACAL 0. 07591 1. 16677 0. 00729 FACAL 0. 08710 1. 20548 0. 00753 FACAL 0. 06729 1. 13886 0. 00711 FACAL 0. 07979 1. 17268 0. 00732 ENGINE RPM(NOM)=1195 RPM ENGINE RPM(ACT)=1188. RPM BHP(OBS) = 7. 9HP BHPF(CORR) = O. OHP VAC(OBS) =18. 40"HG PRESS(CORR)= 0. 00"HG NO NOX 375. 375 FAM ERROR 0. 08106 -6. 360 0. 00853 0. 01306 0. 00005 0. 00008 FAM ERROR 0. 08106 7. 44:3 0. 00882 0 01349 0. 00006 0. 00008 FAM ERROR 0. 08106-16. 987 0. 00833 0. 01275 0. 00005 0. 00008 FAM ERROR 0. 08106 -1 571 0. 00858 0. 01313 0. 00005 0. 00008 RUN NO. 24 MODE: 2 COMMENTS: TAXI MODE-1. 5 IN. TEMP(DE:) = 98. 05F TEMP(DP) = 36. OOF TEMP(BAR) = 76. OOF BAR PRESS(OB)= 29.:34"HG BAR PRE'SS(C:R)= 29. 21"HG SPEC HUMIDI TY=. 0045#./# LEANED FUEL RATE= AIR RATE = F/A RATIO= PHIM C02 CONC ( PPM) 102:322. KWD XTC: METHOD 1. 2 0. 86502 1. 04606 MASS/MODE (LBM) 3. 44878 MASS/RATED HP(#./HP) O. 02155 KWD XTC METHOD 2. 1 0. 91:302 1. 00000 MASS/MODE( LBM) 3. 56605 MASS/RATED HP(#/HP) 0. 02229 KWD XTC METHOD 3 1 0. 8:-::531 0. 97561 MA-;S/'MODE(LBM) 3. 36417 MASS/'RATED HP(#/HPF) 0. 02103 KWD XTC METHOD 3. 2 0. 86526 0.::0551 MASS/MODE( LBM) 3. 46795 MASS/RATED HP(#/'HP) 0. 02167 02 20132. MWEXH 27. 65285 0. 49317 0. 00308 MWEXH 26. 74:348 0. 50994 0.00319 MWEXH 28.:348:37 0. 48107 0 00301 MWEXH 27 50000 0. 49591 0 00310 8. 4364#/ HF 107. 0497#/HF 0. 0788#./# 1. 1846 UHCC 6750. EXH FLOW 1609.869 0. 07152 0. 00045 EXH FLOW 1664. 610 0. 07395 0. 00046 EXH FLOW 1570 371 0. 06976 0.00044 i EXH FLOW 1618. 817 0. 07191 ) 0. 00045 E< ENGINE RF'M(NOM)=1207 RPM ENG INE RPM ( ACT)=1188. RPM BHF(OEBS;) = 8. 2HP BHP(CORR) = 0. OHP MAN VAC (OBS ) = 1. 50 " H MAN PRESS ( CORR) =. 00"HG CO NO NOX 5:3868.:375. 387. FACAL FAM ERROR 0. 075:32 0. 078:80 - 4. 416 1. 15426 0. 00861. 01:61 0. 0C)72 1. 00005 0. 00008 FACAL FAM ERROR 0. 08671 0. 07880 10. 02' 7 1. 19351 0. 00890 0.. 01407 0. 00745 0. 00006 0. 00008 FACAL FAM ERROR 0. 06647 0. 07S8:.0-15. 6 51 1. 12594 0. 00840 0. 01328 0. 0070:-3 0). )ci5. 0005:008 FACAL FAM ERROR 0. 07927 0. 07880 0. 594 1. 16067 0 00865 0. 01369 0. 00725 0 00005 0:. 000 08: 5- 31

TABLE 5.5. Continued RUN NO. 24 MODE: Z. COMMENTS: TAXI MODE-2 IN. TEMP( DBE:) = 98. 48F TEMP(DFP) =:36. OOF TEMP(BAR) = 76 OOF BAR PR'ESS(OB)= 29.:34"HG BAR PRESS(CR)= 29. 21"HG SPEC HUMIDITY=O. 0045#/# LEANED FUEL RATE= AIR RATE = F/A RATIO= PHIM C02 CONC (PPM) 102873. KWD XTC METHOD 1. 2 0. 871:34 1. 04769 MA;SS/MODE (LBM) 3. 46372 MASS/RATED HP(#/HP) O. 02165 MASS/HP/CYC ( #/HP/C) 0. 10927 KWD XTC METHOD 2. 1 0. 92138 1. 00000 MASS/MODE( LBM) 3. 58041 MASS/RATED HP (#/HP) 0. 02238 MASS/HP/CYC (#/HP/C) 0. 11257 K:WD XTC METHOD 3. 1 0. 89:300 0. 97519 MASS/MODE (LBM):3.:37671 MASS/RATED HP(#./HP) 0. 02110 MASS/HP/CYC ( #/HP/'C) 0. 10686 KWD XTC METHOD 3. 2 0. 87160 0. 28186 MASS/MODE( LBM) 3. 517:36 MASS/RATED HP( #/'HP) O. 02198 MASS/HP/'CYC ( #/HP/C:) 0. 11005 02 33973. MWEXH 27. 92587 0. 83136 0. 0052C 0. 01633 MWEXH 27. 0157C 0. 85936 0. 00537 0. 01683 MWEXH 28. 6454S 0. 81047 0. 00507 0. 01596 MWEXH 27. 5000C 0. 84423 0. 0052E 0. 01647 7.8575#/HR 108. 6463#/HR 0.0723#/# 1. 0871 UHCC 8250. 4 EXH FLOW Z 1608. 177 0.08732 0. 00055 0.00221 EXH FLOW ) 1662. 357 0. 09026 0. 00056 0. 00228 i EXH FLOW 5 1567. 779 0. 08512 0. 00053 0. 00216 i EXH FLOW 1633. 082 0. 08867 0. 00055 0.00222 cc 38C FAC O. 06E 0. 81 0. C0 0. 03 FAC 3. 07:. O. 84 0. OC 0. 0: FAC O. 05': 0. 7' 0. 0( 0. 0O FAC 3. 072 0. 82 0. OC 0. 0. ENGINE RPM(NOM)=1203 RPM ENGINE RPM(ACT)=1171. RPM BHP(OBS) = 7. 7HP BHPF(C:ORR) = O. OHP MAN VACO: ( lBS) = 18. 30" HG MAN PRESS (CORR ) O. 00"HG 3 NNO NOX )85. 412. 450.:AL FAM ERROR 337 0. 07232 -5. 455 1520 0. 00946 0. 01579 )509 0. 00006 0. 00009 3481 0. 00028 0. 00045 -AL FAM ERROR 381 0. 072:32 8. 983 4266 0. 00978 0. 01632 )527 0. 00006 0. 00010 3585 0. 00029 0. 00046:AL FAM ERROR?24 O. 07232-18. 088 P472 0. 00922 0. 01539 )497 0. 00006 0. 00009 3405 0. 00(028 0. 00044 -AL FAM ERROR 202 0. 07232 -0. 408 2782 0. 009'60 0. 0160:3 )517 0. 00006 0. 00010 -504 0. 00029 0. 00045 5-32

TABLE 5.6. COMPUTER PRINTOUT: LEAN-OUT RESULTS, MODE 3. DATE; 12/22/75 ENGINE TYPE: LIO-320-B1A FUEL H/C RATIO = 2. 180 LOCATION: UNIV OF MICH SERIAL NUMBER: L-287-66A IGNITION TIMING= 25DEG OPERATORS: PACE, GRIFF IN, PONSONBY RUN NO. 28 MODE: 3 COMMENTS: LEAN OUT, TAKEOFF, FULL RICH TEMP( DB) TEMP( DP) = TEMP(BAR) = BAR PRESS(OB)= 89. 84F 15. OOF 76. OOF 29. 31"HG FUEL RATE= AIR RATE = F/A RATIO= PHIM = 75. 8533#/HR 868. 2720#/HR 0. 0873#/# 1. 3131 BAR PRESS(CR)= 29. 18"HG SPEC HUMIDITY=0. 0015#/# C02 CONC(PPM) 93400. KWD XTC METHOD 1. 2 0. 86331 1. 04202 MASS/MODE(LBM) 0. 71607 MASS/RATED HP(#/HP) 0. 00448 KWD XTC METHOD 2. 1 0. 90663 1. 00000 MASS/MODE(LBM) 0. 74050 MASS/RATED HP(#/HP) 0. 00463 KWD XTC METHOD 3. 1 0. 88056 0. 97680 MASS/MODE(LBM) 0. 69946 MASS/RATED HP(#/HP) 0. 00437 KWD XTC METHOD 3 2 0. 86337 0. 34037 MASS/MODE(LBM) 0. 70580 MASS/RATED HP(#/HP) 0. 00441 02 1507. MWEXH 27. 10544 0. 00839 0. 00005 MWEXH 26. 2115 0. 00868 0. 00005 MWEXH 27. 74921 0. 00820 0. 00005 MWEXH 27. 50000 0. 00827 0. 00005 UHCC 1169. EXH FLOW 13426. 840 0. 00282 0. 00002 EXH FLOW 13884. 940 0. 00291 0. 00002 EXH FLOW 13115. 340 0. 00275 0. 00002 EXH FLOW 13234 190 0. 00278 0. 00002 CC 886 FAC 0. 086 0. 43 O. OC FAC 0. 099 0. 44 O. OC FAC 0. 07E 0 42 0. OC FAC 0. 091 C 42 0. OC ENGINE RPM(NOM)=2700 RPM ENGINE RPM(ACT)=2702. RPM BHP(OBS) =140. 7HP BHP(CORR) =156. 2HP MAN VAC(OBS) = 1. 20"HG MAN PRESS(CORR)=29. 22"HG ) NO NOX:66. 255. 255. "AL FAM ERROR 575 0. 08736 -0. 690 3215 0. 00133 0. 00204 )270 0. 00000 0. 00001;AL FAM ERROR R29 0. 08736 13. 663;690 0.00138 0.00211 )279 0. 00000 0. 00001::AL FAM ERROR 335 0. 08736-10 307 Z213 0. 00130 0. 00199 )264 0. 00000 0. 00001 -AL FAM ERROR 103 0. 08736 4 201 /595 0. 00131 0 00201 )266 00000 0. 00001 RUN NO. 28 MODE: 3 COMMENTS:TAKEOFF,. 75 IN. TEMP(DB) = 90. 71F TEMP(DP) = 15. OOF TEMP(BAR) = 76. OOF BAR PRESS(OB)= 29. 31"HG BAR PRESS(CR)= 29. 18"HG SPEC HUMIDITY=0. 0015#/# LEAN FUEL RATE= AIR RATE = F/A RATIO= PHIM C02 CONC(PPM) 119976. KWD XTC METHOD 1 2 0. 85606 1 05295 MASS/MODE(LBM) 0.87716 MASS/RATED HP(#/'HP) 0. 00548 MASS/HP./CCC(#/HPCHC) 0. 00995 KWD XTC METHOD 2. 1 0. 91085 1 00000 MASS/MODE(LBM) 0. 91138 MASS/RATED HP(#/HP) 0.00570 MASS/HF/CYC(#/HP/'C). 01032 KWD XTC METHOD 3. 1 0 87941 0. 97212 MASS/MODE(LBM) 0. 85255 MASS/RATED HP(#./HP) 0. 0053:3 MASS/HP /CYC ( #/HP/C) 0 00970 KWD XTC ME-HOD 3 2 0. 85614 0. 31590 MASS/MODE(LBM) 0 88951 MASS/RATED HP(#/HP) 0. 00556 MASS/HP/CYC( #/HP/C) 0. 00997 02 1884. MWEXH 27 88744 0. 01001 0. 00006 0. 00012 MWEXH 26. 84024 0. 0104C 0. 00006 0. 00012 MWEXH 28. 692 18 0. 00973 0. 00006 0.00ul11 MWEXH 27 50000 0. 01015 0. 00006 0 00012 65. 6455#/HR 860. 6604#/HR 0.0762#*/# 1 1465 UHCC 874. I EXH FLOW 12804. 020 0. 00201 0. 00001 0. 00003 EXH FLOW 13303.580.> 000209 0. 00001 0 00003 EXH FLOW?. 12444 890 0. 00195 0. 00001 0. 00003 EXH FLOW 12984. 410 0. 00204 0. 00001 0.00003 MAN MAN CO 49810. FACAL 0. 07637 0. 23151 0. 00145 0. 00415 FACAL 0. 09002.0. 24054 0. 00150 0. 00430 FACAL 0. 06668 0. 22501 0. 00141 0. 00404 FACAL 0. 08093 0. 23477 0. 00147 0. 00413 ENGINE RPM(NOM)=2700 RPM ENGINE RPM(ACT)=2695. RPM BHP(O BS) =140. 7HP BHP(CORR) =155. 7HP VAC(OBS) = 1. 30"HG PRESS (CORR) 28. 99"HG NO NOX 705. 705 FAM ERROR 0 076,27 0 33 0. 00351 0 005:37 0. 00002 0 00003 0. 00003 0. 00005 FAM ERROR 0. 07627 18. 030 0. 00365 0. 00558 0. 00002 0. 00003 0 00003 0 00005 FAM ERROR 0. 07627-12. 572 0 00341 0 00522 0. 00002 0. 00003 0 00003 0. 00005 FAM ERROR 0.07627 6 115 0. 00356 0. 00544 0. 00002 0. 00003 0. 00003 0. 00005 5- 33

TABLE 5.7. COMPUTER PRINTOUT: LEAN-OUT RESULTS, MODE 4. DATE 12/19/75 ENGINE TYPE L IO-320-BIA LOCATION: UNIV OF MICH SERIAL NUMBER: L-287-66A OPERATORS: PACE, PONSONBY, GRIFFIN FUEL H/C RATIO = 2. 180 IGNITION TIMING= 25DEG RUN NO 27 MODE. 4 COMMENTS:LEAN OUTCLIMBOUT, FULL RICH TEMP(DB) = 82. 80F FUEL RATE= TEMP(DP) = 23. OOF AIR RATE = TEMP(BAR) = 72. OOF F/A RATIO= BAR PRESS(OB)= 29. 32"HG PHIM = BAR PRESS(CR)= 29. 21"HG SPEC HUMIDITY=0. 0025#/# C02 97445. CONC( PPM) KWD XTC METHOD 1.2 0. 86325 1. 02568 MASS./MODE(LBM) 9. 53961 MASS/RATED HP(#/HP) 0. 05962 KWD XTC METHOD 2. 1 0. 88931 1 00000 MASS/MODE(LBM) 9. 72579 MASS/RATED HP(#/HP) 0. 06079 KWD XTC METHOD 3 1 0. 87398 0. 98615 MASS/MODE(LBM) 9 40735 MASS/RATED HP(#/HP) 0. 05880 KWD XTC METHOD 3 2 0. 86332 0. 32672 MASS/MODE(LBM) 9. 47577 MASS/RATED HP(#./HP) 0. 05922 02 3140. MWEXH 27. 31596 0. 22341 0 0014C MWEXH 26 79305 0. 22777 0. 00142 MWEXt 27. 7000C 0. 22032 0. 0013E MWEXt 27. 5000C 0 22192 0. 00135 RUN NO 27 MODE: 4 COMMENTS:LEAN OUT CLIMBOUT, IN. LEAN TEMP( DB) = 87. 83F FUEL RATE= TEMP(DP) = 23. OOF AIR RATE = TEMP(BAR) = 72. OOF F/A RATIO= BAR PRESS(OB)= 29. 32"HG PHIM BAR PRESS(CR)= 29. 21"HO SPEC HUMIDITY=O 0025#./# 56. 0224#/HF 672. 9324#/HF 0. 0832#/# 1.2513 UHCC 1121. i EXH FLOW. 10286. 900 0.03451 ) 0.00022 4 EXH FLOW 5 10487. 670 0. 03518 0. 00022 i EXH FLOW ) 10144. 280 0. 03403 3 0. 00021 A EXH FLOW ) 10218.060 1 0. 03428 0. 00021 46. 8018#/Hf 663. 4822#/HF 0 0705#/# 1 0603 UHCC 728. H EXH FLOW 5 9647. 734 4 0. 02101 7 0. 00013 H EXH FLOW S'785. 414 3 0 02131 9 0. 00013 H EXH FLOW 5 957`7 672 7 0. 02077 5 0. 00013 H EXH FLOW 0 9956 344 8 0. 02168 2 0 00014 ENGINE RPM(NOM)=241'4 RPM ENGINE RPM(ACT)=2451. RPM BHP(OBS) =110. 8HP BHP(CORR) = O. OHP MAN VAC(OBS) = 3 50"HG MAN PRESS(CORR) O. OO"HG CO NO NOX 76223. 386. 38o FACAL FAM ERROR 0. 08324 0. 08325 -0. 004 4. 74380 0. 02574 0. 03937 0. 02965 0. 00016 0. 00025 FACAL FAM ERROR 0. 09025 0. 08325 8. 407 4. 83639 0. 02624 0. 04014 0. 03023 0. 00016 0. 00025 FACAL FAM ERROR 0. 07825 0. 08325 -6. OOC 4 67803 0. 02538 0. 0:3882 0. 02924 0. 0001 0 00024 FACAL FAM ERROR 0. 08571 0. 08325 2. 965 4. 71206 0. 02557 0 0:3910 0. 02945 0. 00016 0. 00024'R ENGINE RPM(NOM)=2423 RPM R ENGINE RPM(ACT)=2378 RPM BHP(OBS) =106 2HP BHP(CORR) = O. OHP C02 CONC:( PPM) 132928. KWD XTC. METHOD 1 2 0 85878 1 02230 MASS/MODE( LBM) 12. 20466 MASS/RATED HP (#/HP) 0.07627 KWD XTC: METHOD 2 1 0 88114 1. 00000 MASS/MODE(LBM) 12. 37883 MASS/RATED HP(# /'HP) 0. 077:36 KWD XTC METHOD 3. 1 C 86891 0. 98881 MASS/MODE(LBM) 12 06543 MASS/RATED HF'P#.HP) 0. 07540 KWD XTC METHOD 3. 2 0 85885 0 28830 MASS/MODE(LBM) 12 59506 MASS/RATED HP(#/.HP) 0. 07871 02 3768. MWEXt 28. 3796' 0. 2514z C 0015; MWEXI 27. 98030 0. 2550. 0. 0015l MWEXI 28 7071 0. 24850 0015! MWEXI 27. 5000( 0. 2594: 0. 0016: I MAN MAN CO 19990. FACAL 0. 06946 1. 16680 0. 00729 FACAL 0.07423 1. 18345 0. 00739 FACAL 0. 06559 1. 15349 0. 00720 FACAL 0. 07116 1. 20412 0. 00752 VAC(OBS) = 3 30"HG PRESS(CORR=n 00 "HL' NO NOX 1565. 156^ FAM ERROR 0 07054 -1 519 0. 09791 0. 1497e6 0. 00061 0 0C: FAM ERROR 0. 07054 5. 238 0. 0931 0 15190 0. 00062 0 00094 FAM ERROR 0. 07054 -7 009 0. 09679 0. 14806 0. 00060 0. 00092 FAM ERROR 0. 07054 0 892 0. 10105 0. 15455 0. 00063 0 00096 5 -34

TABLE 5.7. Continued RUN NO. 27 MODE: 4 COMMENTS: LEAN OUT, CLMBOUT 1. 25 IM. LEAN TEMP (DB) = 9. TEMP (DP) = 23. TEMP(BAR) = 72. BAR PRESS(OB)= 29. 49F OOF OOF 32"HG FUEL RATE= AIR RATE = F/A RATIO= PHIM = 45. 688. 0. 0. 4890#/HR 7046#/HR 0660#/# 9928 ENGINE RPM(NOM)=2428 RPM ENGINE RPM(ACT)=2354. RPM BHP(OBS) =105. 1HP BHP(CORR) = O. OHP BAR PRESS(CR)= 29. 21"HG SPEC HUMIDITY=0. 0025#/# C02 CONC(PPM) 136877 KWD XTC METHOD 1. 2 0. 86382 1. 02799 MASS/MODE(LBM) 12. 86614 MASS/RATED HP(#/HP) 0. 08041 MASS/HP/CYC (#/HP/C) 0.21631 KWD XTC METHOD 2. 1 0 89220 1. 00000 MASS./MODE( LBM) 13. 08864 MASS/RATED HP(#/HP) 0. 08180 MASS/HP/CYC (#/HP/C) 0 21996 KWWD XTC METHOD.3. 1 0. 87687 0. 98613 MASS/MODE(LBM) 12. 68229 MASS/RATED HP (#/HP) 0. 07926 MASS/HP / \ C ( #/HP'C) 0. 21347 KWD XTC METHOD 3 2 0. 86.391 0. 21-934 MASS/MODE I. BM) 13. 40582 MASS/RATED HPF(#/HP) 0. 08378 MASS/HP/CYC (# / HP C) 0. 22173 02 13816. MWEXH 28. 65352 0. 94387 0. 00590 0. 00886 MWEXH 28. 16641 0. 96019 0. 00600 0. 00901 MWEXH 29. 06889 0. 93038 0. 00581 0. 00874 MWEXH 27. 50000 0. 98346 0 00615 0. 00915 UHCC 331. EXH FLOW 9877. 184 0. 00976 0 00006 0 00041 EXH FLOW 10048. 000 0. 00993 0. 00006 0. 00042 EXH FLOW 9736. 043 0. 00962 0. 00006 0. 00040 EXH FLOW 10291. 490 0. 01018 0. 00006 0 00041 MAN MAN CO 4752. FACAL 0. 06320 0.28396 0. 00177 0. 03872 FACAL 0. 06862 0. 28887 0. 00181 0. 03943 FACAL 0. 05834 0. 27991 0. 00175 0. 03820 FACAL 0. 06512 0. 29587 0. 00185 0. 03883 VAC(OBS) = 2. 50"HO PRESS(CORR)= O. 00"HG NO NOX 2307. 2351 FAM ERROR 0. 06605 -4. 301 0.14772 0. 23028 0. 00092 0. 00144 0. 00170 0. 00262 FAM ERROR 0. 06605 3 901 0. 15028 0. 23421 0. 00093 0 00146 0. 00172 0. 00266 FAM ERROR 0. 06605-11 675 0. 14561 0 226 9 0. 00091 0. 00142 0. 00167 0. 00259 FAM ERROR 0. 06605 -1 404 0. 15392 0 23394 0. 0009: 0. 00150 0. 00175 0 00271 5 -35

TABLE 5.8. COMPUTER PRINTOUT: LEAN-OUT RESULTS, MODE 5. DATE 12/17/75 ENGINE TYPE: LIO-320-B1A LOCATION: UNIV OF MICH SERIAL NUMBER. L-287-66A OPERATORS:PACE, PONSONBY, GR IFFIN, DRAXLER FUEL H/C RATIO - 2. 180 IGNITION TIMING= 25DEG RUN NO 26 MODE: 5 COMMENTS: LEAN OUT RUN, APPROACH MODE, TEMP<DB) = 82. 27F FUEL RATE= TEMP(DP) = 13. OOF AIR RATE = TEMP(BAR) = 74. OOF F/A RATIO= BAR PRESS(OB)= 29. 28"HO PHIM = BAR PRESS(CR)= 29. 16"HG SPEC HUMIDITY=0. 0012#/# FULL RICH 34 4827#/HR 417. 0754#/HR 0. 0826#/# 1. 2427 ENGINE RPM(NOM)=2350 RPM ENGINE RPM(ACT)=2349. RPM BHP(OBS) = 58 7HP BHP(CORR) = O. OHP C02 CONC PPM) 102873. KWD XTC METHOD 1 2 0. 86179 1. 03683 MASS/MODE(LBM) 7. 44525 MASS/RATED HP(#/HP) 0. 04653 KWD XTC METHOD 2 1 0. 89941 1. 00000 MASS/MODE(LBM) 7. 65424 MASS/RATED HP(#/HP) 0. 04784 KWD XTC METHOI;:3 1 0. 87737 0. 98020 MASS/'MODE(LBM) 7. 29764 MASS/RATED HP(#./HP) 0. 04561 KWD XTC METHOD 3. 2 0. 86183 0. 32472 MASS/MODE(LBM) 7. 43616 MASS/RATED HP(#/HP) 0. 04648 02 2768. MWEXH 27. 46640 0. 14561 0. 00091 MWEXH 26. 71649 0. 14969 0. 00093 MWEXH 28. 02197 0 14272 0. 00089 MWEXH 27. 50000 0. 14543 0. 00090 UHCC 828. EXH FLOW 6337. 418 0. 01884 0. 00012 EXH FLOW 6515. 305 0. 01937 0. 00012 EXH FLOW 6211. 770 0. 01846 0. 00012 EXH FLOW 6329. 676 0. 01881 0. 00012 MAN VAC(OBS) =11. 10"HG MAN PRESS(CORR)= O. 00"HG CO NO NOX 71083 425. 425. FACAL FAM ERROR 0. 08152 0. 08267 -1. 397 3. 27051 0. 02098 0. 03208 0. 02044 0 00013 0. 00020 FACAL FAM ERROR 0. 09152 0. 08267 10. 703 3. 36231 0. 02157 0. 03299 0.02101 0.00013 0.00021 FACAL FAM ERROR 0. 07447 0. 08267 -.9. 925 3. 20567 0. 02056 0. 03145 0. 02004 0. 00013 0. 00020 FACAL FAM ERROR 0. 08497 0. 08267 2. 776 3. 26651 0 02095 0 03205 0. 02042 0. 00013 0.00020 RUN NO. 26 MODE: 5 COMMENTS: LEAN OUT RUN, APPROACH, IN. LEAN TEMPF(DB) = 87 74F FUEL RATE= 29. 6296/#HR TEMP(DP) = 13. OOF AIR RATE = 414. 9094#/HR TEMP(BAR) = 74. OOF BAR PRESS(OB)= 29. 28"HG BAR PRESS(CR)= 29. 16"HO SPEC HlUMIDITY=0. 0012#/# F/A RAT IO= PHIM C02 CO:NC FM='M) 1:32928 KWD XTC METHOD 1. 0. 862.35 1 00651 MAC;S/MODE ( LBM) 9 14044 MASS /RATED HP(#/HP) 0. 05713 KWD XTC: METHOD 2. 1 0. 86876 1. 00000 MASS/MODr-E(LBM) 9. 17717 MASS/'RATED HP (#../HP) 0. 057:3' KWD XTC METHOD 3. 1 0 86-.529 0. 99/677 MA.S;,"MODE( LBM) 9. 11027 MAS-;'-'RATED HP #/'HP) O. 05694 KWD XTC METHOD 3. 2 0. 86,235 0. 28093 MASF;:-,'MODE ( LBM) 9. 45930 MAS- RATED HP(#./'HP) 0 0591?2 02 3775. MWEXH 28. 45932 0. 18865 0. 00118 MWEXH 28 34541 0. 18941 0. 00118 MWEXH 28 55357 0. 18803 0 001 1 MWEXH 27. 50000 0. 19523 0. 00122 0. 0714#/# 1. 0734 UHCC 730. EXH FLOW 6021. 238 0. 01578 O 00009 EXH FLOW 6045. 434 0 01584 0. 00009 EXH FLOW 6001. 363 0 01573 0. 00009 EXH FLOW 6231. 285 0 0163:3 0. 00010 Cc 16; FA( O. 06; 0 7: 0. 0( FAr 0. 07( 0. 7 0. 0( FA( 0. 06, 0. 7( 0. 0( FAI 0. 06< 0. 7: 0. 0( ENGINE RPM(NOM)=2350 RPM ENGINE RPM(ACT)=2370. RPM BHP(OBS) = 59. 2HP BHP(CORR) - O OHP MAN VAC(OBS) =10. 90"HG MAN PRESS(CORRI= 0 00"HG 0 NO NO 253. 1042 1071:AL FAM ERROR 381 0. 071.41 —: 6.34 1048 0 04883 0 07677: 0444 0. 00031 0 00048 C:AL FAM ERROR 014 0. 07141 1 770 1334 0 04'90' 0. 07704 0446 0. 00031 0. 00048 C:AL FAM ERROR 770 0. 07141 -5. 198 0814 0.0486-7 0.07648 0443 0 00030 0 00048 CAL FAM ERROR 930 0. 07141 — 2. 949 3527 0 05053 0. 07941 0460 0. 00032 0. 00050 5- 36

TABLE 5.8. Continued RUN NO. 26 MODE: 5 COMMENTS: LEAN OUT, APPROACH, 1. 25 IN. LEAN TEMP(DB) = 88. 27F FUEL RATE= 28. 1955#/HR TEMP(DP) = 13. OOF AIR RATE = 451. 8899#/HR ENGINE RPM(NOM) =2355 RPM ENGINE RPM(ACT)=2352. RPM BHP(OBS) = 59. 1HP BHP(CORR) = O. OHP TEMP(BAR) = 74. OOF F/P BAR PRESS(OB)= 29. 28"HG PHI BAR PRESS(CR)= 29. 16"HG SPEC HUMIDITY=O. 0012#/# C02 CONC(PPM) 134208. KWD XTC METHOD 1. 2 0. 86914 1. 02540 MASS/MODE(LBM) 9. 87467 MASS/RATED HP(#/HP) 0. 06172 MASS/HP/CYC( #/HP/C) 0. 16538 KWD XTC METHOD 2. 1 0. 89494 1. 0000 MASS/MODE(LBM) 10.02832 MASS/RATED HP(#/HP) 0. 06267 MASS/HP/CYC( #/HP/C) 0. 16787 KWD XTC METHOD 3 1 0. 88103 0. 98744 MASS./MODE(LBM) 9. 74655 MASS/RATED HP(#/HP) 0. 06092 MASS/HP/CYC ( #/HP/ C) 0. 16347 KWDE XTC METHOD 3. 2 0 86917 0. 25933 MASS./MODE(LBM) 10. 31405 MASS/RATED HP(#./HP) 0. 06446 MASS/HP CYC ( #/HP/C) 0. 17006 \ RATIO= 0. 0624#/# [M = 0. 9379 02 20132. MWEXH 28. 72362 1. 07658 0. 00672 0. 00881 MWEXH 28.28355 1. 09333 0. 00683 0. 00895 MWEXH 29 10121 1. 06261 0. 00664 0. 00870 MWEXH 27. 50000 1. 12449 0. 00702 0 00915 UHCC 13. EXH FLOW 6442. 875 0. 00030 0. 00000 0. 00022 EXH FLOW 6543. 121 0. 00031 0. 00000 0. 00022 EXH FLOW 6359.277 0. 00030 0. 00000 0. 00022 EXH FLOW 6729. 555 0. 00032 0. 00000 0.00022 F 0. 0 0. 0. 0. F 0. 0 0. 0. 0. F 0. 0 0. 0. 0. F 0. 0 0. 0. 0. MAN VAC(OBS) = 9. 60"HC MAN PRESS(CORR)= O. 00"HC CO NO NOX 2291. 1220. 1220.'ACAL FAM ERROR 16094 0. 06239 -2. 335 10714 0.06117 0.09356 00067 0. 00038 0. 00058 02555 0. 00081 0. 00126 *ACAL FAM ERROR'6564 0. 06239 5. 205 10881 0. 06212 0. 09501 00068 0. 00039 0. 00059 02615 0. 00082 0. 00128 hACAL FAM ERROR'5648 0. 06239 -9. 476 10575 0. 06038 0. 09234 00066 0 00038 0. 00058 02512 0. 00081 0. 00125:ACAL FAM ERROR )6260 0. 06239 0. 333 11191 0.06389 0.09772 00069 0. 00040 0. 00061 02571 0. 00084 0. 00131. 5 -37

Unburned hydrocarbon levels are low and almost independent of fuel-air ratio at lean mixtures but increase rapidly with fuel enrichment beyond stoichiometric. The primary reason for the latter is, of course, the lack of sufficient oxygen for combustion. However, at quite high fuel-air ratio, there is poor mixing of the'unburned hydrocarbons with the available oxygen and, in general, quite poor combustion. Figure 5.8 shows this effect through the high oxygen levels. Some data points in these figures were found to be in error and are shown circled. 5.3 EFFECT OF PROBE LOCATION ON AIR-DILUTION OF EXHAUST SAMPLE Experience in automotive emission measurement practice has shown that air dilution of the exhaust gases can extend some distance upstream from the open end of the tail pipe. Therefore, when using short, open-ended exhaust pipes during engine emission testing, care must be taken to select a probe location that will avoid sample dilution. Tests were run to determine the extent of dilution at various probe locations at the different operating modes. This was accomplished with a sliding probe which was inserted into the end of the exhaust pipe and centered in the pipe with fin guides. Any axial position could be selected by sliding the probe to the desired location. A test was first made to compare the results from both the variable and standard fixed probes at the fixed probe position. No significant differences in results were found. Tests were then run at five probe locations, equally spaced from 2 to 32 inches from the open end of the exhaust pipe, and at each of the seven operating modes. The results are plotted in figures 5.9 and 5.10 showing both 02 concentration and calculated fuel-air ratio as a function of probe position. 5 -38

C I o rX I i O 200 160 120 80 40 0 4 8 12 16 20 24 Probe Position - Inches Figure 5.9. Effect of Probe Location on 02 Concentration.10 w I 0. rH a Cd U.08.06.04.02 4 8 12 16 20 24 Probe Position - Inches Figure 5.10. Effect of Probe Location on Calculated Fuel-Air Ratio 5-39

These results indicate that dilution is not a problem for the high power modes for probes located seven or more inches from the open end of the exhaust pipe. However, when operating at idle and taxi modes, dilution effects are detectable at distances up to and possibly beyond 22 in. The reliability of the data is indicated by the fact that the 35 data points show low values of the error parameters AE and XTC, as indicated below. Number of AE Range XTC Range Points (Percent) 31 -4.0 to 6.7 0.980 to 1.016 4 -7.7 to 13.0 0.967 to 1.030 The usefulness of the error parameters as indicators of data reliability should be pointed out, since the attempted use of the Spindt error would be completely useless in this test. Values of Spindt errors for the above runs ranged from -75 to 2.9%, the negative values resulting from the leaning of the mixture due to air dilution. 5.4 CHECK FOR AIR LEAKS Two tests were run to check the gas analysis and exhaust systems for possible air leaks. This was done when the data analysis indicated consistently low values of calculated fuelair ratio from all four computational methods. 5.4.1 Leak Check of Gas Analysis System Both the gas sampling inlet system and lines to the 02 analyzer were checked for possible air leaks. This was accomplished by first determining the normal pressure at the sampling probe during engine testing. Since this pressure is below atmospheric, any leaks in the line would cause air dilution of the sample rather than leak exhaust gas to the atmosphere. Then the line normally connected to the probe was connected to a bottle of nitrogen gas, which was then used as the sample gas while operatin the instrumentation in the normal engine-test modes. A measurement for 02 was then recorded. 5-40

If air leaks into the system were present, some level of oxygen would be measured. A leak-tight system would be free of oxygen and a zero reading would be recorded. (Possible oxygen impurities in the nitrogen gas could give rise to very small oxygen readings.) Our tests showed practically zero values of oxygen, indicating a leak-tight system. 5.4.2 Leak Check of Engine Exhaust System Air leaks into the exhaust system are possible because of the existence of transient negative pressures in the exhaust pipe (reference 11), especially at idle and taxi modes. Since the data analysis indicated air leakage (large negative fuel-air errors) and because the instrument check in section 5.4.1 proved negative, tests were run to check the exhaust system for leaks. Two reference runs, one at idle and one at taxi, were made to determine the extent of exhaust gas dilution as indicated by the negative fuel/air errors. The exhaust system was then sealed at the flanges and slip joints using a high temperature exhuast system sealer. When the sealant had dried, the runs were repeated and the fuel-air errors checked (run A). Since the results showed a large decrease inerrors, acomplete baseline was then run (run B). The results are given in table 5.9. TABLE 5.9. ERROR ANALYSIS OF EXHAUST SYSTEM LEAK TESTS Pre-Seal Mode E(3.1) E(1.2) AE 1 -56.55 -41.78 -14.77 2 -27.28 -10.93 -16.35 Post Seal Run A Run B Mode E(3.1) E(1.2) AE E(3.1) E(1.2) AE 1 -12.10 -6.64 -5.46 -21.44 -10.05 -11.39 2 -16.20 -4.86 -11.34 -15.98 -3.08 -12.90 3 - - - -3.19 1.43 -4.62 4 - - - -3.60 0.04 -3.64 5 - - - -7.09 -1.71 -5.38 6 - - - -15.91 -5.79 -10.12 7 - - - -26.41 -30.72 4.31 5 -41

The decrease in negative values of both E(1.2) and E(3.1) from the pre-seal to post-seal tests indicate a substantial reduction, but possibly not elimination, of air leakage into the exhaust system. The substantial increase in E(1.2) for Mode 7 was due to a sealant failure at one of the joints. 5-42

6. INTER-FACILITY DATA ANALYSIS An analysis and correlation study of inter-facility data on the Lycoming 320 engine was run. These efforts show promise that an effective method for determining data validity has been developed. It is obvious that before any correlations of data from the various facilities are made, the validity of the data should be established. Otherwise, wrong conclusions can be reached. For this reason, a considerable effort was undertaken at Michigan to develop a method to evaluate data validity, based on the use of fuel-air error E(1.2), AE and XTC. In the following section, plots of AE vs XTC are shown and their significance is discussed. 6.1 DATA ANALYSIS CHARTS - AE vs XTC Preliminary data on the Lycoming 320 engine from Lycoming and Michigan and one set of 13 runs on an automotive V-8 engine from Eltinge (reference 7) are plotted to show AE vsXTC in figures 6.1-6.3. These charts show that the data from various sources and for different engines give straight line plots with negative slopes. These results suggest that the best data should lie at the intersection of the AE = 0 and XTC = 1 axes, and that the extent of departure from this point gives an indication of the errors involved. The method suggests that imposed limits on AE or XTC would provide one of the criteria for good data, together with a limit on E(1.2). 6-1

4 - 0 -4 AE -8 -12 -16 -20.96 1.00 XTC Figure 6.1. AE vs XTC: Lycoming Data (Reference 12) 6-2

4 0 AE I I5 MO -1 -4 I -8 w 0 0 -12 r 0 -16 0. I'.96 1.00 1.04 1.08 XTC Figure 6.2. AE vs XTC: Michigan Data Runs 4, 5, 7 - All Modes (Reference 12) 6-3

8, - - 0O I I 4 AE 2 -2 --- -.98.99 1.00 1.01 XTC Figure 6.3. AE vs XTC: Eltinge Data (Reference 7) 6-4

6.2 DATA ANALYSIS CHARTS - E(1.2) vs XTC The use of either AE or XTC as an indicator of data reliability appears to be optional since close correlations were found to exist as shown in section 6.1. However, AE requires the use of two computational methods, Method 3.1 and Method 1.2, while XTC is computed using Method 1.2. Therefore, if one selects E(1.2) and XTC as indicators of data reliability, only one computational method need be used. The use of either indicator by itself was shown in section 2.3 to be insufficient. An examination of plots of E(1.2) vs XTC in figures 6.4 to 6.8 shows that data can be expected to fall in a band of + 5% for XTC and a somewhat larger band for E(1.2). Data for these plots were taken from Michigan Runs 4 and 7, given at the end of Section 5, and Run 5, given at the end of this section, together with AVCO-Lycoming data from reference 12. 6-5

12 10 8 6 o0 0 0 I I I IU 0 Michigan Runs 4,5,7 a AVCO - Ref. 12 4 4. U C) (-4 H 0M CN o a 0 rO 0 -2 -4 0'1, I~'t~~~ -6 _ L -92.92.96 1.00 1.04 1.08 XTC Figure 6.4. E(1.2) vs XTC: Idle Mode.) -p U CM 4 - Michigan Runs 4,5,7 0 2 - AVCO - Ref. 12 0 -2- - O O0 -4 _~ I I I I I I.92.96 1.00 1.04 1.08 XTC E(1.2) vs XTC: Taxi Mode Figure 6.5. 6-6

6 4 -p ca) U 0) C4 H 2 0 -2 -4 I I I I - Michigan Runs O 4,5,7 O-AVCO, Ref. 12 O o, o I I I I I -6.92.96 1.00 1.04 1.08 XTC Figure 6.6. E(1.2) vs XTC: Takeoff Mode 6 4 4r4 a) H r0 r-O W 2 0 -2 -4 I I I I 0 Michigan Runs 4,5,7 O - AVCO, Ref. 12 O a I I I I I I - r - U.92.96 1.00 1.04 1.08 XTC Figure 6.7. E(1.2) vs XTC: Climbout Mode 6 4 4-) Q) 0 p4 -4 H w 2 0 -2 -4 I I I 0 Michigan Runs 4,5,7 _a AVCO, Ref. 12 - -x3 OD I. I O -6.92.96 1.00 1.04 1.08 XTC Figure 6.8 E(1.2) vs XTC: Approach Mode 6-7

TABLE 6.1 COMPUTER PRINTOUT: RUN 5 DATE: 8-12-75 ENGINE TYPE: LIO-320-BIA LOCATION: UNIV OF MICH SERIAL NUMBER: L-287-66A OPERATORS:PERRY, PACE, PONSONBY, LEO FUEL H/C RATIO = 2. 190 IGNITION TIMING= 25DEG tUN NO. 5 MODE: 1 COMMENTS:BASELINE DATA RUN5. 1 TEMP(DB) = 94. 71F FUEL RATE= TEMP(DP) = 51. OOF AIR RATE = TEMP(BAR) = 81. OOF F/A RATIO= BAR PRESS(OB)= 29. 24"HG BAR PRESS(CR)= 29. 10"HG SPEC HUMIDITY=O 0081#/# C02 CONC(PPM) 51214. KWD XTC METHOD 1.2 0.92108 1.00125 MASS/MODE(LBM) 0.09112 MASS/RATED HP<(#/HP) 0.00057 KWD XTC METHOD 2.1 0.92237 1.00000 MASS/MODE(LBM) 0.09119 MASS/RATED HP(#/HP) 0.00057 KWD XTC METHOD 3.1 0. 92166 0. 99938 MASs/MODE(LBM) 0.09106 MASS/RATED HP(#/HP) 0.00057 KWD XTC METHOD 3. 2 0.92109 0.19063 MASS/MODE(LBM) 0.09224;ASS/RATED HP(#/HP) 0.00058 02 109523, MWEXH 27 83681 0. 14164 0. 00088 MWEXH 27. 81548 0. 14175 0. 00088 MWEXH 27.85442 0. 14155 0. 00088 MWEXH 27. 50000 0. 14337 0. 00089 3.3681#/HR 64. 1414#/HR 0. 0525#/# UHCC 31808. EXH FLOW 934. 859 1 0. 01779 0. 00011 EXH FLOW 935. 576 0.01781 0.00011 EXH FLOW 934. 268 0. 01778 0. 00011 EXH FLOW 946. 308 0.01801 0. 00011 MAN MAN CO 17656. FACAL 0. 05146 0. 01997 0. 00012 FACAL 0. 05162 0. 01999 0.00012 FACAL 0 05120 0 01996 0 00012 FACAL 0 05153 0. 02022 0. 00013 VAC(OBS) =17.50"HG PRESS(CORR)= 0 00"HG NO NOX 173. 223. FAM ERROR 0.05251 -1 995 0.00021 0. 00041 0 00000 0 00000 FAM ERROR 0 05251 -1. 690 0. 00021 0. 00041 0. 00000 0. 00000 FAM ERROR 0.05251 -2 495 0 00021 0.00041 0. 00000 0. 00000 FAM ERROR 0.05251 — 1 861 0. 00021 0. 00042 0 00000 0. 00000 ENGINE RPM(NOM)= ENGINE RPM(ACT)= BHP(OBS) = BHP(CORR) = 720 RPM 712. RPM 0. 2HP O. OHP RUN NO. 5 MODE: 2 COMMENTS:BASELINE DATA RUN5. 2 TEMP(DB) = 96. 53F FUEL RATE= TEMP(DP) = 52. OOF AIR RATE = TEMP(BAR) = 81.OOF F/A RATIO= BAR PRESS(OB)= 29. 23"HG BAR PRESS(CR)= 29. 09"HG SPEC HUMIDITY=O 0084#/# 7.0805#/HR 104. 9433#/HR 0.0674#/# ENGINE RPM(NOM)=1200 RPM ENGINE RPM(ACT)=1189. RPM BHP(OBS) = 5. 8HP BHP(CORR)'= O.OHP C02 CONC(PPM) 93691. KWD XTC METHOD 1.2 0. 87335 1 03655 MASS/MODE(LBM) 3 05150 MASS/RATED HP(#/HP) 0. 01907 KWD XTC METHOD 2. 1 0. 91167 1.00000 MA.S/MODE(LBM) 3. 12924 MASS/RATED HP(#/HP) 0. 01956 KWD XTC METHOD:3. 1 0. 88997 0. 98110 MASS/MODE(LBM) 2. 99312 MASS/RATED HP(#/HP) 0.01871 KWD XTC METHOD 3. 2 0.87372 0.27819 MASS/MODE(LBM) 3.08023 MASS/RATED HP(#/HP) 0.01925 02 42201. MWEXH 27. 75891 C 99898 0. 00624 MWEXH 27. 06935 1. 02442 0. 00640 MWEXH 28. 30031 0. 97987 0 00612 MWEXH 27 50000 1 00838 0. 00630 UHCC 12006. EXH FLOW 1555. 637 0. 12293 0. 00076 EXH FLOW 1595. 266 0. 12606 0. 00078 EXH FLOW 1525. 877 0. 12057 0. 00075 EXH FLOW 1570. 284 0. 12408 0. 00077 MAN VAC(OBS) =18. 80"HG MAN PRESS(CORR) O. 00"HG CO NO NOX 39227. 226 267 FACAL FAM ERROR 0.06821 06747 1. 06 0.81222 0 00501 0.00907 0. 00508 0.00003 0. 00006 FACAL FAM ERROR 0.07595 0 06747 12 574 0. 83291 0 00514 0. 00930 0. 00521 00003 0. 00006 FACAL FAM ERROR 0.061090 06747 -9 454 0. 79669 0.00492 0.00890 0. 00498 0 00003 0. 00006 FACAL FAM ERROR 0.07102 0. 06747 5.271 0.81987 0 00506 0.00916 0. 00512 0. 00003 0. 00006 6- 8

TABLE 6.1. Continued RUN NO. 5 MODE: 3 COMMENTS:BASELINE DATA RUNS. 3'EMP(DB) = 89. 18F FUEL RATE= TEMP(DP) = 58. OOF AIR RATE = TEMP(BAR) = 82. OOF F/A RATIO= BAR PRESS(OB)= 29. 23"HG BAR PRESS(CR)= 29. 09"HG SPEC HUMIDITY=0. 0105#/# C02 CONC(PPM) 88079. KWD XTC METHOD 1. 2 0. 85456 1. 06022 MASS/MODE(LBM) 0. 68364 MASS/RATED HP(#/HP) 0. 00427 KWD XTC METHOD 2. 1 0. 91968 1. 00000 MASS/MODE(LBM) 0. 72010 MASS/RATED HP(#/HP) 0. 00450 KWD XTC METHOD 3. 1 0. 87924 0. 96585 MASS/MODE(LBM) 0. 66029 MASS/RATED HP(#/HP) 0. 00413 KWD XTC METHOD 3. 2 0. 85519 0. 36584 MASS/MODE(LBM) 0. 66300 MASS/RATED HP(#/HP) 0. 00414 02 1256. MWEXH 26. 66957 0. 00708 0. 00004 MWEXH 25. 31911 O 00746 0. 00005 MWEXH 27. 61258 0. 00684 0. 00004 MWEXH 27. 50000 0. 00687 0. 00004 75. 7576#/HR 864. 6914#/HR 0. 0876#/# UHCC 1607. EXH FLOW 13593. 140 0. 00392 0. 00002 I EXH FLOW 14318. 160 0. 00413 0. 00003 I EXH FLOW 13128. 910 0. 00379 0. 00002 I EXH FLOW 13182.660 0. 00380 0. 00002 ENGINE RPM(NOM)=2700 RPM ENGINE RPM(ACT)=2694. RPM BHP(OBS) =139. 8HP BHP(CORR) =153. 7HP MAN VAC(OBS) = 0. 70"HG MAN PRESS(CORR)=29 00"HG CO NO NOX 102717. 213.- 185 FACAL FAM ERROR 0. 09128 0. 08761 4. 196 0.50684 0.00113 0.00150 0. 00317 0. 00000 0. 00000 FACAL FAM ERROR 0.11171 0.08761 27. 501 0.53387 0. 00119 0.00158 0. 00334 0. 00000 0. 00001 FACAL FAM ERROR 0. 07858 0. 08761-10. 304 0. 48953 0. 00109 0. 00145 0. 00306 0. 00000 0. 00000 FACAL FAM ERROR 0.09791 0.08761 11. 754 0. 49153 0. 00109 0 00145 0. 00307 0. 00000 0 00000 RUN NO 5 IODE 4 COMMENTS. BASELINE DATA RUN5. 4 TEMP(DB) = 92. 75F FUEL RATE= TEMP(DP) = 58. OOF AIR RATE = TEMP(BAR) = 82. OOF F/A RATIO= BAR PRESS(OB)= 29. 24"HG BAR PRESS(CR)= 29 10"HG SPEC HUMIDITY=O 0105#/# C02 CONC(PPM) 91453 KWD XTC METHOD 1. 2 0. 85357 1 05545 MASS/MODE(LBM) 9 09468 MASS/RATED HP(#/HP) 0 05684 KWD XTC METHOD 2. 1 0. 91309 1. 00000 MASS/MODE(LBM) 9 52691 MASS/RATED HP(#/HP) 0. 05954 KWD XTC METHOD 3 1 0. 87661 0. 96896 MASS/MODE(LBM). 8 81258 MASS/RATED HP(#/HP) 0. 05508 KWD XTC METHOD 3. 2 0 85418 0. 35864 MASS/MODE(LBM) 8. 86872 IASS/RATED HP(#/HP) 0. 05543 02 1758. MWEXH 26. 81676 0. 12709 0. 00079 MWEXH 25 60011 0 13313 0. 00083 MWEXH 27. 6752C 0. 12315 0 00077 MWEXh 27 5000C 0. 12393 0. 00077 57. 8592#/HR 669. 1042#/HR 0. 0864#/# UHCC 1676. i EXH FLOW 10449 770 ( 0. 05239 0. 00033 EXH FLOW 10946. 390 ( 3 0. 05488 0. 00034 I EXH FLOW ) 10125. 630 ( 5 0. 05076 0. 00032 EXH FLOW ) 10190. 140 C 0. 05109 0. 00032 Cc 95.' FA( ). 085 6. 0; 0. 0' FAC ) 107 6. 3: 0 0. FAC ). 07;'5. 8z 0. 0' FAC ) 09A 5 8E 0 0.' ENGINE RPM(NOM)=2450 RPM ENGINE RPM(ACT)=24,0. RPM BHP(OBS) =107. 3HP BHP(CORR) =0 OHP MAN VAC(OBS) = 3 50"HG MAN PRESS(CORR)= 0 O0"HG ) NO NOX 383. 269 244 CAL FAM ERROR 908 0 08647 3. 025 3019 0. 01823 0.. 02531 376" 0 00011 0. 00016 CAL FAM ERROR 704 0. 08647 23. 788 1678 0. 01910 0. 02651 3948 0. 00012 0. 00017 CAL FAM ERROR 763 0 08647-10. 222 4315 0. 01767 0. 02453 3652 0. 00011 0 00015 CAL FAM ERROR 498 0. 08647 9. 849 3037 0.01778 0.02468 367W 0 00011 0. 00015 6-9

TABLE 6.1. Continued RUN NO. 5 MODE: 5 COMMENTS: BASELINE DATA RUNS. 5 rEMP (DB) TEMP( DP) TEMP( BAR) = 97. 83F = 60. OOF = 82. OOF FUEL RATE= AIR RATE = F/A RATIO= 34. 3840#/HR 393. 1924#/HR 0. 0874#/# ENGINE RPM(NOM)=2360 RPM ENGINE RPM(ACT)=2363. RPM BHP(OBS) = 53. 6HP BHP(CORR) = O. OHP BAR PRESS(OB)= 29. 23"HG BAR PRESS(CR)= 29. 09"HG SPEC HUMIDITY=0. 0113#/# C02 CONC(PPM) 92056. KWD XTC METHOD 1.2 0. 85213 1. 05975 MASS/MODE(LBM) 6. 46348 MASS/RATED HP(#/HP) 0. 04040 KWD XTC METHOD 2. 1 0. 91670 1. 00000 MASS/MODE(LBM) 6. 79764 MASS/RATED HP(#/HP) 0. 04249 KWD XTC METHOD 3. 1 0. 87703 0. 96648 MASS/MODE(LBM) 6. 24702 MASS/RATED HP(#/HP) 0. 03904 KWD XTC METHOD 3. 2 0. 85282 0. 36071 MASS/MODE(LBM) 6. 30086 MASS/RATED HP(#/HP) 0. 03938 RUN NO 5 lODE: 6 COMMENTS:BASELINE DATA RUN5. 6 02 1758. MWEXH 26. 80812 0. 08973 0. 00056 MWEXH 25. 49028 0.09437 0. 00059 MWEXH 27. 73703 0. 08672 0. 00054 MWEXH 27. 50000 0. 08747 0. 00055:L RATE= R RATE = 1 I RATIO= UHCC 1600. EXH FLOW 6148. 195 0. 03532 0. 00022 EXH FLOW 6466. 055 0. 03714 0. 00023 EXH FLOW 5942. 293 0. 03413 0.00021 EXH FLOW 5993. 512 0. 03443 0.00022 MAN MAN CO 95696. FACAL 0. 08905 4. 27147 0. 02670 FACAL 0. 10864 4. 49230 0.02808 FACAL 0. 07668 4. 12842 0. 02580 FACAL 0. 09542 4. 16400 0. 02603 VAC(OBS) =11. 70"HG PRESS(CORR)= 0. 00"HG NO NOX 232. 217. FAM ERROR 0. 08744 1. 841 0.01110 0.01590 0. 00006 0. 00009 FAM ERROR 0. 08744 24 230 0.01167 0.01672 0. 00007 0. 00010 FAM ERROR 0. 08744-12. 307 0. 01073 0. 01536 0.00006 0.00009 FAM ERROR 0.08744 9 119 0. 01082 0. 01550 0. 00006 0 00009 TEMP(DB) TEMP( DP) TEMP( BAR) =102. 29F = 64. OOF = 82. OOF FUE AIF F/(f 7. 2604#/HR 100. 4240#/HR 0. 0723#/# ENGINE RPM(NOM)=1220 RPM ENGINE RPM(ACT)=1203. RPM BHP (OBS) = 2. 4HP BHP(CORR) = O. OHP BAR PRESS((OB)= 29. 23"HG BAR PRESS(CR)= 29. 09"HG SPEC HUMIDITY=0. 0131#/# C02 CONC (PPM) 89063. KWD XTC METHOD 1. 2 0. 87295 1. 02668 MASS/MODE(LBM) 0. 76504 MASS/RATFD HP(#./HP) 0. 00478 KWD XTC METHOD 2. 1 0. 90069 1. 00000 MASS/MODE(LBM) 0. 77886 MASS/RATED HP(#/HP) 0. 00487 KWD XTC METHOD 3. 1 0. 88520 0. 98640 MASS/MODE(LBM) 0. 75459 MASS/RATED HP(#/HP) 0. 00472 KWD XTC METHOD 3. 2 0. 87338 0. 27941 MASS/MODE(LBM) 0. 76763 IASS/RATED HP(#/HP) 0. 00480 02 47728. MWEXH 27. 59329 0. 29797 0. 00186 MWEXH 27. 10353 0. 30335 0. 00190 MWEXH 27. 97520 0. 29390 0. 00184 MWEXH 27. 50000 0. 29898 0. 00187 UHCC 21791. EXH FLOW 1504. 354 0. 05884 0. 00037 EXH FLOW 1531. 537 0. 05991 0. 00037 EXH FLOW 1483. 816 0.05804 0. 00036 EXH FLOW 1509. 457 0. 05904 0. 00037 MAN MAN CO 34916. FACAL 0 07079 0. 19067 0. 00119 FACAL 0. 07635 0. 19412 0.00121 FACAL 0. 06561 0. 18807 0. 00118 FACAL 0. 07293 0. 19132 0. 00120 VAC(OBS) =19 70"HG PRESS(CORR)=. O00"HG NO NOX 107 127 FAM ERROR 0 07229 -2. 085 0.00062 0.00114 0. 00000 0. 00000 FAM ERROR 0 07229 5. 608 0.00063 0. 00116 0 00000 0 00000 FAM ERROR 0. 07229 -9 241 0. 00062 0 00112 0. 0000 0 00000 FAM ERROR 0. 07229 0. 885 0.00062 0.00114 0. 00000 0. 00000 6-10

TABLE 6.1. Continued RUN NO. 5 MODE: 7 COMMENTS:BASELINE DATA TEMP(DB) =101. 60F TEMP(DP) = 66. OOF TEMP(BAR) = 82. OOF BAR PRESS(OB)= 29. 23 " BAR PRESS(CR)= 29. 09"H SPEC HUMIDITY=0. 0140#/ CONC(PPM) \ RUN5. 7 FUE AIF F/F 1G 10 r# C02 83260. KWD XTC METHOD 1.2 0. 88268 1. 02108 MASS/MODE(LBM) 0. 18446 MASS/RATED HP(#/HP) 0.00115 MASS/HP/CYC(#/HP/C) 0. 12709 KWD XTC METHOD 2. 1 0. 90468 1. 00000 MASS/MODE(LBM) 0 18696 MASS/RATED HP(#/HP) 0.00117 MASS/HP/CYC( #/HP/C) O 13269 KWD XTC METHOD 3. 1 0. 89267 0. 98948 MASS/MODE(LBM) 0. 18250 MASS/RATED HP(#/HP) 0.00114 MASS/HP/CYC( #/HP/C) 0. 12338 KWD XTC METHOD 3. 2 0. 88307 0. 25133 MASS/MODE(LBM) 0. 18640,1ASS/RATED HP(#/HP) 0.00116 MASS/HP/CYC ( #/HP /C) 0. 12474 EL RATE= R RATE = A RATIO= 02 66568. MWEXH 27. 78891 0. 10719 0. 00067 0. 01106 MWEXH 27. 41754 0. 10864 0. 00067 0. 01133 MWEXH 28. 08633 0. 10605 0. 00066 0. 01086 MWEXH 27. 50000 0. 10831 0. 00067 0. 01111 4.9859#/HF 78. 9251#/HF 0. 0631#/# UHCC 24878. EXH FLOW 1163. 986 0. 01733 0. 00011 0. 00193 EXH FLOW 1179 752 0 01756 0. 00011 0. 00198 EXH FLOW 1151. 659 0. 01714 0. 00011 0. 00189 EXH FLOW 1176. 214 0. 01751.0 00011 0. 00192 ENGINE RPM(NOM)= ENGINE RPM(ACT)= BHP(OBS) BHP(CORR) MAN VAC(OBS) =1 MAN PRESS(CORR)= CO NO 21292. 156. FACAL FAM ERRC 0. 06330 0. 06317 0 2C 0. 02999 0. 00024 ( 0. 00019 0. 00000 C 0. 07413 0. 00023 ( FACAL FAM ERRC 0. 06703 0. 06317 6 11 0.03039 0. 00024 C 0. 00019 0. 00000 C 0. 07762 0. 00024 C FACAL FAM ERRC 0.05918 0. 06317 -6 31 0.02967 0. 00023 C 0. 00019 0. 00000 C 0. 07184 0. 00022 C FACAL FAM ERRC 0. 06479 0. 06317 2. 57 0.03030 0. 00024 0.00019 0 00000 C 0. 07248 0. 00022 C 700 RPM 712. RPM 3. 3HP 0. OHP 16. 00"HG 0. 00"HG NOX 194 3R >2 ). 00045 ). 00000 >. 00034 OR L8 ). 00045 ). 00000 ). 00035 OR L2 ). 00044 ). 00000. 00033 OR 70 ) 00045. 00000. 00033 6-11

7. SUMMARY Four methods have been developed for computing fuel-air ratios from exhaust gas analyses. These methods are based on atom balances, partial sums of mole-fractions, defined wet, dry and dried measurements and the water-gas reaction equilibrium constant equation. For an ideal case, all methods give the same calculated fuel-air ratio. However, when measurement errors occur, each method gives a different result. This occurs because of differences in specific errors among the different methods. In addition to providing a check on fuel-air and concentration errors, the Michigan method calculates exhaust molecular weight from the calculated mole-fractions of ten gaseous exhaust products. Calculated results indicate that poor fuel-air mixtures, and the resulting poor combustion, lead to low exhaust molecular weights. As the mixture and combustion improve, the molecular weights increase and approach the values obtained from equilibrium calculations. The Michigan method also eliminates the need for dryto-wet water correction factors, since the method can use wet, dry or dried concentration measurements directly. The rationale behind selecting a particular procedure for determining data validity is developed in this report. It leads to the conclusion that no single variable can be used alone to determine data validity. E(1.2) is a good measure of fuel-air ratio error, but a low error can come about because of compensating errors in concentration measurements. On the other hand, XTC is a good measure of the accuracy of concentration measurements. When coupled together, they indicate those runs which have low fuel-air errors together with low concentration measurement errors. Use of Method 1.2, together with E(1.2) and XTC as indicators of data validity, is suggested. 7 -1

o. REFERENCES 1. Sheehy, J.P., Achinger, W.C., and Simon, R.A., "Handbook of Air Pollution," Robert A. Taft Sanitary Engineering Center, Dept. of Health, Education and Welfare. 2. Handbook of Chemistry and Physics, CRC Press, 53rd Ed., 1972-1973. 3. Stern, A.C., Air Pollution, Academic Press, Vol. I, 2nd Ed., 1968. 4. Spindt, R.S., "Air-Fuel Ratios from Exhaust Gas Analysis," SAE Paper No. 650507, 1965. 5. Stivender, D.L., "Development of a Fuel-Based Mass Emission Measurement Procedure," SAE Paper No. 710604, 1971. 6. Federal Register, Vol. 38, No. 136, Part II, July 17, 1971. 7. Eltinge, L., "Fuel-Air Ratio and Distribution from Exhaust Gas Composition," Ethyl Corporation, January 1968; also SAE Paper No. 680114, 1968. 8. Rezy, B.J., "Exhaust Emissions Calculations," TeledyneContinental Engineering Report A-81-1, 14 March 1975. 9. AVCO-Lycoming Report to FAA, April 21, 1975. 10. Mirsky, W. and Nicholls, J.A., "The Influence of Mixture Distribution on Emissions from an Aircraft Piston Engine," FAA report: FAA-RD-78-70. 11. Yun, H.J. and Mirsky, W., "Schlieren-Streak Measurements of Instantaneous Exhaust Gas Velocities from a SparkIgnition Engine," SAE Paper No. 741015, October 1974. 12. AVCO-Lycoming Communication Report 311-20 to FAA, March 18, 1976. 8-1

Appendix A Computer Program FAA A-1

IC THE UNIVEP'::' Y OF MIC:HIGAN FAA. FR (.S-1'' —76 VERSION) C FAA ENr INE EMIS.SIONS DATA REDUCr:TION PROiGRAM C USE WITH SUB1ROUTINES CRT12 CRT15 CRT16 REAL Kl, K2, F::3. NO, NOX, NOSP, NOXSP, NOSPR. NOXS-;PR, NOR, NOXR, NOMPC, 1NOXMPC: M UI NA, MWEXH, NOMFR, NOXMFR, NOMPM, 2NOXMPM, NOMMP, NOXMMF', N2SP, KWI K.WDEE, N202 N2A, MWAIR, MET INTEGER RPMN, C:02RNG, CORNG, HC:RNG, WOT, DIA, DIAM DIMENS;ION A2 15, 16), A3 (16, 17) A4(12, 13-: B( 1- 17),X(16)/ IDATE(4), 1IOPERS(24), IIEGT(6), IEN.GSN(6), IRUN(:3 DIMENSION INFO( 34), DATAF( 10),YPF' 4, 4),HCMPC:(4). NOXMPF'(4), -COMPF: (4), CO2 MFPC 4). 02MPC(4) NOMFPC 4) COMMON/I N I T.,', X COMMON/I N I T2/A2 COMMON /I N I T:3/A3-: C:OMMHON./INIT4/A4 COMMON/'STOR1 /C 1, C2, C::3 C:4, C:5, C:6, C:7, C:1 1.! i 7, 1,_ 1 C: 1'5, C:17, C:271_ IC281-J, C: 291.U CIS C19 C:20, C21, I:2 1 222, C2:3, C'24, C:2.5,: C26/ C27:, C2;" 29 i: 3 C:3, C:32, i3.3:3. C 34, 3, I: /, C:37,:, C C40C 41 C:42,1 43. C:44, C:45,.:/:, I:.' 70.3C71, C7 Z, C73, C74, C75, C76, C77, C78, C79,: 77U. C78U, C'79U, C:80 C8:, 1'-. 4C:83,C84,C:85:, C86, 87, C88C', C!'89",'90, 9:'1, 09C93,,.':94, C'95 COMMON/ST'E; T:rF f'Cr 2' RNGI, C:02F', 0S2P;FR, C:02R,:C02, Cf02 C C2R-F': C:'i 02MF'F 1C2OMPM, CMM C.-F I'.C'2MPC:, CORNG, COSF, C:'OSPR, C:OR, CCO, 2COSPC., CfORK COMFR. OMH, MFM, C:lOMMP, COMPF, 02SF, 02.'SPR, 02R,:302, 02MFR, 02MPM; 02-MMP, 02MPC, HCRNG, HCSP, HCCSP, HCSPRFR 4HCR, HC:C, HC:-.SPFr', HCRK'C:R, HCMFR, HCMPM, HCMMF', HC:MFPC, NOSP, NOS;FR, 5NNOR N O, NOMFRNOMF'M, NOMMP, NOMF'C:, NOXSP, NOXS'PR, NOXR, 6NOXNOXNXMF'R NOXMPM, NOXMMF', NOXMPC:, N02SP COMMON/STOCF K-.;WD, K:WDD, AA, FF. XCn2, XCO, XHC: X02, NO XNOO, XN:0 XH21' KN:. IXAR XH2. XC COMMON T':OR4/ YP DATA' A2./' t-.1 0, 14*0. 0, -1. 0,:31*0. O, -1. 0, 1-3*0. 0, 2. 0. 2*1 0, 112-*C ":' 2-*1 C 0 0, 1. 0, 15*0. 0, 1. 0, 10*0-). 0, 2. O, 4*0... c.'-*0. 0 -'1C.: = );, 0 O, 1. 0.:3*0. (, 1. O0 4*0 O.' / ), *0.' Ol 1 2*0. 0,.1. ), 2*0. 0:31 0 ( 0 1. 0, 7*0. 0, 2 0, 5*0.,.1. i'*0. 0, 1. 0, 15*0. 0, 2.', 415*0 * 1. 0 1 1*0. 0, 2. C), 4*0.. 1., 14*0. O/' DATA -.3/2* 1. 0, 15*.'0. 0. - -1 0, 2*0 0 2. 0,. O 1 0 5*0 C 1 C' 1 *, 0, 2 * 0. O0 1 1. 0 40..0 1. 0, 6*. 01 4. 21 O. 7*0.. 0 > J2 O 4*U0, 1 0. 2C* I I 7*0 C) 1. 0, 5* 0 1. iO J 3. 3 0 n 1.., 5*0. IO I2 0 *0. 0. 2*1:'. O,:0'3*0 O, 1. O 0. o 1. f O 0.( 4 - Fi- 0, 1. C, *-0.-1 0 2*0. 0 1. C'*i O.. 1 1 4:.. 0, 1. 1, 0(. o, 2. t. 15:*.. 0,1 I 0 * l 0, 0 0 iC.5* 0. 2 *0. 0) 2*1., 15*,'... DATA A4/1 C 1' 11 1', 1 O 1 1.., 0, -1. 0 1 0', 19*':'.'::. 0, (0 5,'1 C,! 1. 0, 8-:*0. C 0. 0.:). t 1. O, 7*0 C),l _2-0; i5, 4 * 0 J. 1. 4*0. 1 0, 0. 0 * 5 0. 0 }. 2*: 0. C:', -l.: 0, 1 0, 7*0, 0, 1. 0, 4:*0. (, 1, 7*. O 4 1 0 *0.!, 1 00. 5* 0. 0 -2. 5* 0 0 *0 0/' 79 Fl-IRMAT(' DATrAFILE NAME Z 30 FORMAT(s-19) 81 FORMAT( I- 82 FOCIRMAT(I7.:83 FORMAT.' )3A2 84 FORMAT-. 14) -:5 FCIRMAT ( I5 E:6 FORIFMAT (G 8 5) 9;0 CiORMAT (4A. 91'`ORMAT( 6AL 92 CIRMAT('4A2) 93: FORMAT'(.;4A2)'99 FORMAT 1h "C OZMMENT:". ",::4A2) 100 FORMAT(H.. / i " DATE ". 5X. 4A2, T'ENGINE TYPE: ",:-:X3, 6A2, T' — "FUEL H/F C I RATIO =", F6:) 101 FORMAT(1H, " LOCATIO:N: UNIV OF M1C:H", T27. "SERIAL'NIIMBER X, "X.6. A2. T. "IGN ITI CIN TIMING=C " I 12: "[DEC" ) A- 2

102 FORMAT( 1H," OPERATORS: ". 24A2) 103 FORMAT(1HO, "RUN NO. ", 3A2/" MODE: ", 15) 104 FORMAT(1H."TEMP(DB) =", F6. 2, "F", T29, "FUEL RATE=", F9. 4, "#/HR", T57, "EN 1GINE RPM(NOM)=". I4, " RPM") 105 FORMAT( 1H "TEMP(DP) =", F6. 2, "F", T29, "AIR RATE =", F9. 4, "#/HR", T57, "EN 1GINE RPM(ACT)=",F5. 0, "RPM") 106 FORMAT(1H "TEMP(BAR) "l F6. 2, "F", T29, "F/A RATIO=", F9. 4, "#.#" T57, "BHP (OBS) -", F5. 1, "HP") 107 FORMAT((1H "BAR PRESS(OB)=" F6. 2.. "HG-, T29, "PHIM =" F9. 4, T57, "BHP 1(CORR) =", F5. 1, "HP") 108 FORMAT( 1H, "BAR PRESS(CR)=", F6.. 2, ""HGO, T57, "MAN VAC(OBS) =", F5. 2 "HG'") 109 FORMAT(1H, "SPEC HUMIDITY=", F6. 4 "#/#",T57, "MAN PRESS; S(CORR)=", F5. 2,'-"HG 110 FORMAT( 1H T25, "C:02" T35, ".02", T45, "UHCC", T55, "CO"', T65, "NO", T75, "NOX ) 11 FORMAT( 1H "CONC(PPM) ", T23, F7. O, T33, F7. 0, T43, F7., T53, F7. 0, T63, F7. O, T73, 1F7. 0) 115 FORMAT( 1H. "MASS/MODE(L:BM) ", T22, F8. 5, T32, F8 5, T42, F8. 5, T-52, F8.'5, T62, F8 5, 1T72, F8. 5) 116 FORMAT(1H, "MASS/RATED HP(#/HP)", T23, F7. 5, T33, F7. 5, T43, F7. 5, T53, F7. 5 T63, 1F7. 5, T73, F7. 5) 117 FORMAT( 1H, T20, "KWD", T28, "XTC", T35, "MWEXH"' T42, "EXH FLOW", T54, 1"FAC:AL", T65, "FAM", T70' "ERROR") 118 FORMAT(1H, "METHOD", F4. 1,3X 2F8. 5, F9. 5, F10. 3,2F9. 5 F7. 3) 11' FORMAT 1H, "MASS/HP/CYC(#/HP/C)", T23, F7. 5, T33, F7. 5, T43, F7. 5, T53, F7 5 rT63, F7. 73F7. T7F75) 120 FORMAT( 1H 1./) 122 FORMAT ( H. " (2F5 2)". 24") 1'23 FORMAT(1H (2F5.:23) F I TT ( 1 K2, K3, VAR) -' 1 VAR+K2*VAR*VAR+K3*VAR**3 C':=1 81792E-4 C:2=1. 75E-1C C3=3-. 5116E- 11 C4= —4. 71177E1 CE.-.02. 00984 C.-3 28746E-1 C7... 019:34 C 1 =-1. 2''66-55E-2 C: 1 25. 367 79,,E- C: 13=4. 91-.015E-8 CI15=-: 0205E-3 C 16 =5. 669'19E- 6 C 17=-4 5955E- 10 C18-:6 70727E-2 C 19 -.4 07332 E -. 4:! -21-3. 0-938:7E-2:22^ 1. 8:.. 3 7E -4:2:3 =5. 767 9.E-8 C24=1. 80806E-2 25=6'37274E-5 C:'2/6-: = 399':07E -9 C:27=6 08450E-2. C28=-. 28 671E-4:29=3-:''6270E-'S6:27U-=4, 92230E- 1 C:'28'_1=- 1. 004:39E-2 C29U-=6. 62162E —5::30=-2. 60958E —2 C31 =7. 83471E-5 C::32:- 1. 8:6948E-7 "C-' =3 6 10711 C34=1. 44451E —2 C35=E. 448:-:38E —4 C:36:=1 6 2481 C::37=5. 3: —3428E-:3 C38- 1. 58241E-5:'40= 164. 581 A-3

C:41 =. 245 C42='- 92. E-7 C 4:33. 89549E2 C44=1. 27588 4 =-6.. 2337 1E-:3 C:68= 1.:3::86'4E 1 C:6' =.:3-888:3:E -1 C:70=2.:37654E-2 C:71=:3 07229E1 C:72=-:3. 462: 2 C73= 2 596'63-E-1 C:74=5. 44677E1 C 75.-:. 054:3:7 76= 1. 01:355 t:77= 1. 6.2951 E: C78:=-1 35417 C7'9-=5. 9027::E-2 I:77U =1.:32,:-3:.E 1 C:781=-5 5,5556,E- 1:7'..- =7 71',05E —: 3 C::80=3: 787:35 E1 68 1.. 71806 C':- =2:,-,-.956E-1 C::3=-1. i.,.345E- 1 C:;:-4= —', 7 (:)0595 E- 5 C:85=.1: 0714 3E-8 C::-'6=6. 072'-'2E-1 C 87= —8. 75E-4 I.'8 — 1 69271E-6 F:89'F= 2 5.-R:-,,'7E6 C90.-:..-2 5'9517E4,-: -*-C-2-. 52202E-3 Irz4 -. 41714E-8,_ 5= - 55:315E- 13 CGENERAL INPF'UT DATA WFITE~ 10 "7 C READ( 1 1. i80)DAT AF ( 1 ) C-AL L CPEN( 1:. DATA F(1 ) 2, IER) IF IER. NE 1) IGO TO-:38 ACI:::E'T:' CI!TFP'IlTLF'LT=1. r:'TF'=2, BO TH=:'", I1OUT READiE' 1.::(:) T DATE T -I ), I= 1. 4 READ 13: -' I OPER'::. II I:: 1, 24' READ(I3 1 I. lFNI-' IE ). I=-. =I READ(!:3,9'1. (IENGSN( I) I = 1, 6) READ( 13:i )HF'R, HTC::R, EHCR, EHC:C' READ( I1 =.2) I GN7 F'EAD!' 1.'::1 DIiAM G0 T i:.: I 1-IT 2 WRITE-'2. i0;I DIATE IENCT; HTC:R WRITE 1;! 101C. ) IENG'SN:,N I CNT WRITE (1'102. ) T 0 lFER::3 REA! 1.:-'.' )! MMAX rDO 4 I" 4. HCMF'PC:. NOXMF'C(:. -(1: -MF'r ( I ) t 0 C.02M 2 M P C(Il. 0 -2MF'C:'I)0. NOMPC:( I ) =0 0 NOMF'C-: iI0) 1 4 CONTINUIE D[O 5 I-=1, 24 DC 5 J= 1,= 4 5 YF( I, ) = 0. )_ A-4

I PAGE=O DO 37 MODE=, MMAX IF(IOUT. EQ. 2) GO TO 6 IPAGE= I PAGE+1 IF(IPAGE. LT. 3) GO TO 6 WR I TE ( 12,' 120) I PAGE,=1 1C: INPUT DATA PER RUN 6 READ(13 93)(INFO(I), I=1,34) READ.( 13, 83) ( IRUN( I ), I=1, 3) READ( 13 81)M READ ( 13. 81 ) WOT READ(.13, 84)RPMN READ( 13,81 )C02RNG, CORNG REACd( 13. 85)HCRNG READ( 13 86)TIM, PEAR, TBAR, TWB, TDP, REV TIME, DYNL. PMANVI 1TINAV, DPINA, PINAS, WFUEL, CO2SP, COSP, 02SP, HCSP, NOSP, 2N02SP, C02SPR, COSPR, O2SPR, HCSPR, NOSPR, C02R COR. 302R, HCR, NOR, NOXR, DPINJ C: START OF COMPUTATION TBARC= ( TBAR-32. ) *5.' /9. TINA=FITT (C:4. 5, C:-,, TINA NV)+32. TDB=-TINA PBARK-=F'BAR* ( 1. +1. 84E-5* \ TBARC-16. 667 )( 1. +F I TT(C 1 C2, C3 TBARC) ) PBARE=PBARK.+7. 33623E-2*IDPINJ PS-AT-C 1 1+C 12*T2DPF+C: 13*TDP**3. 73 W-.,_-22*PSAT/( PBARK-PSAT) PVAP=W —WPBARK/ ( W+. 62197) RPM=REV/<( 6. *TI ME),C i':ORRECTED BRAKE HORSEPOWER HPF'B=YNL*RPM/3000. HFPE::=0. CO PMANK=0. 0 IF (WOT. EQ. 1! GO TO 10 r'FVAP=PFE:ARK., (PEBARK-PVAP) PMANK=-29. 53-. 555*S INS (RPM-2000. /8. 333)+. 038*SIN( (FRPM-2000. ) /* 889) CFMP-=PMAN:/ (PBIARK-PMANV) CFTEMP-( (TINA+460. )/520. )** 8 CFT IT= CF VAP*C:FMP*C:FTEMP HF'FFITTC' 15 CI16, C17, RPM) HF'BKE ( HF'B+HPF ) *CFF TOT-HPF 10 MU IINA =C;40+C:41 *TINA+C 42*T INA*TINA D I A=D I AM/ 2 C0- TO 1. 1 12, ).DIA 11 FVINA=FITT (C:89 C90, C, 91, DPINA)*(PI ARK+. 0733623*PINAS-PVAP )..' 1 ( ( 460. +T INA) *MI UI NA) 12 GO TO 14 13 FVINA-=2. 5177E7*FDP I NA* ( PBARK-. 07::3.:23*P I NAS-PVAP) /' ((460. +TINA)*MUINA) 14 FMINA- 0'7486*FVINA FMFUEL=WFUEL.*t-60 /TIME BSFC: =FMFUEL/'HF'E FAM=FMF.EL /FM I NA: CIRRECTEE CIONCENTRATION 4CC:SF'=HCSFP*3. HC:RNG=-HCRNCG/1 5000+- 1 GO TO (17, 18), HCRNG 1 7 HCC=HCCSP*HC:R /HC:SPR A-5

GO TO 19 18 HCSPC=FITT ( C:93 C94, C95 HCCSP) HCRK=HCR*HC:SPCE.F_/HC S:'R HCC:=FITT (43, C44 C45, HCRK ) 19 NO=NOSP*NOR/NOSF'R 02= ( 02SP*O2R/02S;PR ) * 1 E4 NOX SP=NOSP+N02SP NO X;SPR= NO X SP.-;NOSP;F'R/'NOSP NOX=NOX SP*NOXR/NOX SPR GO TO (20, 24, 25, 26), CORNG 20 IF (COSP. GE. 9. C)) -GO TO 21 COSPFC=F ITT ( 1:77, C:7':, C79. COSP) GO TO 22 21 COSFPC=F I TT ( C77U, l C:7:U C:79U C:OSP) 22 ClOR Fi.=COR C:OSE;PC:/CO SPR IF,CORK. GE. 80. 0) GO TO 23 CO=F ITT ( C27, C281 C29,: CORK)* 1 E4 -GO TO 27 23 CO-I=F ITT (C:27U, C:2E, l:29U CORK) * 1 E4 iGO TO 27 24 COS'PC=F I TT ( C80, C:81, C82, CSPF ) CORK:=COR*C:OSPC/COSF'R C:O=F I TT (::30, C::31, 32, CORK) *1 E4 GO'TO l27 25 COSPC=F ITT ( C::83, -:84, C85, C:OSFP):CORK-=COR*COSPCF':/COS;FPR CO=F ITT (C', C::34 C 35 C:5 CORK) GO TO' 27 26 C:OSPC-FITT( C86 —C, C87, C:,88, CO;FSP) C:ORK =COR*:COS;F':./'C:2OSPR C:-O=FI TT(:/36/ C:37, C:38, CORK ) 27 CONTINUE GO TO ( 28.: 29'-:30). C:02RNGl 28 C:I2SPF:=F ITT (:68:, C:6', C:70, C02SP) CI02 RK: F='L.-. R* C0F': 2S F'/C02SF'-R C:- 2=F I TT( 1 C' 8, C: 19 C:20C C:-2RK ) 1 E4 GO'rTt 31 29 CI02;FC= F I TT ( 71, 72, C:7, C02SP ) C R.FI:-:.=Cf02R*-fC:O /2-;F'C:./:2';PR:12=-F ITT C21 1 C1 22, C:23,.1-.-'lRI ).R') * 1E4 GO; TO:31 3::0 C:2S;F: =F I TT ( l:74, C:75, C767,'j 002-'r ) C:02R CF -- 0:C2R C0f. 2SP F'C/c:,2:1;F'R C:O2=FITT (C24, C:25,:2, C:02RK) 1E4:31:CONT I NUE iO TO 44 EMIS:=ION FLOW RATEc. (LBM HR) 40 HC:MFR=FVEXH*. 0359'-*HL'C: C 1 E6 NOXMF'R=F-VEXH*. 1 1'*NX./ 1 E6 COMFR=FVEXH*. 0726*O'rl.:/1E6 C:O02MFR=FVEXH*. 1 14 l2-C02/ 1E6 02MFR=FVEXH*. 08)_::3-02/.' 1E6 NOMFR=FVEXH*. 0778:*NO/'- 1E6 EMIS'; ION MAS';; PER M-ODE LE:M) HC:MF'M=HC:MFR*T I M./60. NO X MF'M NCI X MFR F* T I M./6( (:, CO MPM=C:OMFR*T I M/ 60 C. -2'MF'M=C C2MFR*T I M/ 60 0'2MPM==0 2MFR*- T I M/ 60 NOMPM=NOCMFR*T I M./60. C MA'.;S; PER MODE PER RATED HORS;EFPOWER A-6

HCMMP=HCMPMI/HPR NO X MMP=NO X MPM/HPR COMMP=COMPM/HPR C02MMP=CO2MPM/HPR 02MMP=02MPM/HPR NOMMP=NOMPM/HPR YP(3*MODE-2, METH)=COMMP/O. 042 YP ( 3*MODE- 1, METH) =HCMMP/O. 0019 YP ( 3*MODE, METH ) =NOXMMP/0. 0015 MASS PER RATED HORSEPOWER PER CYCLE HCMPC ( METH) =HCMPC ( METH) +HCMMP NOXMPC ( METH) =NOXMPC (METH)+NOXMMP COMPC ( METH) =COMPC ( MET) +COMMP C02MPC ( METH) =CO2MPC ( METH) +C02MMP 02MPC ( METH) =02MPC ( METH) +02MMP NOMPC (METH) =NOMPC ( METH) +NOMMP IF(MODE. LT. MMAX) GO TO 41 YP(22, METH)=COMPC( METH)/0. 042 YP ( 23 METH ) =HCMPC ( METH)/ 0019. YP(24, METH) =NOXMPC(METH )/0. 0015 41 GO TO (65 32,32 32.2 METH COMPUTED AIR-FUEL RATIO METHOD 1. 2(EXP K:);METHOD 2. 1(EXF XGW). METHOD 3. 1(K & XGW); METHOD 3. 2(K, XGW & NO 02) 44 N2027=78. 09/20. 95 AR02=- 93/20.?5 C0202= 03, 220. 95 A I R02- 1. 0+N202+ARC02+C:0202 N2A=( 1 00. -C:02A) /( 1. 0.+20. 95/78. 09+. 93/78 09) 02A=20. 95*N2A/78. 09 ARA=. 93.*N2A/78. 09 MWAIR=. 39948*ARA+. 4400995*C02A+ 280134*N2A4. 319988E02A H2002=W*AIR02*MWAIR/ 18. 015:34 WTR=. 08866 i'/1 A2(3, 3) =-(2. 0+2 0*C:02C!2+H2002) A2(4, 3) =-C:202 A2(4, 7)=EHCC A2(5/ 2)=-C02/. 1E6. A2(6, )=-CO/1E6 A2 ( 7. 16) =HC:C ( 1 E6*EHCC ) A2(8, 2) =-02' 1 E6 A2(9, 16)=NO/1E6 A2(10, 16)=(N!X-NO)/1E6. A2 ( I I.. - ) = —2 O*H2AnO~A2 11, 4) -— HTCR A2( 11, 7) =EHCC*EHC: F A2 1 2, 7)=-WTR A2 13, 3)=' 0*N202 A2( 14, 3) -ARF02 MET —1 2 METH=1 A2( 15.. 5)=0. 0 A2( 15, 6)=0. 0 A2( 15, 7)=0 0 A"< 15,'.' =O r) A-7

A2(15, 10)=0. 0 A2( 15,11)=-1 0 A2(15, 13)=0. 0 A2(15, 14)=0. 0 A2( 15, 1 5) =3. 5C.02/CO A2( 15, 16)=0. 0 G0C TO 48 46 MET=2. 1 METH=2 A2(15,5)=1. 0 A2(15,6 )=1 0 A2 (15, 7i=1.: A2( 15, )=1. A2 ( 15, )= 1 0 A2 (15, 1)=1. 0 A2( 15/ 11)=-. 0 A2 (15, 13=1. 0 A2( 15, 14)-1. 0 A2 15 15)=1. 0 A2 15, 16)=1 0 48- CALL CRT 15 KWDE=X ( 1 ) KWDD=X (2) AA= —X(:: ) FF'=X 4) X C 102, - X ( 5 X CF,:-= X ( 6 XHC X X7) XN!-r,X'?, X NI 2 — X 1 0' XHf''=X ( 11 XN-X 1)-: YAR- -X 14) XH2-=X( 15 XC=O. 0 G.-7 TO I- 6,' C50 MET::3. 1 *IELTH=.A::3,,:.-, 2 + 2. 0':, i C 20 f2 +H12002 ) A:: (4, - ) -.-2. 0-''H2':002 A4:: 4. 4 ) — HT,:CR.4-:,7, 7) EHC:C*EHC: R A:': 6 1 )- lC-./!/' E6 A:l 7 17) — HHC ( 1 E6-,*EHCC ) A': (,:' -7) -..' 11 E /',.-:: ( -., 1 7 =N Cl./'l E:, A - ( 1 C,, ) 7 N —' I X.- N /1 E " —, A:! 1.1 1 7.) =- ].: A.-. 12. 2 ) — W'TR A: 3(13, 3 = - 2. 0 N 2 02 A:-( i 14,:3 ) AR: 2 A:' (15. 15 ) =:. 5. *: 1 2/ C' A3( 16. 1 3. C2 A:: /:): = -C:C1 1'' A:: ( 1; 7 ) EHC:r CAL L CRT 1i K:WD=E X i 1 )! WEDDr= —X (2) AA-=X (:3) A-8

FF=X (4) XC02=X (5) XCcO=X (6) XHC:=X(7) X02=X (8) XNO=X (9) XNO2=X(10) XH2I0=X( 11) XN27=X(13) XAR=X ( 14) XH2=X ( 15) XC=X(16) iGO TO 60 55 MET=3. 2 METH=4 A4(1. 113)=1. 0 A4 (. — 3) =1. 0+C0202+H2002/2. 0+N202 A4 ( 4,:3) =C0202 A4(4, 7)=-EHC:C A4 (5, 2) =-C02/1 E6 A4(6, 1)=-CO/1lE6 A4 (7, 13) =HCC/ ( 1E6*EHCC ) A4(8, 13)= —(NOX-NO)./1E6 A4 9, 3)=2. 0O*H2002 A4(9 4)=-HTCR A4 ( 7) =-EHC:C*EHCR A4 < 10, 2) =-WTR A4 1I:-3) ==ARC02 A4 1. 1. 2 ) =:3. 5*C02./:CO CALL. C:RT12 KWD X( 1 ) KW D D X (2) I'-X ( = ) FF=X(4) X C02= X (5) XC:O=X (6) XHC:= X ( 7) X O — =0. 0 XNO==0 0 XN02=X (8) X H20-l=X X (', XN2;:... 0 XAR-X ( 11) XH27X (12) XC-O0. C 60 XTC=XC:02+XCO+ XHC:+X02 +XNO+XN02+XH20+XN2+XAR+XH2+XC: FAC:AL.-F'F( 12 01115+1. 0079.7*HTCR). (AIR02*MWAIR*AA) ERROR= ( FACAL-FAM) * 1.00. /FAM PHI,M: —FAM*(HTC:R/'4 +1. ) A IR02*MWAIR/( 12 01115+1. 0079'*HTC::R) IF(ME.TH NE 4) GO TO 61 MWEXH=2 7 5 GiO0 TO 6.2 M,1 MWEXH=('.4. 009'..95:*XC02+2'.2 01055*XC:O:3+ 12. 01115*EHCC+1 007'7*EHCC*EHC:EHR) l *XHC+31.'+'3998::8*X02+ 16 01 5.J4*XH20+2 01594'4*XH2+28. 0134*XN2+;,:::C, 061 *YN 0+46.. 0055*XN02+:3'. 948'*XAR+ 12. 01115* XC:)/'XTC;.,'F.<H=.:;385 479*(FMINA+FMF'ULF.. M WEYH Lil TD 40 65 GO TO;7, 68:, 67), I OUT 67 WR1TE(12. 103)IRUlN, M WRfiTE ( 12,':9 ) INFOM WRITE( 12, 104)TDB, FMFUEL, RPMN A-9

WR I TE( 12 1)05)TDP FM INA, RPM WR I TE ( 12, 106. ) TBAR, FAM, HPB WRITE( 12 107)PBAR, PHIM, HPBKf WR I TE ( 12, 1 0:3 ) PBARK, PMANV WR I TE( 1 2, 1 C.09) W, PMANK: WRITE( 12, 110) WRITE (12, 111 )C02, 02,'HCC, CO, NO, NOX 32 IF(InOUT. EQC. 2) GO TO:68 WR ITE( 12, 117) WRITE( 12,1 18)MET,.KWD, XTC, MWEXH, FVEXH, FACAL, FAM, ERROR WRITE< 12, 115) C0O2MMF'I 0'2MPM, HCMPM, COMPM, NOMPM, NOXMPM WRITE ( 1'2 116) C02MMP, 02MMP, HCMMP, COMMP, NOMMP, NOXMMP 68 IF (MODE. LT. MMAX) GO TO 36 IF(IOUT. EQ. 1) GO TO 70 WR I TE ( 14, 122) DO 6'9.= 1, 24 XP=O. 25+0. 25*(I-1)+0. 5* ((I- )3)+ 0. 25* ((-1)/21) 69 WRITE(14,123) XP YP( IMETH) IF(I OUT. EO. 2) GO TO:36 70 WR I TE (12, 1?) C:'02MPCF (METH), 02MPC ( METH ), HC:MPC ( METH ), COMPC: ( METH ) 1 NOMPC ( METH), NOXMPC ( METH) 36 CONT I NUE GO TO (4., 50, 55, 7), METH 37 CONTINUE READ ( 1:3,:81 ) MlORE IF(MORE E.. O ) GO TO 39: GO TO 3 38 TYPE "FILE NOT OPENED".3- CO NTT NUE CALL RESET ETOP END A-10

Appendix B Computer Program FARAT B-1

C THE UNIVERSITY OF MICHIGAN C. FARAT. FR (5/2"0/76 VERSION) 1C FUEL-AIR RATIO CALCULATION 1C.USE WITH CRT4, CRT 12 CRT15, C:RT 16 REAL N202, N2A, N2AS, MWAIR, MWEXH, NO, NOW, NOD, NODr NOX, NOXW, NOXD. NOXDD REAL KWDD, KWD, MET, INCR, K, F-KR INTEGER OT, FMAT, VAR, DISP1, DISP2', ISP3, DISP4, DISP';, FLAG DIMEN'S;ION A1 (4,5) A2( 15. 16), A3( 16, 17), A4(12. 1:2 1 ) B( l,, 17), X(16) COMMON/I N I T/B, X COMMON/ I N IT T./A 1 COMMON/INIT2/A2 C:OMMON/. I N I T:3-'A3 C:MMON/I N I T4./A4:CICMMCIN -S;TORI JC02W, JC02D, l1C:102fDD, JC:IW, JC _CODI JCODD J02W, J02, E J02DD, I;JHC:CW.-.JHC-C:D,_ JHC-.D:DD. JNOW, JNOD. JNODD, JNOXW, JNOXD, JNOXDD I ): FORMAT 1H, T7,'HTCR", T17, "EHCC", T27, "EHCR", T37 "C02A", T47, 1"PS;AT", T57, "PTRP"', T70. "W", T77, "N20r2") 1H,i FORMAT( 1H' T.. F5. 3, T16, 5. 3, T25, F6. 3, T3:.F5.. 3, T44, F 5, T55, F6. 3 1T65, F'6 41 T74, F7 4) 12O0 FORMAT( 1H.//'T5, RUN:'" F5. 1, T27, "C:02", T38:"CGO" I, T48, "02"-, T57, 1 "HC:', T6:::, "NO", T77, "NOX") 130 FORMAT( 1H, T5,'DRY MEAS;UREMENTS", T24, F7 0, T-34, F7. O, T44, F' O, 1T54. F7 C. T64, F7. 0. T74, F7. 0) 1 1I FORMAT;' 1H, T5, "DRIED MEASUEREMENTS". T24, F7. 0 T34 F7. 0, T44 F7 0, 1T54, F7. 0(, T64 F.7. 0, T74, F7. 0) 1:32 FORMAT< IH, T5 "'WEI MEASUREMENTS". 1'24, F7 O, T34, F7. 0, T44, F7 0, 1T54, F 7 0:, T64 F7. O, T74, F7. 0).:35 FORMAT 1IH /. T5 "ONL' WET MEASt;UREMENTS ALLOWED USE METHOD 2") 14(0 FORMAT( 1H, Tc.* "XC02, T13, "XC:O" T20, "XHr", T27 "X02", T:33, "XH201", 1T41, "'XH2", T4:8:. "XN2". T55,i "XNI-I", T61, "XN02", T6'.:., "XAR", T7'7, "XC.") 1 0 FORMAT(1H, 1 F7. 4) 160 FORMAT 1H, T6, "MTID", T:13 "XTC":" 22?'"K' T i". W: DD" T:34, "KWD"'T40, 1"FHIM", T4'.'MWEXH" T5:", "PHICAL", T62, "FACAL" T72, "Ft'"F' T77, "ERROR") 1-; - -''_RMAT( IH, 14, "N20'FI Tc, ": 2A" T20, " W", T22., "HTCR' -27, "EHCC:." 1T::33 "EHCR, T4-0. "XGW";T47; "K", T50, "MTID" T56, ":WDl". 2T/162.. "FAC:Ai'. T.2, "FAM", T77, "ERROR") 16-4 F-FORMA'T 1H, 2F6.:, F7 4, F6. 3, F4. 1, 2F6. 3, F5 2, F5. 1. F6. 3, 2F8: 5, F7. 3) 165 F ORMAT 1H. T, "C02 T1 4. "CO", T21. "02",'T2/:, "HCC":, T32., "NOC", 1T'': "NOX", T4c, "F'CHC" 1 4-'-., "FDA", T50, "MTD" Te;'6. "XTC", T62, "FACAL",.T7:''FAM" T'7, "ERROR") 1/-.6 F13RMAT( 1H F8 O, 2F7 0, F.. 0, ZF5. 0, F4. 2, F5 2, F4 1., F6.'3 2F8. 5, F7. 3) 170 F'!-RMAT(h - 7 1 5F7 4 F8. 4, F7. 4, 2F8 5, F7 " 3 18 F! RFMAT, 1H I) 11 F-ORMAT(IH 7 —1=: A:CE'T "H'Tf:R " HTCR, 1 F RUN ", " R! " 2' i 2 I, "-01"CO ", -:OI.'02 2 T,'"" HC.!.'" HC:*.., "H I. ", NOI. "NOIX " NOX I:3 "MEA;IRE:D F'E'L /'AIR " I FAM, 4"METHOID t1 I 1 2i 272 2 1(3),. 1(4) 3. 2' ) ",METHR, 5" IMET'H, METHMX " IMETH. METHMX, 6," ISF'.1. rIsF. 31 I;F'3: I:FP ", DISP, DISP2; DI SP:3; DISP4 ME HMX " IETHM X + 1 METH-I:ME THR D I';: F' -D I.;F'.'+ D I;F' 2 + I S;F:.+D I S F' P4 2',-, E-r:CC:= 10 ( EHrCR- 1. 85 C:0'2 A=O. 0:3 W=C0 01 PSAT=- 08;E: 6, PT RF-1 9. C0 B -2

XGW=1. 0 K=3. 5 FCHC=O. 0 FDA=O. 0 N2AS=78. 09 02AS=20. 95 ARAS=O. 9:3 NNEG=O NPOS= 1 INCR=O. 0 VAR=-18 JC02W=0 JC02D=0 JC0:O2DD= JCOW=0 JICOD= 1 JCODD=0 J02W=0 J02D=O J02DD= 1 JH:CCW= 1,.IHC:':D-=O JHCCD=0 JHC:C:DD==0 JNOW= 1 JINOD=0 JNODD=O JNOXW= 1 JNOXD=O,INOXDD=0'.. CI/02W=-C02 I *JC:02W C02D=C02 I *JC02D C02DD:=C:02 I *JC02DD COW=C'O I *,J-:COW C:OD= —O I *-JCOD C: CIEC:O ID: *CIJCODD 02W=02I*-'J02W 12D="02I*J02D 02DD=0 I 02JO2DD HC-:r:W=HCC I *JHCC::W HCECD=HC:C I *JHCC:D HC:C:DD=HCC I...HCCDD NOW=NO I *JNOW NODINO I *jINOD NODD-ENO I *.JNODD NOXW=NOX I* JNOXW NO X'D=-NOX I *JNOXDE NOXD- =NOX I *..NOX DD 0 ACC:EPT "GT ", GiT GOi TO (1. 2.:3, 4, 5, /6, 7, 8, 9, 10, 11, 12, 13i 14, 15, 16, 17, 18, 1r, 20, 1. 21 2.: 74 125, 26. I. 7, 28), GiT 1 A'-:C:EFT "HTC:R, EHCC:, EHC:R ", HTC.R, EHCC, EHC:F. G3I il T 0' 2 ACCEPT "C02A, W, C02A, W GO TO O:3 ACi:CEP'T'".;I02W, JC0:2DE,JC02DDE,.JCOW, JCODI, JCODD " JC 02W, JC:02DE, JC:02DLD 1 3JCOW, _JIC:IO-D I. D.lOD GO TO 2', 4 AC:C:EPT ",'J0I2W,.J02D, JO2DDI JHCCW,.JHC:CE. JHCC:DEI ". 02W,.J 02D[,.J2DD. 1IJHCC:W, JHC.:CD, JHCCDD GO TO 29 5 ACCEPT "'JNOW, JNOD, JNOEIDD, JNOXW, JNOXD>, JNOXDD " JNOW, JNODE, JNODDIE 1 JNOXW, JNO XD, JNOX DD GO TO 2 B- 3

6 ACCEPT "RUN ", RUN GO TO 0 7 ACCEPT "C02 " C02I GO TO 29 8 ACCEPT "CO ", COI GO TO 29 9 ACCEPT "02 " 02 I 60 TO 29 10 ACCEPT "HC: ", HC:I GO TO 29 11 ACCEPT "NO ",NO I GO TO 29 12 ACCEPT "NOX ", NOXI GO TO 29 1:3 ACCEPT "MEASURED FUEL/AIR ",FAM GO TO 0 14 AC:CEPT "XGW, K " XGW, K GO TO 0 15 ACCEPT "FCHC, FDA ", FCHC:, FDA GO TO 0 16 ACCFC='T "PSAT, PTRP " PS;AT, PTRP GO TO 0 17 ACCEPT "N2AS 02AS;, ARAS ", N2AS, 02AS, ARAS GO TO 0 18 ACCEPT "METHOD: 1. 1(1), 1. 2"(2), 2. 1(:3), 3. 1(4), 3.2(.5) ", METHR METH=METHR GO TO 0 19 ACCEPT"IMETH, METHMX ", IMETH, METHMX METHMX=METHMX+1 GO TO 0 20 AC:CEPT "DISP, DISF';P, DISP3, DISP4 ", DISPI, DISP2, DISP3, DISP4 D ISPS.=DISP1+DI SP+D I SP3+D ISP4 GO TO O 21 J=0 -iO TO 0 22 WRITE(12 181) GOC TO 0 23 WRITE(12. 180) GI TO 0 25 ACC:EPT "NNEG, NPOS, INI-:R " NNEG, NPOS, INCR NNEG-i=-NNEG GO TO 0 26 ACC:EPT "VAR=HTC:R( 1), EHC:C(2), EHC:R(3), C02A(4), W(5), PS;AT( 6) PTRPF'(7), 1 C02 (8) C O(9), 02- ( 10) HCC:<( 11 ). NO( ), NOX ( 1:3), XGW( 14), 15). -)FCHC-( 16)) 2FDA(17), NONE(1 ) " VAR GO TO 0 27 DO -90 NN=NNEG, NPOSFLAG=O GO TO (101,1020,10:30,1040, 1050, 1060, 1070, 1080, 1090, 1100, 1 110. 1 120, 1 11 30 CI1 40, 1150, 11 6 0, 11 70; 1-:00 ), VYAR 1010 IF (NN. GT. NNEG) GO TO 1011 HTCRR=HTCR 1011 IF (NN EQ. NPOS) GOI TO 1012 HTC:R=HTC:RR* (1 O+ I NC-:FI*NN) GO TO 1:300 1012 HTC':R=HTC-RR GO TIO I') 1020 IF (NN. CT. NNEG) GO TO 1021 EHC:CR=EH:CC: 1021 IF (NN. EL.. NPOSi) CG TO 1022 EHC:C:=EHL.C:R (* 1 0+ I NCR:*NN) GO TO 1:300 1022 EHC:C:=EHC:CR B-4

GO TO 90 1030 IF (NN. GT. NNEG) GO TO 1031 EHCRR=EHCR 1031 IF (NN. EQ. NPOS) GO TO 1032 EHCR=EHCRR*( 1. 0+INCR*NN) GO TO 1300 1032 EHCR=EHCRR GO TO 90 1040 IF (NN. GT. NNEG) GO TO 1041 C02AR=C02A 1041 IF (NN. EQ. NPOS) GO TO 1042 CO02A=CO2AR*( 1. 0+INCR*NN) GO TO 1:300 1042 CO2A=CO2AR GO, TO 90 1050 IF (NN. GT NNEG) GO TO 1051 WR=W 1051 IF (NN. EQ. NPOS) GO TO 1052 W=WR*( 1. O+INCR*NN) GO TO 1300 1052 W=WR GO TO 90 1060 IF (NN. GT. NNEG) GO TO 1061 PSATR=P'SAT 1061 IF (NN. EQ. NPOS) GO TO 1062 PSAT=PSATR*(1 0+INCR*NN) GO TO 1.300 1062 F'SAT=PSATR GO TO 90 1070 IF (NN GT. NNEG) GO TO 1071 PTRPR=PTRP 1071 IF (NN. EQ. NPOS) GO TO 1072. PTRP=PTRPR*(1 O+INCR*NN) GO TO 1300 1072 PTRP=PTRPR GO TO 90 1080 IF (NN. Ei.. NFPOS$ GO TO 1081 C02W=C:021 ( 1. + I NCR*NN) *JC02W C:02D=C02I * (1 0+INC:R*NN) JC02D CO02DD=C02 I * (1. 0+I NCRl-RNN ) JC02DD GO TO 1300 1081 C02W=C021 I-*JC02W C02D=C0O2I,JC:02D C02DD=C02 TI *JC2DD GO TO 90 1090 IF (NN EQ. NPOS) GO TO 1091 COW=CO I * ( 1. 0+ I NCR*NN) *JCOW COD=CO I * ( 1. 0+ I NCR*NN ) *.ICOD CODD=CO I * (1 O+ I NCR*NN) *.JCODD GO TO 1:300 1091 COW=CO I*JCOW C:OD=CO I * JCOD CODD=COI *JCODD GO TO 90 1100 IF (NN. E'. NPOS) GC TO 1 101 02W=02 ^ I( 1. 0+INCR*NN) *JO2W C02D=O=2I *( 1. 0+ I NCR*NN)*JO2D 02DD=02 I (1.0+ INCFRNN) *J02DD B-5

GO TO 1300 1101 02W=02I*J02W 02D=02 I *J02D 02DD=-02 I *IJ2DD GO TO 90 1110 IF (NN. EQ. NPOS) GO TO 1111 HC:CW=HCC I * ( 1 0+ I NCR*NN) *JHCCW HC:::D=HC:C: I * ( 1. 0+ I NCR*NN) *.JHCCD HC:C:ED=HC:: I * ( 1. O+ INC:R*NN) *_IHCCDD GO TO 1300 1111 HC:CW=HCC I *,-IHC:C:W HCCD=HC:CI *:JHC:CD HC:C:EDD=HC:C I *JIHCCDD IGO TO 90 112 IF (NN. E.. NPOS) IGO TO 1121 NOW=NOI(I 1. O+INCR*NN) *JNOW NOD=NO I * (1 0+ I NC:R*NN) *JNOD NODD=NOI ( 1. 0+ I NC:R*NN) *JNODD GO TO 1300 1121 NOW=NO I *,JNOW NODC=NO I *JNOD NODD=NOI,_JNODD LGO TO 90 1130 IF (NN. E..!. NFOS) GO TO 1 131 NOXW=NOX I (1. 0+INCR*NN) *.JNOXW NOXD=NOX I*( 1 + INCR*NN) *JNOXD NOXDD=NOX I *( 1 + I NC:RNN) *,JNOXDD GO rTO 1300 11:31 NOXW=NOX I *.NOXW NOXD=NOX I *.JNOXD NO X DI=NO X I i*,.JNOX DD GO TO 90 1140 IF (NN GT. NNEG) GO TO 1141 XGWR=XGW 1141 IF (NN. El:!. NPOS) GO TO 1142 XGW=XGlWR*( 1 O+INCRR*NN) TGO TO 1:300 1142 XGW=XGWR GO TO 90 11.50 IF (NN. G1 NNEG' GO1 TO 1151 FR=VK 1151 IF (NN. E.. NFOS) GO TO 1152 FK:=KR* ( 1 O+ I NC:R*NN) GO TO 1 00 1 152 K FKR 1160 IF (NN. GT. NNEG) GO TO 1161 FC:HC:R-=FCHC: 1161 IF (NN El! NF'PO:-. GO TO 1162 FC:HC=FCHCIR* (1 0+INC:R*NN) GO T O' 300 1162 1 F.CHFC:=FC:HCR GO TO 90 41170 IF (NN. i_-T. NNEi) GO TO 1171 FDAR=FDA 1171 IF (NN. E.r.. NF'OS) GO TO 1172 FDlA=FD ARF I 1. 0+INC:R*NN) GO TO 1:300 1172 FDA=FDAR C02W=-0 21 I *.JI:Ci02W B-6

C02D=C02I *JC02D C02DD=C02I *JC:O2DD COW=CO I *JCOW COD=CO I *,JCOD CODD=CO I *JCODD 02W=02I *J02W 02D=-02I *J02D 02DD=02I *JO2DD HCCW=HCC I *JHCCW HCCD=HCC I *JHCCD HCCDD=HCC I *JHCCDD NOW=NO I *jNOW NOD=NO I *JNOD NODD=NO I *JNODD NOXW=NOX I*,JNOXW NOXD-NOX I *.JNOXD NOXDD=NOX I*JNOXDD GO TO 90 1:300 CONT I NUE IF,'NN. EQ. NPOS) GO TO 90 C02=C02W+CO2D+CO2DD CO=COW+COD+CODD 02=02W+02D+02DD HC:C=HCCW+HCCD+HC:CDD NO=NOW+NOD+NODD NOX =NOXW+NOXDN+NOXDD GO TO (30,40,40,40 40), METH C,: METHOD 1. 1 (SIMF'LE K WET MEASUREMENTS ONLY) ********** 30 MET=1. 1 IF (C02W. LT 1. ) GO TO 32 IF (COW. LT. 1. ) GO TO 32 GO TO 34 32 WRITE (12, 135) iGO TO 0 34 CONTINUE N202=79. 01/20. 99 AR02=0. 0 C:02,02= 0. 0 AIR02=4 764 N2A=79. 01 b2A=20. 99 ARA=O. 0 MWAIR=28. 97 H2002=0 0 DATA A 1/2. 0, 4*0 0, 1. 0, 2*0 0, -1 0,0. 0 -2. 0, 1. O, 2*0. 0, -2. 0,5*0../ Al 1, 5)=(COW+2. *(C02W+02W) )/1E6 A 1 ( 2, 5) = (C02W+COW+HCr:W) / 1 E6 A 1(3 2)==HTC:R A 1:3, 5) =EHCR*H:CC:W/1 E6 A1 (4, 4i )=-K*C:2W/C:OW C:ALL C:RT4 K-WD= 1. — X ( ) AA=X( 1) FF=X(2) X C:O 2=CO2W/: 1 E6 XC:O-COW/C' 1E6 XH-C.=HCC:W/ ( EHC:C* 1 E6 X02=02W/ E6 B-7

XH20=X (3) XH2=X(4) XN2-N2'2*X(1) XNO=0. 0 XN02=0O. 0 XAR=0. 0 XC=0. 0 GO TO 75 C: METHOD 1. 2 (EXP K); METHOD 2. 1 (EXP XGW); METHOD 3. 1 (K & XGW) ******* OC MHMETHOD 3. 2 (K, XGiW & NOT 02) **************** 40 N20C2=-N2AS/02AS ARO2=ARAS/O02AS C0202=C02A./02AS AIRI02= 1. +N202+AR02+C0202 N2A= ( 100. -C02A) / ( 1. +02AS/N2AS+ARAS/N2AS) 02A=02AS.*N2A/N2AS ARA=ARAS*N2A/N2AS MWA IR=. 39'48*ARA+. 4400995*1C:02A+. 280134*N2A+.319988*02A H2002=W*AR I R02*MWA I R./18. 0 15:34 WTR=PSAT./PTRP GO TO ( 30,50,50,60,70), METH DATA A2'/. O, 1. 0, 14*0. 0, -. O 31*0. 0, -1. O 13*0. O, 2. O 2*1. O/ 112 *0. 0. 2*1. 0, 0. O, 1. 0, 15*0. O, 1., 10*0. O, 2. O, 4*0. O, 1. 0, 9*0. C, 1. 0, 25*0. 0 1. 03. 0, 1. 0, 4*0. 0,2. 0, 6*. 0, 1. 0 2*0. O, 1. 0, 2*0. 0, 1. 0, 30. 0, 1 C, 7*0. 0, 2. 0, 50. 0 9 1. 0, 90. O, 1. O0 15*0. 0, 2. 01 415*0. 0, 1. 0, 11*0. O, 2. O, 4*0. 0, 1. C, 14*0 O/ 50) A2( 1, 7)=FC:HC A2 (3, 3) =-(2. 0+2. O*Cf0202+H2002 ) A2 ( 4 3) =-C0202 A2(4, 7)= EHC:C A2 5. 1 ) =-C:02D./1 E6 A2 (5 2 ) =-C:02DD/ 1 E6 A2 ( 5.16) =-C02W/ 1 E6 A2(6, 1 )=-C:OID/1E6 A2 6. 2) = -C:ODD/ 1E6 A2 ( 6, 16) =COW/. 1 E6 A2 7, 1 ) -HC:C:D/ ( 1E6*EHIC: ) A2 ( 7, 2) =-HCCDD/ ( 1( E-6*EHCC: ) A2 ( 7 16) =HC:C:W/' (1 E6*EHC:C ) A2(8, 1 )=-02D/' E6 A2 (. 2) =-02DrD/1 E6 A2 8, 16) =02W/1E E. A2(9, I ) =-NOD/' 1E6 A2 ( 9 2 ) =-NODD/E' 1E6 A2 (9 1.6) =NOW/I E6 A2(10, 1)=-(NOXD-NOD)/1 E6 A2 ( 10 2 ) =- ( NOXDD-NODD ). 1 E6 A2 1), 116)=(NOXW-NOW)./1E6 A2 ( 11, 3)-2 0*H2002 A2<( 11, 4)= —HTCR A2 ( 1, 7) =EHCR*EHCC. A2( 1 2)-' —.WTR A2 1:3,:3) =-2. 0*N202 A2( 14.:: ) =-AR02 GO TO (30, 51,52), METM C: METHOD 1 2 (EXPANDED.) ********** 51 MET=1 2 A2( 15, 5)-0. 0 A2( 15, 6)=10. 0 B-8

A2(15,7)=0. A2(15,8)=0. O A2(15,9)=0. 0 A2(15 10)=0. O A2(15,11)=-1. A2(15, 13)=0. O A2(15, 14)=0. 0 A2(15, 15)=K*C02/CO A2( 15, 16)=0. 0 GO TO 55 C METHOD 2. 1 (EXPANDED XGW) ********** 52 MET=2. 1 A2( 15 5)=1. O A2( 15, 6) = 1. 0 A2(15,7)=1. 0 A2(15, 8)=1 0 A2( 115 9)=-1. 0 A2(15 10)=1. 0 A2(15, 11)=1. 0 A2( 15, 13)=1. 0 A2(15 14)=1. 0 A2(15, 15)=1. 0 A2(15, 16)=XGW 0G TO 55 55 CALL CRT15 KWDX ( 1) KWDD=X(2) AA=X(3) FF=X(4) XC:02=X(5) XCO=X(6) XHC=X(7) X02=X(8) XNO=X(9) XN02=X(10) XH20=X 11) XN2=X( 13) XAR=X(14) XH2=X(15) XC=O. 0 GO TO 75 C: METHOD 3. 1 (K & XGW) *************** DATA A3/2*1. ), 15*0. 0, -. O, 45*0. C0, -1. 0 2*0 0, 2. 0, 0. 0 1. 0, 5*0 0, 1. O, 14*0. 0, 1. 0 2*0. O, 1 O, 2*0. O, 1. 1, 4*0., I 0, 4*0 O, 1. 0 6*0. *, 1. 0, 3*0. 0, 21 0, 7*0. 0, 2 0, 4*0. ), 1. O, 2*0. 0, 1., 7*0. O, 1. 0, 5*0. 0, 1. )0 0C., 1 O, 30. 0, 1. 0, 5*0. O, 2. 0, 6*0. O, 2*1. O0 0. O, 1. O, 3*00. C. 1. 0, 1. O 1. 2. 0, 46*0 0, 1. 0, 3*0. 0 -1. 0, 2*0. O, 1. 0, 9*0. O, 1. O, 14*0 O0 1. 0, 0. 0, 2. 0, 51:3*0 0 1. 0, 2*0 O, 1 0, 50. 0, 2 *., 6*0. O, I 0, 20*0. 0, 2*1 0, 15*0, O0/ 60 MET=3.1 A3( 1, 7)=FCHC. A3 (3:3) =-(2. 0+2..0*C0202+H2002) A3 (4 3)=-2. 0*H2002 A3( 4 4)=-HTCR A3'( 4 7) =EHC:R*EHC:C: A3(5, 1 ) =-C2D/1E6 A3(5, 2 ) =-C:02DD,' 1E6 A3(5, 17)=C:02W/1E6 A3(6, 1)= —COD./1E6 A3 (6, 21 =-CODD." 1 E6 A3(6, 17)= —COW/E6 B-9

A3( 7, 1 ) =-HC:CD./ ( 1Et6*EHCC: ) A3 ( 7, 2) =-HC:CDD/ ( E6*EHF:C: ) A3( 7 17)=HCCW/( 1E6*EHCC ) A3<(8 1)=-02D/1E6 A3 ( 8, 2 ) =-02DD/ 1E/, A3(8,2)==-02DD/lE6 A3 ( 17)=02W/'1E6 A3 (, 1)=-NOD/1E6 A3 (, 2)=-NODD/ 1E6 A3 (, 17)=NOW/'1E6 A3( 10 1 )=-(NOXD-NOD)/1E6 A3 1 0, 2) =- ( NOXDDE-NODD) /' E6 A:3( 10 17)=(NOXW-NOW)/'1E6 A3(11, 17)=XGW A3( 122. ) =-WTR A3( 13 3) =-2. 0*N202 A: ( 14, 3)=-AR02 A3 (15, 15) =K*IC0 2/CO A:3. ( 16, 3) =_-C:C0202 A:3 ( 1,, 7) =EHCC CALL CRT 1 K:WD=X ( 1) KWDD==X(2) AA=X(3) FF=X(4) XC02=-X (5) XCl=X:-.) XHC=X(7) X02=X (8) XNO-=X(9) XN02=X(10) XH20=X(11) XN2=X( 1:3) XAR=X( 14) XH2-=X\ 15) XC=X( 1 ) GO TO 75 METHOD 3 2 (t:: XGW, BUT NOT 2 N REQ-'D) ************** DATA A4/'1, -1. 0, 11 *0. 0, 1. 0, 25*0. 0, 1. 0, 11*0. 0, -1. 0, 1. ), 19*0 0, 0. 5, -1. 0, 0. 0, 1 0, 8:*0 0, 1. O, 3*0. 0 1. 7O 7*0. (0 2-0. 5, 4*0. O0 1 0, 4*0. 0, 1 O, 0. 0, 0. 5, 5*c0. 0, -2. 0,:-32*0 ), -1 0,0 0, -1. ), 7*0. 0, 1. O, 4*0. 0, 1. 0 7*C0. ), 4-. 0,:3*0. C), 1. 0, 5*0. O 5 -2. O, 5*0. 0, 1. 0, 9*'0. 0./ 70 MET=3. 2 A4(1, 7)=FCHC: A4 (1, 13)=XGW A4(3, 3)-=1. 0+C:0202+H2002/2 0+N202 A4( 4:3)=02r02 A4(4, 7) =-EHC: A4(5, 1 ) =-C —02D -/1EDI A4 ( 5, 2) = —C:I2EDD/1 E6 A4 5., 1 3) =C:02W/ 1 E6 A4(6 i ) =-COD./1 E6 A4 (6 27 ) =-I:DDi/1 E 6 A4 (, 13) =CO/ 1 E6 A4(7, 1 ) --— HCCD// ( 1E6*EH-C: ) A4 ( 7,.2 ) =-HC:CIDD/' 1 E6*EHC:C ) A4 ( 7, 1:3 ) =HC C:W/( 1E6&-*EHCC. A4 (, 1) =-(NOXD-NOD)/l' 1E. A4 ( 8 Z =-2 ( NOX DDE-NODD )./'1E6 A4 (:, 13 )-=(NOIXW-NGW)..1E6 A4 (9, 3 =2. 0C*H2f00I2 B-10

A4(9 4)=HTCR A4(9,7)=-EHCR*EHCC: A4(10 2)=-WTR A4(11,3)=AR02 A4(12,12)=K*C02/CO CALL CRT12 KWD=X( 1) KWDD=X(2) AA=X(3) FF=X(4) XC02=X(5) XCO=X(6) XHC=X(7) X02=0.. XNO=O. O XNO2=X(8) XH20=X( ) XN2=0. O XAR=X(11) XH2=X(12) XC=O. O 75 IF (FLAG. EQ. 1) GO TO 80 IF (FDA. EQ. O) GO TO 80 FLAG=1 DA02=AIR02+H2002 V =FDA/DA02 V2=AIR02*V1 C02W= ( ( C02 I +V 1 *C2022) *JC02W) /( 1. 0+FDA) C02D= ( (CO2 I *KWD+V 1 *1C0202) *.JC02D) / ( KWD+V2) C02DD= ( (C:02 *IKWDD+V 1*C2022) *JCO2DD) / ( KWDD+V ) COW= CO I*JCOW)/( 1. O+FDA):COD=(CO I*KWE*.JCO )/ (KWD+V2) C:ODD= ( CO I KWDD*JCODD)/(KWDD+V2) 02W=( ( 02I+V 1 ) *J2W)/ ( 1. 0+FDA) 02D=((02I *KWD+V1) *.O2D)/ (KWD+V2) 02DD= ( (02 I *KWDD+V 1) *JO2DD) /< (KWDD+V2) HCCW= ( HCCI I *,JHC'W/EHCC) /( 1. O+FEDA) HC:C:ED= (HCC I *KWD*JIHCCD./EHC:C) / (KWD+V2) HC:CDD= HCC: I K::WDD*JHCCDD/: EHCC ) / (KWDD+V2) NOW=(NO I *NOW)/( 1. 0+FDA) NOD= ( NOI I *WD O/KW*J ) WD+V2) NODD= (NO I *KWDD*.JN0IE) / < KWDD+V2) NOXW=(NOX I*.IJNIXW)/( 1. O+FDA) NOX= ( NOXI *KWDW*JNOXD)./( KWD+V2) NOX'DD=-' NOX I *F:KWDD*NOXDD ) / ( F::WDD+V2) iGO TO 1.300 80 XTC=-XC02+XC:O+XHC+X02+XNO+XN02+XH20+XN2+XAR+XH2+XC FACAL=FF*( 12. 01115+1. 00797*HTCR)/'(AIR02*MWAIR*AA) ERROR=(FACAL-FAM) *100. /FAM PHIM=FAM*( HTCR/4 +1. ) *AIR02*MWAIR/ (12. 01115+1. 00797*HTCR) PHICAL=PHIM*FACAL/FAM MWEXH=(44 00995*XC02+28. 01055*XCC+( 12 01115+1 00797*EHCR ) *EHCC 1*XHC:+31 9988*X02+18. 01534*XH20+2. 01594*XH2+28. 01 34*XN2+ 230 0061*XN0+46. 0055*XN02+:3'. 948*XAR+12 011 15*XC)-/XTC B-1l

IF (J. GT. 0) GO TO 81 WRITE( 12, 120)RUN WRITE( 12, 1:-30) I02D, COD, 02D, HCCD, NOD, NOXD WRITE( 12, 131 )C02DD, CODD, 02DD, HCCDD, NODD, NOXDD WRITE( 12, 132)C02W, COW, 02W, HCCW, NOW, NOXW WRITE( 12, 100) WRITE( 12 10 )HTCR, EHCC, EHCR, C02A, PSAT, PTRP, W, N202 WRITE( 12, 181) 81 J=J+1 IF (DISP1. ElQ. 0) GO TO 83 IF (DISPS. GT. 1) GO TO 811 IF (J. GT. 1) GO TO 82 811 WRITE(12, 165) 82 WRITE( 12, 166)C02, CO, 02, HCC, NO, NOX, FCHC, FDA, MET, XTC, FACAL, FAM; ERROR 83 IF (DISP2. E.. 0) GO TO 85 IF (DISPS. GT. 1) GO TO 831 IF (. GT. 1) GO TO 84 831 WRITE(12 1 60) 84 GO TO (841, 841,842,841, 8-:41), METH 841 WRITE( 12, 170)MET, XTC:, K, KWDD, KWD, PHIM, MWEXH, PHICAL, FACAL, FAM, ERROR GO TO 85 842 WRITE( 12, 170)MET, XTC, Z K:WDD, KWD, PHIM, MWEXH, PHICAL, FACAL, FAM, ERROR 85 IF (DISP3. E!. O) GO TO 87 IF (DISFS. GT 1) GO TO 851 IF (J. T 1) GO TO 86 851 WRITE( 12, 140) 86 WRITE( 12. 150)XC02, XCO, XHC:, X02, XH20, XH2, XN2, XNO, XN02, XAR, XC:-7 IF (DISP4. EQ. O) GO TO! 89 IF (DISPS GT 1) GO TO 871 IF (J. GT. 1) GO TO 88 871 WRITE(12. 163) 88: WRITE( 12, 164).N202. C:012A, W, HTCR, EHCC, EHCR, XGW, K, MET, KWD, FACAL. 1FAM. ERROR 8? IF (DIS PS;. EQ. 1) GO TO 81.1 WRITE ( 12, 181) 891 IF (IMETH. EO. O) GO TO 0 METH=METH+ I METH IF (METH LT METHMX) GO TO 27 METH=METHR:GO TO 0 90 CONTINUE 24 CONTINUE T OF' END B-12

Appendix C Computer Subroutine CRT4 C-1

SUBROUTINE CRT4 INTEGER C DIMENSION A (4, 5), B (16 17), X(1.6) COMMON/I NI T/B, X COMMON/IN I T 1/A1 DO 1 II=, 16 DO 1 J=l, 17 ( I, J)=O 1 CONT I NUE DOr 2 I1=, 16 X( I )=O CONT I NUE DO 3 I=1, 4 B(I, 1)=AI<I, 1) 3 CONTINUE DO 4 -=2, 5 B( 1, J)=A 1 1, J),/'A1 ( 1, 1 ) 4 CONTINUE DO 8 C'=2, 4..!=C: DO 6 I=J, 4;SUM=O J 1 =,-1 DO 5 FK= 1, JJ SIUM=SUM+B ( I K ) *B ( K, J) 5 CONT I NUE E: ( I, J)=A 1 ( I, J_) SLUM 6 CONT I NUE I=J DO 8 J=I 1 5 SUIM=O.J1 =J-1 DO 7 K=1=l J;UM=E; UM+B ( I, K. ) *-: (!., J) 7 CONTINUE B( I J)=(Al I( I J) -SUM)/' B I, I) 8 CONT I NUE X(4)=B(4. 5) DO 10 L=2 4 I=4+1-L SUM==O I1=I+1 DO?9 K=I 1, 4 Sl UM=SIM+B E I F' ) * X (: ) 9 CONTINUE X( I)=B(I,5) —:3LIM 1 CONT I NUE RETURN END C-2

Appendix D Computer Subroutine CRT12 D-1

SUBROUT I NE CRT 12 INTEGER C DIMENSION A4(12 1 13), B( 16, 17), X(16) COMMON/INIT./B, X COMMON./ IN I T4/A4 DO 1 I=1, 16 DO 1 J=l1 17 B(I, J)=O 1 CONTINUE DO 2 I= 1, 16 X(I)=O 2 CONT I NUE DO 3 I=1, 12 B(I, 1)=A4(I, 1) 3 CONTINUE DO 4 J=2 1:3 B( 1, J) =A4( 1, _)/A4( 1, 1 ) 4 CONT I NUE DCO 8 C:=2, 12 J = C DO 6 I==J, 12 SUM —= j, 1 =,1-1 DO 5.::= 1J 1.;UM= —:;IM+1B ( I,: ) *-B ( K, J) 5 CONT I NUE B I J ) =A4 < I, J) -SUM 6 CONT INUE I=J I =I+i DO 8 J3=I1. 1 3.Ji j - i. L DO 7 -.= 1, J11 SUM —S.IM+B ( I, ) * B (K:, Ji'. 7 L.ONT I NUE B ( I, J) = ( A4 < I,.J) -SU;M)/B (I, I CONT I NUE X ( 12 =E:(12 1:3) E 1-1 2C L -2, 12 DI IC L=2 12 I-.- i:+1- L I1=I+1 DO 9 K=I1 I 12'U-;M=SUIM+B ( I, K) *X <K ).: CONT I NUE X (I )-E' I, 1:3)-SUM 1 C CONT I NUE RETURN END D-2

Appendix E Computer Subroutine CRT15 E-1

SUBROUT I NE CRT 15 INTEGER C DIMENSION A2(15, 16),B(16, 17), X(16) COMMON/IN IT/B, X COMMON/' I N I T2/A2 DO 1 I=1, 16 DO 1 J=l. 17 B( I, J)=0 1 CONT I NUE DO 2 I=1, 16 X( I )=O 2 CONT I NUE DO 3 I=1, 15 B ( I.. 1)=A2(I, 1) 3 CONTINUE DO 4.'-2, 16 ( 1.- J) =A2( 1, J)'A2( 1, 1 ) 4 CONTINUE DO 8 C2 11.J=C DO 6 I=.J, 15 SUM=O J1=J- 1 DO 5 K=I, Jl SUM=SU-IM+B ( I, K) *3 ( K:, J) 5 CONT I NUE B( I J)=A2( I, J) -SUM 6 CONT I NUE I1=I+1 DO 8 J=I1, 16 $UM=O _11=.1-1 DO 7 K=1, 1 SUM=SUM+EB ( I K) *B < (K, J) 7 CONT I NUE B( I, J)=(A2( I, J_)-SUM)/B( I, I) 8 CONT I NUE X(15)=B:( 15, 16) DO 10 L=2, 15 I=15+1-L SULM= I1=I+1 DO 9 K:=I1, 15 —;UM=SUM+B ( I, K ) *X ( K) CONTINUE X( I )=B( I 1 6) —:;UM 10 CONT I NUE RETURN.END E-2

Appendix F Computer Subroutine CRT16 F-1

UNIVERSITY OF MICHIGAN 3 9015 03527 0175 SUBROUT I NE CRT 16 INTEGER C DIMENS ION A3 (16 17),B(1 1 7) (16) COMMON/INIT/B. X COMMON/INI T3/A3 DO 1 I=1,16 DO 1 J=l, 17 B(I, d)=O 1 CONTI NUE DO 2 I=1, 16 X(I)=O CONT I NUE DO3:3 I=1. 16 B(I, 1)=A3(I, 1) 3 CONT I NUE DO 4 J=2 17 (1, J)=A3(1, J)/A3<1, 1 4 CONT INUE DO 8 C=2. 1. J=C: DO 6 I=1J 16 SUM=O J1l=J-1 DO 5 K:= 1 J 1 SUM=SUM+B ( I, K) *B ( K, J) 5 CONT INUE B( I, J)=A:3( II d)-SUM C:ONT I NUE I =J I 1=-I+ DO 8 J=I1, 17,LI;M=O...I1,_- 1-1 DO 7 K=:1, _1 -:UM=-;UM+Ei I. F *B ( K, C::NT I NI IE E. I._ -J); —' l' SU-)M)/'B<I I) r C:ONT I NUI X ( 16 )= 16 17' DO 10 L:=2, 16 I=16+1 — L;SUjM=0 I.=1- I1 D[' 9,:.=I1, 1,;. SI M=SUM-MB E: I, t -' *X k' ) 1- 1NTI NlIF RET IRN END F-2