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AN ALGORITHM FOR GENERALIZED
MATRIX EIGENVALUE PROBLEMS

C. B. Molerf/

X
G. W. Stewart—~/

1. Introduction

We shall be concerned with the matrix eigenvalue problem of

determining the nontrivial‘solutions of the equation
Ax = ANBx ,

where A and B are real matrices of order n . When B is nonsingular
this problem is formally equivalent to the usual eigenvalue problem
B = A .

When B. is singular, however, such a reduction is not possible,
and in fact the characteristic polynomial det(A-AB) is of degree less
than n , so that there is not a complete set of eigenvalues tfor the
problem. In some cases the missing eigenvalues may be regarded as
"infinite". 1In other cases the entire problem may be poorly posed. The
term infinite eigenvalue is justified by the fact that if B is perturbed
slightly so that it is no longer singular, there may appear a number of
large eigenvalues that grow unboundedly as the perturbation is reduced to
zero. However, if det(A-AB) vanishes identically, say when A and B
have a common null space, then any A may be regarded as an eigenvalue.

Such problems have unusually pathological features, and we refer to them

as "ill-disposed" problems.

f/ Computer Science Department, Stanford University, and
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In numerical work the sharp distinction between singular and non-
singular matrices is blurred, and the pathological features associated
with singular B carry over to the case of nearly singular B . The
object of this paper is to describe an algorithm for computing the
eigenvalues and corresponding eigenvectors that is unaffected by nearly
singular B . The algorithm, the heart of which we call the QZ-algorithm,
is essentially an iterative method for computing the decomposition

contained in the following theorem [10].

Theorem. There are unitary matrices Q and Z so that QAZ and QBZ

are both upper triangular.

We say that the eigenvalue problems QAZy = MQBZy and Ax = ABXx are
‘unitarily equivalent. The two problems obviously have the same eigenvalues,
and their eigenvectors are related by the equation x = Zy .

The algorithm proceeds in four stages. In the first, which is a
generalization of the Householder reduction of a single matrix to
Hessenberg form [4,5], A is reduced to upper Hessenberg form and at the
same time B 1is reduced to upper triangular form. In the second step,
which is a generalization of the Francis implicit double shift QR algorithm
[3,8], A is reduced to quasi-triangular form while the triangular form
of B 1s maintained. 1In the third stage the quasi-triangular matrix is
effectively reduced to triangular form and the eigenvalues extracted. In
the fourth stage the eigenvectors are obtained from the triangular matrices
and then transformed back into the original coordinate system.

The transformations used in reducing A and B are applied in such

a way that Wilkinson's general analysis of the roundoff errors in unitary



transformations [11] shows that the computed matrices are exactly unitarily
equivalent to slightly perturbed matrices A+E and B+F . This means
that the computed eigenvalues, which are the ratios of the diagcnal elements
of the final matrices, are the exact eigenvalues of the perturbed problem
(ME)x = MB+F)x . If an eigenvalue is well conditioned in the sense that
it is insensitive to small perturbations in A and B (see [10] for a
detailed analysis), then it will be computed accurately. This accuracy

is independent of the singularity or nonsingularity of B .

The use of unitary transformations in the reduction also simplifies
the problem of convergence: a quantity may be set to zero if a perturbation
of the same size can be tolerated in the original matrix.

Our computef program does not actually produce the eigenvalues Ki
but instead returns ai and Bi , the diagonal elements of the triangular
matrices QAZ and QBZ . The divisions in A, = ai/Bi become the
responsibility of the program's user. We emphasize this point because
the ai and Bi contain more information than the eigenvalues themselves.

Since our algorithm is an extension of the QR algorithm, the well
known properties of the QR algorithm apply to describe the behavior of
our algorithm.

In their survey article [9], Peters and Wilkinson describe another
approach for the case when B 1is nearly singular. In their method one
computes an approximate null space for B and removes it from the problem.
The technique is reapplied to the deflated problem, and so on until a well

conditioned problem is obtained. The method has the crucial drawback that



one must determine the rank of B . If a wrong decision is reached,
the well-conditioned eigenvalues may be seriously affected.

The special case where A is symmetric and B 1is positive definite
has been extensively treated. For the case of well-conditioned B +*he
"Cholesky-Wilkinson" method [ 6 ] enjoys a well deserved popularity.

A modification of this algorithm for band matrices is given by Crawford [ 1 .
A variant of the Peters-Wilkinson method for nearly semidefinite B has
been given by Fix and Heiberger [ 2]. Although our method does not
preserve symmetry and is consequently more time consuming than these
algorithms, its stability may make it preferable when B 1is nearly

semidefinite.

Our algorithm can also be used to solve "A-matrix" problems
of the form

r r-1
(A7C. + Chg t eee v Cy) x = 0
by forming the generalized block companion matrices. For

example, when r = 3 ,

A .

02 C1 CO C3 0
A = I 0 0 B =-10 I 0
0 I 0 0 0 I

Note that neither Cr nor C0 is assumed to be nonsingular .



2. Reduction to Hessenberg-Triangular Form

In this section we shall give an algorithm whereby A is reduced
to upper Hessenberg form and simultaneously B 1is reduced to triangular
form. While a treatment of the reductions in this and the following sections
can be given in terms of standard plane rotations and elementary
Hermitian matrices, we find it convenient from a computational point of
view to work exclusively with a modified form of the elementary Hermitians.
Accordingly, we introduce the following notation.

By N}(k) we mean the class of symmetric, orthogonal matrices of

the form

I+ vuT
where vTu = -2 ,\ v is a scalar multiple of u , only components
kKyktl,...,ktr-1 of wu are nonzero, and uk =1 . Given any vector x ,

it is easy to choose a member Q of %}(k) so that

Qx = x + (uTx)v
has its k+1,...,ktr-1 components equal to zero, its k-th component changed
and all other components unchanged. Since W = 1, the computation of
Qy for any y requires only 2r-1 multiplications and 2r-1 additions.
(In particular, use of a matrix in %,

instead of the 4 required by a standard plane rotation.)

requires only 5 multiplications

For the most part, we shall use only matrices in mé and %5 .
When a matrix Q in Wz(k) premultiplies a matrix A only rows
k, k+tl, and k+t2 in QA are changed. If the elements k , k+l,
and k+2 1in a column of A are zero, they remain zero in QA . Likewise,
if Ze&é(k) , only columns k , k+1 , and k+2 are changed in AZ . If

gsome row has elements k , k+l , and k+2 zero, then they remain zero

in AZ . Similar considerations hold for the class %é



All our transformations will be denoted by Q's and Z's with
various subscripts. The Q's will always be premultpliers, that is
row operations. ‘The 7Z's will always be postmultipliers, or column
operations. The letter Q 1is being used in its traditional role to
denote orthogonal matrices. The letter Z was chosen to denote orthogonal
matrices which introduce zeros in strategic locations.

_The first step in the reduction is to reduce B to upper triangular
form by premultiplication by Householder reflections. The details of
this reduction are well known (e.g. see [4,11]) and we confine ourselves
to a brief description to illustrate our notation. At the k-th stage of
the reduction (illustrated below for k =3 and n =5 ), the elements

below the first . k-1 diagonal elements of B are zero.

X X X X X

0 X X X X

0 0 bid X X
1

0 0 X X X

0 0 xl X X

. 1
Fach x represents an arbitrary nonzero element. Each X~ represents

an element to be annihilated in the next step. A matrix le%h_k+l(k)

is chosen to annihilate b ...,bn Kk’ and B is overwritten
J

k+1,k’ b1<;+2, k’
by QkB , giving a matrix of the form illustrated below.

X X X X X

0 X X X X

0 0 X X bid

0 0 0 X X
1

0 0 0 X X

This process is repeated until k = n-1 . Of course A 1is overwritten

by Q1,5 QqA -



After this reduction, A and B have the form

A B
X X X X X X X X X X
X X X X X 0 X X b4 X
X X X X X O 0 X X X
X X X X X ¢ 0 0 b4 X
xl X X X X 0 0 0 X

The problem now is reduce A to upper Hessenberg form while
preserving the triangularity of B . This is done as follows (for k =5 )
First Qe&é(h) is determined to annihilate agy - The matrices QA and

QB , which overwrite A and B then have the form

X X X X X X b4 X X X
X X X X X 0 X X X X
X X X b4 X 0 0 X X X
X | X X X X 0 0 0 X X
0 X X X b4 0 0 0 xl X

The transformation has introduced a nonzero element on the (5,4)-position
of B . However, a Ze&é(h) can be used to restore the zero without
disturbing the zero introduced in A .

This step is typical of all the others. The elements of A are

annihilated by Q's in the order illustrated below.

X X X X X

X X X X X

X X X X X
2 p)

b'q X X b'e X
1 L 6

X X X X X



As each element of A 1is annihilated, it introduces a nonzero element
on the subdiagonal of B , which i1s immedisately annihilated by a suitably
chosen Z . The entire algorithm, including the Householder triangulari-

zation of B may be summed up as follows.

1) TFork=1,2,...,n-1

1) Choose le%h_k+l(k) to annihilate bk+l,k’bk+2,k""’bn,k .
2) B *—QkB s A« QKA
2) For k = 1,2,...,n=2
1) For £ = n-1,n~2,...,k+1
1) Choose Qk£€wé(£) to annihilate 41k
2) A «-QkﬂA s B« QREB
3) Choose Zkleﬂé(z) to annihilate b£+l,£
Ly B~ BZkz s A *-AZkZ
The complete reduction requires about %} n5 multiplications,
%} n5 additions and n2 square roots. If eigenvectors are also to be

computed, the product of the Z's must be accumulated. This requires

an additional n5 multiplications and % n5 additions. The product

M\

of the Q's 1is not required for the computation of eigenvectors.



Ao The Wixplicit Q4 dtep

In this and the next section we assume that A is upper Hessenberg
and B is upper triangular. In this section we shall propose an iterative
technique for reducing A to upper triangular form while maintaining the
triangularity of B . The idea of our approach is to pretend that B is
nonsingular and examine the standard QR algorithm for C = AB“l . The
manipulations are then interpreted as unitary eguivalences on A and B .
Specifically suppose that one step of the QR algorithm with shift ¢
is applied to C . Then Q is determined as an orthogonal transformation
such that the matrix
(3.1) R = Q(C-oT)
is upper triangular. The next iterate C' 1is defined as
¢t =Ral + ¢I = qeal .

and is known to be upper Hessenberg. If we set
A' = QAZ

and
B' = QBZ ,

where Z 1is any unitary matrix, then

Ap Tt o QAZZTB'lQT = QAB'lQT =C!

The matrix Z can be chosen so that B' is upper
triangular. Then, since A' = C' B' 1is the product of a
Hessenberg and a triangular matrix, it is also upper
Hessenberg. This insures that the nice distribution of zeros,
introduced by the algorithm of section 2, is preserved by the

QZ step. Thus a tentative form of our algorithm might read



1) Determine Q so that QC is upper triangular,
2) Determine Z so that QAZ is upper Hessenberg and QBZ is upper
triangular,
3) A «QAZ , B «QBZ .
The problem is then to give algorithms for computing Q and Z which do
not explicitly require C = AB™Y .
The determination Q is relatively easy. For from (3.1) and the

definition of C it follows that
(3.2) Q(A-eB) = RB = S

Since R and B are upper triangular, so is S . Thus Q is the unitary
matrix that reduces A-kB to upper triangular form. Since A-¢B 1is

upper Hessenberg, @ can be expressed in the form
(5 '5) Q = Qn_lQn_g‘ b 'Ql )

where leﬂé(k)
To calculate Z we apply Q in its factored form (%3.3) to B and
determine Z in a factored form so that B stays upper triangular.

Specifically QB has the form (n=75)

X X X X X
1

X X X X X

0 0 X X X

0 0 0 X X

0 0 0 0 b'd

If QlB is postmultiplied by a suitable Zl€ﬂé(l) the nonzero element

below the diagonal can be removed. Similarly QQQIEZl has the form

10



X X X X X
0 X X X X
0 xl X X X
0 0 0 X X
0 0 X

and the offending nonzero element can be removed by a ZEGNé(Q) .

Proceeding in this way, we construct Z in the form

Z = ZyZpe 1

 where Zk€wé(k)
Although QBZ is upper triangular, it is not at all clear that
QAZ is upper Hessenberg. To see that it is, rewrite equation (3.2)

in the form
(5.4) QAZ = SZ + kQBZ .

From the particular form of Z and the fact that S is upper triangular,
it follows that SZ is upper Hessenberg. Thus (3.4) expresses QAZ as
the sum of an upper Hessenberg and an upper triangular matrix. In
fact (3.4) represents a computationally convenient form for computing QAZ .
We summarize as follows.
1) Determine Q = QnriQan"'Ql (leﬂé(k)) so that
S = Q(A-eB) 1is upper triangular.

2) Determine Z = Z Z (Zkewg(k)) so that B' = QBZ

172 " “n1

is upper triangular

\N
~

A' = SZ + oB!

If this algorithm is applied iteratively with shifts “i’”é"" 5

there result sequences of matrices Al’AE"" , and B, ,B

1, 2990

satisfying

11



Ave1 = AL, Bys1 = B,
The matrices A, are upper Hessenberg and the B, are upper

triangular. Moreover, if 81 is nonsingular, then the matrices

Cy = AyB;l are the matrices which would have been obtained

by applying the standard QR algorithm with shifts T fé,...
-1

to C1 = AlBl . As Cy tends to upper triangular form, so

must Ay, , since 3=l g upper triangular ,

Most of the properties of the QR algorithm carry over to the QZ

algorithm. The eigenvalues will tend to appear in descending order as

(v)
n,n-1

may be accelerated by employing one of the conventional shifting strategies.

V\

Once a( )
n,n-1

with the leading principal submatrices of order n-1 . If some other

(v)

£,0-1"

one proceeds along the diagonal. The convergence of a to zero

becomes negligible one can deflate the problem by working
subdiagonal element of Av , say a becomes negligible, one can

effect a further savings by working with rows and columns £ +through n .
Because we have used unitary transformations, an element of Av or B

v

can be regarded as negligible if a perturbation of the same size as the

element can be tolerated in Al or Bl
The algorithm given above i1s potentially unstable. If k is large
compared with A and B , the formula (3.4) will involve subtractive
cancellation and A' will be computed inaccurately. Since the shift k
approximates the eigenvalue currently being found and the problem may
have very large eigenvalues, there is a real possibility of encountering
a large shift. Fortunately the large eigenvalues tend to be found last

so that by the time a large shift emerges the small eigenvalues will have

been computed stably. (The large eigenvalues are of course ill-conditioned

12



and cannot be computed accurately.) To be safe one might perform the
first few iterations with a zero shift in order to give the larger

eigenvalues a chance to percolate to the top.

13



.  Implicit Shifts

The potential instability in the explicit algorithm results from
the fact that we have used formula (3.4) rather than unitary equivalences
to compute A' . One way out of this difficulty is to generalize the
implicit shift method for the QR algorithm to the QZ algorithm so that
both A' and B' are computed by unitary equivalences. The implicit
shift technique has the additional advantage that it can be adapted to
perform two shifts at a time. For real matrices this means that a double
. shift in which the shifts are conjugate pairs can be performed in real
arithmetic.

Since we are primarily interested in real matrices, we will concentrate
on double shifts. The method is based on the following observation.
Suppose that A is upper Hessenberg and B is upper triangular and
nonsingular. Then if Q and Z are unitary matrices such that QAZ
is upper Hessenberg and QBZ is upper triangular, then Q is determined
by its first row. In fact, AB_l and QAB_yQH are both upper Hessenberg,
so that, by the theorem on page 352 of [11], Q is determined by its
first row.

Thus we must do two things. First, find the first row of Qq .
Second, determine Q and Z so that Q has the correct first row,

QAZ is upper Hessenberg, and QBZ 1is upper triangular. The first part
is relatively easy. The first row of Q is the first row that would be
obtained from a double shifted QR applied to AB_l . Since A 1is

upper Hessenberg and B upper triangular, it is easy to calculate the
first two columns of AB-l . But these, along with the shifts, completely

determine the first row of Q . Only nonsingularity of the upper 2-by-2

1k



submatrix of B is actually required here. If either bll or b22
is too small, so that this submatrix is nearly singular, a type of
deflation can be carried out. We will return to this point later.

The second part is a little more difficult, and is really the crux
of the algorithm since it retains the Hessenberg and triangular forms.
Only the first three elements of the first row of ¢ are nonzero. Thus,

if Q, 1is a matrix in %3<l) with the same first row of Q , then QA

and QB have the following form (when n = 6)

X X X X X X X X X X X X

X X X X X X x2 X X X X X
1 1

X X X X X X X X X X X X

0 0 X X bid X 0 0] 0 X X X

0 0 0 X X X 0 0 0 0 X X

0 0 0 0 X X 0 0 0 0 0 X

As in the standard implicit shift QR algorithm, it is convenient to think
of Ql as the reflection which annihilates two of the three nonzero
elements in a fictitious "zeroth" column of A .
We must reduce QlA to upper Hessenberg and QlB to upper triangular
by unitary equivalences. However, we may not premultiply by anything which
affects the first row. This is done as follows. The matrix QlB has
three nonzero elements outside the triangle. These can be annihilated
by two Z's , a Z! in 3{5(1) which annihilates the (3,1) and (3,2) elements

1

and then a Z'l' in }éz(]) which annihilates the resulting (2,1) element.

— t7tt N . .
Let Zl = ZlZl « Then QlBZl is upper triangular. Applying Z1 to

QlA gives QlAZl with the following form

15



X X X X X X

X X X X X x
1

X X X X X X
1

X X X X X X

0 0 0 X X b4

0 0] 0 0 X X

This is multiplied by Q, in &3(2) that annihilates the (3,1) and

(4,1) elements. Then QQQlAZ and QngBZl have the forms

1
X p:d X X X be X X X X X X
X X X X X X 0 X X X X X
0 X X X X X 0 x° X X X X
0 X X X X X 0 xl Xl X X
0] 0 0 X X X ¢ 0 0 X X
0 0] G 0] X X 0 0 0] o) X

The first columns are now in the desired form. The nonzero elements
outside the desired structure have been "chased" into the lower 5-by-5
submatrices.

Now, postmultiply by Z, , a product of a matrix in &5(2) and a
matrix in Né(E) that reduces the current B to triangular form. Then
premuitiply by Q5 in %5(5) to annihilate two elements outside the
Hessenberg structure of the resulting A .

The process continues in a similar way, chasing the unwanted nonzero

elements towards the lower, right-hand corners. It ends with a slightly

2

simpler step which uses Q in %,(n-1) to annihilate the (n,n-2)
- [

element of the current A , thereby producing a Hessenberg matrix, and

Z,., in %é(n~l) which annihilates the (n,n-1) element of the

current B , producing a triangular B but not destroying the Hessenberg A

16



The fictitious zeroth column of A 1is determined in part by the
shifts. 1In analogy with the implicit double shift algorithm, we take the

shifts o7 and ¢ to be the two zeros of the two-by-two problem

1 2
det (A-gB) = 0
where
#n-1,n-1 %n-1,n P 1,n-1 Pn-i,n
A = » E =
a a 0 b
n,n~1 n,n n,n

It is not desirable to compute aj_ and. Ué explicitly, or even to find
the coefficients in the quadratic polynomial det(A-¢B) . Instead,
following the techniques used in " nhgqr2 * [8 ], we obtain ratios of

the three nonzero\elements of the first column of (AB-l

-1
directly from formulas which involve only the differences of diagonal
elements. This insures that small, but non-negligible, offdiagonal

- elements are not lost in the shift calculation. The formulas are

(m = n-1)
a a a a a a a b a b
mm 11, , nn 11 mn nm nm, , mn 11 11
mm 11 nn 11 nn mnm mm nn 11 21
12 %1, P10
+ - <b )(b )
22 11 22
(k.1)
8o 87 21, P12 qm %11 m %11 & m. ,Pmn
a'go_(b _b )-(b )(b )—(b -b ) -(b -b )+(b )(b )
22 11 11 22 mm 11 nn 11 mm nn
o 2
%0 b22

17



We are now in a position to summarize the double implicit shift
method. Tt is understood that A and B are to be overwritten by

the transformed matrices as they are generated.

1) Compute a o» &nd a; by (h.1).

10° %2
2) FOI‘ k = 1,2, ...,1’1—2

50

i+, k-1 2P Byp k1

Prip 1 804 Doy

c) Determine Zﬁeﬂé(k) to annihilate b

a) Determine leyé(k) to annihilate

b) Determine Z&e&é(k) to annihilate

k+l,k °
3) Determine Qn_leyé(n-l) to annihilate 8 ne2
4) Determine Z _,e¥,(n-1) to annihilate Pn,n-1

For each k , determination of Qk requires a few multiplications
and one square root. Application of Qk to both A and B requires
about 10(n-k) multiplications. The work involved with each zZ;, is
the same. Application of Z£ requires only about 6(n-k) multiplications.
The number of additions is about the same. Summing these for k from
1 -to n-1 gives a total of about 15n2 multiplications, En2 additions
and 3n square roots per double iteration.

By way of camparison, for the double shift QR algorithm as implemented
in " har ", Zé becomes simply Qi and Zg is not used. Furthermore, the
transformations are carried out on only one matrix. Consequently, each
double iteration requires about Sn2 multiplications, Sn2 additions and
n square roots. Thus the QZ algorithm applied on two matrices can be
expected to require roughly 2.6 times as much work per iteration as

the QR algorithm on a single matrix.

18



In order to obtain eigenvectors, the Q's are ignored and the %'s
accumulated. This requires about 8n2 more multiplicaticns and 8ni
more additions per double iteration.

There is one difficulty. The formulas for 0’ and 8z

%10 7 %2
are not defined when bll and b22 are zero. Moreover, asg bll and

b22 approach zero the terms that determine the shift (terms involving

& bnn , etc.) become negligible compared to the other terms, so that

the effect of the shift is felt only weakly.
Part of the solution to this difficulty is to deflate from the tog.

If bll is negligible it may be set to zero to give the forms for A

and B (n=1L)

S C ®OX
O X K X
Lo TR < T T
Fa T = - T
S O O O
O O K X
O MW XWX
HoMWooX N

A Q in %é(l) can then be used to amihilate the (2,1) element of A .,

which deflates the problem.
The rest of the solution lies in recognizing that there is not much
of a problem. If bll and b22 are small then the problem has large
eigenvalues. We have already observed that the larger eigenvalues tend
to emerge at the upper left, and the larger the eigenvalue, the swifter
its emergence. Moreover the speed will not be affected by a small shift.
This means that whenever the implicit shift is diluted by a small b

11

or b22 , the algorithm is none the less profitably employed in finding

a large eigenvalue.

19



5. Further Reduction of the Quasi-lriangular Form

The result of the algorithm described so far is in an upper
triangular matrix B and a quasi-upper triangular matrix A in which
no two consecutive subdiagonal elements are nonzero. This means that
the original problem decomposes into one by one and two by two subproblems.
The eigenvalues of the one by one problems are the ratios of the corres-
ponding diagonal elements of A and B . The eigenvalues of the two by
two problems might be calculated as the roots of a quadratic equation,
and may be complex even for real A and B .

There are two good reasons for not using the quadratic directly,
but instead reducing the two by two problems. First, when A and B
are real, the calculation of eigenvectors is greatly facilitated if all
the real eigenvalues are contained in one by one problems. A more
important second reason is that the one by one problems contain more
information then the eigenvalues alone. For example, if aqq and bll
are small then the eigenvalue Xl = all/bll is 111l conditioned, however
reasonable it may appear. This reason obviously applies to complex
eigenvalues as well as real ones. Accordingly, we recommend that the
two by two problems be reduced to one by one problems and that the
diagonal elements, rather than the eigenvalues, be reported.

Without loss of generality we may consider the problem of reducing
two by two matrices A and B simultaneously to upper triangular form
by unitary equivalences. TFor our purposes we may assume that B is
upper triangular.

Two special cases may be disposed of immediately. If b is zero,

11

then a Qeyé(l) may be chosen to reduce 8nq to zero. The zero elements

20



of QB arc not disturbed. Similarly, ir b, ig wero, a 2y (1)
[ [

may be chosen to reduce a to zero without disturbing b,

21 1

In the general two-by-two case, it is not difficult to write down
formulas for the elements of A' = QAZ and B' =QBZ for any § and Z .
Moreover, these formulas can be arranged so that numerically one of aél
or bél is effectively zero. It is not obvious, however, that the other
element is numerically zero, and the effect of assuming that it is by
setting it to zero could be disastrous. Consequently, we must consider
a somewhat more complicated procedure.

The theoretical procedure for reducing A to triangular form may be

described as follows. Let AN Dbe an eigenvalue of the problem and form

the matrix E = A-AB . Choose a Ze¥ (1) to annihilate either e

11
or e, - Since the rows of E are parallel, it follows that whichever
of €17 or ey is annihilated the other must also be annihilated.

Now choose Qe%é(l) so that either QAZ or QBZ is upper triangular.

Since the first column of QEZ 1is zero and QFEZ = QAZ - NQBZ , it follows

that, however Q is chosen, both QAZ and QBZ must be upper triangular.
In the presence of rounding error the method of computing X and.

the choice of Z and Q are critical to the stability of the process.

A rigorous rounding error analysis will show that, under a reasonable

assumption concerning the computed A , the process described below is

stable. However, to avoid excessive detail, we only outline the analysis.

We assume that all computations are done in floating point arithmetic with

t base B digits and that the problem has been so scaled that underflows

and overflows do not occur. We further assume that a5y is not negligible
in the sense that Iagll < B_tHAH , where ||-]| denotes, say, the row
sum norm.
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The algorithm for computing N amounts to making an appropriate
origin shift and computing an eigenvalue from the characteristic equation.

It goes as follows.

Bop T Bpp T Wby
I - P10%01
2\ P22 P1iPoo
. - #21%12
P1150
r =3 + q
(5.1) A= p+p+ sign(p) Jr (complex if r <0 )

We must now assume that the computed A satisfies the equation

det(A' -AB') =0 ,

where |[A-A'{| <o, |lAl] and |[B-B'|| <oyl with o, and o small
constants of order B_t . Define
E' = A' - \B'
and let E denote the computed value
E = f1(A-AB) .
Then
E' = E+H
with ||| <o mex{||al|, M| ||B|} with o of order B .

We claim that, approximately,
(5.2) |l > 87" max{lall, M| B} -
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Mirst we note that

o . -t
(5:3) vl > eyl = lagyl > 87l
by the assumption that 8y is significant. Now assume that
IEl < B_tlk\ \Bl| . Then subtractive cancellation must occur in the

computation of €11 7 &qp and € Thus a1y ~ Abll 5 85 Q5Xb12

and a,, ~ M, . Hence we have lall > M Bl 5 and, from (5.3),

IEN ‘2 p" M| |Bll , a2 contradietion.

Now
0 = det(E') = det(E) + (ell ll)h (e12 12) by thyqepn - R0y -
Hence
Jact(E) | < po B} max{al, [ [BY 3+ pplmaxlal, v iz 11°
where and p, are.of order ;3' . From (5.2) it then follows that

P1
laet () | < pl[Ef| max{ljall, (1] 3

where p is of order B~

Now consider the determination of Z . Assume that the second row
of E 1is larger than the first. Then Zeyé(l) is chosen to annihilate e
Let F =F8Z . Then fél is essentially zero. TFurthermore, since Z 1is
unitary

1115001 = laet(®)] < ol B max{ijall, IM{i3])3

But lfegl =z Hegﬂ and, since e. was assumed to be the larger row,

2

HeEH = ||E] . Hence we have approximately

21,1 < o max{jall, [ [|3]3
To choose @ , let

¢C=AZ , D=BZ ,

25

2l °



and let 1‘,I > Gy and dl be the Jirst columns ol # , C, and D .
Lot qi denote the second row of ¢ . If YAl > M)l , we choose

to annihilate dEl . Numerically this means that

lay 2] < o3l

where o 1s a constant of the order of B—t . We must show that qgcl

is negligible. But

\qg c,| = qu 0N qz q, |
< eyl + M el ayl
< o max{jall, [M|BI3 + oM |

IN

(p + o)Al
If, on the other hand,  |N||[B|| > ||A]] , we choose Q so that
3 eyl < olla]

It then follows that

] = la £ -ahey] /P

oM™ max{|all, MBI + o|n M)

A

< (p+ o)lBl

In summary, A 1is computed using (5.1), Z is chosen to annihilate
the first element of the larger of the two rows of A-AB and Q 1s chosen
to annihilate the (2,1) element of the smaller of the two matrices AZ
and ABZ . TIn this way, we can be sure that the computed (2,1) elements
of both QAZ and QBZ are negligible.

In practice with matrices of any order, if the transformations are

real, they are applied to the entire matrices. If the transformations are

ol



complex, they are used to compute the diagonal elements that would result,
but are not actually applied. We thus obtain a quasi-triangular problem
in which each two-by-two block is known to correspond to a pair of complex
eigenvalues.

The generalized eigenvectors of this reduced problem can be found by
a back-substitution process which is a straightforward extension of the
method used in " hgr2 " [ 8 ]. The vectors of the original problem are

then found by applying the accumulated Z's .

25



6.  Some Numerical Results

The entire process described above has been implemented in a Fortran
program [ 7 ]. There are four main subroutines: +the initial reduction to
lHessenberg-triangular form, the iteration itself, the computation of the
final diagonal elements, and the computation of the eigenvectors. The
complete program contains about 600 Fortran statements, although this
could be reduced somewhat at the expense of some clarity.

The numerical properties observed experimentally are consistent with
the use of unitary transformations. The eigenvalues are always found to
whatever accuracy is justified by their condition. If an eigenvalue and
eigenvector are not too "ill-disposed", then they produce a small relative
residual.

Similar numerical properties can not generally be expected from any
algorithm which inverts B or any submatrix of B . This is even true of

2-by-2 submatrices, as illustrated by the following example due to

() 0

Here |, 1s about the square root of the machine precision, that is, u is

Wilkinson.

not negligible compared to 1 , but ME is. There is one eilgenvalue
near -2 . Small relative changes in the elements of the matrices cause
only small relative changes in this eigenvalue. The other eigenvalue
becomes infinite as |, approaches zero. Great care must be taken in
solving this problem so that the mild instability of the one eigenvalue

does not cause an inaccurate result for the other, stable eigenvalue.
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01 coursc, the use of unitary transformations makes our technique
somewhat slower than others which might be considered. But the added
cost is not very great. In testing our program, we solve problems of
order 50 regularly. A few problems of orders greater than 100 have
been run, but these become somewhat expensive when they are merely tests.
One typical example of order 50 requires 45 seconds on Stanford's
IBM 360 model 67. Of this, 13 seconds are spent in the initial reduction
29 seconds are used for the 61 double iterations required, and 3 seconds
“are needed for the diagonal elements and eigenvectors. If the eigenvectors
are not needed and so the transformations not saved, the total time is
reduced to 27 seconds. By way of comparison, formation of B_lA
a la Peters and Wilkinson [9] and use of Fortran versions [12] of "orthes"
[5] and " hqr2 " [8] requires a total of 27 seconds for this example.
(A11 of these times are for code generated by the IBM Fortran IV compiler,

H level, with the optimization parameter set to 2 .)

In the examples we have seen so far, the total number of double
iterations required is usually about 1.2 or 1.5 times the order of
the matrices. This figure is fairly constant, although it is not difficult
to find examples which require many fewer or many more iterations. As a
rule of thumb, for a matrix of order n the time required on the model 67
is about .36 n? milliseconds if vectors are computed, .22 n5 milli-

seconds if they are not.
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The example in Table 1 is not typical, but it does illustrate
several interesting points. It was generated by applying non-orthogonal
rank one modifications of the identity to direct sums of companion matrices.
The companion matrices were chosen so that the resulting problem has

three double roots,

}\_ :7\, = )

1 2

. 1,./3 .

)\5—)\5_.§+—é—1 P
1 /3,

M=rg=5-F 1 -

The double root at « results from the fact that B has a double zero
eigenvalue. All three roots are associated with quadratic elementary
divisors; i.e., each root has only one corresponding eigenvector. The
computed diagonals of the triangularized matrices are given in the table.
Note that the four finite eigenvalues are obtained with a relative accuracy
of about 10-8 . This is about the square root of the machine precision
and is the expected behavior for eigenvalues with quadratic elementary
divisors. The singularity of B does not cause any further deterioration
in their accuracy. Furthermore, the infinite eigenvalues are obtained from
the reciprocals of quantities which are roughly the square root of the
machine precision times the norm of B . Consequently we are somewhat

*
Justified if we claim to have computed the square root of infinity.—/

¥
—/ This prompts us to recall the limerick which introduces George Gamow's
One, Two, Three, Infinity:

There was g young fellow from Trinity
Who tried /e

But the number of digits

Gave him such fidgets
That he gave up Math for Divinity.
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0
38
2
27
27
27

25.768670843143
-12.821841071323
5.814535434181 + 10.071071345641 i 11.629071028730

5.800765Q7115o

oo =20 6 6 6 5 5 5 -6 9
S S I 5> L 5 -6 >
2¢ =17 5 5 5 5 16 5 -6 >
38 -17 5 5 o 5 5 5 16 -6 5
27 -17 16 5 5 5 5 5 -6 16
27 -17 5 16 6 6 6 6 -5 6
o B
.2637605112.10‘2

.1312405807.10"

10.047220375909 i 11.601530302268

5.736511506410 + 9.935928843473 i 11.473022854605

5.5108 719468089

0.976972281.10g

-o.976972290.108

9.545122710676 i 11.021758784186

/B

0.49999999310489 + 0.86602543924271 i

0.49999999310489

0.86602543924271 i

t

0.50000000689511 + 0.86602536832617 i

0.50000000689511

0.86602536832617 i

Table 1
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(.G GGG uaGaGC GGG CaGaaaGoce:c.

C.Ce.CC.C

i

[ o S I A SO QPR S g

SUBKIULINGE Vi (8D, N, 8,L,5P5, ALFR, ALFI,BELA, LTER, wANT A, &)
LAPLICIY KianL*d (A-0,0-4)

ULNENSLUN A(ND, D) B(ND,WU) JALFR (N) ,ALEL(N) yolTA(n) ,X (MU, D)
VIMENSLUN I18&n)

LUGLCAL WANTX

A AND I AKE W-BY-N KiAL 4ATLQICES, SPURED LN AKRAYS 10l NU sCW3.
EPS LS THE WELATIVE rucClsIOd OF ELEMENIS OF A 4ND v
FLabS & PALRS UF SCALAKS, (ALPA (M) ,05Ta(M)) oU fdas
GETA () *A - Auih (M) *o L[y SINGULAKk.
e EIGENVALULS OF A%4 - LAGDDA®B¥4 CAW OE UsiBAinEu bY
CLVIDING ALFa(4) oY ubia (d), calEPT BEla(o) #divil 88 4EKO.
LF (WANIX) ALSO rIdDS CURRES¢UNVING BELGENVACIURS.
USes> ONLY UwalAdi IRANSFOKGALLUNS, wO LAVEaows,
SO EITdER 4 UK o (Uk BUTH) 6AY B¢ SiwiULid.

viETA(M) IS5 wwudl.

abra(d) Lo CUMELLA, bhprabk AND LAAGLNAQY FAWTo AN ALba (i) Ao aoi'l(u).
CCPLEL PALKS UCCd wivh ALed (M) /oBia(d) AND ALrFA(Me1) /LA (Me1)

CONPLEL CUMJUGALES ©BVed THOUGH Auka(d) AND ALEA(M+1) Aunb JUT
NLCESOARLLL CUNJUGaiL.
UBES ONLI obds AuilunellC,

L A AdD B wbub adouCed TO T&IANGULAL Puwa 3Y UNILARY S ULVALLNC LS,

hLFA AN BRETA a0ULLL bE TiE VLAGCNALS.
A Aow o Ale ACIUALLY KELZUCLD UNLY 1y pUALI-TulANGULAR FULE WITu
1-8Y-1 AND 2-p¥-2 DLLCCKS 0N ULlaGONAL CF A,
Ir aALFA (i) 15 o801 «bal, Tdak SETA(H) Lo NUL 2iru.
ITER I35 ToOUbLe sdulCALUR Ano L1RRALLCN CUUNTEW.
ot (LTeR(V)ebyev) wVEKYTHING IS CK.
It () L5 NJModg OF LTZKATLONS NouDib FUL d-In EIGENVALUL.
Lt (Llisk (V) Tdny ITL& (M) .b9e ~T1) THey LTERALLON Fux k-Tii
LLGENVALULE Viu NOT CUONVERGE AND ALFA (1) TudkU aLFA () AWND
LEfA (1) Tduu SETA(4) ARe PRUOEBABLY lbhacCuddlw.
il (AANTA) A e, ,d) 4S5 Tue M=-Td QEAL SLGLENVECTUK.
Afags) AND K(e,i+1) aucd THE BEAL AND LlMaviNagY PAKLS
DY rdo A= culivoba wlGESVECTOR.
Afesd) ANV =A(a,uitl) Al THE REAL AND 1MAGLNAKY Pagls
OF Tds (r+1)-5T CobtPLek ELGENVECTUR,.
Ve DRo wllMALLoLy SO THAL LARGEST CCHMeUNSNT 1S 1, un T.+Jd.L o

Useo rIUa PoldAu SUbDBUUTLNEL, QLHES, 41T, LIVAL AND ywaVic.
Uoith tull AJXLLL1AGY SUDROULINES, Honld, hste, CuSild adD CulV.
Jors WY 3TaNDAHU FUSCLLIONS, USUKT abtb UAbS.

Adlduks: C. Je 0OLEn, STANFORD, ANJD 5. We Slowaki, U. Ul TEXAS
This VidsoluN LaTed 1/6,72.

Chbu WAHES (NLyN,A, B, naNLX,X)

CaLL Q4IT (ND,u,A,B,LP5,EP5A,EPSB, L ER, WAuTA, &)

Cnie QAVAL (NU,d,A,0,EP5A, E25B,ALFR, ALFL,beCh, wANTX, &)

Li (WANTX) CALL Q4VEC(N8D,MN,A,U,EPS4, EE 58, ALPK, ALFL, BETA,X)
« .TURN

END



SUBLOUTLYE Yadis (ND,NgA, B, KANTX, X)
LidwiCa?l RchL*o (A=H,u-%)

VIAENSLUN A (ND,AD), D (8L, D) ,X(NU, V)
LoulCAL WANTX

[
C AINLPLALLZw &, Usbw LG SAVE LRANSFULAAT [0S
iF (JNOLJWANTK) GU 16 10
DO 3 I=1,N
DU 2 J=1,N
K(L,J) = .
p) COdTINUE
XL, L) = 1.
3 CONTINUZ
N .
¢ REDJCE B U UEFER IulANGULAR
(V)

10 NAT=u-1
Ly 100 w=1,5801
Ll = L+
5 = U
o 20 L=Li,b
> = 5 + unbS(b(s,Ll))
29 CUNTINUL
LF (S.zp.0.) o0 10 100
5 = o+ Labd(BL,u))
R = 0.
DU 25 I[=L,q
g(L,L) = s(d,L)/e
& = &+ b(L,L)¥**2
29 CUNTINUE
d = DIKT ()
IF (B(L,L)sLL.CG.) u = =i
Lb(L,L) = Blu,L) ¢+ &k
gHJ = R*J(L,.)
D0 Sv J=L1,n
L = 0.
DY 36 I=u, 0
L =1 + p(l,L)*b(l,Jd)
30 CUALINUE
T = =T/l
VO 40 L=L,«
v(l,d) = us(l,J) ¢ T*B(L,L)

44 codlaNUZ
B{Y) CuNcsiNUE
DU 380 J=1,u
I = J.

VY 09 I=L,n
T =T + b(1,L)*A(L,Jd)
60 COATINUE
1 = =i/Kdv
w0 70 I=L,N
A(I,d) = A(L,J) ¢ T*B(L,L)
70 CONLLNUE
89 CUNTINUE
B(L,L) = =35%4
D0 90 L=L1,N
B(L,L) = 0.
90 CUNTINUE



Y00 CONTINUE

C MEDUCE A TO UPPER HESSENBERG, KEEP ¥ TBIANGULAR
c
IP (#.LE.2) GO Tu 170
RH2=N0-2 |
DO 160 K=1,¥H2
K1'= K¢1
NKY = H-K-1
DO 150 Lb=1,NK1
L = N-LB
L1 = L4
CALL HSH2 (A (L,K),A(L1,K),01,02,V1,V2)
IP (UV1.8E.1.) GO TO 125
DO 110 J=K,N
T = A(L,J) ¢ U2#A(L1,J)
A(L,J) = A(L,J) + TV
A(L1,J) = A(L1,J) + T*V2
110 CONTIHNUE
l‘L',K) = 0.
DO 120 J=L,N
T = B(L,J) ¢ U2%B(L1,J)
B(L,J) = B({L,d) + T*V1i
B{L1,J) = E(L1,d) + T*Vy
120 CUWI'LNUE
25 CALL USde(B(L1,L1) ,i(L1,L),u1,b2,vi,V2)
1¢ (U1.¥2.1.) Gu Tu 150
DO 130 1=1,i1
T = B(L,L1) + U2%E(1,L)
B(L,LY) = B(L,L1) + T*V1
B(L,L) = B(X,L) + T*V2
130 CONDINUZ
s(Ll,L) = U,
DO 14) I=1,N
T = A(s,L1) + UZ®a(I,u)
A(I,L1) = A(l,LT) + T¥V1
A{I,L) = A(1,L) ¢:T®V2
140 CONTINUE '
DO 145 I=1¢l
T = X(I,L1) ¢ Ud#\(I,L)
L(L,LY) ="x[I,L1) + T*V1
X (Lgl) = 'X(I,L) + T*V2
WS CONTINUE
150 CONTINUE
160 CONXIMNUR
170 BETBRN
END



SUBROUT1NE QZIT (ND,N,A,B,EPS,EPSA,EPSB,ITKR, WANTX, £)
LAPLICIT REAL*8 (A-t,0-2)

DLMENSION A (ND,ND) ,B(ND,ND) ,X (ND,ND)

DIMENSION LTER (¥)

LOGICAL WANTX,MLD

INITIALIZE ITik, CCMPUTE LPSA,EPSB

Ci €16

ANORM =
ENORY =
DO 185 I=1,N
ITER(I) = O
ANL = Q.
"IF (L.NE.1) aNl = BABS(A(L,1-1))
BNI = 0.
DO 180 J=i,d
ANI = ANL + DAUS (A(L,Jd))
BNI = BNL + DABS(B (i,d))
140 CUNTLNUE
LF (ANL.GL.ANURM) anOkd = Awl
IF (BNLI.GL.BNUKM) ENOHA = BN
185 CONTINUE
IF (ANORY.EQ.0.) ANCEM = EPS
LF (BNURM. £Q.0.) BNORA = EPS
EPSA = EPS*ANuxH
EPSB = EPS*BNURH

0.
0.

i on

C
C AdEUJUCE A TO QUASI-TR1ANGULA:, KEEP B TkiANGULAR
Cc
a = A
200 [F (M.LE.2) w0 TO 390

CHECK 708 CUNVEHGEWCE UR REDUCIBILITY

oo

DO 220 LB=1,M
L = M+1-LE
IF (L.EQ.1) GO TC 260
IF (LABS(A(L,L-1)) LE. EPSA) GU 1IGC 230
220 CONTINUE
230 A(L,L-1) = 0.
IF (L.LT.8=1) GO 10 260

= L-1
GO TV 209

¢

C CHECK FOR S¥ALL 1CP Cr 3

Cc

200 LF (DABS(B(L,L)).GT.EBSB) su TO 300

3(L,L) = 0.
L1 = L+1

CALL idSH2(A(L,L),a(L1,L),d1,02,V1,V2)
I# (Ul.NE.1.) GO TO 280
DO 270 J=L,N
T = A(L,d) + UZ#*A(L1,4)
A(L,J) = A(L,Jd) + T¥V1
A(L1,J) = A(L1,d) + T*V2
T = B(L,J) + U2*B(L1,J)
B(L,J) = B(L,Jd) + T*Vi
B(L1,J) = B(L1,d) + T*V2
270 CCNTINUE



230

300

QG

PN e

L = L1
GO T 230

JEGIN ONE 94 STEY, ITIEKATION STKATEGY

ﬂ] - 1

HE + 1

CUNST = 0,75

LTER (M) = [TER(d) + 1

LF (IIER(d).Ly.1) GC TU 3905

L¥ (DABS(A(M,8-1)).LL.CON5T*OLD1) GO TG 305
Ir (DAUS(A(&-1,ﬂ‘Z)).LT.CCNST*OLDZ) GC TO 305
il (LTER (M) « Q. 12} GO TO 310

IF (LTER(i1) sula30) GO TO 330

Hon

o}
L

LEROLH COLUAN OF A

B11 = B(L,L)

822 = B(L1,L1)

IF (DABS (B22) .Ll.EFSE) BzZ = EP3p
£33 = 341,41

JF (DABS(B33) LI.EPSL) B33
B44 = g (M, H)

LF (DABS (B4l) eLl.EPSB) B4 = EPSD

i

EPSS

AVl = A(L,L),/811

ald = A(L, L) /822

adl = A(Ll,L) /811

al2 = A(LY,L1) /8242

433 = A (1 ,81)/u33

A4 = A(d1,M) /8l

Ad3 = A (d,01) /833

A4 = A (H,M)/Bdd

sl = B(L,Lly/32¢

B3w = B(d1,4) /B44d

A10 = ( (A33-a11)% (A4u=-a11) - adu*du3 + Ad3%334%411 ) /acl
1 + Al - A1T1*p 12

A20 = (M22-A11-a21%B12) = (A33-A11) - (AU4-A11) + A43%334
A = A(L+2,u1)/B22

6V TO 315

A d0C SHIFIL

A10 = 0.
AcO = 1.
K30 = 1.1005

ULwl = DaABS (A, K-1))
CLD2 = DaBS (A (d-1,8-2))
1F («NOT.WANTX) Lux1 = L
Le (WANTX) LOK1 = 1

1 («NOT.WANTX) MULQN = M
LF (WANTX) “Oan = o

BEGIN MALN LOuP

DU 360 K=L,M1
MID = KeNEott1

K1 = K+1
K2 = K+2
K3 = K¢J



Gaa

GO

LIf (K3.GT.M) K3 = H
KM1 = K-1 ;

ZERU A (K+1,K-1) AND A(K+2,K-1)

oo

iF (K.EBQ.L) CALL LSH3 (A10,A20,A30,u1,02,03,V1,V2,V3)
IF (KeGTsLeANDeR LTI M1)
1 CALL USa3(A(K,Kal),A(K1,K81),A(K2,K01),01,02,U3,V1,V2,V3)
IF (K.EQ.M%) CALL hsH2{A(K,KM1),A(K1,K¥1) ,u1,02,V1,V2)
IF (Ul.ME.1.) GO 10 325
DU 320 J=K41,H4CaN
I = A(K,J) + UZ*A(K1,d)
I# (MID) L = 1 + U3*A(K2,J)
A(K,Jd) = A(h,Jd) + T*y1
A(R1,d) = A(K1,d) + T*y2
LE (AID) a(h2,Jd) = A(K2,J) ¢ T*V3
I = B(h,J) + U2*g(n1,d)
IF (M1b) ¢ = 1 + U3*B(K2,4d)
B(K,d) = uv(n,Jd) + T*v1
B(K1,Jd) = y(K1,d) + I[*V2
IF (MIu) 4 (K2,9) = B8(K2,J) + T#*V3
320 CONTINUE
IF (KeEyua.l) GO Tu 325
A(K1,K-1) = 0.
LF (MiD) A(KZ,K-1) = 0,

ZERO B (K+2,K+1) AND b (K+2,K)

325 IF (Ke.£8¢etl) GU TO 340
CALL dSH3 (8(K2,02),B(K2,K1),B(K,K),U1,02,03,V1,Ve,V3)
IF (Ul.NE. 1) GwU 10 349
DO 330 1=LUi1,K3
T = A(L,82) + Ug*A (1,K1) + U3*a(i,K)
A(L,K2) = a(l,n2) + I*V1
A(L,01) = A(L,K1) + 1%y
A(L,K)y = a(d,K) + T*y3
T = B(4,K2) + UZ¥B(L,K1) + u3*b(IL,K)
8(L,K2) = B(l,Ke) + LI*v1
B(I,K1) = b(di,K1) + T*V2
B(L,K) = 3(L,K) + T*V3
339 CONTINUE
B(K2,K) = 0.
B(K2,K1) = 0.
IF (.NUT.WANiK) GO TU 340
Do 335 I1=1,N
I = X{L,82) + U2%X (L,K1) + U3*X(I,K)
L(I,K2) = &(L,K2) + [*V1
£(I,K1) A(L,K1) + TI#*y2
X(L,K) = K(1,K) ¢ T4V3
335 CONTINUE

i 1

4LBRO B (K+1,K)

340 CALL 4SH2(3(K1,81),8(K1,k),01,02,V1,VZ)
IFP (U1.NE.1.) GO Tu 309
DO 350 I=LOUAT1,KJ
T = A(L,K1) + U2%A (L,K)
A(L K1) = A(L,K1) + T*V1
A(I,K) = A(I,K) + T#v2



QoG

350

355
360

O G

380

385
390

T = B(L,K1) + UZ*3 (L,K)
B(I,K1) = 3(L,K1) + [*V1
B(L,K) = 8(L,K) + T*vy
CONTINUE
B(K1,K) = 0.
IF (+NOT.WANTK) GU TO 300
Do 355 I=1,N
I = Xx(i,K1) + U2%X(L,K)
X(I,K1) = X(1,&1 + [*V1
K(L,8) = £(i,K) + T#V2
CONTINUE
CONTINUE

END dAIN LoOp
GU TO 200
SND ONE Q2 STup
00 385 I=1
LTER (I)
CCNTINUE

KSTURMN
LND

oy
= -1



SJSROULINE Q4VAu (w0, N, A, B, elSA, Bk, ALk, ALoaL, BSTA, 4ANLA, X)
A8PLICLIT REAL*s (A=-u,J-34)

DLABNSIUN A (ND,&w) 0 (80, Nu) gALEK (W), ALed (), BETA (N) , 4 (NU, ND)
LUGICAL wAWTX,FuLIP

FLND ELGENVALUES b YUASI-TRIANGULAr dATKICES

80 400 THRU 499 Fow ¥4 = o S¢EP (=1 Uk =-&) UNTLiL 1

Qaaan

=0
400 CONTIWUE
IF (Menigel) 50 TO 410
Ir (A(M,4-1).8e.0.) U TO 420

[
c ONE-BY-CNE SUBMATKLX, CNb KEAL RCCY
[}
410 ALFR (4) = A(4,8)
BETA (M) = B(d4,n)
ALFL (M) = 0.
d = #-1
w0 [0 490

TWO-BY-TWC SUDHALRLX

e X e N ¢

420 L = #-1
IF (LABS(B(LeL)) +6ToEPSB) GO T0 425

B(L,L) = 0.
CALL HSH2 (A (L,L),A(M,L),U1,02,Vi,V2)
G0 TO 460
425 IF (LABS(B(vi,H4)) uleEFS53) GO Ty 430
B(M,4) = V.
CALL dSH2{A (b, 0) A (lH,L),U0V,Uu2, Vi, v
BN = 0‘
6GU TO 435
430 AN = DABS (A(k, L)) +uABS (A(L,d) ) +uaBS5 (A(a,n)) +uhoS (A(H,0))

BN = UDABS(b{L,r))tuausS (3(L,0))t0aBs (LB(u,H))

A11 = a(L,L)/AN
A12 = A (L, M) /AN
A21 = A (li, L) /AN
AZ2 = A (i, d) /AN
B11 = B(L,L) /BN
B12 = B{L,d) /BN
B22 = B(4,Hd)/Bd

E = A11/B11
C = ((A22-L%022) /B22 - (A21%B12)/ (611%822)) /2.

W

D = CXC + (AZ1%(AV12-E*1512))/ (B11*EZ2)
If (D.LT.0.) GO TU 480

C

C TWO REAL ROULS

C LERO BOTH A (K,L) AND EM,L)

.

IF (C.GE.0.) k = E + (C + DSQaT (D))
IF (CoLT.0.) % = E + (C - DSQKT (D))

A1 = A1 - S%B11)
A12 = Al12 - a*¥Bis
A22 = A22 - n*¥Bel

FLIP = (LAu5(A11) +DABS (A12))«Ge. (CABS(A<1) +DABS (A22))
IF (FLIP) CALL dSHZ(A12,A11,U1,02,V1,V2)
IF (.NOT.FLIP) CALL HSH2(A22,421,U1,U2,V1,V2)



[eK2 X!

435 IF (J1.NE.1.) GO U 49)
pu 440 1=1,n
T = A(L,d) ¢+ vi*a{l,u)

A{L,M) = Aqi,d) + VI

A(L,L) = &{l,L) + Vi*I

T = (L, + Ud¥u(iL,L)

B{I,M) = d(l,4) + VI*T

B(i,L) = d(l,o) + V*T
440 CuNiInVUg

IF (.NOT.wAdT4&) GU TU 450
DO 445 L=1,n
T = a(l,4) + UZ¥K(L,L)

A(I,H) = a(l,d) + viel
AL, L) = a(i,L) ¢ vi*p
by CCUNYLWUE
459 L (Bd.BY.Je) LU LU 470

FLIFP = aN .uude LABS(Z)*Bh
1F (FLIPE) CAwnl H3ug(d(L,Ll),B(&,L),01,Uc,di1,V2)
, IF (NUT.PFLi¢) VALL dSdz(A(L,L),A(M,L),0%,0,V1,Vy
460 IF (Ul.NE.T1.) GO Qv 478
DO 470 J=L,n
T = A\L,d) + U*h(N,d)
A(L,d) = a(L,d) + VI*I
A(4,J) A(N,Jd) + V2¥T
T = B(L,J) + ul*b(M,d)
B(L,d) = B(L,J) + V1I#T
D(d,d) B(m,d) + VAT
479 CUNIINUG
475 A(M,L)
B(M,L)
ALFR (L)
ALFR (M)
BELA (L)
BETLA ()
ALFL (M)
ALFY (L)
4 = b-<

Gu L0 490

]

1]

0.

00
A(L,L)
A{d,M)
B(L,L)
o {,n)
0.

0.

LI ]

(L TR T (I I 1}

IWO COWUPLEL RCLLS

460 Bx
EL
Allx
Al
allR
A124
A1k
Azl
A22R

£+ C
DS kI (=)
all - ok*ai
sIxpiil
Ale ~ sE*812
E4%814
A21
0.
A22 =~ nLn*Bl2
A221 Li¥B22
FLI? = (DAB3(ATVR)+0Al5 (A111) +DABS (A12k) +DABS (4141)) k.
1 (DABS (Agli) +DABS (A22K) +DABS (A221))
IF (PLLP) CALL Cusd2(a12c,A12L,-A110,-a111,C4,54K,541)
IF (. NOT.FLI?) CALL CHASHZ2(A22R,A221,-421K,-A21L,Cu, 4R, SLI)
FLIP = AN .G3Z. (LABS (LR)+DABS (EL))*BN
I¥ (FLIP) CALL CHSHZ (CZ*p11+Sin*B1e, 521%812,
1 SLk*B22, 321*#822, Cy, S5CH, 5Q1)
IF (JNOT.FLL?) CALL CHS5d2(CL*A11+S4R*A12, SZi*A1e,
1 CL¥A21+S4R*AZ4, S4I¥A22, C, Suk, SQI)

{1 T 1A [ VR TR T | B 1



ssi OuR¥34R + S i%544

S31 SUK¥*544L = SyiL*SZk

DPR= CQ¥CL*¥AT ] + Cu*S540%A14 + SYRBCLI*ALT + SoR*A2s
TL = C%5al*ild = Syl Ci%*A21 + 551*%A22

BUR Cu¥Co*n 1l + Cyu*sul*814 + LSRk*d22

BUL = Cy *5al*pl12 ¢ s54%gll2

K = Woukl (Sut*bbit + BUl*5Dl)

BulA (L) = UN&g

ALFR (1) AdN#* (La%¥pud + Ti*gul) /R

ALFL (L) Ad¥ (Li*bDlL - Li¥Bug)/k

TR = SoR*all = Syus*Co®ATes = CU*Uln¥hAsel + Cu¥CL*All
TL = = 595.%A110 = S L*Ca*ATe + Cyu¥Sei*act

BOR = 55a4311 - 50a%Ca*itle + Cyu*CL*[i.

Bul = = Si5i%*011 - L5 I%Ca%ule

R = DoyRT (vur*pLx + Bui¥pul)

BLld (4) = ovu*u

ALEu (M) = da*(tn*boa + Li*Bul) /R

ALFI () Ad* (La®*Ble - ra¥BLu)/u

1) W oh
1]

C
4390 IF (1.6T.9) GU 2u 400
wlfUN
£oab



SUBROUT LG YoVIC (MU, N, A, B ,EPSA, 8P53, ALER, ALYL, BET A, X)
1drLiCul REAL*3 (A-H,U-4)

DLMEWSTON A(8D,NB) B (ND,ND) JALEK (N) g BLEL(N),BETA(N) ,X (Mo, ND)
LUGLCAL WANTX,rullk

FINL BIGENVECITURS Uf QUASL=-1ToalANGULAR adThiCuS bY BaCAKSUBSL1iUiLuw
USLEL B FUR INTEbMeDLALE SPORAGE, M=-TH VECLIUn AN ©(.,0)

DO 500 THRU 599 iFus 4 = v STEP (=1 Ch =2) UNTiIL 1

QGG

d = N
500 CONTiNUE

dEAL VBECTox

c. .

ALFH = ALFK ()
Buld = BELA(d)
B(d,4) = 1.

ton

WU 310 TdalU 54C L0 L = d=1 STEP2 (-1 0k =-2) UNTLL 1

TE2KE

= -1
Fo(Lsi2y.0) Gu i 249
ONTINUE

LT = L+

sL = 0,

DO 515 Jd=u1,4

SL = oL + {walll*h(L,Jd)=auit1*s (L,d))*B J,n)

515 CUNTINUE
LF (Letgel) GO I0 520
if (Bhia¥*a(L,L-1).88.0.) GO LU 530

L
i
510 C

C
C deAl 1-8f-1 bLLCOLK
“
520 D = pbId*y (L,L)~aALFn¥p (L,4)
1E (Debysve) O = (LPSA+EPSS) /2.
B(L,ii) = =-oi/L
L = L-1
GO Tu E4)
C
C disAL z-8Y-¢ BLUCK
Cc
530 K = L-1

5« = 0.
PY 535 J=L1,4
5K = Sn + (BEIM*A(K,d) -ALbt*E (K,d) ) *¥B(J, Q)
535 CONRINUE

TKK = BEIM*A (K,K) = Akt (K,K)
TKL = BiTd*a (K,L) - ALEM¥B (K,L)
TLK = BEDM*A (L,K)

TLL = bLEPA%A (L,L) - ALPM*5 (L,1)

D = TKK*ILL = TKL*TLK

LF (CokyeUs) L = (E¢SA+EPRSB) /2.

U(L,l) = (TLh*358 = T¥KK*SL) /D

FuIP = DAUS (TKK) .Gu. 0ABs (ILK)

IF (FL1P) B(K,d4) = - (3K + TKL*B(L,4)) /TAK

If (JNCI.FLIF) B(K,8) = -(5L + TLL*6(L,t))/1Ln
L = L=



540

Gaoa

550

o0

OO

560

505

[N YN

570

aaGa

580

.[L" (L.Gi.O) el iU 510

4 = L(l'1
suU 1O 590

COMPLEL VECIUL

ALY

ALAL

BET
Md
alr

R ALER
alFI

| BETA
-1

Hon
= < S TR (A 1]

(u-1)
(t1-1)
(vi=1)

LET A=-Td CUHCUNENT = C,=1.%1 SO TiAT B 1S TuLANGULAK
(-1)sr =

B(M-1,14R)
g(u-1,a1)
B (4, HK)
B (8, MI)

1

i O

L

DU 500 Tk

L =
I
CUN

=2
{Leiswe?)
TINJE
L1 = L+1
SLR = 0.
SLL = 0.
DO 565 J

Ta

Ll

SLk =

SLL =
CONTINUE
I (Leoy
I¥ (UEIH

"

CoMpPLEX

un bl
DI ~AL
C
L

[ Sl (1]

LL CLI
= L-1
GO TU 54

COdPLLA

DO 580 J
Tx
TI
SKR =
SKL =
CONTLINUE
ThKa B
THKL -
ILKLR B
TKul -

(13 1]

oo

- (BRla*a (M, H) ~ALEaX3 (8, 1)) * (4=TH) / (BETo*a (4,4-1))

ALAL*p (f,8)/ (OLTM*A (d,0-1))
(LELTU*¥A (U, 1) ~ALMR*B (0,4)) / (bETu*a(d,n~1))

1.

U 289 FOR L = M-2 STEp (-1 Cik =-2) Untice 1

su 10 545

=u1,4
both*A (L,d) - ALME*B(L,J)
“ALiL*B{L,d)
JLR + Th*p(Jd,dk) = TL*B(J,di)
SLL + la®B(Jd,dI) + Ti%e(J,Nn)

1) GG TV 970
*A lL,L‘])QNE.O.) GU 4V b?f)

1-u¥~-1 BLUCK

d*h(L,L) - ALda*B(L,.u)
%8 (L, L)
V{-SLr, =-sLi, DK, wvi, B(l,di), b{L,td))

5

2=-HY~-Z BLOCK

=ul1,N
BisTM*4 (K,J) - ALMIR*B(K,J)
-ALMI*bL (K,J)
SKR + Ia#8(J,aR) = [L¥p(J,d4)
S5K. + [o%s5(J,MI) + TL¥E (4, ux)

EIM*A (K,K) - ALAR*E(K,K)
ALNL*B (K,K)
BTd*A (Kk,L) - ALMR*B(K,L)
ALAI*B (K,L)



ILhg = oblh*a (L,K)

Ikl = 0.

TLwd = bULM*A(u,L) = ALM*u(L,L)
SJLLI = ~ALMLI*B (uL,L)

D& = TAKE*TLLR - TKaL*PLLI - TKLA*TLKn
Ji = TKKR*TLLL + PKKL®*PLLK - TALI*ILKk
if{DbeBusds «ANLe DE.s.0C.) DR = (EPsA+LEPSB) /2.
CALL CDIV(TLAb*SKR-TKKR*SLE+TKKI*Sui,
LLKukSKI-TKKE*SL1-TKKI*SLa,
Lk, LI, B(L,4K), B(L,4I))
FLLP = (UABS (IK&R) +DABS (TKKL)) oGE. UABS (PLKK)
I¥ (FL1P) CaLL CDIV(-SKK-TKLR¥*B(L,8i) +T&LL*D (i,al),
-5KI=TKLk*B (L,Ml) ~TKLL*B (L, H«) ,
2 . TKKR, TKKI, B(K,0K), J(K,41))
LF (oNGT. FLiz) Caibl CDIV(=3Lki=1LLa*b(L,dR)+TLLi*B(L,nAL),

[N

-

1 -5LI-TLLR*¥EB(L,N4)-TLLI*bB (L, 8K),
L = L-2
1) LF (LeuTsU) wU 10U E09
= d-2
990 LF (d.u'l.d) GU Tu bLCU

C

C DIrANSEFURE .TU Cululival COUADINATLE SYSiled

C

M =N

600 CONTINUZ
VO 620 L=1,4
5 =0,
L0 610 J=1,0H
5= 5+ a(l,d)*8(J,d)

619 CONTINUL
L(L,4) = 5
b2V CONTINUL
1= -1
LE (HeGTI.0) GO Lu =00
C
C O NULMALIZE 50 THAL LAGGESD CUdPINERT = 1,
Cc
¥ = N
630 CUNTIdUL
o = D

LF (ALfa(Bi) onik.04) wU LU 850
pU 635 1=1,w
R = LABS (£ (L,d))
IF (g«L1e3) GC T0 &35
3 = K
L= X{i,4)
€35 CUILNOE
DO 640 L=1,N
L(L,8) = a(d,ly)/D

64y CONTLINUE
4 = 1=
s0 Tu 690
C
650 DU 655 I=1,n

R = DABS (&(1,0-1)) + DABS (X(L,8))

IP (R.Eyu.0.) GO TU €55

R = K*DoORT ((X(L,%=1)/R)%*2+ (4 (1,h) /&) *¥*2)
IF (ReLf.5) GO T0 €55

$ = R



Du = £(Ll,i-1)
DI = X(L,N)
6LY CUNLLNUE

bY bod 1=1,n
CALL COLV(&(L,M=1) ,&(L,M), LK, 01, X(1,d=1) K (L,4))
bol CINTINJL
4= -2
690 IF (MeG1s0) GO TU 030
C
700 KETURN
END
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SUBRVUTLLIE dSdI(al,az,ad,ul,uz,

LaPLICIYl KEAL*3 (a-t,u~14)

U3, v1,Ve,v3;

FLNUS MOUSEHOLOEK iKANSFORUWATLUN LHAT W1lL 4LKU 42 ANL A3

P

W0

= Lo+ (V1,V2,V3) *(U1,Uc,U3) #*T

S = UABS (A1) + DueS(AZ) + LABS(AJ)

Jl = Al1/S

U2 = A2/s

Ul = ad/s

i = DSYRT (UT*ul+UckUds+Uuld®yy)
IF (UT.L1.0.) R = -k
V1l = -(01 + n)/«

Vi = =U2/R

V3 = ~u3d/a

utl = 1,

U = veyvi

U3 = ViV

weTddo

vl = 0.

seTURN

END

SUBRUUTING HSde (a1,82,U1,02,V1,VQ

IMPLICLIY REAL*S (A=h,u-2)

FINUS HOUSEdOLvew LTHANSFURHATION

P

1)

= I + (V1,V2)%(J1,02) **T

L (al.dy.04) Gu 10 1C
5 = DABS (A1) + DABS (A2

Ul = alys

Uz = a2/S

R o= DSYRT (UT1¥J1+dc*y 2
LF (U1.L1.0.) & = -k
V1= =(U1 + i/

V2 = =dl/i

utl = 1,

Ue = V201

WETURN

U“ = o.

RETURN

Eunp

THAT WILL ZEKO A2
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(@ ot

c. C. ¢,

SUBRUUTLwN CusHe (ald,all,ALR,A21,0,58,54)
LJOPLICIT JmAl+y (h-id,0-2)

COMPLEA HOUSEHOLLER TLal WILL 4ERO A2
(C 5%
P = (S5 =C) , U abhL, 3 COMPLEX

LF (AdBeBYeVs oaNDs allslivsQs) w0 10 U
L (ATR.Euw.0. JAwD. ali.d0.04) G0 0 40

B = OSukT (Alu*aln+all®all)
C = K
.S5d = (AlR*ALu+ATL*alL) /1
SL = (ATR*Acl-Ale¥*nlK) /R
B = DSURT(C*C+Sn*SRE51%5])
¢ = C/R
58 = SR/R
a2l = 35i/R
RETURN
10 ¢ = 1.
SR = 0,
SL = 0.
weTURN
206 C = 0,
sk = 1,
SL = 0.
RETURN
Edad

SUBMUULINE CulvV (XK, LI,¥R,Yi,4R,41)
INPLLCLT xudi®d (A-1u,0-4)

convLbbl DIVIVDE. 4 = x/¥f

Lt (DABS (Yi) .Li.0a85 (¥L)) WU T 10
= YI/IR
J g + fd¥*yI
4n = (LR + H*LL) /L
41 = (AL - U*Xk)/D
KETURN

10 0 = (g/(L
L= (I + Hg*¥fn
LR = (u¥ag + LL/0L
4L = (u*KL - Xg) /L
HETUd
LND

[Th ]
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