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ABSTRACT

Numerical results describing the asymmetric collapse of vapor
bubbles in a viscous incompressible liquid for various cases of axial
symmetry involving boundary conditions which prevent the mainten-
ance of spherical symmetry are presented using a modified Marker-
and-Cell (MAC) technique.

The cases studied include an originally slightly non-spherical
bubble in an infinite static liquid at uniform pressure; originally sta-
tionary spherical bubbles in a pressure gradient, and in a liquid at
uniform pressure close to a rigid wall; and finally an originally spherical
bubble moving through an otherwise stationary liquid at uniform pres-
sure.

In all those cases which involve originally spherical bubbles,

the bubble collapses in such a way as to form a jet.
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I. INTRODUCTION

A detailed understanding of the collapse of cavitation bubbles
under various asymmetric initial and boundary conditions is of funda-
mental importance in developing an understanding of the cavitation
damage mechanism. Various earlier numerical studies in this area
(1-4.e.g.) have assumed the damage accompanying cavitation is due to
the ""'shock' wave produced in the liquid during the rebound of bubbles
which have previously collapsed to a very small size with a high pres-

(5-7,e. g.) of both theoreti-

sure within. More recently a growing body
cal and experimental evidence points to asymmetric collapse, in which
the liquid on one segment of the surface moves inward at a much higher
velocity than the rest of the bubble wall, thus forming a narrow high
velocity liquid jet, as the culprit. (The theories are not mutually ex-
clusive.)

The aim of the present study was to use currently available
numerical techniques with the large computers now available to trace
models of individual cavitation bubbles as far into their collapse as
possible under a number of asymmetric initial and boundary conditions
which are similar to those found in various real flow situations. The
particular problems investigated include: 1) an initially slightly non-
spherical stationary bubble; 2) initially spherical, stationary bubbles in
two different linear pressure gradients; 3) an initially spherical bubble
moving relative to the surrounding liquid; and 4) an initially spherical

stationary bubble near a solid wall.

II. ANALYSIS

The general problem is defined as follows: A mass of homo-

geneous, viscous incompressible liquid surrounds a''bubble'’ which is

als

"A viscosity of 100x 60°F water was used. A large value was selected to
aid in stabilizing the calculation and because earlier calculations (3) have
shown that viscosity does not importantly affect bubble collapse over
radius ratios as used here.



assumed initially to have a hypothetical rigid wall (as a '"'ping-pong
ball"). The bubble may be assumed to contain gas and/or vapor
whose pressure follows an appropriate equation of state, but in the
present cases the internal pressure is assumed to be zero or con-
stant with time, (assumptions which are equivalent). Surface tension
effects are neglected, although they may be added to the analysis with
only a slight increase in complexity. Thermodynamic effects are also
assumed negligible. Arbitrary initial and boundary conditions including
initial bubble shape, pressure and velocity distributions in the liquid,
and a free-slip or non-slip adjacent solid wall may be imposed; how-
ever, all such conditions must be axially symmetric. The hypothetical
bubble wall is assumed annihilatedinstantaneously at time zero, collapse
ensuing from that point. The goal is to determine the subsequent shape
of the bubble, local bubble wall velocities, and the instantaneous pres-
sure at various points in the liquid.

The method here used for solving the problem is a modification
of the Marker-and-Cell (MAC) method developed at L.os Alamos. (8,9)
The details of the technique are described fully in the Ph. D. disserta-
(10)

tion of the first author; a brief description follows.
The starting point is the general vector form of the incompres-

sible hydrodynamic equations for continuity and conservation of momen-

tum:
P
D = V-1 =0 (1)
0 .lr - Py 2 -»
Y =-(u-V)yu-VP+ s V'u (2)
where U is the velocity vector, P = pressure/density = '"Head' and +

is the kinematic viscosity. If the divergence of Eq. (2) is taken and

the appropriate vector identities are applied, the result is

P o
_587 (V-m=-V- (- mm-vip (3)

Equations (2) and (3) along with the appropriate initial and boundary

conditions form the hydrodynamic basis for the MAC solution.



Axial symmetry is assumed and Eqgs. (2) and (3) are then writ-
ten for a system of spherical coordinates, first in component differen-
tial equation form, then in finite difference form. Appropriate formula-
tions are established for boundary conditions including the axis of sym-
metry, free surfaces, free-slip and no-slip walls, and the "infinite"
liquid. The region of interest is discretized, as shown in Fig. 1, with
the boundary cells also indicated. In addition to the Eulerian (fixed)
grid, a series of massless marker particles are assigned to locations
on the liquid-void interface. The purpose of the particles is to show
which cells are on the liquid surface and to serve as an outline tracing
the bubble surface motion over the history of the collapse.

The sequence of calculations has been described previously. (10, 1)
In brief, if the pressure and velocity distribution are known throughout
the liquid at some time t, then the finite difference form of Eq. (2) is
used to find the new values for the radial and tangential velocity com-
ponents. Eq. (3) is then solved iteratively to determine the new pres-
sure distribution. The velocity components of the marker particles
are then calculated by position-interpolation from the nearest Eulerian
grid components, and the new marker particle positions are determined
after movement by increments equal to the product of the particle velo-
city and the time increment 6 t. The grid is then scanned to see
whether the marker particle motion has filled (or emptied) any of the
previously empty (or full) Eulerian cells; if so, those cells are incor-
porated (or excluded) in the succeeding Eulerian calculations. The
cycle is then repeated.

The present technique differs considerably from a technique

(7)

reported recently by Plesset and Chapman' ' for solving similar prob-
lems. The primary differences are: 1) the present technique includes
the primary velocity components while Plesset- Chapman uses the

velocity potential; 2) the present technique includes viscosity while the

latter (Plesset-Chapman) is for inviscid flow; and 3) the present



analysis is written in spherical coordinates, the latter in cylindri-
cal. With regard to (3), there are distinct advantages on either side.
A spherical grid offers good resolution in the region of interest during
the early stages of the collapse, i.e., in the vicinity of the bubble
wall, and may tend to reduce machine instabilities associated with
conditions at infinity. On the other hand, cylindrical coordinates
allow a straightforward and simple description of flat rigid surface
boundaries. Spherical coordinates also are less satisfactory for
large bubble deformations, when a jet of liquid may approach the
origin of coordinates, which is essentially a singularity.

Some direct comparisons will be made between our results
and those of Plesset and Chapman in the next section. Both techniques
have been employed to treat one common problem, the collapse of an
initially spherical bubble whose center is (3/2) RO (R0 is the initial

radius) from a flat rigid wall.

III., RESULTS
A. Initially Non-Spherical Bubble

The first of the four specific problems examined here is the
determination of the effect of small initial perturbations of the sur-
face of an otherwise spherical bubble collapsing in an infinite static
liquid at originally uniform pressure. Plesset and Mitchell showed

(12)

previously that such perturbations should grow as the collapse
ensues, i.e., the spherical collapse is unstable. The present solu-
tion then was intended only to examine the effect of viscosity on such

a collapse and to allow some confirmation of the validity of the present

technique.

The initial wall profile is given by

RO(G) =Ro+a P3(cos 0)+a, P, (cos 9)

3 6 6
where Ro is the initial ""mean'" radius,

ag and ag both are initially set equal to 0. 01 Ro’



and P3 and P6 are, respectively, the third and sixth Legendre
polynomials.

Fig. 2 shows a plot of the initial deviation from spherical symmetry

(actual deviations magnified ten times). The outermost profile in

Fig. 3 shows the same profile without such magnification, appearing

to be virtually spherical to the naked eye.

Fig. 3 also shows the bubble shape profile at subsequent times.
A comparison of the history of the Legendre polynomial coefficients
calculated from the profiles of Fig. 3 with the Plesset-Mitchell results(
indicates the same pattern (oscillation in sign with both increasing fre-
quency and increasing magnitude as R/Ro-’- 0) but both frequency and
magnitude appear to have been reduced, presumably by the viscous
effects. The instability of the spherical surface is also confirmed in
the later time profiles in Fig. 3.

One significant observation which can be made from comparison
of Fig. 2 and profile f of Fig. 3 is as follows. There are outward pro-
tuberances in Fig. 2 at about 0, 120, and 180° from the upper vertical
axis, while in Fig. 3 there are inward deviations from the spherical
shape at the same angles, with the maximum deformation in both
figures on the 0° axis. This behavior suggests the Monroe jet or

shaped charge effect, well known from World War II explosives design.

B. Effects of Pressure Gradient on Initially Spherical Bubble

The second of the asymmetric problems is the effect of pres-
sure gradients on the collapse of initially stationary, spherical bubbles.
These results have been reported in brief previously by the present

(11) (13

authors, Gibson, in his recent Ph.D. thesis ), established the

importance of the dimensionless pressure gradient

o~ =R_dp/dz / (p_ -7p)

(0 0] C

where dp/dz = pressure gradient

P, - Pressure in liquid far from bubble

and P, = initial bubble internal pressure = constant.

12)
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He found, theoretically (using a small perturbation technique) as well as
experimentally, that substantial deformation of the spherical shape would
occur during collapse only for 'O"‘ l ‘;10_2.

Two cases were calculated in the present analysis, ¢ = 0.19 and
O~ =0.57. The former case coincides with both experimental and theo-
retical cases reported by Gibson, while both values are typical for bubbles
collapsing in the cavitating venturi used in this laboratory. High speed
motion pictures of such bubbles collapsing in the venturi pressure gradient
were previously reported by Ivany, Hammitt and Mitchell. (4)

The bubble wall profile histories for the two cases are shown in Figs.
4 and 5. In both cases the early stages of the collapse are markedly spheri-
cal, although there is considerable migration of the centroid in the direc-
tion of the low pressure side and hence creation of a sizable Kelvin impulse
(The Kelvin impulse I = M;zo + J, where M = 2/3 (O LT R3 = "induced
mass'', ;{o the bubble translational velocity, and J is a function of the de-
formation rate of the bubble). Also in both cases the bubble wall in the
vicinity of the lower vertical axis, i.e., on the high pressure side, ac-
celerates inward faster than the rest of the surface until an inward pro-
tuberance develops, marking the beginning of the high speed jet. As one
would expect, the steeper pressure gradient, ¢— = 0.57, results in greater
migration of the centroid and earlier formation of the jet.

Figs. 6 and 7 allow some numerical evaluation of Gibson's and the
present authors' theoretical models in comparison with the former's
experimental data for the @~ = 0.19 case. The two quantities used for

(13

)) are a measure of the eccentricity

comparison (from Gibson's thesis
z = (dl- dz)/(d1+d2), where d1 and d‘2 are the respective horizontal and

vertical diameters, and a measure of the vertical centroid motion f,
which is defined with the aid of the schematic in the upper left corner

of Fig. 7asf=((d, - R) - dZ/Z\ / R . where (d; - R ) measures the

3
distance from the top of the bubble to the original centerline and d2 / 2 is



the present ""mean' radius. There is good agreement between the
present author's calculations and Gibson's calculations for a bubble
which collapses from ''rest'' until the late stages of collapse (The
latter's model is based on the assumption of only small perturba-
tions from spherical and hence obviously becomes invalid at some
point in those late stages.) The discrepancy between the present
results and Gibson's experimental data is explained with the aid of
the third theoretical curve in Figs. 6 and 7; i.e., the experimental
bubbles were grown in the same pressure gradient in which they
subsequently collapse. Gibson's second theoretical analysis included
the expansion effects, whereas the present model does not.

In summary, Figs. 6 and 7 show what the profile histories
had already indicated, a continuing increase in the bubble deforma-
tion with time, as well as continuous movement of the centroid from
its original position in the direction of the low pressure side.

Another point which can be made from these calculations is
illustrated by Fig. 8. Here the wall velocity for 6 = 1800, i.e., the
"jet" is plotted as a function of its radial position. The jet velocities
in the two cases (@~ = 0.19 and 0.57) do not differ very greatly from
the Rayleigh spherically symmetric wall velocity for a corresponding
radial shrinkage until R/Ro < 0.3, when they begin to lag substantially.

At the end of the calculation, for a collapsing pressure (poo—
pc) of one atmosphere the jet has attained a velocity of 220 ft/sec for
a contraction to R/Ro = 0,2, in cold water, and is still accelera-
ting. One does not expect that the velocity will continue to increase
strongly as the jet traverses the bubble interior since the pressure
gradient inside the jet will tend rather to spread the jet than to con-
tinue to accelerate it. The recent calculations of Plesset and Chap-

(7)
man

have confirmed this last hypothesis.
Although jet velocities of the order of 200 to 300 ft/sec may

seem low to cause cavitation damage, the corresponding water hammer



pressure for a rigid material and cold water Pwi (= (?-CU) in the
latter case is approximately 20,000 psi. Furthermore, liquid im-
pingement velocities of precisely that value, 300 ft/sec, have been ob-
served to damage materials as hard as stellite in repeated impacts

(14)

(Ref., e.g., Hancox and Brunton )

C. Effects of Translatory Velocity on Initially Spherical Bubble

The third asymmetric problem arises from a common experi-
mental observation, the presence of a relative (''slip') velocity between
the liquid and the bubble. For example, this phenomenon has been ob-
served in a cavitating venturi experiment reported by Ivany, Hammitt,
and Mitche11(4) in which they found bubbles moving some 5 ft/sec
faster through the venturi throat than the calculated liquid velocity
of 75 ft/sec. Slip is also a common observation in boiling experi-
ments. The calculation performed here is for an initially stationary
and spherical bubble of 1 mm radius with a liquid velocity far from the
bubble (i.e., "slip') of 5 ft/sec, and (poo-pc) equal to one atmosphere.
The initial pressure and velocity distributions are determined from the

velocity potential for a liquid moving past a sphere

2
¢=V (rcosG+R3cose/2r)
oo o)

The bubble wall profile history is shown in Fig. 9. There is
increasing slip in the given direction as collapse proceeds. Migration
of the cavity occurs in the direction of the slip and there is flattening
on the downstream (1800) side with the beginnings of jet formation in
the direction of slip. Both observations are exactly as expected from
the Kelvin impulse discussion earlier, i.e., the initial bubble trans-
latory momentum must be conserved through a combination of accelera-
tion of the bubble centroid and the formation of a vortex system. Simi-
lare results were also obtained in a study of the same venturi flow by

(15)

Yeh and Yang using a small perturbation technique.



The present calculations of the bubble centroid velocity can
be compared with the analogous data for the limiting case of a col-
lapse retaining spherical symmetry, As previously discussed and

(16)

evaluated in various cases by Chincholle one would expect in the
latter case that the translational velocity of the bubble centroid varies
as the volume ratio (R/RO)3, The present results near the end of the
calculation indicate a centroid velocity about half of the predicted
value for a bubble collapsing spherically throughout, for a corres-
ponding volume shrinkage. The remaining half of the initial Kelvin
impulse is presumed to have been absorbed in the effects associated
with the deformation of the bubble and into viscous dissipation.

Fig. 10 shows the radial component of the liquid velocity at
the wall at 0, 90 and 180O as a function of time. For a bubble (of any
initial size) collapsing in water with (poo - pc) equal to one atmos-
phere, the jet velocity (6 = 1800) at the end of the present calculation
is 227 ft/sec and is still increasing when the calculation is terminated
due to difficulties as the liquid approaches the origin of coordinates.

There do not appear to be any experimental confirmations of
this jet velocity evaluation because of the difficulty of isolating the slip
velocity phenomenon from such other sources of asymmetries as pres-
sure gradients and nearby rigid walls. Based on the present results,
however, one can conclude that only a slight slip velocity between

liquid and bubble produces a sufficient Kelvin impulse to add considerably

to the deformation a bubble will undergo during collapse.

D. Effects of Adjacent Rigid Wall on Initially Spherical Bubble

The last of the four asymmetric problems to be examined here
is that of an initially spherical bubble at rest in the vicinity of a rigid

wall. There have been several previous investigations of this problem

(17 (18)

including the theoretical studies of Rattray , Shima , and Plesset

7) (19)

and Chapman( , and experimental studies for example by Ellis )
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(6)

Kling ', and Brunton(zm. The theoretical models are all for poten-
tial flow (inviscid), the first two being polynomial expansions which
break down early in the calculated collapse because of the increasing
deformation of the bubble. Chapman's dissertation presents a crea-
tive new approach to the problem although he does not compare his
results with the other theoretical analyses or experiments.

One problem of this type has been solved here, that of an
initially spherical bubble whose center is initially a distance bO =
1.5 x Ro from a non-slipping approximately flat, rigid wall. The pre-
sent use of spherical coordinates restricts boundaries of cells; there-
fore, a flat rigid wall (the solid line in Fig. 11) at 1.5 Ro from the
bubble center must be simulated with a jagged wall coinciding with
the boundaries of spherical cells (the dashed lines in the same figure).
Actually such a boundary is quite similar to the roughness of a typical
cast wall if the initial bubble diameter is about 1 mm, which is typical
of many actual cavitation cases.

It should be noted here that collapse of a bubble initially spheri-
cal and with its center at a distance bo from a flat rigid wall is es-
sentially the same problem as the collapse of two identical initially
spherical bubbles with their centers 2 bO apart. The boundary condi-
tion at the plane of symmetry in the two bubble case, i.e., no flow
across that plane, is the same as that at the rigid wall in the single
bubble problem, except that the analogous wall condition would be
that of full slip and zero shear at the wall. This analogy is often
used (see,e.g., Ref. 6) in theoretical calculations of cavity eollapse
in the vicinity of a rigid wall and has also been affirmed by experiments
with two spark-generated bubbles by Timm and Hammitt(zn. Fig. 12,taken
from this reference,is a high-speed cinematographic sequence illustra-
ting the resultant collapse.

The results of the calculations are shown in Figs. 11, 13, 14.

Fig. 11 shows the bubble profile at several times during the collapse.
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There is obviously an early elongation of the bubble normal to the
wall; towards the end of the calculation (stopped by the singularity at
the center of the coordinate system), the surface of the bubble appears
to be returning to spherical. This is obviously only a transient situa-
tion, however, because the wall velocity at the top of the bubble (Oo)
is much greater than elsewhere on the surface. Had it been possible
to continue the calculation one would expect involution of the bubble
from the top and, as Chapman ) showed in the inviscid case, forma-
tion of a high velocity jet moving toward the wall.

Fig. 13(a) shows the mean radius of the bubble as a function
of time and compares it with the case where no wall is present. The
trend of the curve suggests that Rattray's (17 estimate of a 20% in-
crease in collapse time at this initial distance from a rigid wall is
quite appropriate. Fig. 13(b) shows the radial wall velocities along
the 0, 90 and 180° angles as a function of time. This figure shows
the rapid acceleration of the liquid along the 0° axis toward the end
of the collapse, leading to the hypothesized conclusion reached above
of involution and jet formation. Also, as in the ''slip'' velocity case,
the velocity on the 0° wall is rapidly approaching the magnitude neces-
sary to cause ''water hammer'' damage.

Fig. 14 shows the pressure profiles along the three rays, 0,
90, and 1800, at the end of the calculation, i.e., whent = 0.873 and
ﬁ/RO = 0.49. One sees here that, along the 180° axis, i.e., in the
liquid between the bubble and the wall, there has been little pressure
increase above ambient, in contrast to the situation on the opposite
side of the bubble where the pressure grows rapidly due to inertial ef-
fects. This suggests that, at least at this initial spacing between the
bubble and the wall, there is little chance that the pressure between
the bubble and the wall is responsible for cavitation damage during
collapse. This does not say however, that a shock wave arising during

rebound of a gas and/or vapor-filled bubble could not be the source of
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damage. This calculation does tend to confirm the theory that a
high-velocity jet is an important source of damage.

Comparisons of the results of the present calculation with
the recent theoretical work of Chapman(ﬂ indicate a reasonably good
agreement between the two in terms of profile histories and wall velo-
cities as far as the present work goes, thus indicating that the effect
of even the large viscosity used in the present calculation is small.
Chapman's calculation goes on to show peak jet velocities (just be-
fore the liquid jet reaches the opposite side of the bubble) of 550 ft/sec,
well above the damage threshold of many materials. Recent photo-
graphic studies by Brunton(zo) indicate a jet velocity in a similar
case of about 1800 ft/sec.

There is a real question as to whether a bubble at such an
initial distance away from the wall (center at 1.5 R ) is capable of

(6)

causing damage. Both Ellis(lg) and Kling conclude from their ex-
periments that there is not sufficient migration from this distance
toward the solid surface during collapse, and hence that the jet velo-
city is attenuated by the water thickness adjacent to the wall, reducing
the possibility of damage.

. 22,e.g.
Since it has been shown experimentally on several occas1ons( e 8)

that only one out of a very large number (> 104 - 105) of bubbles ap-
pearing to collapse adjacent to a surface actually causes damage, it is
evident that the specific initial conditions which give rise to damage
are very restrictive. The bubble must migrate close to the wall, and
the jet must not form until late enough in the collapse so that it will
reach the opposite side of the bubble (and the necessarily adjacent wall)
at precisely the right time to maximize the impact velocity.

It is now possible, with the aid of Fig.s 15, 16,and the previously
examined profile histories of Figs. 4,5,9, and 11, to determine the

relative effects of the latter three asymmetries.

In terms of the eccentricity z (z = (d1 - dZ) / (d; + dZ) ), as
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shown in Fig. 15, the effect of the pressure gradient g = 0,57 is ob-
viously the greatest while the 0~ = 0.19 pressure gradient and the

slip velocity are less effective and very similar to each other in this
regard. The rigid wall case is the only one in which the initial rela-
tive elongation is parallel rather than perpendicular to the axis of
symmetry. Also to be noted here is that the value of z in the wall

case minimizes and then returns rapidly toward zero and positive values
characteristic of initial elongation and the involution normal to the wall.
In Fig. 16, the pressure gradient cases are shown to have produced

the greatest centroid migration, the slip velocity case the least.

The important fact to be drawn from these figures is that the
effects of the three kinds of asymmetries examined therein are quite
similar in that each is characterized by deformation and centroid migra-
tion of about the same magnitude and time scale and each of the three
asymmetries produces bubbles which have involuted and formed high-

velocity jets or, in the wall case, are about to behave in this fashion.

IV. CONCLUSIONS

Four different sources of asymmetry in bubble collapse in a
viscous, incompressible liquid were examined; they include the effect
of a slight perturbation from spherical symmetry and the effects on
initially spherical bubbles of a pressure gradient, of a liquid velocity
relative to the bubble, and of proximity to a rigid wall. The calculated
collapse of the slightly perturbed bubble confirmed the ''shaped charge"
hypothesis of bubble collapse(23), that outward perturbations on the
initial profile of a bubble will essentially involute as the collapse pro-
gresses, and also tended to confirm the instability of a spherical bub-
ble surface during collapse in terms of growth of perturbations.

The effects of the other asymmetries on initially spherical

bubbles were found to be remarkably similar to each other and on the

same scale. In all three cases there was a substantial migration of the



14

bubble centroid from its initial position; in the pressure gradient and
"slip'" velocity cases there was also a flattening of one side of the
bubble followed by involution and the formation of a relatively narrow
high velocity jet of liquid. The bubble wall velocities around the sur-
face in the solid wall case at the point the calculation was terminated
were such as to produce a similar flattening, involution, and jet forma-
tion, had it been possible to continue the calculation. These asym-
metries are produced with such small volume changes (R/RO > 0.25)
that we can assume that typical internal gas and vapor content of cavi-
tation bubbles and moderate liquid viscosities would have no substan-
tial effect on bubble collapse of this type.

The calculations indicated that,as one would intuitively expect,
the steeper the dimensionless pressure gradient, the sooner flattening
and involution will occur. Velocities of 220 ft/sec for still accelera-
ting jets in cold water under a mean collapse overpressure of one atmos-
phere were obtained for pressure gradients typical under cavitation
conditions and for collapse ratios R/Ro = 0. 2. This velocity is
sufficient to produce water hammer pressures greater than the yield
strength of many structural materials. In the case of a bubble with
slip velocity relative to the liquid, with a one atmosphere overpressure
in cold water, a "slip" velocity of 5 ft/sec produces a jet velocity at
the end of the calculation of 227 ft/sec.

In contrast to the pressure gradient and slip velocity effects,
the initially spherical bubble near the wall (1.5 x Ro initial distance)
first suffered a relative elongation along an axis normal to the wall.
However, the bubble wall velocity at the point farthest from the solid
wall continues to grow much faster than at other points on the surface,
and based on similar results in the early stages of the other collapses,
we can project eventual involution and jet formation in this case also.
There is no buildup of pressure in the liquid between the bubble and

the solid wall during the collapse, so this cannot be an important cause
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of damage. Jet velocities and bubble profiles agree well with very
recent calculations using a somewhat different approach by Chapman.(ﬂ
A short motion picture film has been prepared from the computer
results. Entitled '""Computer Simulations of Asymmetric Bubble Col-
lapse' by the present authors, this is available from the ASME Film

Library,
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