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Abstract system is tightly controlled. When the mechanism deviates
from the nominal trajectory, the perturbation is eliminated
Passive dynamic walking refers to a class of bipedal machines thgtadually over many steps through the support transfer that
are able to walk down a gentle slope with no external control or ereccurs at the end of each step. This type of motion looks
ergy input. The legs swing naturally as pendula, and conservatiggraceful and appears to be efficient. Only a few locomoting
of angular momentum governs the contact of the swing foot with thebots (e.g., Miura and Shimoyama 1984; Raibert 1986) adopt
ground. Previous machines have been limited to planar motiongontrol strategies without need for a reference trajectory.
We extend the planar motions to allow for tilting side to side (roll  One significant difference between humans and existing
motion). Passive walking cycles exist, but the roll motion is unstgassive walking machines is that the machines are restricted
ble, resembling that of an inverted pendulum. The instability is du® planar motions—typically achieved by constraining pairs
to mismatching of roll velocity with the ground contact conditionsof legs to act like crutches. In contrast, humans rock from side
Several strategies are presented for stabilizing this motion, of whitb side as they step and can modulate the lateral placement
the quasi-static control of step width is determined to be both simpisf footsteps (Redfern and Schumann 1994; Townsend 1985).
and efficient. Humans are also able to rotate about the vertical (yaw) axis
at the ankles. These abilities are necessary to negotiate turns
and to afford sufficient freedom in foot placement to negotiate
many obstacles. McGeer (1991) modeled three-dimensional
é%—D) passive dynamic walking incorporating both roll and

1. Passive Dynamic Walking

It |s|kp(;355|ble 0 cgnstlruct a Fn/]o-legged mechamsmﬂihatﬂ(]: w rotation and found it to be unstable but did not offer a
walk down a gentle slope with no energy source other abilizing control law.

gravity and no active feedback control (McGeer 1990). The As afirst step toward stabilized 3-D passive dynamic walk-

Iegf_ swing as gzlpupltehd tperfwdrllJla S0 asl\;o pr:oduceda I\jte,\?lplﬂg, we consider here the theoretical stability of a walking
?0 |<ir;8r0esemd N9 Iat' ° fume;ns ( toc otrj a”n ((:j 8machine that rocks side to side but incorporates no yaw mo-
on ), and completion of a step automatically pro UCEDdn. we first describe the dynamical equations of motion

the appropriate CO‘?di“Of?s f_or the_ init_iation of anoth(_ar S'®Bhd then consider the search for periodic orbits that compose
(McGeer 1990). This periodic motion is locally stable in tha stepping cycle. We will show that the system is passively

It pas.swely.dampens ogt s_ma_lll perturbations fr_om 'S nomingisiable but easily stabilized by a simple control scheme that
walking trajectory. Its similarity to human walking SuggestsEre:serves much of the passive behavior. We will also consider

first, that human_s may harness passive dy_nam|cs to some Kariety of parameter variations and their impact on stability
gree to aid or simplify control of locomotion and, secondand efficiency.

that the grace normally associated with human motion may

be attainable by a machine. The study of passive walking may

yield insight to automatic control of locomoting machines, ag Dynamics
well as physiological motor control of locomoting animals.

One particularly attractive feature of the passive walker ighg nassive walking machine consists of two legs and a pelvis
that it does not specify a nominal trajectory about which th(%ee Figure 1) and walks forward by placing one foot on the
The Intermational Journal of Robotics Research ground and riding on thetance legwhich rolls forward as an
Vol. 18, No. 9, September 1999, pp. 917-930, |_nverted pe_ndulum mounted on the stance f(_)ot._ At the same
©1999 Sage Publications, Inc. time, theswing legmoves in a pendular arc, bringing one foot
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and cylinder axis always oriented parallelitg The stance
foot rolls on the ground without slipping; the arc length is
assumed to be sufficient for it to roll for an entire step. The
line segment of ground contact is bisected by paintThe
anglegstancedescribes the rotation of the stance foot about
Fropt n3 and with respect to the neutral position. A dextral, mu-
n tually perpendicular set of unit vectoys, f2, and f3 define
t o the stance foot's reference frame and coincide withno,
andng in the neutral position. The stance leg, modeled as a
straight line segment, attaches to a hinge joint at the midpoint
of the stance foot and rotates about ag&ivy an amoungyg
measured with respect to the neutral position. Unit vectors
s1, s2, andss define the stance leg’s reference frame. The
G pelvis is fixed to the upper end of the stance leg, pBirand
is modeled as a line segment of lenggtin the direction—s,.

Fig. 1. Configuration of 3-D passive walker. The mechanisth'€ SWing leg is attached to a hinge joint at the other end of

rolls on curved feet and can rock side to side. The stance alii§ Pelvis, poinfs, and is identical to the swing leg except that

swing legs are connected at the pelvis and swing freely abdhfotates about axigs by an amoungswing. Whengron = 0,

the axis of the pelvis. The legs can also be splayed lateraffgwing + gstancelS the absolute angle of the swing leg from
by equal amounts. the vertical. Unit vectorg,, i, andiz define the swing leg’s

reference frame. Finally, the swing foot is attached to a hinge
joint at the bottom of the swing leg, poiit It is assumed

forward so that it makes contact with the ground when thiéat the configuration angles are small, so that the stance foot
mechanism is in a configuration identical to that at the bds always oriented with its cylindrical axis parallelitg upon
ginning of a step. Theouble support phasevhen both feet ground contact.

touch the ground, is assumed to be instantaneous, resultinglhis same model is able to accommodate a lateral distance
in a transfer of support from one foot to the other. Given theetween the feet,,, that differs from the pelvis widthp, by
appropriate initial conditions, the swing and double suppofiPlaying the legs laterally by equal angjes However, we
phases culminate in the start of another cycle with initial corgtill constrain the splayed legs to rotate about the axiso
ditions mirroring those of the previous step: the roles of thihat the dynamics are equivalent to that of an unsplayed model
stance and support legs are switched. We also defieetzal ~ With suitably adjusted inertial parameters (see Figure 1). We
position in which the legs are oriented perpendicular to thBave chosennominalvaluesif= 0.3,/p = 0.3,/,, = 0.15,
ground and parallel to each other, with both feet touching thhich result in a roughly anthropomorphic gait.

ground. Fixed to the ground are three mutually perpendicular The following inertial parameters are defined. Each leg
unit vectorsni, no, andns, facing forward, up, and to the has normalized mass; and radius of gyratiom; about the
right, respectively, from the point of view of the machine. center of mass located a distancerom the attachment to

We will utilize dimensionless variables to describe théhe foot on the axis of the leg. Itis assumed that each foot is
mechanism, with length quantities normalized by the maumped with the leg mass and has negligible contribution to
chine’s overall leg lengtlh and mass quantities normalizedleg dynamics. The pelvis has mass and principal moment
by the machine’s total masd. Time will be normalized by ofinertiam,,rf7 transverse toits axis. We have chosennominal
the reciprocal of the characteristic frequeng§/g. values ofm, = 0.68,rp = 0.0866 r; = 0.32.

Three degrees of freedom are defined for the walking ma- Energy for propelling the machine is provided by placing
chine. Two are analogous to those of a planar, two-leggéldn a ramp sloping downward. This is modeled by directing
walker without knees (McGeer 1991), allowing for rotatiorgravity atan angle- measured counterclockwise with respect
of the stance and swing legs about an axis perpendicular to feethe vertical so that the gravitational acceleration vector is
sagittal plane (an anatomical convention dividing the left angl = —n2C0sy + msiny.
right halves of the body), measured with angjegnceand The stance foot makes line contact with the ground, and
gswing: The remaining degree of freedom allows the machinis contact is assumed to provide sufficient friction to ensure
to rock side to side in the frontal plane (dividing the front andghat the foot rolls without slipping. Using a small angle as-
back of halves of the body), measured with angig. sumption forgroll, gstance @Ndgswing, the motion in the yaw

A more precise geometrica| description of the machine’@ane is zero to first order. The mechanism is therefore inca-
geometry and degrees of freedom is as follows (see Figure Rjble of turning left or right.

At the base of the legs are feet that are portions of cylinders The equations of motion for the passive walking mecha-
(extruded from circular arcs) with normalized arc radiis Nism may be written in the standard robotics form:

“Gswing

<—| 9stance
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Wheresér = s5 . Equations (5) through (7) are all lineargn
. . and can be combined with the switching of stance and swing
M(q)G = g(q) +v(q,q), (1) legs and reversal of sign of the roll angle into a single matrix

T . _equation
whereq = [groll  gstance Gswing] » M is the mass matrix,

g is a vector containing gravitational terms, ands a vec- Gt =L )q . ®)

tor containing Coriolis and centripetal terms. These equa-

tions were dgrived using a custom softwarg package for_rigid The same equations (2) through (8) can then be used for
body dynamics (Kuo 1997). These equations are nonllneﬁ{e following stride. The state at the beginning of the next

and were solved numencal{y; a Runge-Kutta algo.rlthr.n Waride can be written as a function of the initial condition
used to calculate the solution to the corresponding initiale o previous one. For an initial condition, we define

value problem, the functionF (x;) combining integration of (2) until (3) is
%= f(x0), ) satisfied with (4) and (8), so that

where the state vectar= [¢7 ¢7]7 andxg is an initial con- Xkl = F(xp). 9)
dition in which the machine is in the double-support position.

A full swing comprises the motion of the machine starting'his may be interpreted as a Poincaré map, with the constraint
from the initial double-support position, including approxi-(3) serving as the Poincaré section.
mately one half-period swing of the swing leg, and ending
when the swing foot contacts the ground. This condition oc-
curs when the height above ground of the bottom of the swing Steady Passive Dynamic Walking

foot reaches zero:
The mechanism is capable of a periodic walking cycle if there

gx) =0. (3) s aninitial conditionx* that acts as a fixed point, such that

The state of the system following one swing is denoted by the
“—" superscript, for example; ™.
Afull stride comprises one full swing followed by asuppor\N
transfer as the forward leg becomes the new stance leg ang | L . A
with a pelvis width of p = 0 and using as initial guesses

the former stance leg becomes the new swing leg. Using t 2 fixed points of the planar passive dynamic walking ma-

H+!l 1 H 1
superscript to denote the state after impact, this Chan%%ine. We then computed additional fixed points while chang-

in configuration variables is described by ing/p incrementally. Because step length was found to be re-
q;;ancez dstance™ Iswing: ‘Is+wing = —43ning ‘Irchm = —4rg- Iat_ed to slope, we deyised two methods for determining fixed
(4) pqlnts. One methpd is to choose a step length and then deter-
mine the appropriate slope. We used the parameterset
Following McGeer (1990), we assume that the double suppdhte step length by setting initial conditiqgancd0) = «. The
phase is instantaneous and that the impact of the forward letier is to choose the slope and then determine the appropriate
dominates the dynamics. Three equations for conservationfofed point(s).
angular momentum are needed to describe the state follow-As with the planar case, we found two solutions for each
ing ground contact. Denoting the angular momentum of the or y, which were termed long- or short-period gait cycles.
entire machine about contact poifitas the vectoit/;, one In the long-period cycle, the swing leg swings forward and

x* = F(x). (10)

used a first-order Newton search to find fixed points, start-

component of this quantity is conserved: reverses angular velocitydying < 0) before ground contact.
N B In the short-period cycle, the swing leg contacts the ground
Hg -n3 = Hg -n3. () while stil swinging forward with positive angular velocity

. . : tance> 0). Using a nominal value af = 0.3, we found a
Denoting the angular momentum of the entire machine (Ieéqlfort—period cycle at slope of about 2.33%, and a long-period

the forward foot) about the bottom of the stance leg as thCe cle at a slone of about 1.83%. Because slope is equivalent
vector Hy , one component is conserved: Y b 0970 P d

to the specific resistance (mechanical work done divided by
HY - ff=H; -if (6) Weight and distance traveled), it can be used to infer that

L1 Lh . o - . :

the short-period gait is less efficient than the long-period gait
where f;” = i] from (4). Finally, the angular momentum of for that step length. Keeping the other parameters constant
the trailing leg is conserved about the hip joint at pdint but reducing slope and step length, we found short-period
. o solutions at slopes as low as 0.30% and long-period solutions

Hg 53 = Hg - 53 (") at0.20%.
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4. Stability Analysis o Four Unstable Steps

- . ) ] ' ' ' " rollangle !
Local stability properties of (9) can be obtained by performin: o4 * |
a Floquet analysis in the manner of McGeer (1990). Th\

involves linearizing (9) about the fixed point,

dF (x)
X1~ F(x™) 4+ —— 3 (xx — x™) ol
X Xx* (11)
Axpy1 = A - Axg,

0.1
whereA denotes the deviation from the fixed point, and the
examining the eigenvalues (Floquet multipliers)Aaf Any
eigenvalues with magnitude greater than 1 imply instability 3

There are five eigenvalues, because the constraint (3) remo | .-mf leg loft log el \
1 degree of freedom in perturbations. |

We found that the 3-D passive dynamic walking machin 5, 2 ) P 8 T 12
retains the stable characteristics of the planar machine, t ume Flg

the addition of roll motion adds an instability. As a conserig. 2. Four steps of unstable passive walking cycle. With
quence, there is one unstable mode in the long-period gaibminal initial condition for roll velocity perturbed by 0.1%,
and two unstable modes in the short-period gait. As shown iiachine falls laterally within four steps. Leg angles are mea-

Table 1, the long-period gait has a pair of reciprocal modesured counterclockwise from neutral position, viewing the
which we name the “roll mode” and “anti-roll mode,” thatmachine from the right.

are dominated by the roll angle and velocity and resemble the
modes of an inverted pendulum. (The eigenvalue is negative
because the sign of the roll angle is reversed in (4).) Frothe roll motion is perturbed by a slight increase in initial roll
step to step, the mechanism will tend to fall to one side or theelocity (see Figure 3a), the system follows a constant energy
other (see Figure 2). The other modes are stable and largsigjectory that differs from nominal. Total energy is constant
independent of the roll motion as in the planar case. We nardaring the swing phase because the system falls passively with
the complex pair of modes the “stance modes” because theg dissipation until ground contact. The perturbed trajectory
are dominated by the stance angle and may be interpreted asianot by itself amplify a perturbation. Rather, the instabil-
natural tendency for the mechanism to resist perturbationsitp comes about because the perturbed trajectory travels too
step length. The “swing mode” is very close to zero and giveshort a distance in the time of one swing phase. Timing is pri-
the mechanism a very fast ability to eliminate perturbationmarily set by sagittal plane dynamics, and stance and swing
to the swing leg. leg kinematics dominate over roll angle in the ground con-
The short-period gait also has a pair of inverted pendulutact conditions (3), so that the decreased magnitudg.pf
modes, but with an unstable eigenvalue-8.7. It inher- in the perturbed trajectory cannot make up for the downward
its the planar mechanism’s tendency to amplify rather thenot velocity contributed byjswing. At ground contact, the
eliminate perturbations to step length, with an eigenvalue odll motion has built up insufficient speed for the second step,
2.9. Because of this instability and the fact that the shorwhich starts off on a constant energy trajectory that differs
period gait is less efficient, we will favor the long-period gaieven more from nominal, and in the opposite direction. The
in subsequent analyses. result is that the roll motion builds up too much speed in the
The inverted pendulum instability in the frontal plane igime of one step, amplifying the conditions at the first step.
somewhat curious. Itis atfirst unsurprising because the stance
leg is after all an inverted pendulum mounted transversely & Stabilization
a rolling cylinder. However, the stance leg is also an inverted
pendulum in the sagittal plane, and it is the ground contathe presence of a single unstable mode in the long-period
conditions that stabilize that motion. Ground contact workgait poses a relatively minor control challenge for stabiliza-
such that the faster the inverted pendulum falls in the sagittébn. However, we wish for our control design to reflect the
plane, the more energy is dissipated because the mechanggmiosophy of passive dynamics, in that whatever actuation is
takes a longer step. It might therefore be surprising thatreeeded for stabilization should have minimal impact on the
similar condition does not stabilize the frontal plane. passively stable modes. In addition, the actuation should be
We can gain some insight to the instability by examininglone in an efficient manner, requiring minimal control au-
the roll motion in its own phase plane, as if it were comthority. We will first examine several possible stabilization
pletely decoupled from the sagittal plane dynamics. Whestrategies in light of these requirements.
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Table 1. Modes of 3-D Passive Dynamic Walking Machine

eigenvalue: —14.528 0.242- 0.328i 0.242+ 0.328i —0.068 0.057
eigenvector: Roll Stance 1 Stance 2 Anti-roll Swing
Agroll 0.640 0.050¢+ 0.027i 0.050- 0.027i —0.543 —0.008
Agstance 0.303 0.6144+ 0.155i 0.614— 0.155i —-0.377 —0.490
Adroll 0.567 —0.022— 0.040i —0.022+ 0.040i 0.523 —0.010
Agstance 0.206 —0.362— 0.208i —0.362+ 0.208i 0.227 0.296
Adswing 0.334 0.097- 0.182i 0.097 0.182i 0.488 —0.650

to a reaction wheel mounted on the pelvis. This method is
analogous to a tightrope walker’s use of arms or a balance
bar. By spinning the reaction wheel at the appropriate ve-
locity, it is possible to control the angular momentum of the
rest of the mechanism in the frontal plane, because overall
angular momentum must be conserved. The third method is
to install a hinge or slider joint on the pelvis and actuate the
lateral motion of a mass. This method is analogous to moving
the upper torso to the left or right.

Because the indirect stabilization methods will prove to
be superior, we will only briefly examine the use of angular
momentum to control roll motion. Because the coupling from
roll motion to swing and stance dynamics is weak, we will
assume that the reaction wheel can effect a changgjiwith
2l ' ' ' ' s T— . - minimal effect on stance and swing velocities. Applying a
correctionAgro = uro immediately after the beginning of a
step, the subsequent effect is equivalent to applying an initial
Fig. 3. Phase plane for roll motion. Starting with a perturbegondition
initial condition, unstable trajectory (gray) deviates slightly T
from nominal (black), and reaches ground contact with insuf- u=x"+[0 0 0 1 0 § umo (12)
ficient velocity to complete following step. Crosses indicate i .
constant intervals of time, demonstrating that perturbed tr¥/e define the control authority vector
jectory lags nominal trajectory. OF (x)

Unstabls Roll Phass Plane
0.l . . . . .

G

Inspired by human walking, we consider five potential
methods for stabilizing the 3-D walking model. The firstthre€© that
directly affect the trajectory of the body in the frontal plane. IF (x)
The second two indirectly affect roll motion, one through Xpr1 A~ F(x™) + .
lateral placement of the foot and the other by adding a tor- 4
sional spring to the pelvis. In assessing the efficiency of eagh g
method, we will consider only the magnitude of work-related
energy costs, because other standard criteria for control cost Axpi1 = A - Axg + Brolltirol. (14)
are not applicable to all methods.

Uroll (13)

x*

OnceByyg is known, it is a simple matter to compute a stabi-
5.1. Direct Control lizing control law. We use Ackermann’s formula (Franklin,
Powell, and Workman 1998) to move the long-period unstable
Direct stabilization methods seek to affect roll motion by apeigenva|ue to zero, keeping the other eigenva|ues unchanged_
plying torque in the frontal plane (see Figure 4). The first angihe control authorityByo; and feedback gaing,o are
perhaps most obvious method is to add torque actuation to
the hinge joint at the base of the swing leg. An appropriatgm” — [—8.32 320 0541 —-874 —-252 —0.895],T
torque may be applied to correct for a perturbation. A second
method is to leave that joint free and to apply torque actuatiaiye) = [0.93 —0.12 00061 Q94 -0.15 00058]
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[N

Fig. 4. Five possible stabilization methods. Ankle torque (a), reaction wheel (b), and torso motion (c) all exert control over
trajectory of roll motion. Lateral step width control (d) indirectly affects roll motion, as does torsional spring (e) mounted at
hip.

which show that the control is largely confined to the rolln the first indirect method, the leg splay is adjusted quasi-
variables and that the feedbagk, = —LoiAx depends statically during the swing phase so as to control lateral foot
mainly on sensed roll angle and velocity. In fact, it is possiblplacement, or step width. The control authorBy, gained

to stabilize the system using feedback on these two quantitiesm leg splay is found by calculating the differential change
alone. in x;11 induced by an increment of leg splgy= u,, (see

Each of the direct methods is unique in the details of how Eigure 4), as in (12) through (14) above. After verifying con-

may be implemented. However, common among all of thetnollability, we again place the unstable eigenvalue at zero,
the energy cost is at least equal to energy of the perturbariving at control authority and gains based on step width
tion. Restricting matters to perturbations to the nominal rottontrol

velocity, g, and n(_aglectmg the rglatlvely small cquplmgB :[8.05 315 —056 827 252 lll]T7
from stance and swing leg dynamics, the energy difference”

associated with a perturbatiayroi is L,=[-098 013 -0.0061 —0.98 017 —0.0061.
1 .2 .42 We apply this control quasi-statically because a small ad-
AErol = §Ir0” (qroll - qroll) justment in step width can be performed over any time period
1 up to an entire swing period. This is in contrast to the direct
=5 Iroll (Ac},zo" + 2A6]rou6}r*on) , methods, which must apply the adjustment quickly and near

the beginning of a step to time the ground contact properly.
where I is the moment of inertia in the roll plane of the 1he step width control does not need to adjust either the tra-

entire mechanism about the stance foot. The control mU§EtOTY or the timing of ground contact, because it adjusts the
move the state from the perturbed constant energy trajectdfyect Of the contact conditions (8) so that despite the pertur-
back toward the nominal constant energy trajectory (see Fi ation in trajectory, the next step joins the nominal trajectory
ure 5a). The amount of energy needed is at laast Ifthe (S€€ Fig. 3b; note that the adjustment does not bring the state
correction cannot be applied immediately, or if it is desired t§*actly to the nominal trajectory, because the pole placement
return the reaction wheel to zero velocity or the upper tordg Pased on linearized equations (14) but is implemented on
to neutral position, the cost may be several timgs. Power the nonlinear system). o

requirements for an actuator depend on the energy cost and onl '€ quasi-static adjustment implies that the energy cost

the amount of time over which the correction is to be applie@f SteP width control is small. A theoretical worst-case cost
may be computed by considering the increase in potential en-

ergy that accompanies step width adjustment. A conservative
5.2. Indirect Control estimate of this increase is
AE, ~ si mpl +ml)LyalAg 16
Although there is no possibility of violating the minimum en- v ol (7 Mewahdrol (16)
ergy cost to compensate for a perturbation, the indirect metiwhere sing,o is the average of the sine of the roll
ods do not require the actuator to supply all of this energgngle during a step. Comparing (16) to (14), we note that
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the cost of roll adjustment is quadratic in the perturbation

Aqroll, Whereas step width adjustment is lineanityo. For

very small perturbations to the nominal cycle shown here,

AE) ~ 0.05A¢yo), andAE,, ~ 0.025A¢yo. The cost of

roll stabilization increases quadratically (15), and that of step

width control linearly, as perturbations increase in magnitude.
. &Mlhfd Pi'me Plllne\lfh RQIIVelodt? . A realistic concern in step width adjustment, however, is that
if leg splay is actuated by a lead screw or similar device, fric-
tional losses can be larger than the estimate of (16).

A less practical but nonetheless interesting method of in-
direct control is to add a tunable torsional spring to the pelvis.
With a tunable spring constafit, = u x, the spring produces
equal and opposite torques on the stance and swing legs. We
stated above that it is the swing leg dynamics that dominates
ground contact time and that a perturbation to roll motion
produces the incorrect roll velocity at ground contact. It is
therefore reasonable to consider adjustment of swing leg dy-
namics via tuning of the spring constamg = —L ¢ Ax dur-
ing the double-support phase. Calculations verify that such

0l e S controllability is afforded, with control authority
205 0 045

Gt

b. Stabllized Phase Plane via Step Width

Q.1

Gon O (

Bx =[-106 —281 4910 —0.969 0638 —143]"
ql

and control gains

LK=[8.67 —1.12 00563 873 -144 00536].

Unfortunately, the cost of this control is considerable; with a
nominal spring constant of 0, the energy that must be stored
as the spring is tuned is

l k k 2 .
AEK = E (quing - qStance) LK4Aqr0|| (17)
for a perturbation to roll velocity. Using our nominal param-
eters,AE,, ~ 1.39A4ol, Which is considerably more costly
than the step width control.

Fig. 5. Stabilization of roll motion via (a) reaction wheel and .

(b) step width control. For reaction wheel control, an adjus@- Larger Perturbations

ment to roll velocity must be applied quickly, to restore from . ) ,

a perturbation (gray) to the nominal trajectory (black) Withj_ocal sFablllty resul'gs must be augmen_ted_wlth estimates of
out excessive lag relative to swing leg. When leg sgflag the_ region of_attractlon to_ be useful. It is dlf_flcult tp charac-
used to control step width, perturbed trajectory is stabilize§ize the region of attraction within the six-dimensional state

by manipulating ground contact conditions such that the fofPace. So we have adopted the simpler alternative of record-
lowing step begins near nominal trajectory. In this exampléng the largest perturbations that can be tolerated in each state

step width adjustment is made quickly and immediately aff\dependently without losing stability. The results in Table 2

ter start of step; gains can also be computed for adjustme w that both roll and step width control are quite robust to
applied over longer time intervals. disturbances with the exceptionqgance Which can only tol-

erate a perturbation of about 2.4%. The same analysis shows
that the tunable spring control can tolerate a perturbation of
only 0.12%, and so is not worthy of further consideration.

The step width control law also exhibits a degree of ro-
bustness. Lateral stability is retained despite errors in lateral
foot placement of approximatetz6%.
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Table 2. Range of maximum tolerable perturbations, expressed in percentages of the fixed point values, for (a.) reaction
wheel control and (b.) step width control.

qroll qstance qswing groll gstance dswing
a. 1686.4 2.45 24.36 159.81 10.30 943.33
—-599.8 —15.88 -12.23 —63.32 -5.14 —196.03
b. 16115 2.61 21.95 144.31 10.31 941.81
—2257.6 —15.88 -12.33 —262.26 -5.35 —198.22
7. Parameter Variations as far as control gain on the roll states is concerned. There is,

however, a minor effect on control: the high control authority
The nominal results above serve as a convenient starting padiffd instability narrow step widths require that the sensing of
for a variety of parameter studies. It will be seen that stabl@e roll variables be more precise than they must be for wider
passive walking cycles are realizable for a wide range of pateps.
rameter values and that the choice of values will affect issues

such as stability and efficiency. 7.3. Spring Stiffness

7.1. Step Length and Slope As we have shown above, tunable spring stiffness is not a

. . . . . . ractically useful method for controlling the roll instability.
The passive walking mechanism automatically adjusts its st I . .
iQwever, a nontunable spring is useful for increasing speed

length so that an appropriate amount of energy is dissipat . g ) . .
at each slope. Unlike the planar mechanism, the 3-D mec%ee Figure 9). Speed increases roughly linearly with spring

stiffness, but unfortunately, the energy consumption (slope)

anism 15 unable to walk down_ tp Z€ero slqpe l_JnIegs the.sf{%%es as well. The unstable eigenvalues also decrease in mag-
width is set to zero, because finite step width implies a finite.

loss of energy at each step, regardless of step length. In {H(taUde with increasing spring stiffness.
nominal case of,, = 0.15, the mechanism walks down to
a slope of 0.20%. As slope increases, step length increaged. Mass Parameters

roughly with the square root of slope, and roll angle and veloc- . . he fracti f
ity, respectively, increase and decrease roughly linearly with'® "émaining parameters of importance are the fraction o

slope (see Figure 6). Along with an increase in step lengfR@ss distributed between pelvis andlegs, and the radius of gy-
is an increase in speed, with the short-period gait speediffion of the pelvis (see Figure 10). Increasing the pelvis mass
up somewhat faster than the long-period gait. It is also ifZ» IMProves the efficiency with a minimal cost in speed and
teresting to note that the unstable eigenvalues for both gaﬁ@b'“ty' Th_e_pelws radius of gyr.atlon, has practically no
decrease in magnitude near zero slope. Unfortunately, thE€Ct on efficiency or speed, butit does improve the stability.

walking cycle disappears before passive stability is achieved.
7.5. Combined Parameter Variations

7.2. Step Width If it is desired to minimize the magnitude of the unstable

There are actually two parameters affecting step width. Thegenvalue, we may be tempted to increase step width, spring
first is the pelvis width, and the second is the splay anglestiffness, and pelvis radius of gyration while decreasing leg
B. Together these two determine the step wiih Fig- radius of gyration and slope. Casual manipulations of these
ure 7 shows variations of slope, speed, and eigenvaluespggameters can in fact reduce the magnitude to within a few
step width is varied using both parameters. A greater slopercentage points of 1. However, we did not find, nor did
is needed for larger step width, because more energy is dissie expect to find, passively stable slopes. Our previous in-
pated in a wider step. The long- and short-period gaits acttiitive argument leads us to believe that passive stability is
ally converge at a maximum pelvis width of about 0.51, withnot possible whatever the combination of parameters. Unless
the long-period gait increasing in speed and the short-perititkre is an unforeseen passive means to delay ground contact
gait decreasing. As with increasing slope, the unstable eigemhen a perturbation increases the roll velocity (see Figure 3),
values decrease in magnitude with increasing step width, battive stabilization should be a necessity. Empirical results
again, there is no passively stable gait. by Coleman and Ruina (1998) suggest that a passively stable

If stability is affected by step width, there may be impli-3-D walking machine may be feasible, and other 3-D systems
cations for choice of leg splay. Figure 8 shows that contralan indeed exhibit passive stability (Coleman, Chatterjee, and
authority for the roll variables decreases with step width, sRuina 1997), but we do not expect those results to apply to
that even as the eigenvalues decrease, there is no advanthgepresent mechanism.
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Fig. 6. Slope and step length variations. (a) Step length increases with slope, as do stance and swing velocities. Long-period
gait (black, solid lines) takes longer steps but with slower swing velocity than short-period gait (gray, dashed lines). (b) Speed
of both long- and short-period gaits increases with slope. As slope goes to zero, both short-period (c) and long-period (d)
eigenvalue magnitudes decrease, but never go below 1.
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Fig. 7. Effect of varying step width, via pelvis width (solid lines) and leg splay angle (dashed lines). (a) For a fixed step length
slope must increase with step width. (b) Speeds of long- and short-period gaits converge for wide steps, after which gait cycles
disappear. (c) Short-period eigenvalues decrease with step width. (d) Long-period eigenvalues also decrease, but there are no
passively stable gait cycles. Asterisks mark nominal parameter values, with stegwigtf.15 and pelvis widtti, = 0.3.
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Fig. 8. Step width control authority and feedback gains versus step width, varied via splay angle. (a) Ability to control roll
motion through changes in step width decreases with nominal step lyidds do unstable eigenvalues (see Fig. 7). (b)
Feedback gains for roll variables remain nearly invariant to nominal step width, although dependence on stance leg states
increases. Results are shown for long-period gait only.

Other parameters can be manipulated to change the sp&edy slight change in direction with each step. Augmenting
or efficiency (see Figure 11). Slope is a good measure of gfe state with the yaw angle computed from fully nonlinear
ficiency because it is equivalent to specific resistance as wkihematic equations, we find that the yaw mode has an eigen-
as energetic cost per unit distance (normalized by weight)alue with magnitude approximately 1.01. The lack of neutral
The primary variation that affects efficiency at any given stegtability is due to the fact that the yaw angle is dependent on
length is the leg splay. Increasing pelvis mass or radius tie (unstable) roll angle.
gyration can also improve efficiency. The only other means Fortunately, yaw controllability is such that feedback can
of improving efficiency is to take shorter steps, with a coneasily return this directional mode to neutral or asymptotic
comitant decrease in speed. stability. The corresponding region of attraction is quite sub-

One drawback to the use of slope as a measure of efftantial; placing the eigenvalue with a magnitude of 0.9, direc-
ciency is that it ignores the time it takes to get anywhere. ttonal and lateral stability are achieved for yaw perturbations
is therefore advisable to look at speed for any given slopspanning a range of approximately 0.381 rad (2/1.8Di-

Our results show that increasing pelvis spring stiffness witectional stability is sufficiently robust that relying only on
increase speed. Otherwise, there is relatively little to be dofeedback of the six original states without yaw sensing, the
to improve speed. Decreasing leg radius of gyration producesnge is still 0.273 rad (155 The machine can therefore be
the most pronounced improvement, but there is little freedogiven directional stability even though it does not explicitly
in this design variable. Increasing spring stiffnéss im-  have a degree of freedom or even the ability to sense in yaw.
proves speed substantially, and decreasing pelvis mass yielddn practice, the small angle assumption appears to be valid
a more modest improvement, but both of these come at tli®ne is content with a machine that has approximately neu-
cost of lowered efficiency. tral directional stability. Inclusion of higher-order nonlin-
ear terms makes it possible to control yaw with virtually no

8. Directional Stability penalty in the other dynamical characteristics.

We now assess the validity of the assumption of small angl& Extensions

and zero yaw, and its effect on directional stability. Relax-

ing this assumption and including terms of second order afne obvious extension to the current mechanism would be the
higher, we find that the swing foot makes line contact witfnclusion of knees. Given the encouraging results of McGeer
the ground at a yaw angle of approximately 0.00356 rad f¢L991), we are confident that the 3-D system with knees would
the nominal fixed point*. The machine therefore makes also yield passive gaits, albeit with decreased efficiency.
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Fig. 9. Effect of pelvis spring constant variations. (a) For a fixed step length, slope increases with spring stiffness. (b) Speed

increases with spring stiffness. Short-period (c) and long-period eigenvalues (d) both decrease in magnitude with increasing
spring stiffness, but no passively stable gaits are found.
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Fig. 10. Effect of pelvis mass, pelvis radius of gyration, and leg radius of gyration variations, keeping step length fixed. As
pelvis mass increases, slope increases, speed decreases slightly, and eigenvalues increase slightly in magnitude. As pelvis
radius of gyration increases, slope and speed remain fairly constant, but eigenvalue magnitudes decrease. As leg radius of
gyration increases, slope decreases, speed decreases, and eigenvalue magnitudes increase.
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Fig. 11. (a) Slope versus speed and (b) Slope versus step length as functions of parameters. Solid line shows how slope and
speed vary with step length. At a given step length (a), speed is increased mostly by decreasing leg radius of gyration or by
increasing pelvis spring stiffness. Slope can be decreased for given step length by increasing pelvis mass or decreasing splay
angle. At a given speed (b), step length is decreased by increasing pelvis spring stiffness.

There are anumber of ways that additional actuation can B®leman, M. J., and Ruina, A. 1998. An uncontrolled walking
advantageous. Powered walking is possible through actuationtoy that cannot stand stilPhys. Rev. Leti80:3658—3661.
at the feet and at the hips. Our preliminary studies show thatanklin, G. F., Powell, J. D., and Workman, M. 1933gi-
passive and controllable gait cycles can be found for walking tal Control of Dynamic System8rd ed. Menlo Park, CA:
on zero slope, using impulsive pushing by the stance foot. In Addison Wesley.
fact, passive cycles with long and short periods exist for lduo, A. D. 1997.Dynamics Workbench. Custom Software for
wide range of magnitudes and angles of impulses. Generating Equations of MotiorAnn Arbor: University
An additional actuated degree of freedom is also necessaryof Michigan.
for the mechanism to turn. A natural location for this degre®icGeer, T. 1990. Passive dynamic walkintnt. J. Robot.
of freedom would be at the hip or ankle, allowing rotation Res.9(2):62—-82.
about the axis of the leg. McGeer, T. 1991. Passive dynamic biped catalogue. In
Attractive as these extensions may appear, each new ad-Proc. 2nd Int. Symp. Exper. Rohot65-490. New York:
dition will yield a diminishing return in insight. It is worth  Springer-Verlag.
appreciating that these insights must be balanced against Miira, H., and Shimoyama, |. 1984. Dynamic walking of a
remarkable simplicity and purity of vision of the simple planar biped. Int. J. Robot. Res3(2):60—74.

walking machine. Mochon, S., and McMahon, T. A. 1980. Ballistic walking:
An improved model.Mathematical Biosciences2:241—
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