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The basis for scientific study is the search for truth. Hy-
pothesis testing is a common way of providing evidence to
support this search for truth. As discussed in a previous
article,12 study findings such as means or frequencies are
associated with critical values from statistical tests along
with associated probabilities or P values. Recall that tests
for statistical significance (such as chi-square, Student’s t,
analysis of variance or ANOVA) are chosen during the
design of a study and, regardless of the statistical test
chosen, good study design requires that all tests of signif-
icance lead to a probability statement or P value. “The P
value provides the reader of the study with a guide for the
likelihood that the statistical observation in a study is due
to chance alone.”8 By convention, P values less than 0.05
are accepted as statistically significant.

This convention of statistical significance set at the 0.05
level, however, presents challenges to the reader in inter-
preting study findings. First, statistical significance (P #
0.05) may be present but may not be clinically relevant.
Consider a previously presented example of the effects of
two treatments on the outcome of length of hospital stay.8

Suppose the P value associated with the study findings is
0.006—a highly statistically significant finding. However,
the clinical result is less impressive because the statistical
estimate associated with Treatment A results in a length
of stay of 6.2 days and the estimate of Treatment B results
in a length of stay of 6.8 days. These differences between
results are meaningless. Even very small differences such
as a few parts per million could be statistically significant
if large numbers of subjects compose the sample. How-
ever, there may be no practical importance to such a
finding.19

Conversely, a statistically nonsignificant result does not
necessarily imply a clinically unimportant finding.14 Sup-
pose two different investigators at two different sites im-
plement a study of the effect of a particular exercise pro-
gram on ACL tears among collegiate athletes. Using P ,
0.05 as the cutpoint for significance, both investigators
should wrongly reject the null hypothesis of no difference
5% of the time. Now, suppose the statistical estimates at
the end of both studies are identical: one exercise program
(Program A) is associated with a 25% injury rate and the
other exercise program (Program B) results in a 50% in-
jury rate. Clearly, the results of these two studies indicate
a clinically meaningful finding. However, one investigator
has calculated a P value of 0.06 at her study site, and the
other investigator has calculated a P value of 0.04 at her
study site. Based on the conventional significance level of
0.05, one investigator will decide that the study finding is
not statistically significant, and the other investigator will
draw the opposite conclusion.

Recall that the P value is the representation of the
probability that the investigator incorrectly rejects the
null hypothesis. The findings of one investigator indicate
that a result as extreme or more extreme than the one
that actually occurred (25% versus 50%) could have hap-
pened by chance alone (assuming no true difference be-
tween the treatment groups) 4% of the time, and the other
investigator’s findings indicate that a result as extreme or
more extreme than the one that actually occurred could
have happened by chance alone 6% of the time. The first
investigator would reject the null hypothesis, and the
second investigator would fail to reject the null hypothesis
based on a P value of 0.05 or less as statistically signifi-
cant. We do not know what the “truth” is here, but con-
sistent results support that there is a “real” difference.
Even with the same clinical finding, in one study the
finding is not statistically significant and in the other
study it is. How could this happen? It may be that the first
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researcher had a smaller sample size, or more random
error, or more variation in her data.

Luus et al.14 note in a similar example “that the inter-
pretation of the results has now been shifted away from
the actual difference to that of probabilities.” The cutpoint
or significance level of 0.05 is arbitrary, and may ignore
important, clinically meaningful findings. Many investi-
gators and readers will disregard potentially useful clini-
cal findings without further analysis simply because study
findings are based on P values greater than 0.05. This is
because the reader frequently interprets the P value to
reflect clinical significance when in fact it only represents
statistical significance.2 The problem here is that we are
in danger of throwing out good work based on arbitrary
cutpoints set as a standard of statistical significance.15

In addition to throwing out good work based on P val-
ues, another danger with hypothesis testing is misinter-
pretation of findings associated with P values. It is not
unusual that we see a P value reported that is nonsignif-
icant (P . 0.05). Freiman et al.,5 in a review of 71 studies,
demonstrated that, in most cases, the absence of signifi-
cance in studies has been interpreted by investigators as
meaning that a treatment was not effective. A P value that
is greater than 0.05 simply means that there is a lack of
evidence to reject the null hypothesis. Saying that there is
no evidence that two treatments are different does not
mean that the investigators have established that the two
treatments are the same, or equivalent. Put another way,
“No proof of a difference is not equivalent to proof of no
difference.”6

Too much emphasis on P values may lead to a lack of
critical thinking about research findings and incorrect
conclusions.5,9,16 How can investigators and readers alike
avoid inappropriately branding studies as “negative” or
“positive,” avoid misinterpretation of P values, avoid
“throwing out good work,” and avoid placing importance
on clinically meaningless findings? Rather than solely us-
ing probabilities to determine whether results are medi-
cally important, many researchers suggest that clinicians
complement good clinical judgment with information
gained through the use of confidence intervals.

In most clinical studies the researcher is interested in
estimating some value, e.g., a mean or proportion, in the
study sample to make inferences about the population
from which the sample was drawn. The true value for the
mean or proportion in the population remains unknown.
(Actually, if a value is from a population, it is, by defini-
tion, “true.” Therefore, when we refer to the “population
value” we are referring to the “true value.”) For example,
in the ACL study described earlier the investigators were
interested in the proportion of collegiate athletes with
ACL injuries after two different exercise programs. Even
in a random sample where everyone in the population of
interest has an equal chance of being assigned to either of
the treatment groups, every sample that an investigator
draws will be slightly different because humans vary
greatly. Thus, when the investigators draw two random
samples to study their exercise programs, they expect to
get slightly different results because of the variability in
the larger population. The study result is an estimate, and

the uncertainty associated with this estimate can be de-
termined by a confidence interval. Confidence intervals
help the reader to avoid misinterpreting nonsignificant
results (P $ 0.05) because they demonstrate whether the
study finding is consistent with clinically useful true
effects.1

Where P values in hypothesis testing may lead the
reader to reject or fail to reject a null hypothesis (because
hypothesis testing is solely concerned with the presence or
absence of effect), confidence intervals capture the point
estimates within intervals, providing a context within
which the reader can assess whether a result is strong or
weak, definitive or not.10 Typically, we want to know not
just whether a treatment has an impact or not, but also
how much impact.2 A confidence interval provides a range
of values that is likely to capture the population value.
The range will be larger (wider) for studies with smaller
samples, emphasizing unreliability. This is particularly
important with negative studies (P . 0.05), because the
confidence interval presents a range within which the true
value may lie. A 95% confidence interval tells us that if
this procedure were to be repeated 100 times, the interval
that is generated would capture the population value 95
times. A P value cannot tell the reader anything about the
magnitude of a difference between two treatments in a
study, nor can the P value tell the reader about the direc-
tion of the difference between two treatments7; however,
assuming appropriate study design and research methods,
a confidence interval can. This makes confidence intervals
particularly attractive to the clinician because the confi-
dence interval contains more information than the P
value.

Confidence intervals require some estimate of truth
(mean or proportion), and the sampling variability (stan-
dard error). In addition, some level of assurance or confi-
dence is specified. Readers are most often familiar with
seeing 95% confidence intervals reported. For any given
estimated mean or proportion, the 95% confidence inter-
val is the range between two estimated values: from ap-
proximately minus 2 times (actually 1.96 for Normally
distributed data) the standard error of the estimated sta-
tistic to approximately plus 2 times the standard error.19

Thus, the estimate minus 1.96 3 SE represents the lower
bound of the confidence interval and the estimate plus
1.96 3 SE represents the upper bound of the confidence
interval.† Expressed as a formula,

95% CI 5 (estimated mean or proportion 2 [1.96 3 SE]) to
(estimated mean or proportion 1 [1.96 3 SE])

How do we interpret this? The 95% confidence interval is
not interpreted to mean that the probability is 95% that
the interval calculated contains the population value, e.g.,
a mean or proportion. Because repeated samples of the
same size drawn from the same population would each

† Likewise, levels of assurance associated with 90% and 99% would be
expressed, respectively, as: a 90% confidence interval would extend from 21
times the standard error to approximately 11 times the standard error; a 99%
confidence interval would extend from 23 times the standard error to approx-
imately 13 times the standard error.
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result in different sample means and standard deviations,
confidence intervals constructed for each sample will be
slightly different. A 95% confidence interval of a value
tells us that, if repeated samples of a given size are drawn
from the population, 95% of the interval estimates will
include the population value. (Although multiple random
samples are seldom drawn, the interpretation of the con-
fidence interval always considers this large number of
hypothetical samples, each of the same size.3) Thus, we
are asserting that the population value is likely to fall
within the interval we have established with 95% confi-
dence. Put another way, the population value will be con-
tained somewhere within the upper and lower bounds in
95 of 100 confidence intervals constructed from random
samples drawn from the same population; 5 of 100 such
intervals will not enclose the population value. Note that
the actual value in the population remains unknown. It is
important to emphasize that statements about confidence
intervals are not valid with respect to any particular value
such as a sample mean or sample proportion, and thus are
not probability statements in classic statistical interpre-
tation; i.e., confidence intervals are statements about be-
lief in the statistical process and do not have probability
implications.

Several examples will serve as illustrations for how
confidence intervals might be useful in clinical research
findings. Scott K. Powers17 studied the finish times of nine
competitive runners in a 10 kilometer (10K) race. The
mean time to finish the race was 33.79 minutes with a
standard deviation of 0.518 minutes and a standard error
of 0.173 minutes. The 95% confidence interval was
(33.45,34.13). Assuming that this is a random sample of
the running times of all competitive runners’ 10K races,
this confidence interval can be interpreted as follows: if we
were to draw 100 random samples of 9 runners in a 10K
race, and construct a 95% confidence interval from each
sample, we expect 95 of these confidence intervals to con-
tain the mean population time for a 10K race. We expect
that 5 of 100 intervals constructed in this manner would
completely miss the population mean (perhaps by a lot,
perhaps by a little). The sample mean, the standard devi-
ation, the standard error, and hence the confidence inter-
val generated for each of these studies would differ. We
would not know if any one of these confidence intervals
(e.g., the one from the study we actually did) captured the
population mean or not. We do know, though, that the
process of calculating a confidence interval from such a
sample will result in an interval that captures the popu-
lation mean 95% of the time. (Notice the narrow width of
this particular confidence interval. It indicates that even
with a sample as small as nine, the variability in running
times is quite small among 10K competitive racers.)

Consider another example borrowed from Riegelman
and Hirsch.18 Suppose that study results show a mean 6
standard error for cholesterol in a sample to be equal to
150 6 15 mg/dl. The 95% confidence interval for this study
is equal to 150 6 30 dg/ml. We estimate that the true
population mean for cholesterol would lie somewhere be-
tween 120 and 180 mg/dl. This 95% confidence interval

may or may not capture the population mean, but we have
information that our estimate is not very precise.

The last two examples were illustrations using means.
What about proportions? Consider this hypothetical exam-
ple: suppose an investigator is interested in the National
Football League (NFL) draft picks and the incidence of
injured posterior cruciate ligaments (PCLs) among play-
ers in Division I colleges versus those who played in Div-
sion III colleges (Fig. 1).

An odds ratio (discussed in a previous “Current Con-
cepts” article11) can be calculated for this study. Among
NFL players who played in Division III colleges, the odds
of sustaining a PCL injury is 5 times greater than if a
player was in a Division I college. The standard error
associated with this odds ratio is 0.602. The 95% confi-
dence interval is (3.82,6.18). The lower bound for the 95%
confidence interval is 3.82 and the upper bound is 6.18.
This indicates that this study’s estimate for the odds of
sustaining a PCL injury given that the player did not play
Division I ball is 5 times that of the player who did play
Division I college ball. We estimate that the population
odds ratio could lie somewhere between 3.82 and 6.18. If
the confidence interval had captured the value of 1.0 then
we would interpret this as the odds of being injured after
having played Division III college football are less than
the odds for those who played Division I college football,
indicating no difference in effect.

In another example, Kujala et al.13 studied lumbar mo-
bility and back pain in adolescent athletes and controls.
They reported, among other findings, the risk of develop-
ing future low back pain given that a boy was in the lowest
third of subjects with maximal lumbar flexion at baseline.
The relative risk calculated was 2.5. This indicates that
boys who were in the lowest third of maximal lumbar
flexion had a 2.5 times greater risk of developing future
low back pain compared with those boys in the highest
third at baseline. In this study, the relative risk is the
point estimate. The 95% confidence interval is (0.8,8.0).
The confidence interval gives the reader much more infor-
mation than the point estimate, 2.5, alone. We estimate
that the true risk of developing future low back pains
remains unknown in the population, but we estimate that
it lies between 0.8 times and 8.0 times the risk for this
group compared with the other group. Note that the lower

Figure 1. Hypothetical risk factors and PCL injuries among
college football players.
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bound (0.8) is less than 1.0. A relative risk of 1.0 indicates
equivalent risk for both groups, and a relative risk less
than 1.0 indicates a protective effect. Finally, the upper
bound is an eightfold risk. The 95% confidence interval
encloses a risk less than 1.0 and as high as 8.0, providing
more information for the reader to use in drawing his or
her own conclusion than the study’s point estimate of 2.5
alone. Because confidence intervals provide so much more
information in these examples than the point estimates
alone, it is very important that readers look for confidence
intervals for all studies reporting odds ratios, relative
risks, as well as estimates of the population values, such
as means and proportions.

So far we have not discussed the relationship between
confidence intervals and hypothesis testing. An instruc-
tional course lecture by Ebramzadeh et al.4 from the
American Academy of Orthopaedic Surgeons provides
an excellent example of why we should question study
conclusions that are based solely on P values. Consider
these authors’ hypothetical example. An investigator
studies the effect of a new drug on infectious disease
using a prospective, randomized design. He compares
the outcomes in two groups treated with Drug A (the
experimental drug) and Drug B (the conventional drug).
At the end of the study there is a 30% higher rate of
recovery in the experimental group. However, the cor-
responding P value is 0.11. The investigator concludes
from this P value that there is no statistical difference
between the two drugs and he recommends the conven-
tional Drug B be used in future patients with this in-
fectious disease. He publishes his finding and recom-
mendations, and other centers stop further use and
study of Drug A based on his study.

Ebramzadeh et al. point out that the interpretation and
decision-making process represented in this example is
quite common and represents a serious misuse of statis-
tics. That is, if the experimental drug can save lives, even
without statistical significance (P 5 0.11), it should not be
so readily dismissed. A 95% confidence interval reveals
that a 30% recovery rate is associated with limits of 215%
to 75%. It is quite possible that the authors in this hypo-
thetical example are rejecting the potential for large, im-
portant clinical improvement with the experimental drug.
Instead, these authors should understand that their P
value indicates that there is only a slightly greater than a
1 in 10 (P 5 0.11) chance that the 30% difference in
survival rate occurred by accidental selection (chance);
thus, the experimental drug ought to be used while futher
studies are conducted. The value in the confidence inter-
val here is that it provides a range of values with which to
make an assessment of clinical significance or importance.
The P value gives an idea of the probability of the study
finding (point estimate) being due to chance, but the study
finding should not be rejected outright based on the P
value alone.

In this discussion we have limited our examples of con-
fidence intervals to means and proportions. Confidence
intervals, however, can be estimated for many statistics
such as medians, regression slopes, survival rates, hazard
ratios, and so forth.

There are several caveats for interpreting confidence
intervals. Confidence intervals do not control for errors in
study design or poor or improper selection of subjects. If
biases exist or if random sampling was not used, the
estimation errors may actually be greater than the width
of the confidence interval might lead us to believe.3 Thus,
confidence intervals represent the smallest estimate for
the real error.

The width of the confidence interval reflects the preci-
sion of the estimate. In cases where the interval is wide, it
may be that the sample size is small, or that the variabil-
ity of the data is great, or both. Increasing the sample size
frequently will narrow the width of the interval, resulting
in greater precision of the point estimate under study.
Studies in which confidence intervals are wide (in terms of
clinical relevance) may be because these studies have in-
sufficient sample size or imprecise point estimates.

Finally, it must be emphasized that the 95% confidence
interval is not interpreted to mean that the probability is
95% that the interval calculated contains the population
mean or proportion. Because repeated samples of the
same size drawn from the same population would each
result in different sample means and standard deviations,
the confidence intervals constructed for each sample
will be slightly different. Under repeated sampling from
the same population, 95% of the confidence intervals
constructed will include the real (but unknown) popula-
tion value. Five percent of the confidence intervals will
not.

In conclusion, readers evaluating clinical studies want
to know whether the treatment under study has any effect
or not, and what the size of this effect might be.2 The P
value provides the reader with the likelihood that point
estimate is due to chance. Confidence intervals, on the
other hand, give the reader an idea about the magnitude
of the effect of a study, the direction of the effect, and the
differences between treatments. This is considerably more
information than that provided by the P value alone.
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