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COLLAPSE OF A SPHERICAL BUBBLE
IN A PRESSURE GRADIENT

The question of how bubbles collapse under the influence
of asymmetric conditions such as pressure gradients, initial
shape perturbations, velocity relative to the bubble, and/or
the presence of solid surfaces is crucial to the understanding

(2)

of cavitation damage. Recent works by Gibson, (1) Yeh, and

(3) (5)

Shima as well as earlier analyses by Plesset(4) and Rattray
have studied the early stages of collapse under various combina-
tions of the above conditions by the use of perturbation techniques
based on the classical symmetric solution. Recently Plesset(6)
has studied in a more complete manner the effect of nearby solid
surfaces.

The present investigation is aimed at the development of a
generalized computer analysis which allows the introduction of
virtually any combination of the above conditions and solution in
terms of bubble shape, wall velocities, and local liquid velocities
and pressures through later stages in the collapse. As reported
in a 1968 Cavitation Forum paper from this 1aboratory(7) the
Marker-and-Cell (MAC) method was adopted to achieve this goal.
The aforementioned paper includes brief discussions on the reasons
for selection of this particular technique, how the MAC method
works and its application to the classical Rayleigh spherical col-
lapse problem. More complete details on the Marker-and-Cell
method are found elsewhere(s).

At the time of writing we have investigated three problems:
a) the spherical collapse, b) the growth of small perturbations,

during collapse, and c) collapse of an initially spherical bubble in

a linear pressure gradient. This paper focuses on the last. The



complete treatments are found in the first author's dissertation

(1)

Gibson ' defined a dimensionless physical parameter

6'=RO-3-E-/(p-p)

(0 0) C

where R0 = the initial cavity radius
op/dz = the pressure gradient
P, = the ambient pressure in the liquid at the ax
position of the initial bubble center
P, = the cavity internal pressure.

(9)

ial

-2
He concluded that for |6 )10 ~, one would expect gross visible

distortions in bubble shape during collapse. We selected two

values for 6 : 0.19 and 0.57. The former is identical to one

of Gibson's perturbation cases, and both are typical of pressure

gradients encountered in flowing systems.
In briefest summary, the MAC technique, as adopted for

this study, is as follows:

Assuming an incompressible liquid, one writes the continuity

equation

the momentum equation

L_a‘: = - (W) T SP+v 9T

and the divergence of the momenturn equation

2 FD = -9irrvd’ (DD T

where u is the fluid velocity,

P = p/@ (p = the local pressure,@ = the density)

—-=(1)
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and 4 is the kinematic viscosity. Eq. (1) has been used to
simplify eq. (3). Eq. (2) and (3) are written in finite difference
form in spherical coordinates, and axial symmetry is assumed.
For each time step, eq. (3) is solved to find the pressure distri-
bution in the liquid by an iteration procedure, then eq. (2) is
evaluated to find the velocities at the next time step. Marker
particles, used to represent the bubble surface, are than moved
to their new positions, thus giving the new location of the bubble
wall. The sequence is then repeated.

The numerical characteristics of a typical solution follow.
The grid is composed of about 1400 cells with a radial extent of
5 Ro' 128 marker particles are used to represent the surface.
Approximately 400 time-steps are necessary to bring the mini-
mum bubble wall radius to 0.15 R, This requires 30 to 45
minutes of IBM-360 processing time. Accuracy and stability
are best found by repeated testing of different grid finenesses and
extents, and of different time step sizes.

Fig. 1 and 2 show bubble wall profiles collapsing in the two
pressure gradients. Fig. 3 shows the velocity of the jet as a
function of its radial position for both cases, as well as the Ray-
leigh bubble wall velocity for a corresponding radius reduction.
Both profiles show the expected flattening on the high pressure
side, and then continued acceleration of the bubble wall such that
a high velocity jet begins to form. The calculation was terminated
at this point because the computation time becomes very great for
the large number of cells then included in the iteration scheme,
and because the jet approaches the singularity at the center of the
spherical coordinate system. Comparison of the two cases shows,
as expected, a much more rapid development of the asymmetries
in the more severe pressure gradient case, but surprisingly little

difference in the two jet velocities at corresponding radial positions.



The deviation from symmetry also causes the centroid of the bubble
to "migrate' towards the low pressure region, an often observed
experimental phenomenon. Fig. 3 shows the jet velocity (actually
the wall velocity on the axis of symmetry -- high pressure side)
to differ from the predicted Rayleigh velocity at that radius only
slightly until the later stages of collapse, when the jet does not
accelerate as fast as the corresponding spherical bubble wall.

In summary, then, these calculations have shown the first
clear analytic indications of high velocity jet formation in the
collapse of cavities in pressure gradients. For P, - P~ 1 atm,
the jet velocity at the conclusion of the calculation is 220 ft/sec.
While the jet is still accelerating at the conclusion of the calcula-
tion, it does not seem likely that the velocity will continue to in-
crease strongly as the jet becomes very narrow. Impingement
of jets of liquid at the velocities obtained here are nearly of suf-

ficient magnitude to cause material erosion.
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Figure 1. Bubble Wall Profile for Spherical Bubble
Collapsing in Pressure Gradient,o = .19



Figure 2. Bubble Wall Profile for Spherical Bubble

Collapsing in Pressure Gradient,6 = ,57
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Figure 3.

Jet Velocity as Function of Radial Position



