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ABSTRACT

Recent investigations of the fundamental aspect of cavitation
damage have indicated the importance of asymmetric bubble collapse.
This investigation is an effort to theoretically and experimentally
justify the role of asymmetric bubble collapse in cavitation damage.
The theoretical investigation employs a combined Eulerian and Lagran-
gian computer code capable of following the collapse of a bubble much
further than previous perturbation techniques. The experimental in-
vestigation is concerned with the development of a specialized spark
camera with a maximum framing rate of 106 frames per second and a
spatial resolution higher than any other camera presently available

at this laboratory.

ii



Abstract . . .

Table of Contents

List of Figures

Introduction .

TABLE OF

Theoretical Considerations . . . .

Experimental Considerations. . .

Bibliography .

iii

CONTENTS

Page

ii

. 1ii

iv

14

. 28



LIST OF FIGURES

Page

1(a) Grid and Initial Marker Particle Location for MAC 5
Solution of the Spherically Symmetric (One-Dimensional)
Problen;

(b) Grid and Initial Marker Particle Locations for MAC

Solution of the Axially Symmetric (Two-Dimensional)
Problem.

2 Comparison of Radius as a Function of Time by Two 11
Methods: MAC and Simpson's Rule Numerical Integration.

3 Effect of Variable Time Interval on Accuracy of the 13
MAC Method.

4 Wedge and Spoiler in Plexiglas Section of Two- 15
Dimensional Venturi.

5 Dynafax Photographs Showing Separation Bubble. 16

6 Dynafax Photographs Showing Elimination of Separation 17
Bubble.

7 Schematic Diagram of Spark Camera. 22

8 Spark Camera Including Delay Network and High Voltage 23
Power Supply.

9 Spark Camera Photographs Showing Water Jet Impacting 25

on a Plexiglas Specimen.

iv



THE ASYMMETRIC COLLAPSE OF CAVITATION BUBBLES

Introduction:

Over the last few years, interest in the fundamental aspect of
cavitation which is concerned with the collapse of a single isolated
bubble has moved away from the classic concept of symmetrical collapse
exemplified by the work of Rayleigh (1), Hickling and Plesset (2), Ivany
and Hammitt (3), etc. Following an initial suggestion by Kornfeld and
Suvorov (4) and important work by Rattray (5), Naude and Ellis (6),
and Shutler and Mesler (7), attention has been increasingly directed
towards the consideration of asymmetric collapse phenomena.

This interest in the asymmetric collapse mode is justified by
general considerations of the collapse phenomena (e.g., Benjamin and
Ellis (8)), as well as the experimental evidence of Ivany, Hammitt, and
Mitchell (9), Shutler and Mesler (7), etc., and analytical considerations
of the early stages of the collapse phenomena by Rattray (5), Naud€ and
Ellis (6), and Yeh (10), which have all shown a tendency for the cavi-
tation bubble to become asymmetric during the collapse. These latter
theoretical considerations have all made use of perturbation techniques
based on the classical symmetric solution, and have therefore been limited
to relatively small departures from spherical symmetry.

One aspect of the present investigation is aimed at extending the

theoretical considerations of the asymmetric collapse phenomena to much



later stages of collapse than is possible with perturbation techniques.
With this object in view, a study has been made of some of the powerful
techniques which have been developed over the last few years for solving
complex fluid mechanics problems using a high speed digital computer. The
first part of this report describes the results of this study which led
to the choice of the MAC (Marker and Cell) method as being the most
suitable for the problem in hand. This method was first anplied to the
classic problem of symmetric collapse in order to gain a feeling for the
problems involved in its application to problems of bubble collapse. The
results of this preliminary investigation and their implications with
regard to the study of the asymmetric collapse, which is presently under
way, are reported.

Another aspect of this present investigation which is concerned with
obtaining more accurate and more detailed experimental data on the
asymmetric collapse phenomena is contained in the second part of this
report. This part is mainly concerned with the development of a special
camera having sufficient spatial and temporal resolution to record the
details of the bubble collapse on film.

Theoretical Considerations:

In selecting a suitable technique for the calculation of the asymmetric
mode of bubble collapse, consideration was given to the long term objectives.
These long term aims include the desirability of being able to consider

the effect of such factors as bubble gas content, fluid viscosity,



arbitrary pressure gradients, and the presence of a solid wall, whereas
the short term objective is merely to study the asymmetric collapse of
a vapour bubble in an infinite volume of perfect fluid, subject to a
step change in fluid pressure.

The selection of the most suitable technique is at first a matter
of elimination. The non-linearity of the partial differential equations
together with the free surface boundary condition precludes a direct
analytic solution. Numerical solution of the difference equations with
an Eulerian (stationary) grid cannot handle the free surface condition.
A purely Lagrangian numerical solution, on the other hand, will not
adequately describe a fluid flow in the presence of large distortions
such as may be anticipated in the asymmetric collapse problem.

A combination of the Eulerian and Lagrangian approaches could offer
some of the advantages of both methods while overcoming some of the
disadvantages. One example of the combined approach is the Particle-in-
Cell (PIC) method (1l1), developed by Harlow at Los Alamos. This method,
which was initially developed for use in compressible flow problems, was
discarded because it requires that no part of the flow be far subsonic,
a condition which is untrue for most of the bubble collapse problem.

The eventual choice for the appropriate method came to be the Marker-
and-Cell (MAC) method developed by Harlow and Welch at Los Alamos (12).
This method appears to have worked very well for solution of a variety
of problems involving incompressible liquids with free surfaces. It

requires a high-speed computer with extensive storage capacity.



With the eventual solution of the asymmetric problem in mind, we
have first applied the MAC method to the problem of the spherical collapse
of a cavitation bubble (Rayleigh's problem), because an analytic solution
already exists for this problem and we can thus determine the character-
istics of this technique as applied to bubble collapse problems and the
effect of such parameters as grid sizes and time interval.

The MAC method starts with an Eulerian grid as shown in Figure 1 (a).
Field variables such as pressure and velocity are directly associated with
the cells of the grid. 1In addition to the grid, a series of marker
particles are assigned to the liquid; these particles do not participate
in the dynamics of the problem and are essentially "massless", but they
are necessary to take care of the free surface movement.

Although the Los Alamos work suggests that marker particles be
located throughout the liquid initially, experience with the symmetric
collapse problem has shown that a considerable saving in computer time
and storage can be obtained by starting with particles located only along
the free surface. This arrangement is possible because of the condition
(see Lamb (13) ) that fluid particles initially on the free boundary
always remain on the free boundary.

In the spherically symmetric case, the above considerations lead to
the use of one single particle (marked A in Figure 1 (a) ) to define the
free boundary. 1In the asymmetric case it is intended to start with

particles located along the free boundary as in Figure 1 (D).
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To explain the technique in more detail, it is convenient to take

as the starting point of the problem, the hydrodynamic equations for

continuity and conservation of momentum, in one-dimensional spherical

coordinates:
55 (n*u) = O (1)

QA

where u = the radial velocity in the liquid, P = %, p is the liquid

pressure, and P is the liquid density (constant for the incompressible

problem) .

The boundary conditions for the problem are:

P: Pw AS N — oo ; (3)
P = 0 FOR N < R(t)’ (4)

where R is the radius of the bubble wall;

R (0) = R, (5)

AR

— — 6

- @9 =0 (6)
Equation (2) can be rewritten as

M o dwE) _ 9P (7)

ot 2 an ~ N



Harlow and Welch point out that this transformation is essential for
rigorous momentum conversation after the equations are written in
difference form.

The cells of the grid system are then labeled with an index i;
further, the P-quantity (=p/P) is defined at the center of each cell
as P} and the velocities are defined on the cell-boundaries as
Wi 1/2 and Ujt+1/2- The definition of these quantities at any other
locations increases the complexity of the calculation and brings in
values from "far-distant" points, thus contributing to increased
inaccuracy.

It is then possible to write equation (1) in difference form as:

O, =0 (8)
IF D‘: -t 'Z\h' ([/zz'u.];.‘.l/z - [IZZA&]‘.‘_,’L)

WHere AR = N R,

ai““/z_ T A= /2_

Equation (7) similarly becomes

L TR ) (_ 4+{ Pﬁ - Piﬂ) (9)
e i+, 4+‘/;, an
The superscript n+l indicates that the quantity is evaluated at
(n+1) $t while the absence of a superscript indicates that the
evaluation is at t = n.S t. The quantity Uj is defined as
l/z(ui+1/2+ﬂi-l/2)' If, in addition, equation (8) is rewritten for
Din+1

+ . .
and (9) is rewritten for uifl}z' and the resulting four edquations

are combined, one obtains
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Equations (9) and (10) provide the basis of the computational method.
Knowing the pressure distribution at any time t, equation (9) is solved
to give the velocity distribution at t+g t; equation (10) can then be
solved, assumed Din+l= 0,to give the pressure distribution at time
t+5 t.

Two questions arise in connection with thisscheme of computation.
The first is concerned with the initial conditions to be imposed at
t = 0. Strictly this should be P = P for r > R, at t = 0. Because
of the computational scheme, however, the pressure discontinuity
initially at the bubble wall would require a finite time to propagate
out through the liquid and thus would violate the assumption of an
incompressible fluid. In the symmetric case this difficulty has been
overcome by the use initially of the pressure distribution as given by
the Rayleigh solution. 1In the asymmetric case it is felt that it will
be necessary to begin with either the Rayleigh solution or perhaps the
results of a perturbation solution (Rattray, Yeh, etc.) for small degrees
of asymmetry.

The second question concerns the boundary condition at the outer

extremity of the grid system. The true boundary condition in the Rayleigh



problem is that P is specified at infinity. Since we are forced to use
a grid system of finite extent, it is not possible to employ this
condition. To overcome this difficulty, the pressure predicted by the
Rayleigh solution has been used as the boundary condition at the outer
edge of the grid system. It is proposed to use the same procedure in
the asymmetric collapse problem.

After solving equations (9) and (10) for the velocity and pressure
distributions for time t +§ t, the marker particle is moved. The
movement is accomplished by looking at the present location of the
particle, interpolating between the velocities at the boundaries of
the cell in which the particle is located to find the particle velocity,
and then moving the particle a distance equal to this velocity times § t.
The procedure then is to scan the grid to see if the particle has moved
into another cell and, if so, to incorporate the new cell into the
succeeding Eulerian calculations. After printing any necessary output-
data, the cycle of calculations is repeated.

The primary goal of the study of the spherical bubble problem by
the MAC method has been the investigation of the effects of different
grid sizes and time intervals. 25 and 40 cell grids were used for two
different sets of calculations. Use of the 40 cell grid reduced the
error in the initial stages of the calculation by about 1/3 from that

with the 25 cell grid, at a cost of a 20% increase in computing time.
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At later stages in the collapse, however, the error improvement dis-
appeared, although this was masked by the constant time step error
explained below.

Two problems were apparent when constant time steps of 5 and
10 us were utilized. 1In the late stages of collapse, the bubble wall
velocity diverged rapidly from the expected Rayleigh value. This
difficulty arose apparently because of stability considerations violated
when the particle moved across a large part of a cell in one time
interval. This difficulty was overcome by varying the time interval
so as to impose a maximum on the particle movement in one time cycle
of 10% of a single cell width.

The other difficulty concerned the error in the early stages of the
collapse. This error is dependent on both grid size and time increment,
but a method of reducing this error without involving a large increase
in computing time, has not yet been achieved. The error does, however,
appear to die out with time and so possibly may be ignored in the
asymmetric case.

A check on the accuracy of the computed results can be made by
comparing the results with corresponding values calculated from Rayleigh's
analytical solution. Figure 2 shows a plot of the bubble wall radius vs.
time. The solid line indicates the Rayleigh solution; the data points

are those obtained from the Marker-and-Cell program. The MAC method
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data virtually coincides with the Rayleigh results except for a slight
divergence at the very end of collapse. Figure 3 shows another comparison
of the two methods expressed in terms of the percentage error as a function
of time (the percentage error is defined here as the difference between

the Rayleigh velocity for the present bubble radius and the MAC velocity
divided by the Rayleigh velocity). The curves of Figure 3 show the
improvement arising from using a variable time step rather than one of
constant value and also the problem of the initial error.

It is hoped that the following conclusions drawn from the study of

the spherically symmetric case can be applied to the axially-symmetric
two-dimensional case:

1. Marker particles need only be located initially along the liquid-
cavity interface.

2. A variable time step is necessary for accuracy.

3. For greatest accuracy, some initally correct pressure distribution
should be imposed upon the liquid.

4. Approximately 25 cells radially are sufficient to give an accuracy
of the order of 5%. It is hoped that this can be improved further
by correcting the initial error problem.

5. The pressure in the one cell necessarily external to the grid
system must be controlled by an appropriate expression, possibly
the correct Rayleigh pressure as was used in the spherically

symmetric case.
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Experimental Considerations:

The objective of this part of the investigation is to determine
the detailed mechanism of the asymmetric mode of cavitation bubble
collapse. The asymmetry is introduced into the experimental system
by the presence of a solid wall. The previous experimental study under-
taken with a Fastax camera has been discussed in reference (14). Since
this initial investigation, several modifications have been made.

The major modification to the two-dimensional venturi used in this
investigation has been the attachment of a spoiler to the adjustable
bolt shown in Figure 4. By turning the bolt, the area of the spoiler
perpendicular to the flow can be changed; thereby, partially controlling
the division of flow at the tip of the wedge. Experimentation, while
taking pictures with both the Fastax and Dynafax cameras, showed that an
unequal division of flow at the tip of the wedge caused the separation
bubble shown in Figure 5. By placing the spoiler on the same side of
the wedge as the separation bubble, the flow division at the tip could
be equalized and the bubble nearly eliminated as shown in Figure 6.

Additional modifications of the venturi have been undertaken which
included gluing the four sides together and installing a plexiglas window
to facilitate adjustment and removal of the wedge. These modifications
serve the two-fold purpose of eliminating the leaks associated with the

multitude of seals previously required and of reducing the time required

for wedge adjustment by a factor of ten.
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Fig. 4.--Wedge and Spoiler in Plexiglas
Section of Two-Dimensional Venturi.
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Fig. 5.--Dynafax Photographs Showing
Separation Bubble. 80 Microseconds per Frame,
Scale Length 1.0 cm.
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Fig. 6.--Dynafax Photographs Showing
Elimination of Separation Bubble. 80 Micro-
seconds per Frame, Scale Length 1.0 cm.
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Fig. 6.--(Cont.)
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Fig. 6.--(Cont.)
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By the time tests were completed showing that the flow problem had
been resolved, the conclusion was reached that the Dynafax camera,although
offering a three fold increase in framing rate (25,000 frame per second
maximum) over the Fastax camera, still had neither the framing rate nor
the resolution required. Results obtained both with the Fastax and the
Dynafax cameras show that a bubble lifetime in the two-dimensional venturi
is on the order of 3 ms, while the final collapse phase occurs in both
cases in the time between frames, or less then 40 ps. Therefore, a
camera capable of photographing a bubble during this final collapse is
required. It may also be seen from the small size of the bubble during
the important final stages of collapse, that a camera with improved spatial
resolution, as compared with the Fastax and Dynafax cameras, is required.

Only a few types of cameras are capable of producing several photo-
graphs within a 40 ps period, i.e., framing rates of 10° frames per
second or greater. Ultra-high speed rotating mirror cameras are capable
of framing rates in the millions of frames per second with exposure times
on the order of the reciprocal of the framing rate. 35 mm film is generally
used, limiting negative image size and therefore resolution. Unless a
continuous access type of rotating mirror camera is employed, syncroni-
zation of the camera with the random occurrence of the cavitation bubbles
of this investigation would be possible. Spark cameras are capable of

framing rates in the millions of framesper second if a reliable delay
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network can be constructed. Exposure times are equal to the duration of
the spark light source and are generally a fraction of a microsecond.
The only other common camera capable of such high framing rates is the
image converter camera. Both exposure time and framing intervals may
be measured in nanoseconds giving extremely high framing rates on the
order of 108 frames per second. However only a very small number of
frames, about 5, can be obtained and the spatial resolution is an order
of magnitude less that than obtainable with rotating mirror or spark
cameras.

A very high speed rotating mirror camera, having continuous access,
has been ordered for use in this investigation, but it will not be
available for at least six months. In order that the work may proceed
during this period, a specialized spark camera is being constructed.

A schematic of the camera is shown in Figure 7 and a picture of the
physical setup is shown in Figure 8. The camera uses a series of spark
light sources mounted in a circle. These spark light sources are con-
trolled by a twelve stage delay network. The network has an initial

delay that is continuously variable from 2 to lOOO’Ps with each successive
delay variable from 1 to 100 ys in seven steps. The effective framing rate
is from 10% to 10® frames per second. The pulse width (or exposure time)

of the discharging spark light source is approximately 0.2 us.
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The light from each light source is focused by the large central
lens onto one of the camera lenses. There is a camera lens for each
light source and the optical system is arranged so that the camera lenses
and light sources are mounted at the same radius. In turn, the camera
lenses focus the working section on the stationary film plane. The
resulting negative has a circle of images on a radius slightly greater
than the camera lenses. The camera is capable of holding 8 irch x 10
inch sheet film in order to obtain negative images as large as possible.

A representative sequence of pictures from the initial use of this
camera shows a liquid jet emerging from an orifice and impacting on a
plexiglas specimen (Figure 9). The high resolution and short exposure
time of this camera are plainly evident. The major limitation of this
camera, for our work, is the low number of frames per run, 12. This
limitation is imposed by the physical size of the spark sources used and
the need to make the negative images as large as possible. It may be
possible to partially overcome this disadvantage by providing some means
of detecting a bubble in its latter stages of collapse and then starting
the camera with this detector. Other limitations of this camera not
pertinent to our work are that its use is restricted to subjects which

are non-luminous and can be back lighted.
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Fig. 9.--Spark Camera Photographs Showing
Water Jet Impacting on a Plexiglas Specimen.
Time in Microseconds Measured from Frame Number 1,
Scale Length 0.5 cm.
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The high speed rotating mirror camera which will eventually be
available for this work will have a maximum framing rate of 2 x 10©
frames per second and a total of 82 frames per sequence. The image
size will be somewhat smaller than that obtained with the spark camera,
causing a corresponding reduction in resolution, but this is not expected

to be a serious limitation.
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