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I. Introduction

Lewis F. Richardson, the British physicist
and meteorologist, devoted much of his life
and scientific work to the study of the

quantitative aspects of warfare. It was his

firm belief that wars arise from measurable
relations between nations and groups and

that an understanding of these relationships
would contribute more to the furtherance
of peaceful coexistence than would conven-
tional diplomacy. In a sense, his work was

pioneering. The application of the methods
of measurement and analysis of the physical
scientist to the statistics of wars was unique.
However, wars represent only a particular
type of social phenomenon and the widen-
ing interest in the use of mathematical

models in the social and psychological
sciences suggests that Richardson’s work

should be viewed in the broader context of

the mathematical revolution in social

sciences.

Richardson himself was fully aware of the
fact that his studies were just a beginning
in this new approach but he hoped that in
initiating them, he would lay the founda-
tions on which others could build. His book,
&dquo;The Statistics of Deadly Quarrels&dquo; contains
a number of mathematical models relating
to the occurrence and prosecution of wars.
In particular he sought a mathematical de-
scription of the data on the number of

nations which fought on the two sides of
each war in the 120-year period ending in
1940 (Richardson, 1960, pp. 247-87). He
was able to fit the observed distribution of

the number of belligerents on each side only
by invoking a number of rather special as-
sumptions. The best mathematical model
which he could formulate involved the fol-

lowing assumptions: disputes occur at ran-
dom over the globe; each dispute interests
exactly eight nations; the probability of war
about a dispute between every pair formed
from those nations is 0.35; this probability
is constant for all nations involved, at all

times.

Our approach to the problem will be

somewhat different. We shall assume that
the observed distribution is the outcome of
a stationary stochastic process, i.e., an equi-
librium distribution of group size which
results from the random interaction between

nations, with, however, a very specific
mechanism for the formation and dissolu-
tion of war alliances. The distribution ob-

tained from such a process will, of course,
depend on the particular method by which
a nation is assumed to join and leave the

warring groups. Several different models

are discussed in this paper but the one

which best fits the observed data results in

the Yule distribution, a particular skew

distribution function which has been found

to occur in a wide number of different
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social and psychological situations. Not

only does this function fit the data well, but
the underlying assumptions used in its der-
ivation are very reasonable and much more

general than those required by the Richard-
son model described above.

II. The Concept of Aggregation for
Aggression

Richardson, in the course of his wide-

ranging studies, analyzed some data on fre-
quency of occurrence of bandit raids of a

given size which took place in Manchoukuo
in 1935. He found that the number of raids

per unit interval of size decreased as the
2.3 power of the number of bandits in the

group (Richardson, 1960, p. 116). A study
of the membership of Chicago gangs in the
middle 1920’s also quoted in this book
showed as identical inverse 2.3 power de-
crease of numbers of gangs with the size

of membership (p. 119). On the basis of
these two observations, Richardson conjec-
tured that they represented some fairly
general tendency concerning aggregation
for aggression.

In a critique of Richardson’s work, Rapo-
port pointed out that distribution functions
whose asymptotic behavior leads to an in-
verse power function with exponent greater
than 2 can be explained by a stochastic

process previously used by Simon to derive
the Yule distribution function (Rapoport,
1957; Simon, 1955). Furthermore, he sug-
gested that if the slope in question is indeed
symptomatic of &dquo;organization for aggres-

sion,&dquo; the study of other types of organiza-
tions might reveal significant differences in
the underlying social and psychological
processes at work.

Since the inverse power function is a

valid approximation to the Yule distribution
only for large values of group size, it would
be desirable to test this model in the lower

range of group sizes. This is especially im-

portant since a recent study by Coleman
and James of the equilibrium size distribu-
tion of small groups gathered for peaceful
purposes (shopping, play groups, and pub-
lic gatherings at a swimming pool), pro-
duced a distribution function (the truncated
Poisson) which, while identical in all six

cases tested, was distinctly different from
the Yule distribution (Coleman and James,
1961 ). If there is indeed a difference in the

equilibrium size distribution of peaceful
and warring groups, it is important to es-
tablish the nature of this difference and

relate it to the underlying stochastic process.
Since neither set of data-the Manchurian
bandit groups nor the Chicago gangs-are
accurate at the small group sizes, an ade-

quate comparison cannot be carried out on
that basis. However, it is possible to use
Richardson’s data on the distribution of

numbers of nations in war alliance for such
a study since each nation may be considered
as an individual unit in the stochastic proc-
ess. Under these circumstances, the same
distribution function would apply to nations
as to individuals in the formation of groups.

III. The Size of War Alliances

Richardson’s basic data on war coalitions
is shown below in Table 1. This displays
the number of nations on each side in the
91 wars which ended in the period between
1820 and 1939 and were of magnitude

TABLE 1
NUMBER OF NATIONS ON EACH SIDE IN WARS

OF MAGNITUDE GREATER THAN 3.5 ENDING
BETWEEN 1820 AND 1939 A.D.

nb: Beyond the bounds of this table there
were 2 wars of 7 vs. 1, 1 war of 9 vs. 1,
and 1 war of 15 vs. 5.
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greater than 3.5 (more than 3,160 dead).
Note that this table does not differentiate
between the two sides, so that for unequal
numbers of opponents only the total num-
bers of wars with that combination of op-
ponents is shown. Thus there were 24 wars
with 2 nations on one side and 1 on the

other. Since side A and side B have no

absolute significance, no attempt is made

to differentiate between wars of 2 versus 1

and 1 versus 2.

Since each war was fought by two coali-
tions of nations, this gives a total of 182
separate coalitions that took part in wars

during this historical period. Any particular
nation may have participated in more than
one war but each coalition which was

formed during the period will be regarded
as a separate statistical event. The number
of occurrences of coalitions with a particu-
lar number of nations may then be obtained

by summing the figures in Table 1. The
results are shown in Table 2 below.

TABLE 2
NUMBER OF NATIONS IN EACH WAR COALITION

SHOWN IN TABLE 1

Underneath the observed number of coa-
litions of each size there is shown the num-
ber which would be obtained if the sample
were determined from a Yule distribution.

These numbers were obtained by fitting the
data using the method described by Simon
(1955). The Yule distribution is de-
termined by a single parameter, a, which
in this case is the number of groups (182)
divided by the number of countries involved
(308) and is equal to 0.59. The number of
coalitions with just one nation on a side is

then given by and the num-

ber of coalitions with i nations on a side

may then be determined from the recursion
formula:

A comparison of the two sets of numbers
shows an extremely close fit with a x2 of
4.5, giving a probability of 0.7 that the ob-
served deviations are due to chance.

Before discussing the significance of this
finding, we should make a brief comment
on the validity of treating each coalition of
nations as an independent statistical event.
It might be argued that the same group of
nations repeatedly enters into wars and that
the data might be biased by particular
political combinations which occurred

throughout this historical period. Richard-
son has actually studied this question by a
detailed examination of the historical facts.
His studies showed that during this 120-

year period &dquo;new&dquo; belligerents entered into
wars at a constant rate and that approxi-
mately one-third of the belligerents during
that period were in this category at any one
time (Richardson, 1960, p. 171). This
constant flux of new belligerents was cer-
tainly a factor in making for new coalitions.
However, there was a tendency for certain
alliances to persist and it is important to
determine whether this factor could have

seriously modified the data. Instead of

testing for all possible factors of this nature,
a rather simple and more general test was
performed to determine whether coalitions
of any given size showed a preference for
fighting coalitions of any other size.

In order to make this comparison, it was
assumed that for the distribution of coalition

sizes given in Table 2, each coalition could
enter into a war with any other, indepen-
dent of the size of the coalition involved.
The calculation using this independence as-
sumption could then be compared with the
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actual observed number of pairings of the
different sized coalitions. For example, 124
of the 182 coalitions or 68 per cent consisted
of just a single nation. Thus the probability
of war with a single nation on each side is

0.68 X 0.68 = 0.46 and the number of such
wars in a sample of 91 would be 91 X 0.46
= 42.2.

Similarly, the percentage of two-nation
coalitions is 19 per cent so that the number
of 2- versus 1-nation wars should be 0.68 X
0.19 X 91 = 11.6. And, since one would
expect an equal number of 1- versus 2-nation
wars, the combined total for this category
is 23.2. In this way it was possible to con-
struct a table for the expected number of
wars for each combination of coalition sizes
and compare the results with the observed
data in Table 1. The numbers obtained in
this way are shown in Table 3.

TABLE 3
EXPECTED NUMBER OF WARS FOR EACH SIZE

COALITION ASSUMING STATISTICAL
INDEPENDENCE

Since the numbers are almost identical
with that shown in Table 1, we can con-
clude that given the distribution of sizes of
alliances in Table 2 there is no tendency
for large groups to fight large groups or vice
versa and that any sized coalition is equally
likely to fight any other sized coalition.

IV. Mathematical Models of Group
Formation

A. GENERAL

The application of a stochastic model to
explain the observed equilibrium size dis-

tribution in collections of small groups was
first used by Coleman and James (1961).
They treated the observed size distribution

of &dquo;freely-forming&dquo; small groups in various
public situations as the outcome of a prob-
abilistic process by which individuals join
and leave groups. The equilibrium dis-
tribution obtained from their model, the
truncated Poisson, gave an extremely good
fit to their data.
A subsequent paper by Harrison White

pointed out that the same equilibrium dis-
tribution may be obtained for a range of

assumptions about the underlying stochastic
process and that one could resolve this am-

biguity only by studying the variation of

equilibrium distribution with changes in

the independent parameter (White, 1962).
This comment applies to any similar situa-
tion in which an attempt is made to relate
an empirically determined equilibrium dis-
tribution to a particular stochastic process
giving rise to such a distribution. However,
rather than accepting this as a severe

criticism of model making, one should re-
gard it as a challenge to further study of the
phenomena under consideration. For ex-

ample, in the data cited by Coleman and
James, a direct measurement of the joining
and leaving rates for different sized groups
and in different population densities would
clarify the situation and eliminate the in-

applicable models.
Since the size distribution of war alliances

differs from that found by Coleman and
James for peaceful social situations, we shall
present first a derivation of the Yule dis-
tribution appropriate to the war alliance
case and then make some general comments
about the effect of varying the assumptions
as to the making and breaking of alliances
on the observed equilibrium distribution.

B. THE OPEN SYSTEM MODEL FOR THE

YULE DISTRIBUTION

The derivation below follows that given
by Simon except that we shall consider the
stochastic process to be continuous in time



114

(Simon, 1955). Let us assume that new na-
tions are continually entering into conflict at
a constant rate, r. Each new nation coming
into a war will have a constant probability a
of fighting alone and a probability ( 1- a )
of joining an alliance. Furthermore, the
chance of a nation joining an alliance of a

given size is proportional to the number of
nations already belonging to alliances of

that size. Finally when an alliance breaks
up, all bonds are broken and each former

participant leaves the system although it

may return again as a new uncommitted

nation. After this process has gone on for

some time, N* nations will have been in-
volved in wars and a total of A alliances will

have been formed. We shall consider this

as a system of N* nations which has

reached an equilibrium distribution of

alliances containing Il single-nation al-

liances, n2 alliances of two nations, etc.

The total number of alliances will then be

’o

equal to A = ~ nj. We will then take a
j=l

snapshot of this distribution over a short

time interval so that the total number of

nations, N*, alliances, A, and alliances of a
given size, n j, are all held constant as new

nations enter coalitions and old coalitions

break up.
From our first assumption that each new

nation will have a constant probability, a,
of forming a new alliance we get A = aN*.
In order to calculate the net change in the
number of alliances of sizes in a unit time,
we have to consider three terms. The first

term takes into account the fact that a

portion of the r ( 1- a ) new nations which
form alliances during this unit time interval
will join alliances of size. -1, converting
them to alliances of size j. Since the frac-

tion of the total number of nations con-

tained in groups of size

and since the rate at which new nations join
alliances of a given size is proportional to
the number of nations already in alliances

of that size, then alli-

ances of size -1 will be converted to

alliances of size per unit time. Similarly

alliances will be lost from this

group since they will be converted into

alliances of size i + 1 during this time.

Finally, if g is the breakup rate of alliances,
qn j alliances of size disappear during this
time. Since in stochastic equilibrium the
number of alliances of a given size will be

constant, we may write this equation as:

In addition to this equation, we must take
into account the fact that in an open system
in equilibrium, the number of nations enter-
ing the system must equal the number

leaving it. Since qnl single-nation alliances
disappear per unit time, qn2 two-nation

alliances, etc., then nations

are removed from the system per unit time.
This must equal the reentry rate, r, so that

Substituting (2) in (1) we obtain:

hence

To get the number of single-nation alliances
we must set the first term in (1) equal to
ar. ,
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Equations (3) and (4) together determine
the equilibrium distribution of alliances and
this is the Yule distribution as derived by
Simon (1955).

C. THE CLOSED SYSTEM MODEL FOR A

YULE DISTRIBUTION

Coleman and James in their paper con-
sider only closed systems of groups in which
all of the individuals remain in the system
(Coleman and James, 1961). Such systems
are probably more valid for some of the
social situations considered by them but are
not very appropriate for a model of war
alliances. In order to indicate the differ-
ence between the two types of systems, the

equivalent model for a closed system will
be considered briefly.

In a closed system we assume that N
nations are continually involved in wars and
that they are formed into groups of ni iso-
lates, n2 alliances of two nations, n3 of three,
and, in general, n3 alliances of i nations
each, for a total of A alliances. The same
rules for joining and breakup of alliances
will apply as before. Isolates will join
alliances proportional to the number of

nations in alliances of that size and alliances
will break up completely and all former
members will join the pool of isolates. There
will be a constant probability, p, that an

isolate will enter into an alliance per unit

time and a constant probability, q, that an
alliance will rupture during that same

period of time.
The derivation of the equilibrium distri-

bution will not be repeated here but the

recursion formula is again that for a Yule
distribution except that the free parameter
is different. The formula this time is:

This model was also tested against the data
in Table 2 and gave a somewhat worse fit

than the open system model. In this case

x2 was 8.9 and P - 0.2.

D. OTHER STOCHASTIC MODELS FOR

GROUP FORMATION

The equilibrium size distribution of war
alliances was shown to be a consequence of

a stochastic process with particular rules for
the formation and rupture of alliances. The

assumptions made were that the probability
of an isolate joining an alliance of a given
size is proportional to the number of nations
in alliances of that size and that rupture of
an alliance resulted in a complete breakup
into isolates. Modification of these rules
would lead to a different type of equi-
librium distribution function. For example,
if the probability of an isolate joining an
alliance were independent of the size of the
alliance and if alliances were to shrink in

size by individual members leaving with a
constant probability proportional to the size
of the alliance, the equilibrium distribution
would be truncated Poisson (Coleman and
James’ &dquo;peaceful&dquo; groups). In fact, using
the different combinations of these two as-

sumptions would lead to the four different
types of equilibrium distributions shown in
Table 4 below.

Still other modes of joining and dissolu-
tion are possible. For example, White pos-
tulates a &dquo;confliot-oriented leaving process&dquo;
wherein difficulties arise between pairs of
members in an alliance (White, 1962).
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TABLE 4
EQUILIBRIUM DISTRIBUTIONS FOR DIFFERENT

ASSUMPTIONS OF FORMATION AND
DISSOLUTION OF GROUPS

Since in an alliance of size there are

pairs, the loss of a member due to

this process would be proportional to i(i - 1).
This sort of dissolution process combined
with a proportional formation process also
leads to a truncated Poisson distribution.

Thus, knowledge of the equilibrium distri-
bution does not uniquely determine the
nature of the underlying stochastic process.
This can only be done by direct observation
of the parameters involved in the formation
and dissolution process itself.

Summary n &dquo; 
&dquo;

The distribution of the number of nations
which fought on the two sides of each war
during the period 1820-1939 A.D. has been
computed as the outcome of a stochastic

process for the formation and dissolution
of war alliances. The observed data agree
remarkably well with a Yule distribution
which postulates that nations join alliances
of a given size at a rate proportional to the
total number of nations in alliances of that

size and that alliances break up into their

constituent members at a constant rate in-

dependent of size. Thus Richardson was
correct in his conjecture that there was a
difference between peaceful groups and

&dquo;aggregation for aggression.&dquo; The differ-

ence, however, merely lies in the particular
rules by which the individual members join
and leave the groups. It should be noted
that these rules for formation and dissolu-
tion are in accord with intuitively reason-
able assumptions concerning the dynamics
operating in &dquo;aggressive&dquo; and peaceful
groups. We would expect that a member is
not &dquo;free&dquo; to leave the former as he is free

to leave the latter. One does not just re-

sign from a gang or war alliance. The Yule
model reflects this behavior by assuming the

complete dissolution of the group whenever
a member leaves it. This does not mean, of

course, that the defection of a single mem-
ber destroys the group. &dquo;Cause&dquo; and &dquo;ef-

fect&dquo; in a model of this sort can be freely
interchanged so that it can be more natu-

rally interpreted as: no member leaves an

aggressive group until the whole group is

dissolved.
I I ~, ,
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