NETWORK MODELS FOR LARGE~SCALFE
TIME-SHARING SYSTEMS
by

Charles G, Moore III

TECHNICAL REPORT NO, 71-1

30 April 1971

Prevared Under Contract
NO0OO14-67-A-0181-0036 (NR 049-311)
For the Office of Naval Research

~Stevhen R, Kimbleton, Project Director

Reproduction in Whole or in Part is Permitted
for any Purpose of the United States Government

ISDOS RESEARCH PROJECT
PERFORMANCE MODELING GROUP

Department of Industrial Engineering
The University of Michigan
Ann Arbor, Michigan

Acknowledgements

First, acknowledgement must go to my dissertation
committee: Bruce Arden, lLarry Flanigan, and Bernie Galler
of the Computer and Communication Sciences Department and
Steve Kimbleton of the Industrial Fngineering Department,
In particular, Bruce Arden, my committee chairman, and
Steve Kimbleton did much to shape the ideas presented here.

Much credit should also go to the University of
Michigan Computing Center - both its equipment and its
people, It has been an exciting and stimulating environment
in which to work, Among the staff, Mike Alexander has been
an invaluable source of suggestions and information, Tad
Pinkerton (now at the University of Wisconsin) left behind
the software instrumentation system which was crucial to
this dissertation,

This thesis was prepared on a Model 37 Teletyoe,
using a DEC PDP-10 time-sharing system, The actual text
preparation was done by a computer program called CypherText
(AFIPS Conference Proceeding, Fall 1970, 555-561), The com-
puter services required for this effort were orovided by the
Cyphernetics Corovoration of Ann Arbor, for which I am most
appreciative, The special characters which contribite much
to the readahility of the mathematical sections were sup-
plied by the Teletype Corporation,

And last, tut certainly not least, I must thank my
wife, Pat, who has waited (usuaully patiently) many vyears
for the completion of this dissertation,

ii

Table of Contents

Chapter I, Introduction to the Problem 000 cce0cncsccne 1

1. Analytic Time‘Sharing System Models e00ecs0 000000 e 1
2, Network MOAELlS sesececccscccscsccsocscsscscsssssssce 2
3, Performance and Load MEASUreS ceesecccscscscsccce 4
4, UBing the MOdel seveccccccccescccseccscncccccccosnse 6

0]

Chapter 1I, Review Of Previous WOrK ceecsccccccccscosss 1

1., Processor Scheduling Models ceecececcccccsssccee 11
2. On the Advantages of Finite Source Models seeees 13
3., Models for Mass Storage Device Performance eeees 21
4, Memory Management MOAElS seecsscscccccccccsccccce 28
5. Models for Time—Sharing Terminals ceceecescccsses 33

Chapter III, Mathematical Development .oo;ooocoooooooooo 35

1e INtrodAUCtiON cececccccccccscccscscssessscssccsce 35
zo.The Structure of Network MOdelsS ceececccccsccccsce 37
3. Derivation of Steady-State ResSuUltS ceceesccsssesee 41
4, Limiting Queue Length Distributions seecececccee 47
5. Cycle Times in the NetwWOrk seseeccccccscccccscccee 52
6. Saturation for a Network 000000000000 0000000000 0 55
7. Extensions to the MOdel seceecscscccccccscsscscsoce 59

Chapter 1V, Load and Performance MeasSUreS ceescccscssce /0

1. Modeling GOAlS eeessececcccscccsescsccscccccssccce 70
2, Distributions, Moments, and Expectations seeeeee 73
3. Load MEASUreS eeeeesecscscecccccsscscsscscscesssccssss /0
4, Performance MeasuUresS seeecssceccccsscssocssosccscee 80

Chapter V. A Modeling EXample seeeececsssceccsccccccce 83

1. The HYpothetical SysStem ceececccccccsccscscsccccs 83
2, Results for a Fixed Number Of USErs eceecececcecces 1
3, Performance and the Number of USers cecceceecee 107
4, Balancing the SyStem seeececcccccsccccccscscccce 115

Chapter VI, A Model fOr MTS seeesecesecccscessssssceecs 120

1. A Brief Description Of MTS ,eeceececccccccccece 121
2, MTS Model Development 0000000000000 0000000000 00 134
3, Model ValidatioOn sececececscccccccccecsccsccssse 157
4, Performance as a Function Of N sececceecccecccs 168
S. Balancing the MTS Configuration cececcscccccoce 176

iii

Table of Contents (cont,)

Chapter VII, ConClusioNS ceececcsececccccscscscccccacccsce
Appendix Statistics Gathering and Model Computations ..
1., The Statistics Gathering Facilities .ceecccccee
2. Batch—-Terminal Task Equivalence eeescccsscesssoe
3. The Model Computations Program seceseccececcccccce

References and Bibliography eseccceccccccccsccccsosssccce

iv

180
188
188
193
196

199

List of Figures

2-1, CPU Utilization vs, LOAA ceeeecececscccscccoscsccce 18
2-2, Response Time VS, LOAAd ecsssccccccocccncecscscccccce 18
2=3, Queue Length'Variance V8¢ LOAA ceecccsioscscscccecee 20
2-4, Queue Length Distribution cecececccecocsccsccsceces 20

3-1, General Network Model eceeoccccccsccccccsscccosccscccece 38
3-2. Markovian Network Model cececccescccsscccoscccocecee 43
3-3, Approximation NetWOIrK eccecosecssecsccoccecccccccscocee 61
3-4, The General ApprOXimation eesccccscssccsssscssccsses 03

5-1, HYpothetical System Block Diagram. es0 00000 c0ccecee 85
5-2, Hypothetical System MOdel ceceveccecccsoscsosssscssse 87
5-3., Program Output for the Initial Model seeccecccccenee 92
5-4, Queue Length Distributions for Initial Model «¢eees 94
5”50 Erlang-3 Disk Node MOdel eseevsvcccecccscccsccccscscsocos 95
5-6, Program Output for Erlang—3 Model cecevecrccccsscce 97
5-7. Queue Length Distributions for Erlang—3 Model .esss 98
5-8. Linear Transition Model seesececcccscsccccsccccecce 99
5-9, Program Output for Linear Model eseceececsssssssscece 100
5-10, Queue Length Distributions for Linear Model eeeeee 102
5-11, Program Output for Reordered Disk Queue Model 104
5-12, Queue Length Distributions for Reordered Queue ... 105
5-13, Response Time in the Initial Model seseesvececscses 103
5=-14, Node Utilization in the Initial Model cesesvescess 110
5-15, Expected Queue Lengths in the Initial Model eeee.. 111
5-16, Response Time Envelope cescevesosscsccsccccccscscnce 114
5-17, Balanced System MOAEL coessecssvsesscesesssssscnse 117
5-18, Node Utilization in the Balanced SYStem eeeeececsee 118
5-19, Expected Queue Lengths in the Balanced Model ..., 119

6‘1. MTS System Block Diagram ec0 000000 0IROOOOOLLIC IR DS 122
6‘2. CPU Active Intervals Distribution eceesesseccceosscs 140
6~3. CPU Requested Intervals Distribution ceeeie.cseesee 140
6-4, 2314 Operation Time Distribution ceeesceccsessscce 144
6~5. 2=Node Drum Representation esesessscsscssssssseese 144
6~-6, Terminal Output Operation Time Distribution seeses 151
6~7. Teminal Interaction Time Distribution seseeeoesecs 151
6-8, MTS Model StrucCtuUre .eeessevocecsccescscsccssccsccsoe 154
6~9, MTS Model Parameters ceevcseeccsccecsssscossscssvecceoe 158
6~10, Program OUtput for MTS Model sscsveocvcccccssnsccsce 159
6-11, CPU Time Used per IR‘CYCle e0ess 0000000000000 0000 101
6-12, 2314 Time Used per IR-CYCle 000000800 00000000000 161

List of Figures (cont,)

6~-13, CPU Active Intervals per IR~CycCle .essesesss 162
6-14, 2314 Operations per IR=CYCle sessscccscsosee 162
6-15, Intra—-job Transition Correlations ¢seeeesses 164
6-16, Inter—job Transition Correlations seeesceses 164
6‘17. Resource Utilization Time SerieS seecsescves 167
6-18, Model Parameter Ranges for Envelope Models . 170
6=19, Summary of Statistics SesSsions seeseescccsecs 171
6-20, Response Time Curve for Envelope Models ..., 174

a-1, Statistigcs Session LOG esesecrvesncecrvoncse 191

vi

Chapter I

Introduction to the Problem

1, Analytic Time-Sharing System Models

There have been many attempts to develop
mathematical models of computer systems., The goal has most
often been to investigate various aspects of the design and
performance of the system. Queue-theoretic models have been
used to study various scheduling algorithms for central pro-
cessors [A3,C5,C6,K4,K5,57] and file storage devices
(A1,A2,C4,D4,F4] . Probabilistic models have most recently
been used in a number of papers dealing with memory manage-
ment in virtual memory systems([B3,D1,D7,D8,F2,56,W3].

In most cases, analytic models have been used to in-
vestigate relative performance of alternative system struc-
tures, rather than absolute performance, By this we mean,
for example, that a model might be used to show that a
particular scheduling algorithm has certain advantages over
a different scheduling algorithm, under given condi-
tions[K5]., Such papers require no reference to real systems,
and no attempt is generally made to argue that the model
used to compére the scheduling algorithms represents any
real system,

Attempts to develop complete performance models of

real time—-sharing systems have generally been made via
simulation models., By the very nature of such models ~ great
detail is invited because it is possible - the models
developed tend to be special purpose., A model is generally
developed for a particular time-shared opérating system, op-
erating on a particular type of equipment (if not a
particular configuration of that equipment)[N2]. It is per-
haps for this reason that such models have not received wide
attention, Proponents of various simulation languages might
argue that there is no need for general models, as it is
easy to develop new special purpose models within the

language.,

2, Network_ lModels

It is the goal of this dissertation to develop a
class of analytic models suitable for the investigation of
the absolute performance of time-~sharing systems. We have
chosen to call these network models, although the models in-
vestigated here are a very narrow sub-class of what are cal-
led queueing networks([S2] . Apologies are directed to those
who find this narrow use of the term objectionable. There
seems to be no conflict in usage within the computer model-
ing field, and the term is descriptive of the difference

between the models developed here and previous ones,

Chapter I - Introduction

Network models have an intuitively attractive
feature in that they allow the representation of a time-
sharing system as a set of independent resources, This seems
to be a crucial characteristic of the current generation of
large~-scale time-~sharing systems, The users of the system
compete for resources, When the immediate demand cannot be
met, the operating system (supervisor, monitor, executive,
or whatéver) automatically queues the requests that cannot
be met, and the performance of the system degrades from the
user’s point of view, When queueing occurs, the user can no
longer be given the impression that he "has the entire
system to himself because of the delays. Of course if the
delays are short enough, this degradation may not be objec—
tionable or even noticable to the user,

Network models are introduced as a set of in-
dependently operating queues, They are structured in such a
way, however, that they can be represented és a time-
continuous markov process, It is this characteristic which
makes it possible to derive many results, On the other hand,
considerable extra work is required to allow the charac-
teristics of time-sharing systems to be represented within
the model, The necessary mathematical development is carried

out in Chapter IIY,

Chapter I - Introduction

3, Performance and Load Measgures

There are a variety of proposed performance measures
for time-sharing systems, Many of them are based on some
variant of the system response time, This quantity has been
variously defined[s5,57,S11]. It generally measures the time
required by the system to initiate work on, partially com-
plete, or finish, some user’s request for service made from
a temminal, As another example, the degree of utilization of
system resources has also been suggested as a performance
measure [C1] . This measure is less user oriented and of more
interest to the system designer,

In batch-oriented computer systems, the terms

throughput and turn—-around-time are often used to denote

performance measures., Throughput is usually defined as "jobs
completed per unit time", while turn—around-time is the time
required to complete the job., Equivalent concepts (though
not as well-defined) exist for time-sharing systems,

Though the measures of performance differ greatly,
they have one thing in common: each must be measured rela-
tive to some state of the system being analyzed or modeled,
One would often like to get a graph of the performance mea-
sure versus some measure of how busy or loaded the system
is, We will call this second quantity a load measure. The

question of how system load should be defined, measured, and

Chapter I ~ Introduction

represented in a modeling effort seems to have received
little attention in the literature, One point of possible
confusion is that some of the candidates for a performance
measure are also candidates for a load measure (resource
utilization is a prime example),

In an infinite-source queueing model, the arrival
rate at the service facility divided by the average service
rate (and usually called p, the load factor) is used as the
measurement of the load in the model, In finite-source
models, there is usually an arrival rate characteristic of
each customer (and identical for all customers) so the
equivalent load measure is the arrival rate per customer(i),
divided by the service rate of the service facility(mn),
times the number of customers in the system(N). Or:

NA

p = =5

In Chapter IV we consider in depth a number of per-
formance and load measures, They are discussed in light of
available statistical data as well as the performance
measures that can be derived from network models,

Further concepts developed in Chaptér IV are those
of balance and saturation, Each has its intuitive meaning,
Saturation for a system is the load the system can absorb

without experiencing significant degradation'in performance,

Chapter I -~ Introduction

A balanced system is one in which the available resources
are well-matched to the demands of its customers, In a
balanced system, as the saturation point is reached all
resources become equally busy,

The concepts of saturation and balance both have
natural definitions within the framework of network models,
The characteristics of these concepts are explored in

Chapter 1V,

4, Using the Model

The proof of the worth of a model lies in its
ability to be used as a tool in investigating an actual
time~-sharing system, There are two very different cases to
be considered, The first i1s the case in which one wants to
evaluate‘the expected performance of some system design
which has not yet been implemented, In this case, the actual
structure of the system is only imperfectly known, Such
things have a tendency ﬁo change drastically between design
and fruition. The behavior of the system ﬁsers, who will
eventually provide the load, is completely unknown, It may
be possible to estimate the parameters of the model from
previous experience and data available from 6ther systems,
However, this approach is fraught with danger, If the new

system were just like some other one, there would be no need

Chapter I - Introduction

to build it. The system characteristics will be different
and presumably the system’s users will behave differently in
the face of the new (and hopefully improved) capability. As
will be shown, relatively slight shifts in user charac-
teristics can cause drastic changes in system performance,
This is not to imply that there is no hope. One can perhaps
find a reasonable range of user behavior and system
parameters to use in a model, Using this range in the model
(assuming it is possible) will yield a range of possible
system performances, One should be prepared, however, to
find that the predicted performance range runs from hope-
lessly unacceptable to quite adequate - with little
assurance of where the actual operating point will exist,

In modeling existing systems the problems are much
different, The system structure is in principle well known,
The user behavior can be determined by the gathering of
appropriate statistics, assuming instrumentation exists
within the system for this purpose., The reason for modeling
existing systems is generally to evaluate the effect on
system performance of some proposed or expected change in
the system structure,

The model can be developed using existing data, and
can be validated using that data. The conditions which will
allow the model to remain valid after the change in struc-

ture are usually well-defined., Checking these conditions may

Chapter I - Introduction

or may not present problems,

For the particular case of network models, the
parameters necessary to define a particular model are
essentially unlimited, since there is such freedom in
developing the structure of the model, Chapters V and V1 are
devoted to the development of two network models for time-
sharing systems. The first is not intended to represent any
real time—-sharing system and serves as a vehicle to illus-
trate the use of network models and the concepts developed
in Chapters III and 1IV.

Chapter VI contains the development of a model for
MTS, the University of Michigan Terminal System, MTS is a
large time sharing system upon which a wealth of statistical
data is available, This makes it possible to demonstrate the
development of a network model from a known system struc-
ture, In this case, we can also see clearly where the model
does deviate from the system being modeled., Where empirical
distributions differ from the distributions used in the
model, the effect is evaluated, Where there are structural
differences between the model and MTS, we again examine the
seriousness of these necessary simplifications.

Having developed the model from MTS statistics, we
evaluate the model’s validity using other statistics which
measure actual system performance, If the model had been

faithful in every way to the structure of MTS, there would

Chapter I - Introduction

be no difference between expected and observed performance.
What differences exist are due to the differences that exist
between the model and the system,

Having validated the model within the "operating
range" of MTS, we now use the model to study system perfor-
mance outside the normal operation load, For example, we
predict response time under very heavy loads, In addition,
we also consider possible alternatives to the current MTS
hardware configuration. In making such studies, it is neces-
sary to consider whether the model will remain valid under
the new structure, For it to remain valid, the model
parameters must have been developed from statistics and con-
siderations which are independent of the change in structure
or load, Finally, the small number of feasible alternative
configurations for the MTS system makes it possible to
search for a configuration which appears optimum within

certain constraints,

Chapter I - Introduction

Chapter 1I

Review of Previous Work

Introduction

The purpose of this chapter is first of all the
straight-forward one - to review for the reader the previous
work in the field of analytic models for time-sharing
systems and their components. There is also a secondary
goal, In developing a network model by the methods of
Chapter III we may be able to take advantage of results
obtained from less general models. The parameters which must
be chosen to define a particular model are not trivially
determined, We shall see that models for components of the
system - such as processor scheduling, memory management
and file operations - may be necessary to assign values to
the parameters of the network model, Thus this chapter can
also be viewed as a marshalling of tools which will prove
useful in the modeling tasks ahead. The reader who is
familiar with the literature on computer system models may
easily skip this chapter. Appropriate references will be
made when material outlined here is referenced in succeeding
chapters,

The work to be reviewed is divided into several
classes, with regard to the problems that are treated rather

than the way they are treated, The emphasis is on results,

- 10 -

- 11 -

not methods, Work which is heavily mathematical in nature is
referred to as "queue—theoretic" as opposed to "stochastic
or "probabilistic". The line of demarcation is not exact,
but lies somewhere between an introductory course in pro-
bability theory and a good course in queueing theory (as

required background for reading the paper).

1, Processor Scheduling Models

By processor scheduling models, we mean those which
are concerned primarily with the effects of reordering the
queue of requests for central processor (CPU) service. Much
of the work reported here is queue~theoretic, Much of it
limits itself to consideration of single-thread (non-mul-
tiprogramming) systems. This makes the work somewhat
irrelevant to the modeling task at hand, since large-scale
time-sharing systems‘by nature depend heavily on multi-
programming capability, Nevertheless, this work is of inter-
est, since it was the first to appear in the area of com-
puter system modeling and leads directly to some of the
papers which are of more interest,

An excellent review of processor scheduling models
by McKinney[M2] has appeared in Computing Surveys. Rather
than repeat what is presented there, that paper is recom-

mended to the reader if he is not familiar with the work in

Chapter II - Review

- 12 -

this area,

In addition to the papers discussed by McKinney in
his review, a general treatment of single-server, finite-
source M/G/1 (exponentially distributed inter-arrivals,
general service time distribution, single server) queueing
systems is given by Jaiswal in his book Priority Queues[J3].

A paper by Kleinrock[K4] should also be singled out
for special mention, Kleinrock investigates the simple
finite-source M/M/1 queueing system, Customers at the source
are viewed as thinking at their terminal, Arrival at the
server is viewed as initiation of a request from the ter-
minal, The time to complete this request is the response
time, Let the mean think time be 1/\A and the mean service
time be p, Kleinrock solves the model and graphs the
response time as a function of N, the number of terminals.
He notes that response time increases slowly with N for N <
Ap+1, For N > Ap+1, response time rises more quickly,
approaching a slope of p seconds per additional terminal.
Kleinrock calls N = Ap+1 the saturation point for the
system, Intuitively, we can see that if N = Ap+1, and one
customer is in service, customers arrive at the server at
the rate of one every 1/p seconds, which is exactly the rate
at which they are served. Below this rate there will be ex-
cess server capacity and little congestion., Above this rate

additional customers add to the delay by approximately their

Chapter II - Review

service time, The argument is, of course, made more precise
by Kleinrock, The same sort of phenomenon arises in the
development of network models, and a similar argument for a

saturation point will be made in Chapter IV,

2. On the Advantages of Finite—-Source Models

In developing analytic models for processor schedul-
ing or other aspects of time-shared computer systems, a
fundamental choice must be made between the use of an in-
finite or finite source model, Time-sharing systems, unlike
many other stochastic service systems, are inherently finite
in the nature of their source of customers, The (effectively
infinite) number of customers passing by a snack bar will be
unaffected by the (finite) number of persons inside the
snack bar, One may assume the number of customers in the
snack bar is never a significant portion of the population.
This is not 8o obviously true in time-sharing systems, since
they have a maximum customer population limited by the num-
ber of available terminals which can be connected to the
system, The number of terminals may be in the order of
several hundred (though it is usually not)., Even with that
number, however, we can still forsee the possibility of a
significant portion of the terminal users having requests

pending simultaneously in the system, This means that they

Chapter II - Review

- 14 -

no longer contribute to the stream of incoming requests, and
the arrival rate goes down, This phenomenon provides a feed-
back in the arrival rate which is not present in infinite-
source, constant arrival rate systems., One would expect to
find different characteristics in these controlled and
self~-limiting systems,

We proceed now to investigate, in terms of time-
sharing processor scheduling models, the extent to which in-
finite-source approximations may be valid, It would be pos-
sible to work within a more general framework, but the im-
plications of the results presented here for other situa-
tions should be clear.

By a finite-source processor-scheduling model, we
mean one in which there are a fixed number of customers, N,
in the system, These customers, when they complete their CPU
service, return to the source. The time before they return
to the processor is then determined by some distribution
function characteristic of the time-in-source for all
customers, An infinite-source model is one in which there is
a positive (and usually constant) arrival rate of customers
to the service facility, no matter what its state,

Infinite-source models are generally much simpler to
treat mathematically. For example, for exponentially dis-
tributed arrivals, the number of customers arriving in time

t is Poisson distributed., Let the arrival rate be A, and

Chapter II - Review

- 15 -

denote the probability that n customers arrive in time t by

pn(t). Then we have:

p (t) = e *(ar)"

n!

For a finite-source model this statistic is more
complicated. If we assume the time-in-source for each
customer is exponentially distributed with parameter A, then
the number of customers arriving at the service center in
time t, assuming no customer completes service in the inter-
val, is binomially distributed with parameters (1-e~kt) and
k, where k 18 the number of customers at the source at the
beginning of the interval t, Thus:

pa(t) = (k) (1=~ME)R (g At k=D
n

This increased complexity exhibits itself throughout
the entire treatment of otherwise-equivalent infinite and
finite source models,

Since it is easier to derive results for infinite-
source models, it is obviously advantageous to use in-
finite—source results wherever they do not differ
significantly from finite—source results, The question that
arises is under what conditions this is possible for time-

sharing system models, There are two conditions which must

- 16 -

be met, Together they essentially insure that the arrival
rate to the service facility remains close to its maximum,
(1) N is sufficiently large in the system being
modeled,
(2) The load in the finite-source system is not too

close to, or greater than 1,

We denote the load in either type of queueing system
by p. For the infinite-source model, p=\p, the arrival rate
times the mean service time, For the finite-source model we
have p=NAn, the total arrival rate if all customers are at
the source, In this case, A\ is the arrival rate for a single
one of the N identical customers, Of course in a finite-
source system the instantaneous arrival rate depends on the
number of customers at the source and is generally less than
NAp.,

Condition (1) probably does hold for most time-shar-
ing systems of interest, For N > 25 infinite source results
for several important statistics are within 5% of the
finite-source results for p = .6 or less (see Jaiswal(J1, p.
47]).

The second condition is not nearly so widely
recognized, Neither is it so easily met, There are a number
of reasons to expect that time-sharing system resources will

operate under loads close to or greater than one, A manage-

Chapter II - Review

-17 -

ment goal in operating a time-sharing system must be to get
the highest possible resource utilization (efficiency) con-
'sistent with satisfactory performance, In terms of processor
scheduling models, this means keeping the probability of an
idle server, the CPU, low, while keeping response time
acceptable..The controllable parameter in determining the
load is most often the number of terminals,

Taking a simple M/M/1/N queueing system (the model
of Kleinrock[K4]) as our finite source queueing system and
an M/M/1 infinite-source queueing system as its infinite
counterpart, we investigate their relative performance, We
let the expected waiting time in the model represent the
response time, The exponential server represents the CPU or
processor and has a mean service time of u;.Under any
scheduling algorithm or service distribution, the CPU
utilization will rise nearly linearly with the load, p, for
p sufficiently less than 1, Response time, on the other
hand, rises quite slowly with p, for p less than 1, This
relation is illustrated by Fig 2-1 and Fig 2-2, where we
have graphed CPU utilization and response time for both the
finite and infinite source models, The dotted lines cor-
respond to the finite-source model, the solid lines to the
infinite-source model, We have let N=100 and pn=1 for these
computations, Note that in going from p=0 to p=.6, the CPU

utilization has gone from 0¥ to about 60%, while the

Chapter II - Review

- 18 -

INFINITE SOURCE MODEL

-90

.60

.30

M/M/1 AND M/M/1/100
QUEUES, m = 1.0

SERVER (CPUY UTILIZATION

T

FINITE SOURCE MODEL

e
v

.60 .50 1.00 1.20
LOAD (RHO)

.00

FIG 2-1: LOAD VS. UTILIZATION

=]
b M/M/1 AND M/M/1/100
N@T OQUEUES, w = 1.0
e
Z
o
e
Nns
?;dh
L INFINITE SOURCE MODEL /
[
'.-—
H3
Zod4
Oo—!
0
7]
L)
=
S] + + +
‘.00 20 40 1.00 1.20

.60 .80
LOAD (RHO)
FIG 2-2: EXPECTED RESPONSE TIME V5. LOAD

Chapter II - Review

response time has approximately doubled, Then we would
certainly wish to operate such a system in the region where
p.z +6, for in this region there is an appreciable increase
in revenue (billable CPU time), at little cost to the
customer in. terms of response time, In fact it may be pos-
sible to operate the system satisfactorily in the region
with p greater than 1.

It should be noted that for less common statistics
the difference between the finite and infinite-source models
may be even more pronounced, This is illustrated by Fig 2-3
which graphs the response time variance for the two models,
as a function of load. It is interesting that for suf-
ficiently high loads (p » 1.3) the variance of the.reSponse
time decreases with increasing load, for the finite-source
model,

It might be suggested that as an alternative to
abandoning the infinite-source model in the region p > 1, it
might be possiblé to let p be different in the finite and
infinite source models. Instead, choose p in the infinite-
source model so that some statistic in the finite source
model is matched., The futility of this approach is
illustrated in Fig 2-4, The finite-source system has p = -
1.4, For the infinite-source model, we chose p = .966, such
that the expected response time (29 seconds) was equal in

both models. The graph of the gueue length distributions in

Chapter II - Review

- 20 -

“<_3' M/M/1 AND M/M/1 AND M/M/1/100
= QUEUES, m = 1.0
(oo}
o
'___‘ L]
cal
¢v—l
>
,_3_-'_- INFINITE SOURCE MODEL FINITE S
&)
5353
3T
L
>
L
-
(o
8 L~ " i
*.00 20 .40 .60 .80 1.00 1.20
LOAD (RHO)
FIG 2-3: LOAD VS. QUEUE LENGTH VARIANCE
M/M/L VS, W/M/L/100 QUEUE
g1 = 1.0, BOTH SYSTEMS
RHO = 1.4 M/M/1/100 QUEVE
= / \ RHO = .966 M/M/1 QUEUE
- / \
2g. / \
o } t
2 !
£ / \ FINITE SOURCE
=
o8
&
=
=
a.‘
uQ-P
: INFINITE SOURCE
/
3./ — + \ y : :
.00 20.00 40.00 60.00 80.00

QUEUE LENGTH
FIG 2-4: QUEUE LENGTH DISTRIBUTIONS

Chapter II - Review

100.00

the two models in this case shows that the behavior of the

two queueing systems is actually very different,

3, Models for Mass Storaqge Device Performance

In this section models for the operation of such
peripheral devices as drums and disks are considered. Fewer
papers have been published in this area than in the proces-
sor scheduling field., Perhaps the reason is that the range
of reasonable scheduling algorithms is less broad. The goal
is almost always to minimize the expected waiting time for
requests, or some equivalent measure, There is generally a
priori knowledge of the time required to complete a request,
making optimal scheduling a practical possibility. This is
in marked contrast to processor scheduling models. There the
processing’time required is at best known as a distribution
function, More often, this distribution is assumed to be ex-
ponential, indicating that even after serving the customer
for a period of time, the server has no additional informa-
tion about his remaining service time requirement.

We will review several papers, emphasizing the types
of systems models and the results obtained,

A paper by Denning[D2] was the first to appear in
this area, It is based on work which appeared in his

Master’s thesis as a Project MAC Technical Report[D4]. The

Chapter II - Review

- 22 -

differences between the paper and the thesis are primarily
in the detail in which consideration is given to various
assumptions made and positions taken. Denning’s paper con-
siders separately the problem of drum (fixed head) and disk
(single moveable arm) scheduling. Both devices are assumed
to be page-residence devices, This implies that operations
are of a fixed length. Two drum scheduling algorithms are
considered: FCFS (or random selection) and SATF (shortest
access time first)., SATF selects for service the page
request in the queue for which the access time (rotational
latency) is shortest, To do this a queue is kept for each
sector on the drum., There are as many sectors as there are
pages which can be read or written in one drum revolution,
Approximate comparisions are given for the throughput of the
FCFS and SATF scheduling algorithms, under the assumption
that page read requests arrive uniformly distributed across
sectors, The improvement gained by using the SATF algorithm
increases with the arrival rate of page requests and the
number of sectors on the drum. For a large number of sectors
and a fairly heavy load, the improvement is impressive. Den-
ning gives as an example a 64~sector(!) drum with an average
of 10 requests outstanding. The drum utilization (actual
time a transfer of data is in progress) is 3% for the FCFS
scheduling algorithm and 53% for the SATF,

Denning’s results are (as he is the first to state)

Chapter II - Review

quite approximate and derived under conditions which limit
the generality of their application, For eXample, Denning
derives his results under the assumption that there is a
fixed length queue of operations to perform at all times,
This is stated as an 'average' queue length, but is used as
though it were fixed., This makes results difficult to com-
pare with others who assume some random arrival process, If
throughput is improved in some way in Denning’s model, the
load is effectively assumed to increase equivalently in
order to maintain the fixed queue length,

At least two papers have appeared which offer im-
provement on the accuracy of the results obtained by Denn-
ing, Coffman[C4] essentially ietraces Dennning’s work on
drum performance, but with considerably more attention to
rigor. Coffman assumes Poisson arrivals tQ‘each of the drum
sector qﬁeues, not necessarily at identical rates, He then
derives the expected waiting time for arrivals and the gueue
length distribution generating function, His results cannot
be compared directly with Denning’s because of the aforemen-
tioned difference in their treatment of the arrival process,
Coffman does show the same dramatic improvement in perfor-
mance obtained by using SATF scheduling under heavy loads on
a drum with a large number of sectors,

Pinkerton[P4] in his Ph, D thesis covers about the

same ground, but his results are derived for discrete time

Chapter II - Review

synchronized to the instants at which a sector boundary is
passed by the drum heads. The results are similar to those
of Coffman,

In treating disks, Denning ignores the equivalent
sector problems which exist, and assumes one page can be
written in each disk revolution, He then considers three
scheduling algorithms which decide which of the cylinders
having outstanding requests one should seek to next. The
alternatives considered are FCFS, SSTF (shortest-seek-time-
first) and SCAN (moving regularly in one direction across
the cylinders, then back). SSTF has the advantage of being
the optimal algorithm in terms of throughput under Denning’s
assumptions, It has the disadvantage that there are some
outstanding requests which may never receive service., Since
the shortest possible seek time is none at all (don‘t move
the am), under very heavy loads SSTF may never service any
requests other than those for the cylinder on which it has
become ' stuck .

The SCAN algorithm is shown to be less efficient
than SSTF, but it is fairer in the sense that it guarantees
service for each cylinder once every scan” of the arm, Den-
ning’s example for disk scheduling shows little improvement
(10-20%) for SSTF and SCAN over FCFS, In this case it is
partially due to a small disk (30 cylinders as opposed to

200 on the IBM 2314, for example), It is also clear from his

Chapter II -~ Review

- 25 -

ahalysis that a large queue of operations (something
approaching the number of cylinders) is necessary for SCAN
or SSTF to show impressive improvement over FCFS,

Another paper in this area considers the performance
of the IBM 2314 direct access storage unit, This device con-
sists of 8 modules (disk packs), each with a single access
arm, The Svpacks are served by a single I/0 channel in the
configquration analyzed, Seeks can be in progress on any num-
ber of modules at one time, while data transmission can be
in progress on one,

This paper by Abate, et al[A2] treats this system as
two separate queueing systems, There is a seek queue , con-
sisting of eight parallel servers, distributed as the seek
time, The queue is actually treated as eight M/G/1 queues,
each independent of the other, Expected waiting times are
derived for a number of seek time distributions. Numerical
inversion techniques for laplace transforms allow arbitrary
seek time distribution functions to be'analyzed.

The data transmission part of a file operation is
treated as an entirely separate gqueueing system, This system
consists of a single server, with a service time distribu-
tion equal to the convolution of a 0 to 25 millisecond un-
iform distribution (representing the rotational latency) and
an arbitrary transmission tiﬁe distribution, The arrival

process is Poisson with rate equal to the sum of the arrival

Chapter II - Review

- 26 =

rates at the seek queues, This is again a standard M/G/1
system for which results are easily obtained, The total
waiting time for a requested 2314 operation may then be
obtained by convolving the seek time wait and transmission
time wait distributions.

There are clearly some dependencies which exist
between the seek and data transmission queues, Therefore the
results are optimistic, since they ignore this interference.
The problem does not seem to be given sufficient treatment
in the paper., The reader is referred to a book by Klein-
rock [K6] , which argues for this independent treatment of
related queues in a rather different context,

Another paper co—authored by Abate and Dubner[A1]
analyzes a drum containing variable length records., This is
in contrast to the Denning and Coffman papers, which both
assumed fixed length operations. Another interesting aspect
of this model is that it assumes a least-rotational-latency
scheduling algorithm for the drum. With variable length
records this may lead to arbitrarily long waits for unlucky
requests which are continually "masked” by a request start-
ing earlier., It is stated in the paper that a manufacturer
planned to implement a hardware queuer of this nature, but
it seems hard to believe that it would ever gain wide
acceptance, The variance in waiting times under a heavy load

is exceedingly high for this algorithm, as is shown in the

Chapter II - Review

- 27 =

paper,

As a final paper in this area, we mention a study of
disk storage devices by Frank[F4]. Almost the entire paper
is devoted to the synthesis of seek time distribution func-
tions under various assumptions. Two particular disk storage
devices, the Bryant 4000 and the IBM 2314 are analyzed.

Under various assumptions about the distribution of
operation requests over the tracks of the disk, the average
seek time is derived, No attempt is made to consider queue-
ing problems except as they affect the length of the gueue
within which operations may be reordered to reduce seek
times,

Frank also discusses several changes in disk storage
structure and the effect these changes would have on perfor-
mance, For instance he suggests a means for reducing
rotational latency by placing two read heads, 180o opposed,
on each track, This reduces average latency to one quarter
of a revolution, instead of one half a rewolution. Of course

there is also some increase in cost,

Chapter II - Review

4, Memo anagement Models

Before the advent of techniques for relocating
memory addresses dynamically, memory management was a simple
task, Muitiprogramming was not generally possible, so all of
the memory available was assigned to each user, and as much
as he used was swapped in and swapped out [s5] . Base address
registers, paging and segmentation hardware made mul-
tiprogramming possible and memory management an interesting
problem,

There have been two general approaches to hardware
relocation techniques: paging and segmentation, It is pos-—
sible also to combine both. The segmentation approach uses
one or more base’ registers so that different parts of the
processes addressing space are relocated by different
amounts, This approach, with variations, has been followed
by Burroughs, CDC and GE. The base registers divide the pro-
gram into one or more seqgments, where each segment is of
arbitrary length. A given segment must reside in contiguous
memory. If the hardware supports only one segment (as in the
CDC 6600 and GE 635 machines), then the entire program must
be contiguous in memory. The interesting problem in this
type of implementation is one of packing segments into
memory. Segments are of random length and may grow or shrink

in size, as well as be released or allocated, The available

Chapter II - Review

- 29 -

real memory is of fixed size,

In general, the seqgmentation-only approach does not
allow the running of a partially loaded program, Especially
in the common case where only a single base register is
available, it is fruitless to attempt to run the program un-
less it is entirely in main memory., The problem then is to
decide what programs to load, and when to shuffle memory so
as to remove holes” which have appeared, The problem is
treated by Knuth[K9], and by Baskett, et al[Bi].

A second approach to the memory allocation problem
is through paging, possibly combined with segmenta-
tion[A6,p10], This approach also allows the loading of more
than one process at once into memory, and also has two other
advantages:

(1) A user’s program may be partially loaded, that is to
say, not all of it need reside in real memory at
once,

(2) The user’s program need not be loaded contiguously in
main memory, but may be scattered arbitrarily
tﬁroughout it, in page-sized blocks,

In this case, there are two 1ntereéting and related
problems, The first i3 the intra-process memory management
problem, This is generally stated as follows: for a given
program and number of available real pages, what subset of

the virtual pages of the program should be assigned to the

Chapter II -~ Review

available real pages? A related question asks how many real
pages should be assigned to the task, which leads to the
"meta—question” of how the set of available real pages
should be partitioned,

Attempts at modeling memory management processes
seem to have been quite successful, In particular, the
analysis of intra-process page management has been a fruit-
ful field of study. Denning[D9] and Belady[B3] were early
workers in this field, Both considered various models for
program behavior: the distribution of memory references
across the virtual addressing space of the process, They
then investigated the performance of various replacement
algorithms, the decision process which determines which of
the pages in real memory will be displaced when it is neces-
sary to retrieve another page from back-up storage,

Denning suggested the working set algorithm, which
makes no attempt to hold constant the number of pages of
real memory assigned to a process, It rather attempts to
keep all the pages which a process has referenced in the
last t éeconds in real memory. This set of pages is called
the working set, Inter-process decisions are made as fol-
lows: run as many processes simultaneously as can be kept,
with their entire working sets, in real memory, making

allowance for variation in the size of these sets.

Belady’s suggested algorithm for memory management

Chapter II - Review

is similar to Shemer’s, Both attempt to assign the next
available page to the process which needs it most (or con-
versely, to remove the page least needed)., In contrast to
Denning’s position that the page replacement decision should
be made primarily within a process, both Shemer and Belady
view the set of pages in real memory as a whole,

In Shemer’s paper[S6é] the decision is made on the
basis of a function defined on the set of pages, This func-
tion defines the value of each page to the process(es) to
which it belongs, The function is computed on the basis of
information available from the past history of references
and transactions involving the page,

Belady [B4], on the other hand, concentrates on the
number of pages allocated to a process, rather than in-
dividual pages, He defines a function Vi(k), where k is the
number of pages assigned to process i, Vi(k) measures the
value of acquiring k real pages to process i, It is
monotonically increasing, up to the size of the virtual
memory allocated to process i, The page replacement policy
is: give a new page to that process i such that
Vi(k+1)—vi(k) is maximum, where k is the current number of
real pages assigned to process i,

Other paging algorithms have been investigated (for
example see Weizer[W3] or DeMeis[D1]). A review paper by

Denning[D8] covers the entire field of memory management,

Chapter II - Review

and considers many of the advantages and disadvantages of
using various algorithms, as well as some of the practical
implementation problems.

When it comes to measuring the performance of memory
managenment policies, there is quite a bit of variation in
the suggested measures to be used, Depending on the con-
straints applied, some measures may or may not be
appropriate, For example, minimizing the number of page
faults is a good goal within certain bounds. If that is the
only goal, however, it leads to such absurd policies as run-
ning all programs which will fit entirely in memory to com-
pletion, and never attempting to multiprogram,

The models used to study various paging algorithms
do have one feature in common., Given sufficient data about
program behavior, one can predict the rate at which page
faults will occur in running program, As we shall see, this
will be a useful tool in the model development carried out

in later chapters,

Chapter II - Review

- 33 =

5, Models for Time-=Sharin erminals

Most analytic models for time-sharing systems have
depicted requests for service as arriving irom terminals in
some exponential distribution., Though there is data which
argues that this statistic is not perfect[C9], it seems
satisfactory for most purposes. A paper by Denning[D6]
however, develops a considerably more complex picture of the
arrival and processing of terminal input. The results he
derives are approximate, and the assumptions opan to ques-—
tion, but the paper is notable for the fact that anything at
all can be said about what is a fairly <omplex model,

The model is based on the MULTICS structure for pro-
cessing terminal input., There, all incoming characters are
routed to a single process which buffers them, When a com-
plete line has been accumulated, it is passed to the process
to which the terminal is attached. Denning characterizes the
operation of this process which interfaces on a character
basis to the terminals (he calls it a PSR -~ Protected Ser-
vice Routine), There are several quantities which he
derives: The size of the buffers required to accumulate
characters, the waiting time of the process to acquire a
line, and the number of processes which will be blocked

waiting for the PSR to release a line of iaput ©o them.

The reader may note that since Scherr’s early in-

Chapter Il - Reviaw

- 34 -

vestigation of the Project MAC system[S5], and parallel work
by Krishhamoorthi and Wood[K9], there have been no serious
attempts to model complete time-sharing systems via analytic
models. This has been due to the lack of suitable models,
and the difficulty in obtaining data to validate these
models from more and more complex systems, Difficulties have
always existed in representing the variety of time—sharing
system resources and their interaction, It is to the
development of a modeling structure suitable for such tasks

that we now turn,

Chapter II - Review

Chapter III

Mathematical Development

1. Introduction

This chapter contains the mathematical development
of the network models which will be used in later chapters
to investigate performance measures and the MTS system, The
model is a true network model in that it consists of a num-
ber of interacting, but independent, gqueueing systems, The
general treatment of such networks is a difficult problem
which has received some attention[S2], However, little in
the way of practical resulte has appeared in the literature,
The networks we develop here avoid many of the general pro-
blems by their ability to be characterized as time-
continuous, discrete-~state markov processes, There is noth-
ing inherently limiting in such an approach - by sufficient
augmentation of the state space arbitrary queueing networks
could be treataed as markov processes, though not necessarily
solved in any sense of the word,

It will not be at all obvious through much of the
chapter that the results are applicable to the analysis of
computer systems, The reader is asked to be patient (or skip
to the next chapter), Some interpretations of the

mathematical structure must be made to see the fruitful

- 36 -

approaches, This work appears in succeeding chapters., The
mathematical structure of network models is rich enough so
that the number of ' free parameters" of a model are
essentially unlimited, While this means that we have great
flexibility in constucting a particular model, it is also a
drawback, The basic model is so pliable that it is difficult
to envision all the shapes into which it may be formed.

The markovian nature of the model leads to larger
and larger state spaces as more complex models are
developed, Even very small models will quickly outstrip the
capabilities of a desk calculator, Most practical models lie
within easy reach of (exact) computer solution, For very
large models, where even this is not practical, approxima-
tion techniques becone important; This is one of the reasons
for our emphasis on such results in this chapter,

The primary references for this chapter are papers
by Gordon and Newell{G3] and J,R. Jackson[J1,J2], The models
developed in this chapter are extensions of the work

reported:in these papers,

Chapter III - Mathematical Development

- 37 -

2, The Structure of Network Models

One sort of analytic model naturally suited to
time-sharing system modeling is the type shown in Fig 3-1,
The resources of the time-sharing system - disks, drums,
processors, channels, etc, — are represented by the circles
of Fig 3-1, Each resource may also have a(ggggg assoclated
with it, This is represented by the rectangle on top of the
circle, If a customer is unable to acquire some needed
resource, he 18 represented as waiting in the queue behind
that resource, Together we will call the resourcé and its
queue a node of the network, The lines connecting the modes
represent the transitions customers of the network may make,
If there is a line coming from the bottom of a circle
representing some resource and entering at the top of the
queue at another resource, then a customer, when his request
for the first resource has been fulfilled, may move to the
second resource for his next request, The customers are not
represented explicitly in Pig 3-1, They pass from node to
node along the transition lines, according to as yet un-
stated rules, At each node, the customer may spend time in
the queue and will spend some time receiving service from
the resource, When the customer completes service, he moves
instantaneously from the node at which he just completed

service to another nocde,

Chapter III ~ Mathematical Development

- 38 -

AP iles _\-(:—.&Qﬁ& F-U\-thnc .FI.»N\ &kmu

Sapou J43yjo o} sapou J43y3lo o}

9)ew Aew sJ43wo3snd
SUo|3tsuUeay ajqissod

juasaudaus sapou
8yl 8uj3oauuod sauj

apou a9yl e IJnNonb a9yl
S3u3saudad 32412 3yl
40 dol uo 8|3ueld3y

apou ay3 e SI9AJOS
1U3s3a4ddI S3|D4|)

Chapter III - Mathematical Development

- 30 -

The network is c¢losed in the sense that the number
of customers is fixed., New ones do not arrive from outside
the network, nor do customers ever exit completely from the
network, Exits from the network could be represented by an
isolated node which if entered is never exited, or from
which the only possible transition is back to same node,
Customers entering such a node would effectively be lost to
the system,

We have said nothing about the rules which govern
the transitions of customers or the service at the nodes,
Obviously, we have in mind some sort of stochastic process,
We must then specify the following for the network:

(1) The rules governing the transition of customers from
node to node,

(2) The rules governing the delays incurred in receiving
ser#ice at each node,

(3) The rules governing the ordering and servicing of the
queue at each node of the network,

(4) The number and characteristics of customers in the
network,

The characteristics of customers (part of (4)) will
of course be implied by the specification of (1)-(3). Of
primary importance, however, is the decision as to whether
customers may be of different types or are identical in the

statistical sense, For example in order to have two priority

Chapter III - Mathematical Development

classes of customers we would need to specify how many
customers were of each type., Then in (1)-(3), we could spec-
ify separately the treatment of each of the priority clas-—
ses,

We require only that (1)-(4) be specified in terms
of the state of the network and not in terms of information
external to the network, Thus in the most general case the
queueing discipline at each node i might depend on the num-
ber of customers gqueued at node j or on the elapsed service
received at node k (a different node) by some customer over
the last 10 mimites,

The above structure represents the most general type
of network model, As it is stated there is nothing that can
be said about such a structure analytically, since it ts
only partially specified, We will however derive analytical
results for a subset of such models which follow certain
rules in the specification of (1)=(4) above, This subset
will allow us to model gquite naturally the structure of
large—-scale time-sharing systems,

It should be noted that even in this general for-
mulation, there is no means of representing the acquisition
of more than one resource simultaneously, This is fairly
common in a time-sharing system where for example a process
must have acquired both some real memory and a processor to

execute a program, Since a customer can only appear at one

Chapter III - Mathematical Development

- 41 -

node at a time in our network formulation, we cannot repre-
sent this phenomenon. This is the most serious drawback of
the approach taken here and is considered further in the
last section of this chapter,

We now proceed to the mathematical solution of

several special cases of network models,

3, Derivation of Steady-State Results

In the network we consider, the customers of the
network are assumed to be statistically identical., The
transition probabilities are fixed, depending only on the
node at which a customer has just received service, That is,
the probability that a customer completing service at node i
moves next to node j is given by pij’ a constant, The ser-
vice time distribut1on at each node is exponential, but the
service rate (parameter of the exponential distribution) may
vary arbitrarily with the number of customers at node i.
That is, the service time distribution at node i is given
by s

Fi(t) = 1-e-ui(n1)t

Where ny is the number of customers at node i. The

queueing discipline at the nodes will be assumed FCFS,

though the exponential service rates allow other interpreta-

Chapter III - Mathematical Development

tions.

Let}the number of nodes in the network be M, Let the
number of customers distributed in the network be N. We
denote the M nodes by Q1,Qz,...,QM. The number of customers
in service and in queue at node Qi will be denoted Ly nye.
The service rate at Q, varies arbitrarily with n; and is
denoted by ui(ni). The probability that a customer complet-
ing service at Qi moves next to Qj for service is given by

pij' Of course we require:
Tj: = 1 for i=1,2’ooo’M

Fig 3-2 illustrates the basic structure and
parameters of such a network.

The matrix of transition probabilities pij is
denoted P. If the state of the network is the M-tuple
(ngyny,eeeyny), then (nq,n,,..q.,ny) may be seen to be a con-
tinuous—-time discrete-state markov process, The state space
of the process consists of all M-tuples (n1,n2,...,nM) such

that:

[_i:M ng = N and nj z O for i=1,2,...,M

We now give conditions under which the network will
possess an equilibrium distribution of customers among the M
nodes, We first require that the matrix P, viewed as the

transition matrix of a discrete markov chain, be

Chapter III - Mathematical Development

- 43

94N310NJ43S %J4O0MIBN UR|AONJIBW Z-¢ 314

(fu) vy
€0 epon

MH_
sxjajew A
-qo4d uoil

d

)
qe

dyl =
3L
isued) (€)

£

A_cv_44~wvoc yoea
1e ajey 9D1AI3S (7)

N ‘sapou jo Jaqunny (1)

. tAq
pazi433dedeyd S| YJOMI3N

Chapter III - Mathematical Development

- 44 -

irreducible, For a finite chain this simply implies that it
is possible to reach any state (node) from any other state,

in a sufficient number of steps, Secondly we require that:
ui(X)) 0 for all Xk> 0 i=1 ’2,000’M

This condition implies that no node "turns off at
some point allowing customers to gather behind it in-
definitely, With these two conditions, it is clear that the
process possesses an equilibrium solution, The state space
is finite, it is possible to reach any state in the network
from any other state, and therefore all states communi-
cate[P1, p.276],

Let us denote the probablility of being in state
(n1,n2,..;,nu) in equilibrium by p(n,,nz,...,nn).

We can now write the equilibrium balance equations
for the network., These equations are based on the principle
that the rate of transition into a state must be equal to

the rate of transition out of that state if the system is in

equilibrium,

Zi..:d ui(n)}p(n1’n2g ooo,nM) = (4)

Zi:? Zkk:‘lm u(n1+1)pikp(n1' "Oonk"1 oooooni'ﬂ ’ nor"“)

where we require ui(x) = 0 for x < 0,

The left-hand side simply gives the transition rate

Chapter III - Mathematical Development

- 45 =

out of the state (n1,n2,....nM) as the sum of the service
rates at the individual nodes, The right-hahd side sums the
transition rates into the state (n1,n2,....nu) over all
states from which it is possible to reach (n1,n2,...,nM) in
one transition,

Let the state space of the network be denoted by S.

The cardinality of this state space is:
N+M-1
M-1
The equilibrium equations if used directly, yield a
system of linear equations with cardinality equal to the
cardinality of S, Por N=50 and M=5, for example, this is
293,046, The following reduction will allow the determina-
tion of the equilibrium probability distribution in a sim-
‘pler fashion, Define:

fi(X)
fi(x)

1 for x =0

ui(x)pi(x~1) for x > 0

We then make the following change of variable in the

balance equations:

Chapter III - Mathematical Development

- 46 -

-1
Blngangsenesmy) = {1520 £ (000000 40y00000m,) (2)

The transformed equilibrium equations then become:

() 42w, (ng)}0(nganyseeesny) = (3)

Zi:rZ::l: ﬂk(nk)PikQ(n1. ooo,nk"'1 ,ioo,ni+‘ ’ ooo,ﬂu)

Now let us assume that it is possible to express
Q(n1,n2,...,nM) as a product of powers of some set of M con~-

stants x,.,xz,.;.,xM as follows:

n
Q(n1'n2,ooo,nm) = {' i:’: xi 1}.0 (4)

Where C is some constant of normalization, Making
this substitution into the modified balance equations (3),

we have:?

E:i:? Bylny) = E:i:?}:t:? By (mye)Py (247)

These equations may be rewritten as:

}:i:? ng(ny)1 E:t:? Pyy (% /%)) = 0

Note that we still have one equation for every pos-
sible state of the system, Since ui(N) is greater than 0, by
hypothesis, and having N customers in gueue and in service

at Q, is a possible state of the systenm, the term in curly

b §
brackets (which is independent of the ni) must be identical-

ly O, This yields the system of M linear equations:

Chapter III - Mathematical Development

- 47 -

Z}’::l: pki(xk/x:l) = 1 i=1,2,000yM (4.1)

One solution of these equations is the equilibrium
probability distribution of the markov chain defined by the
matrix P [P1, p.249], which by the irreducibility of P is
known to exist,

Substituting this result back into the original

balance equations(1), we find:
1=M i
B(ngsngyeensny) =][220 u, (n)x, 110G (s)

G is a normalization factor introduced by the
arbitrary constant in (4), It may be computed from the

requirement that the equilibrium probabilities sum to 1.

4, Limiting Queue Length Distribution

If either the number of nodes in the network is
large, or the number of customers is large, the state space
of the network is so great as to make the calculation of the
steady-state queue length distributions by the method of the
previous section prohibitively expensive, For example, a
5-node network with N=75 required about one minute of IBM
360/67 time to compute the equilibrium queue length dis-
tributions,

We derive in this section the limiting queue length

distributions in an unbalanced system as N becomes

Chapter III - Mathematical Development

- 48 =

arbitrarily large. An unbalanced system is informally
defined as one in which a bottleneck exists limiting the
behavior of the entire network. More precisely, we define a

network to be unbalanced if there exists an i1 such that:

xi/ui > xj/uj for j=1 ’2,000,M (501)
where xi/p1 = lim xi/ui(ni)

n, 6 -o

i

We have implicitly assumed that the limit in (5.1)
exists for all i=1,2,.,..,M. Note that for a node with ui(ni)
= kni for some constant k, the limit of xi/“i will be 0.'A
necessary condition for the limit to exist is that for some
n>0 and some k>0,

ui(ni) 2k for all n, >n

This effectively prohibits a node from slowly shut-
ting off” as the queue gets longer and longer, Thus the con-
ditions required for the limit to exist are slightly
stronger than those of the previous section, in which we
simply required ni(ni) > 0 for all n, > 0,

We will call the node possessing the largest xi/ui
the limiting node or limiting resource of the network. In

addition to our primary purpose of obtaining approximate
formulas for the queue length distributions in this section,
we will also gain some insight into the effect of the limit-

ing resource on the system, In particular, the existence of

Chapter III - Mathematical Development

- 49 -

the limiting resource will allow us to express a number of
the network statistics as functions of N, the number of
customers in the network.

iet us rename the nodes of the network in such a way
that the limiting node is Q4+ We can then write the nor-

malization constant of (5) as:

T4 =
6=) Ul Ti %, /e, (ny))

where S is the set of all M-tuples (n1,n2,...,nn)

such that:

v:i.:M
[i=t By =N

We may also write G then as follows:
< ; n s’
G = 2_5'{?113? Xy i/fi(ni)}{x1 /£4(8°)} (6)

where S° is the set Of all M~tuples (nq,N,,ee.yny)

such that:

\ i=M
L_i=2 ni s N
and:

’ vi=ﬂ

To arrive at (6) we have simply factored the terms
involving x4 and £, from the original expression for G.

Now as we let N » » , we see that (6) must approach

Chapter III - Mathematical Development

some finite limit. To see this, we rewrite (6) again as:

(7)

where we define F1 as:

n
= lim X4

1 ————

n-o f1(n)

F

wWhich by our choice of the normalization of the
X-vector exists and is finite.

The second term of (7) is finite since for suf-
ficiently large jJ:

xi(-’)/“i“) <1 i=1

again by our choice of a normalization for the x

vector. Thé sum then is finite

n

since we have the relation:

n; -1

xg /£4(ng) = (xy/ug(ng))*(xy *

making the sum a power series beyond some point.
Consider next the limit of the probability of being

in a given state, p(n1,n2,...,nu):

TTi=M

[1=1 (8)

lim

(ni/f (ng)] }/G
x n
Now i b B §

pP(nyyn,yeeeyny) = {
This is clearly zero, unless there are a finite num-

ber of customers at 02,03,...,QM. But if N is infinite, then

(8) is non~zero only if ny is infinite, Let us therefore

Chapter III - Mathematical Development

- 51 -

consider the marginal probability p(nz,ns,...,nn) which is

given by:

Y_n =m TTj:M ni
p(nzﬁnBO""nM) = Ln:z {l'j=1 [xi /fi(ni)]}/G (9)
Taking the limit of (9) as N becomes infinite, we

find, using (7):

TTiaM nj_/f)
P(nz,n3,o..,nx) = 11i=2 [xi 1(ni]

{Ii:g{z::i:g [xini/fi(ni)]}

The fact that such a result exists is of interest.
It is rather surprising that as long as a largest xi/u1 ex-
ists, there is a steadyéstate limiting distribution for
customers at nodes other than Qis This implies that, asym-
ptotically, all additional customers added to the network
appear at node Qi’ the limiting node, They are not "ais-
tributed” in some probabilistic fashion among the nodes,

The question of how fast the limiting distributions
are approached is a difficult one, The rate of convergence
depends on the size of the network and the spread in values
of the x/n-vector, For example, for a 4-node network with
x/u = (1,00,.995,,990,.800), the expectation of the queue
length distributions had converged to within ,1 of the
limiting value for N = 130, We will return to the question

Chapter III - Mathematical Development

- 52 =

of rate of convergence in the section on network saturation,

3s.Cvcle Times in the Network

By our requirement that the matrix P be ergodic, and
that ”1(n1) > 0 for n, > 0, we have ensured that every
customer will visit every node infinitely often, given suf-
ficient time, We define the gycle time of a customer in the
network to be the time required to pass from a given node
back to that node, We measure the time from the moment the
customer leaves the node (completes service) until he
returns to that node or the queue at that node, There will
be a cycle time distribution associated with each node of
the network., We denote the cycle time density function
associated with node Q, by ci(t); This dehsity function is

given by:
e (t) =) ¢ B, (¢)

where S is the set of all possible paths from Qi
back to Qi and bs(t) is the probability of traversing a
given patﬁ s in time t, The set S will in general be in-
finite, since there may be loops in the network which do not
include Qi; These loops may be traversed an arbitrary number
of times before returning to Q.

We do not attempt to derive ci(t), but instead turn

Chapter III - Mathematical Development

- 53 =

our efforts to its expectation, which we denote by ci’

N (10)

c1 = E[LS bs(t)]

We now argue that the expected time spent in
traversing a path is the sum of the expectations of the time
spent at each node on the path, That is, if we denote by Sy

a particular path from Q, to Qi’ then the expected time to

i
traverse that path, E[si], is given by:

\ i=M
E(si) = / =1 rjwj(N) (11)
where r, is the number of times node Q, appears on

3 3
the path Si’ and wj is the expected waiting time (in gqueue

and in service) at node j, in equilibrium, The only way this
can fail to be the case is if there are possible effects of
serial correlations in the waiting times along the path,
That this does not occur for the case of exponential servers
is shown by Takacs[T1] for a similar situation.

From (10) and (11) then we have:

=M
c, = B=1”" ry gy () (12)

where r is the expected number of times node j

ij

will be entered in the cycle from Qi to Q,. This interchang-

10
ing of expectation and summation is valid because of the
markovian nature of the transitions in the network. The rij

are easily computed from the elementary theory of markov

Chapter III - Mathematical Development

chains (for example, see Parzen[P1, p. 242]). Let us assume

we are interested in C_,. Then the r are given by the solu-

M Mj
tion of the following set of linear equations:
E:i:¥“ pji(ruj/rni) =1 J=1,2, 000y M-t

Note that the r are a solution to the set of equa-

Mj
tions (4,1) which determined the x-vector in the derivation
of the equilibrium distribution for the network,

The expected waiting time at node Qj‘in equilibrium,
w,(N), is computed from the steady-state gqueue length dis—-

3
tributions as:

i=N '
wym) = Y 3N b (a)a/u, (1)

The r,, in (12) are constant for all N, The wj(N) in

13
(12), for sufficiently large N, approach a limit which we
denote Wj; This implies that we can write an asymptotic
cycle time relationship for an unbalanced system, Let Qk be

the limiting node., Then we haves

\ j=m

- C = / 3=t =X Ty ¥y

~ (\ J=M j=x -

c, = {[_j=1 Yot rijwj}+(N-K 1)(1/;1k)r:|.k (13)
The first term in (13) is the asymptotic time spent

at nodes 1,2,,44,1=1,i+1,,00,k~1,k+1,,..,M in a cycle from

node i to node i, By the limits on the distributions of

Chapter III - Mathematical Development

- 55 =

pj(“j) at these nodes, it approaches some constant. We

define K as:

lim \ 3= \ n=N (n) (13.1)

€= L 3=1 3™ [n=1 PP

N=»®
which is the expected number of customers absorbed”
by nodes other than Qyx as N becomes large, The limit, of
course, exists by our assumption that the system is un-
balanced. The cycle time for nodes other than the limiting

node then becomes linear and is essentially:
— L4
Cy = K'+Nry, /v, i=k
for some appropriate constant K’. C, of course

approaches some finite limit as N -» » ,

6, _Saturation_for a Network

We now turn to a more detailed investigation of the
performance of the network near the point at which the asym-
ptotic formulas become valid. As mentioned previously, this
point occurs as the service rate at the limiting resource
approaches its maximum, As soon as it has reached this
maximum, it can no longer "eject" customers at a faster
rate, and it acts to constrict the flow Oof customers in the
entire network, The analogy of flows in networks, from the

work of Ford and Fulkerson[F5], is a rather good one. If one

Chapter III - Mathematical Development

views the network as a flow graph" with the flow capacities
being the service rates at the nodes, the asymptotic results
presented in this chapter seem quite natural.

We will define here a saturation point for a net-
work, We are interested more in gaining ihsight into the
capacity of a network to support customers than in
rigorously determining the point at which the asymptotic
results of the previous sections become valid. The defini-
tion we choose is motivated by a definition of saturation
used by Kleinrock([K3] in a simpler context, which was
reviewved in Chapter II(p. 12].

Let Qk be the limiting node and consider Ck' the ex-
pected cycle time of a customer from Qk back to Qk' From the
previous section we have:

lim Cx = E-g:? j=k rkjwj

N-*o

Which is finite. Then a customer exiting node Q.
will be lost” to the system for a period of time averaging
Cxe In addition, we know that Qi will eject customers at an
average rate p,, its limiting service rate, Thus in the per-
iod while a customer is cycling back to Qe Q) will have

served an average of Ck’uk customers, Let us define:

Chapter III - Mathematical Development

- 57 -

= ‘. +
Ns Ck By 1

We can argue then that Q_ has a “capacity of N
customers, Potentially it could serve this number without
delay, since they arrive at a rate exactly equal to the rate
at which they are served, We call N, the saturation point
for the network,

Under fairly general conditions, the network ex-
hibits two general sorts of behavior, one above and one
below the saturation point, For N << Ng» there is relatively
little conflict at the nodes, since the flow into each node
is less than its capacity. Therefore, statistics such as the
cycle time expectations rise slowly with increasing N, For N
> N,y the asymptotic relations become valid, and the cycle
time rises linearly with N for nodes other than Qk’ as shown
by (13), For Qk’ of course, the cycle time becomes constant,

The behavior of the network in the region near Ns
depends on two factors:

(1) The degree of imbalance in the systen,
(2) The regularity of the ui(ni).

If the system is nearly balanced, the network
approaches its asymptotic queue length (and cycle time) dis-
tributions much more slowly than in a more unbalanced net-
work, This is because a large number of customers are
"absorbed” by the other nodes in the network, The rest of

the network can at best eject customers back to the

Chapter III - Mathematical Development

saturated node just slightly faster than the saturated node
can service them, Thus the node(s), which have xi/n1 values
slightly less than that of the saturated node, must have
long queues to guarantee that they are operating at near
full utilization before they can drive the saturated node tc
its limiting behavior, An example of this phenomenon is
given in the next chapter, It may also be helpful to return
to equation (13,1) noting that the the K defined there is
exactly No» the saturation point for the network,

The dependence on (2), the regularity of the “1(ni)”
is obvious, All the asymptotic relations were derived in
terms of the limits of the ui(ni). If these service rates d:
not become stable until n, is very large or approach the
limit in some unusual fashion, the saturation point may be
meaningless, For example, suppose we have a network in which

Qk is the limiting node and:

uk(i) = 2000 i s 1000
uk(i) = 1 i > 1000

In this case, there will be a great change in the
behavior of the network as the number of customers at Qk
passes 1000, Q essentially "shuts off" if its queue ever
gets ‘that long, and at that point limits the network
behavior, But the network may have a very different behavicy

below N=1000, In fact one can easily produce a network whose

Chapter III - Mathematical Development

- 59 -

computed saturation point in this case would be at N <
1000, but which did not begin to exhibit asymptotic behavior
until N >) 1000, As a rule of thumb we argue that the asym-
ptotic service rate of the limiting node should be achieved

for N s N_ for the saturation point measure to be valid,

7. Extensions_to the Model

The network model for which we have just derived an-
alytic results is greatly simplified from the general model
introduced in the first section of this chapter. The intent
of the simplifications was to achieve a modei which could be
treated as a time-continuous markovian process with a
reasdnable,state space, In this section we consider some ex-
tensions to this model, as well as some alternative struc-
tures which might be used.

Markovian networks have the theoretically attractive
feature that by simply augmenting the state space, one can
represent more and more complex behavior, Increasing the
state space size however, has serious practical implica-
tions, The state space with which we have been working is
already large, and capricious increases in the cardinality
of that space will quickly render it incomputable by the
methods of this chapter. Therefore, the possibilities for

extension treated here must be viewed in the light of both

Chapter III - Mathematical Development

- 60 -

theoretical and practical applicability, Unfortunately, some
of them will prove to be of little practical value,

Exponential Service Time Distributions

Though the service rate at each node may vary with
the number of customers there, the service time distribution
for a fixed number of customers is exponential, It is pos-
sible, however, to approximate arbitrary distributions
within this framework, To do this it is necessary to repre-
sent a given service facility, with non-exponential service
time density, by more than one node in the network,

Suppose we wish to represent in the network a ser-
vice facility which has a single server, S, with a service
time distribution function B(t). Let the moments of B(t) be
denoted B,,B,,ee¢ A first approximation to B(t) would of
course be to represent S by an exponential server with dis-
tribution function 1-e-t/B1; This distribution function has
moments B1,B12,B13... If this is not a satisfactory
approximation, we may instead represent S by a gset of ex-
ponential servers in series and parallel, Fig 3-3
illustrates such an approximation, All the nodes inside the
box of dashes, taken together; represent the approximation
to the server S, We call this approximation S’., We assume
the service rates at each of the six nodes in S’ are con-

stant, and are given by the symbols Byoliog ety inside the

Chapter III - Mathematical Development

&« Queue

Original
Service
Facilfty Server, Service Time
Distribution Function
S B(t)
S —_—
Representation
-— - e > o D GNP GNP S GNP TS CED oD
in the T o T-5;
Network I |
s | f
| N i
|
' |
| ' I
Q2 ‘
| |
l s |
' i
Q |
| |
|
| |
| }
)
| |
| |
s GEO GED SN SES o TN -t eEy s eae amb -—4

Fig 3~-3: Approximation Network

Chapter III - Mathematical Development

circles representing the nodes of S°. p; is the probability
that a customer enters node 1, 1--p1 the probability that he
enters node 4, and so forth., The Laplace transform for the
service time distribution of S°, which we denote B’(s), is

given by:

B’ (8) = P1ﬂ1ﬂgﬂ3 +(1"P1)u4{95F5+(1'95)u6}
(111"'3) (llz"s) (ﬂ3"’3) By=8 Bg=8 Bg—8

The moments of B’ (t) can easily be computed from
B’(s), and one can qguickly see that it is not an exponential
distribution. The question that arises is how one constructs
a sub-network of nodes, S’, having given characteristics.
How close an approximation to a given service time distribu-
tion B(t) can we formulate with a network of exponential
servers? The laplace transform of the service time dis-
tribution of the most general sub~network which can be con-

structed, assuming a single server with constant service

rate at each node, will be of the form:
B’ (s) =§_§:’,‘ pi{ﬂj:?i (ng(1)/(8=u4(3)))} (14)

This is the Laplace transform of the service time
density of a weighted mixture of series of exponential ser—
vers, The general form of this sort of sub-network is
illustrated in Fig 3-4, The restrictions on (14) are as fol-

lows:

Chapter 111 - Mathematical Development

- 63 -

*j-Customers Enter

Dl Dz m
' ®* & & o o
' ' ?
) 0
i ’ | '

ur---Customers Exit

Fig 3-4: General Approximation Network

Chapter III - Mathematical Development

- 64 -

(1) 2_1:? piz 1

(2) ﬂi(J) >0 for i=1,2,.4e,m; J=1029-°ovni

(3) n; a positive integer for 1 = 1,2,...,M

We need not consider any more complicated structures
than the one illustrated in Fig 3-4, since any other struc-
ture (such as that of Fig 3-3) can be represented in the
form of Fig 3-4,

There are a number of guestions we can now ask more
precisely. First, can we choose parameters for (14) in such
a way that B°(s) = B(s) for any B(s) which is the Laplace
transform of a probability distribution? It seems reasonable
that this should be so, but it is difficult to give either
an existence or constructive proof, A gonstructive proof
might be of practical interest,

A somewhat simpler approach is to attempt to con-
struct a sub-network whose service time distribution
approximates the first x moments of B(t), for some desired
X. This has been done for x s 3, without any general pattern
or algoritim becoming apparent. It is clear, however, that
any general solution will require arbitrarily large numbers
of nodes, making it of little practical value. Even to
approximate the mean and variance of a déterministic dis-

tribution requires an infinite number of nodes; one must

construct a single series of exponential servers, each with

Chapter III - Mathematical Development

- 65 -

parameter M/B1, where M is the number of nodes in the
string, and take the limit as M goes to infinity. In fact
this is the general method for approximating the first two
moments of a distribution whose variance is less than the
variance of an exponential distribution with the same mean.
In the other case (B2 > 1/81), two nodes in parallel (a hy-
per—exponential distribution) will suffice,

It is felt that for most applications matching the

first two moments should be satisfactory.
Independence of Nodes and Related Problems

There are certain restrictions imposed by the
assumption that the nodes of the network operate in-
dependently., We do not allow the situation (queue length,
for example) at one node to affect the behavior of any other
node, This might be desirable in some modeling situations,
Consider, for example, a disk and drum connected to a time-
sharing system through a single channel, If the drum has
priority over the disk, then we might like to represent them
as separate nodes in the network, but have the service rate
at the disk node become 0 whenever the drum node was busy.

Another extension of interest along the same line is
the generalization of the transition structure, One might
want to allow the transition pattern to change with the

state of the system, As an example, consider a paged time-

Chapter III - Mathematical Development

sharing system, As the CPU queue length 1ncréases, more and
more processes must share the available real memory. This
may mean that the probability of a page fault in a process
will increase, So if we represent the CPU as a node in the
network, and a page fault as causing a transition to the
drum node, we would want this transition probability to be a
function of the CPU queue length -or perhaps of even more
information about the state of the network,

Both of these problems fall in the class of those
which can be solved by a straightforward — and impractical -
augmentation of the state space, It would not destroy the
markovian naﬁure of the network to make the service rates at
the nodes and the transition probabilities between nodes
functions of the state of the network (n1,n2,...,nM). We
could then easily incorporate phenomena such as the two ex-
amples mentioned above into a network model,

Wiﬁh minor changes in notation, the balance equa-
tions for the network remain nearly the same, even with
these changes in the treatment of service rates and transi-
tions, Unforﬁunately, we can go no farther than the balance
equations, since we now have (M+1)M free parameters for
every state of the network: M2 transition probabilities and
M service rates, Without solving the balance equations
directly there is no hope for deriving analytic results for

a network cast in this generality,

Chapter III - Mathematical Development

- 67 =

Setting our sights somewhat lower, there are some
possibilities for less sweeping generalizations, One in-
volves simply making the transition probabilities a function
of the number of customers at the node, in the same manner
as the service rates, That is, instead of the pij being con-
stant, we would have N sets of M transition probabilities
for each node, It is not too difficult to generalize the
derivation of III,3 to this case, allowing us to compute the
steady-state queue length distributions, The results_for
limiting queue length distributions, balance and saturation
do not follow, however, Therefore it was not felt that it
was worthwhile to present these results, which offered num-

bers perhaps, but very little insight,
Identical Customers

There are a number of reasons for wishing to repre-
sent non-homogeneous customers in the network, For instance,
in modeling a computer system which served both terminal and
batch users, we might wish to represent them as two separate
classes of customers in the model, One would expect them to
have different characteristics,

If one 1s interested in the performance of a system
as a whole, this defect may not be too important, as long as
a "virtual customer” can be synthesized, This virtual

customer must have the weighted characteristics of the dif-

Chapter III - Mathematical Development

- 68 -

ferent types of actual customers, This concept is far from
new, and has been used for example by Denning in modeling
time-sharing system terminal users[DS], With this approach
it is not possible to study the treatment any particular
class of actual customers receives from the system, for no
actual customers are represented, This limits the kinds of
questions we can ask of the model, and expect reasonable
answvers, Pfedicted queue lengths, resource utilization and
statistics of this sort should be accurately predicted. On
the other hand, a measure such as expected response time may
be meaningless, since the "expected’ customer is a virtual
customer, who may not in fact resemble any of the actual
system customers, For example, if half of the users of a
system are "batch” users and the other half are "terminal
users, the virtual users would be, in a sense, half one and
half the other - and not really like either.

There seems to be no reasonable way to extend the
markovian network models of this chapter to allow the direct

representation of non-homogeneous customers,
Lumped Resources

There are two problems with even the more general
network models which make it difficult to represent the
allocation and use of storage or real memory.

The first problem, which has already been mentioned

Chapter III - Mathematical Development

is that network customers cannot acguire, or be represented
as needing, more than one resource. In fact a process in an
actual time-sharing system may have real memory allocated to
it, be using a processor, and at the same time have a disk
operation in progress., There is no way to represent this
behavior in a network model short of allowing customers to
split into several customers., Though this splitting of
customers is a possibility([J1], the result of the branching
would be a set of independent customers, and there would be
no way to tie them together again when the simultaneously
allocated resources were released.

The second problem is that resources (nodes) in the
network are discrete entities. They are allocated to
customers in an all-or—none fashion., There is no way to rep-
resent the allocation of 10% of a resource (capacity of the
node) to a customer, This of course would be the natural way
to represent real memory allocation, where customers may be
allocated 10 pages of a real memory which has a capacity of
100 pages. Another customer may be allocated 30 pages of the
memory at the same time, This concept of a resource being
allocated in unequal portions to the system customers is
common to simulation languages such as GPSS, but seems to
have received little attention in the field of queueing
theory. It is certainly a problem which it would be worth-

while to attack.

Chapter III - Mathematical Development

Chapter IV

-Performance and Load Measures

1, Modeldi Goals

In this chapter we consider the goals that we are
attempting to reach in developing an analytic model of a
time-sharing system., We have already said we are interested
in an absolute model rather than a relative one, This im-
plies the goals of our modeling effort are to predict the
actual performance of the system being modeled. We seek to
make statements such as "the CPU utilization will be X%
rather than statements such as the CPU utilization under
structure A will be 10% greater than the utilization under
structure B," We do not deny that insight” is an important
goal - and we certainly hope to acquire some insight along
the way - but we hope also that we can achieve another
modeling goal: predicting the performance of a time-sharing
system under given conditions, without having to construct
the time-sharing system in question and operate it under the
specified conditions,

We will assume we are given the structure, or per-
haps several alternative structures, for the time-sharing
system to be modeled., We wish to develop an analytic model

of the system and predict its performance under various con-

- 70 -

- 71 -

ditions,

In the mathematical development of Chapter III, we
referred to customers of the network, In talking about
time-sharing systems we have been consistently using the
term user. The user’s representative inside the time~shar-
ing system, which carries out his requests, is commonly
referred to as a process. Since there is generally a one-
to-one correspondance between users and processes, we will
hereafter use these terms interchangably, employing the one

which seems most appropriate at the time. Users will type in

requests, processes will be allocated CPU time. In the net-
work models we develop, both the user and his process will
be represented as customers, so actually all three of these
terms should be considered equivalent, unless otherwise men-
tioned., We do not consider here the case where one user may
initiate more than one process,

The conditions under which the system operates are
generally described by specifying the behavior of the system
users, i.e. — the requests they make of the system,
Together, it seems reasonable to call the collective demands
the users make of the system the load. The question of how
one defines and measures the load is an important one which
has received relatively little attention. The measure of

load most commonly used for analytic modeling has been the

number of simultaneous system users, This has the advantage

Chapter IV - Performance and Load Measures

- 72 -

of being easily measured, The alternative would be some mea-
sure of the demand placed on the system resources by the
users, In most cases, however, such a measure (assuming we
are dealing with a single-valued random variable) would be
linearly related to the number of users, as long as all
users were drawn from the same population, Therefore we will
argue in section IV,3 that the number of users, with some
strong reéervations, is an acceptable single~valued load
measure,

The question of how to measure the performance of
the system is equally important, In this chapter we will
argue that response time is the most satisfactory single
measure of performance, There are a number of possible
alternatives, We suggest some of them, including the pos-
siblity of a performance vector which recognizes the fact
that a time~sharing system is a collection of resources on
which varying demand is placed, Response time can be charac-
terized as a weighted sum of the elements of this perfor-
mance vector,

Before discussing measures of load and performance,
we discuss the implications of the several ways in which

these measures may be expressed in an analytic model,

Chapter IV - Performance and Load Measures

- 73 =

2, Distributions, Moments, Expectations

An analytic model may be viewed as a functional op-
erator of sorts, The structure of the time-sharing system -
its hardware and operating system - determine the transfor-
mations to be made. The functions operated on are the load
measures, the descriptors of user behavior. The results of
the functional transformation are the performance measures,
Thus the processor scheduling models reviewed in Chapter II
incorporate the scheduling algorithm used in the time-shar-
ing system as part of the functional operator, The input
functions are the arrival rate for user requests and the
distribution of the amount of CPU time requested by each
arrival, The output function may be a response time dis-
tribution, a queue length distribution, a response time ex-
pectation, etc,

What does it mean to solve a model? Presumably it
means that for some class of input functions the model pro-
duces one or more output functions, We can evaluate the
worth and generality of a model on several levels,

(1) How varied and rich a system structure can we repre-
sent in the model itself, without having to re-
solve” it? It is in this area that network models
are particularly attractive, since one has great

flexibility in representing the structure of the

Chapter IV - Performance and Load Measures

(2)

(3)

system being modeled,

How much freedom is allowed in the specification of
the input functions - the load descriptors? For ex-
ample, to return again to processor scheduling
models, the input parameters may simply be the
arrival rate and the mean of an exponential dis-
tribution (the CPU time demanded) [A3,C6]. Or an
arbitrary distribution for the service demanded may
be allowed[c2].

How rich and varied are the output functions - the
performance measures? These generally come in three
varieties: distributions(or Laplace transforms
thereof), conditional distributions, and expecta-
tions, Of course several performance measures may be
available from one models perhaps a CPU queue length
distribution and a waiting time expectation, etc,

It is in this last area that network models are

weakest, Equilibrium queue length distributions are
available but important measures such as the cycle time
(which will be the response time in our models) are
available as expectations only., Since this is the case, we
should consider the problems of working with expectations,
instead of distributions, as performance measures, We now
considér under what conditions, if any, an expectation might

be a satisfactory substitute for a camplete distribution as

Chapter IV - Performance and Load Measures

a model output,

An expectation will be a satisfactory measure if the
distribution of which it is the mean has a sufficiently
small variance. Then the actual system pérformance will not
deviate too much from its predicted value., Of course, if it
were possible to determine exactly what the variance was, we
could probably derive the}distribution itself, so we must
somehow estimate this variance.,

We would expect the variance of the performance
measures to be closely related to the variance in the user
behavior., We would also expect larger numbers of users to
reduce the effect of variance in the individual user’s
behavior, Given the Central Limit Theorem, this is of course
a natural expectation., However, the relation of the variance
in the performance measures to the variance in user behavior
(the load measures), as a function of the number of users,
is a complex one. Even in simple queueing systems, increased
variance in the customer behavior (service demanded) causes
changes not only in the variance of performance measures,
but in the means of performance measures (expected queue
lengths for example). Thus we must proceed with a good deal
of caution when suggesting a simple expectation as a perfor-
mance measure, since the variance associated with it could

conceivably be very large.

Chapter IV - Performance and Load Measures

- 76 -

3. _Load Measures

In developing analytic models for computer time-
sharing systems, the number of terminal users has almost un-
iversally been used as a measure of system load; the in-
dependent variable in the equations. In addition, the users
have generally been assumed to be statistically identical.

Anyone with experience in the analysis of actual
time-sharing systems will agree that actual system perfor-
mance measutes do not correlate particularly well with the
number of terminal users. The reason for this does not lie
in any basic defect in the number of users as a load mea-
sure, The problem lies rather in the behavior of these
users. They are not statistically identical, In a general
purpose system users may be engaged in a number of different
activities: scientific computation, information retrieval,
text editing and so forth, The demand users of different
types place on the system may vary drastically. A user per-
forming text—editing will tend to interact frequently but
use little CPU time during each IR cycle. [An "IR cycle is
the time spanning a user’s request (Interaction) for system
service and the system’s fulfilling of that request
(Response)]. The user who is doing scientific computation
(and has already debugged his program) may interact very in-

frequently but demand a great deal of CPU time. Thus the

Chapter IV - Performance and Load Measures

- 77 -

user population of a general purpose time-sharing system at
any given time will consist of such diverse types of users,
possibly with little overlap in their "behavior parameters".
A reasonable way to represent different classes of
users is via a load vector characteristic of each class of
users, The load vector is a vector of distribution func-
tions. Each function gives the distribution of time demanded
from each resource during an IR cycle. An additional func-
tion in the vector gives the IR cycle time distribution.
Thus if the resources are numbered 1,2,3,..¢y0y the vector

of load functions for a user of class A is denoted:
LA(f1(t)af2(t)of3(t)1-~0’fn(t)of1(t))

where each of the fi(t) is the distribution function
of a random variable X5 which is the amount 6f time
demanded from resoﬁrce i in one IR cycle by a user of class
A; and fI(t) is the distribution function of the user inter-
action time, There is A close relation between this concept
and the one formulated by Wulf(w4] for batch multiprogram-
ming systems, We can use this notation (and concept) for
network models, with the restriction that each of the fi(t)
be an exponential distribution, or one of the possible
approximations mentioned in Chapter III, In addition, in
network models, we are limited to a single class of users.

We might still assume all users are identical for

Chapter IV - Performance and Load Measures

- 78 =

modeling purposes if we can construct a "virtual user who
is a composite of the various types of actual system users,
If the virtual user so constructed has the characteristics
of the expected user population as a whole, the model pre-
dictions should still be valid, We have not, however,
measured the effect of the non-existence of this virtual
user on the stability of the load, The virtual user is a
sort of "expected composite” of the actual users, Wide
variance from this expected user may be the rule rather than
the exception, This will of course make predictions seem un-
reliable, as was discussed in the previous section, This
effect will be especially noticeable in smaller time-sharing
systems, for there the actions of one user‘may serious;y
effect the system load (and indirectly, performance). The
differences between zero, one and two users requesting large
numbers of disk operations may, for example, lead to
noticeable differences in system performance in a small
system, Yet the virtual user must represent the expected
proportion of such heavy disk users: ,207 or whatever is
appropriate, Performance will be predicted on the basis of N
virtual users, ,207N of which are heavy disk users, Actual
performance will be determined by the current number of
heavy disk users, reqgardless of N, We reiterate that under
such circumstances, it is best to develop load and perfor-

mance " envelopes”, representing the range of possible user

Chapter IV -~ Performance and Load Measures

behavior parameters for a given number of users, This is
more effective than simply representing the virtual user as
having more variance, Variance injected in this way appears
in variance of the user behavior over a few seconds or
minutes (CPU time demanded per IR cycle, for example). The
mix of user types using the system, however, will tend to
vary more slowly, significant changes not océurring for many
minutes or an hour or so, The load mix -~ types of users con-
nected to the system at any one time - varies as users sign
on and sign off, Presumably this happens at a rate which is
slow compared to the interaction rate of the connected
users, Thus it seems reasonable to assume that the system
will reach near-equilibrium for a given user mix, once that
mix has been established, This gives support to the concept
of using load and performance envelopes, as mentioned above,
rather than representing changes in the user mix by increas-
ing the variance in the behavior parameters of the in-
dividual users, Of course with sufficiently large numbers of
users, and in the absence of many clearly defined different
types of users, the load mix may remain statistically quite

stable, allowing a narrow load envelope to be used,

Chapter IV -~ Performance and Load Measures

- 80 -

4, Performance Measures

The actual measure used in evaluating time-sharing
system performance is most often "How many users can it sup~
port?". Taking advantage of the manner in which the question
is phrased, the purveyor of such systems will generally
respond with the number of terminals which can physically be
connected to it, This of course doesn’t really answer the
question being asked, which is better stated: How many
active useré will the system support, doing the things we
expect fo do with it, and with an acceptable response time?

Response time then, defined as the time it takes for
the system to complete a terminal user’s service request, is
a very intuitive measure of system performance, It can
clearly be refined in several ways, A request to make a com—
pilation will generally require more system resources than a
request to add a line to an already-opened file, This leads

to a need for conditional response time measures, The

response time in this case to be conditioned on the resour-
ces needed to fulfill the request, For processor scheduling
models, the only resource has been the CPU, so conditional
response time has meant response time conditioned on the
amount of CPU time requested, For network models, where
several resources are represented as nodes in the network,

the responsé time may be conditioned on a cycle path - the

Chapter IV - Performance and lLoad Measures

path the user will take through the network to fulfill his
request, For example, we might ask what the response time

would be if the user’s path through the system were:

(1) Drum, to be swapped in.

(2) cpu, 3 quanta.

(3) pisk, for a file operation,
(4) CPU, 2 more guanta,

(5) Drum, to be swapped out,

As was discussed in Chapter III, in the derivation
of the expected cycle time, the path taken through the net-
Wwork is unimportant, Only the number of times each node
appears on the path is of interest. Thus, instead of a path,
we may condition on a vector, called the demang vegctor giv-
ing the number of times each node in the network appears on
the path, We will call this vector (d1,d2,...,du), where d;
is the number of times node i appears on the path. Note the
close relation to the demand vector and the load vector dis-
cussed in the previous section as a general load measure. We
denote expected cycle time (response time) conditioned on
taking this path by E[cl(d‘,dz,...,dn)]. Using the same
arguments used in section III.5 to derive the cycle time, we

can show that:

Chapter 1V - Performance and Load Measures

- 82 =~

~ \ i=M

E[Cl(d1 ,dz. ooo’dn)] = L.i=1 diwi(N)

where wi(N) is the expected waiting time at node 1
when the number of customers in the network is N,

The unconditional response time is simply the con-
ditional response time of the expected demand vector (see
equation III.3,(10)). Thus the expected response time
weights the performance of each of the individual resources
of the system by the degree to which it is used, to produce

a single-valued performance measure.

Chapter IV - Performance and Load Measures

Chapter V

An Example Model

The models developed in this chapter are intended to
illustrate the use of network models in the analysis of
time-sharing systems, The system to be modeled will be hy-
pothetical, This will relieve us of the clutter of practical
considerations, allowing concentration on the use of the
mathematical tools and concepts developed in Chapters III
and IV, The modeling of an actual system is left to the next
chapter, We first develop a fairly simple network model and
then consider a number of major and minor changes to illus-

trate our points,

The Hypothetical System

Consider a time—-sharing system of the swapping type.
There is no virtual memory, but there is some sort of relo-
cation hardware allowing multiprogramming to take place. The
entire memory allocated to a process is swapped in from a
drum, used only}for that purpose, whenever the user types in
a line of input, The memory is entirely swapped out whenever
the system is ready to accept another line of input, in-
dicating it has completed the service request initiated by
the previous line. Up to 200 terminals may connect to the

system., There is a single drum, a single processor, and suf-

- 83 -

ficient core memory so that there is always room to swap in
another process, There is a disk available for file storage,
The disk and drum are on separate channels, An outline of
this system is given in Fig 5-1,

Suppose we have made the following observations con-
cerning the users of this hypothetical system and their pro-
grams, We define an Interaction-Response cycle (IR cycle) to
be the time (and events occurring) between the completed
typing of one line by the user (indicated by his striking
carriage return), and the time the system is ready to accept
another line, The user’s think time or interaction time is
the time from the point at which system is ready to accept
another input line, to the point at which the user completes
the typing in of that line,

(1) All users and their programs behave independently and
identically (in the probabilistic sense).

(2) The think time of a user is an exponentially dis-
tributed random variable with a mean of 15 seconds,

(3) The time required to swap a process in (or out) is an
exponentially distributed random variable with a mean
of 90 milliseconds,

(3) The processor time required to service an IR cycle is
exponentially distributed with a mean of 500 mil-
1liseconds,

(5) The process makes a geometrically distributed number

Chapter V - Example Model

- 85 -

W93sAS |eD133YyjodAH jo0 weadejq doo|g :1-S T4

{auuey) {duueyy

- o y
AKiowdy 940) Iizenbapy

Yi|M 40SS3004d 3|Bu)S

S49SM |eujwdd]

(Buiddems)

Chapter V - An Example Model

of file requests in servicing an IR cycle., The mean

number of requests made by a user process for file

operations in one IR cycle is 1,5, The time required

to service requests is an exponentially distributed

random variable with a mean of 150 milliseconds,

Fortunately, these " experimentally determined
statistics will make the modeling tasks very easy. We can
construct a network model which is exactly equivalent to the
structure of our example system, The structure of the model
is based on that of the GE~635 time-sharing system imple-
mented by Dartmouth College,
The model we will start with is diagrammed in Fig,

5-2, Each circle in Fig, 5-2 represents a server and its
associated queue - a node in the network, We will treat each
node as though service there were performed by one or more
identical exponential servers, Thus, each node is charac-
terized by the two numbers indicated in Fig, 5-2: the mean
service time of each of the servers and the number of ser-
vers at the node, This is a special case of the network
model structure developed in Chapter III, There the service
rate was allowed to vary arbitrarily with the number of
customers at the node, In this case, the service rate varies
as follows; Let n, denote the number of customers at node {i.

i

Let ki denote the number of servers at node i, Let m1 be the

mean service time of each of the servers at node i, Then in

Chapter V - Example Model

- 87 -

Wa3sSAS |BO13I9YI0dAH JO |BpOKW |e13I1u} :zZ-G 314

XS 14
S1U3sauday

wnag
sjuasaJtday

mo“ama
Ndd
S3U9Sa4day
 9PON
1=¢"d _ €€q
€C
I= d
N.“HMQ
z ®poN 1 3poN

S|eujwsa]
Sjuasaiday

H.IN.HQ

Chapter V - An Example Model

the notation of Chapter III we have?

pi(ni) =0 for n, = o]
ui(ni) = ni/mi for 0 < n, < ki
ui(ni) = ki/mi for n, = ky

Note the representation of the terminals as a node
of the network, The servers at the terminal node represent
the users of the time-sharing system, The service time
represents the time it takes a user to think of, and input,
his next service request (a line of input, in this case),

When a user (now a process) completes a service
reguest by typing a carriage return, he exits from the ter-
minal service node and passes to the node representing the
drum, This represents the need to swap the process into core
before it can receive service, We have made the service time
here twice the mean swap time in the system being modeled.
We will model both the swap in and swap out operations as
occurring before the process receives CPU service, From a
practical point of view this is unrealistic, of course. From
a mathematical pbint of view this formulation is equivalent
to one in which the process returns to the drum service node
after completing its CPU service, It is not possible to
model the swapping process in the more natural way., To do
so, we would need to “"tag” processes arriving at the drum

node to indicate that they were being swapped in or swapped

Chapter V - Example Model'

out, Then on completion of drum service, they could correct-
ly be routed back to the terminal service node or to the CPU
node, The markovian nature of the model does not allow this
sort of tagging to occur, Transition probabilities for a
process e#iting from a node may not depend on the past
history of the process, In particular, it cannot depend on
the praevious node through whiéh the process passed, There
are several oﬁher mathematically equivalent ways of
representing the swap—-in, swap~out relation within the
restrictions of the network model,

The rest of the representation is straightforward.
The reader need only satisfy himself that the total CPU ser-
vice time incurred by a process before returning to the ter-
minal service node is exponentially distributed. The process
will pass through the CPU node a geometrically distributed
number of times, each time receiving service that is ex-
ponentially distributed with a mean of 100 msec, The density
function for the total CPU time used in one IR cycle is of

the form:
£(t) =y 1= pl(1-ple, (n,t) (1)

where p is the probability of returning to the CPU
node before returning to the terminal node (.8) and p is the
parameter of the CPU service time distribution (1/100 mil-

liseconds), The ei(u,t) represents an Erlang-i density func-

Chapter V - Example Modeli

tion with parameter u,
Using Laplace transforms one can verify that the
transform of (1) is the transform of an exponential density

function with mean 500 msec,

All the numerical results presented in this chapter
and the following chapter were computed by a program written
for this purpose, The program is written in FORTRAN and
essentlially automates the mathematical developments of
Chapter III, The program is about 300 statements long, much
of it devoted to presenting the results in a readable for-
mat, The program computes the statistics for either a fixed
N or for the limiting case, The computation time required
for the limiting case is relatively constant at between 15
and 20 seconds, For fixed N, the program will solve networks
with no more than 200 customers and 16 nodes, The computa-
tion time in this case depends on the size of the state

space, and is given approximately by:

CPU Time Required = 20 + S/17000 seconds

where S is the size of the state space, and is equal

to:

Chapter V - Example Model

- 91 -~

N+M-1
M-1

Further discussion of the computation program may be

found in the Appendix

2, Results for a Fixed Number of Customers

We now present the results of solving the model of
Fig 5-2 for N =30, This is nearly equal to Ns’ the satura-
tion point for this model, In Fig 5-3 the output of the com-
putation program for this model is reproduced, Most of the
entries should be self-explanatory. The expected cycle time
for the terminal node (2,915 sec.) is the expected response
time, Cycle times for the other nodes are of relatively
little interest, The "demand per interaction entry gives
the expected amount Of time a user will spend in service
and in queue at each node during one IR cycle,

The utilization of a resource (node) is computed by
one of tﬁo methods, The arbitrary By at each node may be in—-
terpreted as either a single server whose service rate may
vary, or as one or more identical servers, as was the case
in our definition of the terminal node in this model, In the
case where the service rate of a single server varies, the
resource utiiization is simply the probability that the node
has one or more customers at it. In the case where the node

represents K identical servers, the utilization is computed

Chapter V - Example Model

%* %k

MEAN WAIT AT NODE

(INCLUDES SERVICE)

MEAN SERVICE TIME

AT THIS NODE

MEAN QUEUE LENGTH

(INCLUDES THOSE

SERVICE)

IN

MEAN NUMBER OF TIMES
THROUGH NODE (IN 1

INTERACTION)

UTILIZATION FACTOR
FOR THIS RESOURCE

EXPECTED CYCLE TIME

FOR THIS NODE

-92 -

NUMBER OF USFRS = 30

TERMINAL

15000.000

591.183

25.373

0.846

INITIAL EXAMPLE MODEL

NRUM
257.608

180.000

N.431

1.000

0.304

2915.585 17657.977

DEMAND PER INTERACTION
15000.000

FROM THIS NODE

CUSTOMERS

b b b 2
WN = O

OO YO E WN O

STEADY-STATE QUEUE

TERMINAL DRUM
0.00000 0.69553
0.00000 0.,21L402
0.00000 0.064L28
0.00000 0.01881
0.00000 0.00535
0.00000 0.00148
0.00000 0.00039
0.00000 0.00010
0.00000 0.00003
0.00001 0.00001
0.00003 0.00000
0.00009 0.00000
0.00023 0.00000
0.00053 0.00000
¢ 90

257.608

CPU

0.15424

0.14785
0.13711
0.12287
0.10626
0.08855
0.07101
0.05470
0.04L0L41
0.02857
0.01930
0.01242
0.00760
0.00441

CPU
459.594

100.000
3.596

5.000

N.846

3123.523

2297.968

LENGTH DISTRIRUTIONS

DISK

0.61941
0.23927
n.nNan22
0.03314
0.01184
0.00410
0.00138
0.00045
0.0001h4
0.00004L
0.00001
0.00000
0.00000
0.00000

Fig 5-3: Program Output for Initial Madel

Chapter V - An Example Model

FOR CHAPTER V *kk

DISK

240.006

150.000

n.600

1.500

0.381

11703,717

360.009

- 93 =

where p(n) denotes the probability of having n
customers at the node in egquilibrium,

The queue length distributions for each of the four
nodes are graphed in Fig 5-4, The term queue length is per-
haps misleading since what is actually computed is the mean
number of customers at the node, This will include both
those customers in service and in queue, We reiterate that
from a mathematical point of view, the interpretation of

those in queue and in service at a node is unimportant,
Approximating Other Distributions

Now let us consider a modification to the
system/model, in which we approximate a non-exponential dis-
tribution, Suppose, for example, that the disk (Node 4) does
not have an exponential service time distribution, but
rather an Erlang-3 distribution with the same mean (150 mil-
liseconds). That is to say, the disk is best represented by
3 exponential servers in series, each with a mean service
time of 50 milliseconds. This reduces the standard deviation
of the (total) disk service time from 150 to 50 mil-
liseconds, The revised network model is diagrammed in Fig

5"5.

Chapter V - Example Model

- 94 -

00°8¢

-

(0OE = N "71300W 2-S 9I4) S3ILISN30 HIIN3T 3N3n0 *h-S 914

(SH3WOLSN3) 3N3N0 40 HIIN3IT
00°"h2 00°02 00°91 00°21 00°8 00°h

00°

L4

300N UNIWHIL

300N WNHO

619° = ALITIGHE0Hd 3701 MSIO
S69° = ALITIGHA0Hd 3701 WNWO

00°

1%

)

et
AL1171185804d

Chapter V - An Example Model

9PON WNJJ PaiilpPON YIIM Wa3ISAS [ED)3IB8YJOdAH

— g 9pPON S 9PCN
— v

I

I

¥S|p 9yl 3Juasad
-daJ4 xo0q 9yl dpisul
sapou 3ad4yl a3yl

¢ 9PON

wnig

i6-G6 314

Chapter V - An Example Model

- 96 -

Solving this model, again for N = 30, we find (Fig
5-6) that the model statistics have changed very little from
those of the original model, The actual drum queue now
appears as 3 queues - one at each of the nodes representing
the drum, Fig 5-7 graphs the queue length distributions for
this revised model, The thraee drum node queues have been

added together for this purpose,
A Linear Equivalent Model

Another interesting transformation to make on our
original model is to "linearize” the transitions. That is to
say, we restructure the model so that all the transitions
are deterministic, At the same time, the service rate means
are changed so that the service time requested at each node
during an IR cycle remains the same, For example, in the
original model, the CPU node was passed through an average
of 5 times with a mean service time each cycle of 100 mil-
liseconds, Thus the total CPU time requested each IR cycle
was exponentially distributed with mean 500 milliseconds, We
then change the service rate at the CPU node to 1/500 and
the transition matrix so that it is passed through once, The
resulting model is depictéd in Fig 5-8, When.we solve this
model, again for N=30, it is surprising that all the
statistics are almost exactly the same as those in the

original model., These statistics are presented in Fig 5-9

Chapter V - Example Model

- 97 -

**x EXAMPLE MODEL WITH ERLANG=-3 DISK SERVICE =«

NUMBER OF USERS = 30

TERMINAL DRUM

MEAN WAIT AT NODE
(INCLUDES SERVICE) 15000.000

MEAN SERVICE TIME _
AT THIS NODE 588 .686

MEAN QUEUE LENGTH
(INCLUDES THOSE 1IN
SERVICE) 25.480

MEAN NUMBER OF TIMES
THROUGH NODE (IN 1
INTERACTION) -—

UTILIZATION FACTOR
FOR THIS RESOURCE 0.849

EXPECTED CYCLE TIME
FOR THIS NODE 2840.562

DEMAND PER INTERACTION
FROM THIS NODE 15000.000

258.072

180.000

0.434

1.000
n.306
17582.490

258.072

CPU

LEYH.955

100.000

3.650

5.000

0.849

3103.158

232L4.773

DISK(1) DISK(2)
57.271 57.271

50.000 50.000

0.145 0.145
1.500 1.500
0.127 0.127

1183A.438 11836.438

85.906 85.906

DISK(3)

57.271

50.000

0.145

1.590

0.127

11836.438

85.906

Program Output for the Ertang-3 Model

Fig 5-6

Chapter V - An Example Model

(0OE=N °71300W S-S 9Id) S3ILISN3Q HLIIN3T 3N3N0 :.-S 9I4

(SH3WOLSNJ) 3N3N0 40 HLION3T
00°82 00"fi2 00°02 00°91 00°21 00°8 00" 00

LJ L |

L4 T

300N NdJ

300N "IBNIWH3L

-
Al

- 98 -
el

A

81’

h99° = ALITI8HE0Hd 3701 MSIN
h69° = ALINI8HECHd 3701 WNYO

00" °

80°

A11711865804d

Chapter V - An Example Model

- 99 -

Node 2
i Drum

Node 4
Disk Node 3
: cPUY

Fig 5-8: Hypothetical System Modeled by Linear Model

Chapter V - An Example Model

- 100 -

*+%x | [NEAR EXAMPLE MODEL FOR CHAPTER V ###
NUMBER OF USERS = 30
TERMINAL DRUM CPU DISK
MEAN WAIT AT NODE
(INCLUDES SERVICE) 15000.000 257.608 2297.968 360.009
MEAN SERVICE TIME
AT THIS NODE 591.183 180.000 500.000 225.000
MEAN QUEUE LENGTH
(INCLUDES THOSE IN
SERVICE) 25.373 0.431 3.596 0.600
MEAN NUMBER OF TIMES
THROUGH NODE (IN 1
INTERACT ION) -—— 1.000 1.000 1.000
UTILIZATION FACTOR
0.846 0.30L 0.846 0.381

FOR THIS RESOURCE

EXPECTED CYCLE TIME

FOR THIS NODE

2915.585 17657.977 15617.617 17555.576

DEMAND PER INTERACTION
15000.000

FROM THIS HNODE

CUSTOMERS

LOONIIUVMTHEFWNE=O

Fig 5- 9:

TERMINAL

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00001
0.00003
0.00009
0.00023
0.00053

DRUM

0.69553
0.21402
0.06428
0.01881
0.00535
0.001L48
0.00039
0.00010
0.00003
0.00001
0.00000
0.00000
0.00000

0.00000

e © & o

257.608

cPU

0.15424

0.14785
0.13711
0.12287
0.10626
0.08855
0.07101
0.05470
0.0404L1
0.02857
0.01930
0.01242
0.00760
0.00441

92297.968

DISK
0.61941

-0.23927

N.09022
0.03314
.0118%4
.00410
.00138
.00045
00014
00004
.00001
.00000
.00000
.N00no

Chapter V - An Example Model

360.009

STEADY-STATE QUEUE LENGTH DISTRIRUTIONS

Program Output for the Deterministic Model

- 101 -

and Fig 5-10, Compare these statistics with those of Fig 5-3
and Fig 5-4,

This result seems to show that the stochastic nature
of the node transitions is not too important, Resgtructuring
a network in this form also makes it very clear why one node
may control the entire performance of the network after
saturation is reached, The network 1n}this form has the
appearance of a ring. One would expect the flow in such a
ring to be naturally limited by the maximum flow through the

node with the minimum capacity.
Reordering Queues for Faster Service

It is often possible to reduce the expected opera-
tion time for a disk or other mass storage device by
reordering the queue of requests, This reordering is done to
reduce the average seek time or latency time. Several
studies have been made of such reordering schemes and were
reviewed in Chapter II[A1,D2,F4] ., From such models of disk
and drum scheduling one can generally derive an operation
time distribution for the mass storage device, conditioned
on the length of the queue of operations to be performed.
Thus the service time for the next request (to be served,
not the next to arrive) is denoted f£(t|n), where n is the
queue length, Using the expectation of this distribution,

E[f(tIn)], we can represent this sort of service structure

Chapter V - Example Model

- 102 -

(OE=N "71300W 8-S 9Id4) S3IILISN3Q HIIN3IT 3N3N0 *01-S 914

(SHIWOLSND) 3IN3NG 40 HIONIT
oo.m.N oo.dm oo.mN oo.o.ﬁ oo.mﬁ 00’8 00°h

L T v

™

300N “IUNIWH3L

21

1]

81’
A1171186904d

619° = ALI1180U804d 3701 MSIO +mn
969° = ALITI8BUE0Hd 3701 WNYO =

Chapter V - An Example Model

- 103 -

in a network model by the scheme:
u,(n) = 1/E[£(t|n)] n=1,2,000N

That is, we make the service rate at the node
dependent on the number of customers there, in a way which
reflects the throughput improvement to be gained by reorder-—
ing the queue,

We illustrate this sort of service structure by
another modification of the initial model of Fig 5-2, We
modify only the service rates at the disk node, in the fol-

lowing way:

u4(n) = 1/(170-20n) for nsS
u4(n) = 1/70 for n>5

Thus with one customer at the node, the service time
mean will be the same (150 milliseconds) as it was in the
initial model, However, as the queue gets longe:, the ser-
ver, taking advantage of the choice of operations, reduces
his average service time until a maximum average service
rate of 1/70 is reached for n = S,

The statistics for this modified model are presented
in Fig 5-11 and Fig 5-12, Since the disk node is not heavily
loaded, the effects of reordering are not too great. Since
the probability (in the initial model) that the queue length

at the node was greater than one is only .14, the reordering

Chapter V - Example Model

- 104 -

*¥*x EXAMPLE OF EFFECT OF RENRDERED DISK OUFUE

" NUMBER OF USERS = 30

TERMINAL DRUM CPU D1SK

MEAN WAIT AT NODE
(INCLUDES SERVICE) 15000.000 257.894 462.810 210,462
MEAN SERVICE TIME
AT THIS NODE 589.636 180.000 100,000 140,334
MEAN QUEUE LENGTH
(INCLUDES THOSE [N
SERVICE) 25.439 0.433 3.628 0.500
MEAN NUMBER OF TIMES
THROUGH NODE (IN 1
INTERACT ION) - 1.000 5.000 1.500
UTILIZATION FACTOR
FOR THIS RESOURCE 0,848 0.305 N.848 0.357
EXPECTED CYCLE TIME
FOR THIS NODE 2887.636 17629.742 3114.717 11714.628
DEMAND PER INTERACTION

15000.000 257.894 2314.049 315.693

FROM THIS NODE

STEADY=-STATE OQUEUE LENGTH DISTRIRUTIONS

CUSTOMERS TERMINAL DRUM CPU DISK
0 0.00000 0.69473 0,15202 0.64300
1 0.00000 0.21435 0.14643 0.24838
2 0.00000 0,06455 0.13640 0.08117
3 0.00000 0.01894 0.12274 0.02187
L 0.00000 0.00540 0,10655 0.00469
5 0.00000 0.00149 0.08911 0.00076
6 0.00000 0.00040 0.07169 0.00012
7 0.00000 0.00010 0.05539 0.00002
8 0.00000 0.00003 0.04103 0.00000
9 0.00001 0.00001 0.02909 0.00000
10 0.00003 0.00000 0.01969 0.00000
11 0.00009 0.,00000 0,01270 0.00000
12 0.00022 0.00000 0.00778 0.00000
13 0.00052 0.00000 O0,00452 0.00000

® @ & & o

Fig 5>-11: Program Output for the Reordered Disk Queue Model

Chapter V - An Example Model

- 105 -

(3N3N0 MSIOQ 03Y30HO3Y) S3ILISN3Q HION3T 3N3N0 :21-S 9I4

(SH3W0LSNJ) 3N3N0 40 HLINIT
00°82 00"he 00°02 00°91 00°21 00°8 00°h

T

'y
1 4 L& L g

300N TIENIWY3L

ERg" = ALIT18H80Hd 3101 MSIO
S69° = ALITIGHE0Hd 3701 WNHO

1%

=

8r°
A111190404Hd

Chapter V - An Example Model

- 106 -

only reduces the average service time by about 10 mil-
liseconds, The response time, however, is reduced by 28 mil-
liseconds, a somewhat surprising result, This is because the
probability of long waits at the disk node has been
significantly reduced, reducing the mean wait at the disk
node by 30 msec,

If the average queue length at the disk node had
been quite long, the performance improvements might have
been dramatic, The purpose of the example, however, was sim-
ply to illustrate the way in which the effects of such a

reordering could be represented in a network model,
Conditional Response Time

We mentioned in the previous chapter the concept of
a response time conditioned on a path through the network,
This gives a measure of the response to a particular type of
service request, Note that the conditional feSponse time
assumes no discrimination on the part of the servers, based
on past history. Thus if scheduling algorithms such as feed-
back-N[C6] or priority disciplines[J3] are in operation in
the system being modeled, the conditional response time as
derived from the network model should be regarded as
approximate at best,

Suppose we wish to estimate the response time of a

service request requiring 8 seconds of CPU time and 20 disk

Chapter V - Example Model

- 107 -

operations, in the model of Fig 5-2, 8 seconds of CPU time
will require a mean of 80 passes through the CPU node (8

seconds divided by 100 milliseconds at each pass)., 20 pas-
ses will be required through the disk node and 1 through the

drum node, Then we have:

\ =M diwi = 1°257.6+80°459,6+20°240 = 41825,.,6 msec,

[_1=1

where we have taken the w, from Fig 5-3, This

i
response time consists of the requested service time (11.18
seconds), plus approximately 1.8 seconds of delay at the

disk node and 28,8 seconds of delay at the CPU node,

3, Pexformance and the Number of Users

We now consider again the model of Fig 5-2, but this
time present some of the statistics as a function of N, the
number of users, This will demonstrate the behavior of the
network as it approaches and passes through the saturation
point,

In Fig 5-~13 the response time is graphed as a func-—
tion of N, In this example the minimum expected response
time 1s simply the expected service time request of ,805
seconds, At saturation (31,4 users) the expeéted response
time has increased to 3,2 seconds, For N = 40 the expected

regsponse time is within 350 msec, of the asypmtotic response

Chapter V - Example Model

- 108 -

(300K 2-S 9I4) SH3ASN 40 Y3GWNN “SA 3IWIL 3SNOJS3H *€1-S 9OI4

(N) SH3SN 40 H3GWNN
00°08 00°0L 0009 00°05 00°Oh 00°0€ 00°02 00°01 00°

-

Cd
2

00°

g
3dX3

'\
AJ
L]

SH3IW0LSNID h 1€ = NOILHHNLIHS

00

00°21

'y
\J

00°81

*03S 069 °+S° % (1+h " 1E-N) .
= JWIL ISNOJS3H II101dWASH

00°he
(SON0J3S) 3WIL 3SNOJS3H 0343

00°0S

Chapter V - An Example Model

- 109 -

time, For N = 50 it is within 10 milliseconds, This form of
the response curve is a function of the.fihite nature of the
network, For instance, in an infinite~source model, 100%
utilization of any resource would imply infinite waiting
times, The finite source model shows that 100¥ utilization
of a resource is quite attainable and may well occur at a
practical operating point of the system, In the example
here, if 10 seconds is an adequate response time, the system
can be operated with a 50-user population, This is well
beyond the saturation point, and 100% CPU utilization is
guaranteed,

The node utilization curves, as a function of N, are
given in Fig 5-14, All utilizations are within ,1% of their
asymptotic values for N = 50 (with the exception of the ter-
minal node), The implication of this figure is somewhat
startling at first glance: no matter how much the load (num—
ber of users) is increased beyond some point, the utiliza-
tion of the non-saturated resources does not increase, What
is happening is illustrated by Fig 5-15, which shows the ex-
pected queuezlengths at each node as a function of N, Short-
ly after saturation is reached, all additional users added
to the network are effectively added to the CPU queue - a
result implied by the existence of a limiting queue length
distributions at the non-saturated nodes (Chapter III, sec-

tion 4),

Chapter V - Example Model

- 110 -

SH3SN 40 Y3GWNN °"SA NOILBZITILN 300N *hi-S JI4

(N) SH3SN 40 HIGWNN

4

00°0L 00°09 00°0S 00°0h 00°0€ 00°0¢

-
-

¥ T L

Z9€ = 3101dWASH — WNHO

/ %Sh = 3L01dWASH - SIO

740 = 3101dWASH — TTUNIWH3L

Z001 = 3101dWASH - NdD

00"

00°02

Z) NOILBZITILN

1
¥

00°0n

L
)

00°09

(LL138453 40

L
L]

00°08

00°001

Chapter V - An Example Model

- 111 -

SH3SN 40 Y3GWNN "SA SHION3T 3N3N0 03133dX3 *S1-S OI4

00°08 00°0L 00°09 00°0S

00°0h

(N) SH3SN 40 H3EWNN

00°0€ 00°0¢c 00°01

L
v L v LA

L4

T

——

295" = 3J101dWASH “WNHO
8187 = 3101dWASH °}SIO

(h"1€-N) = 310LdWASH ‘NdJ

0°0€ = JLOLJWASH *THNIWY3L

L
AJ

00°S

L
L]

00°21

00°81

00°h2

00°0¢c

(SH3ISN) HLIN3IT 3N3N0 03133dX3

Chapter V - An Example Model

- 112 -

This should not be taken to mean that the only way
to improve system performance is via improvements at the CPU
node,., Decreasing the drum service time, for example, will
improve response time, even when the CPU is saturated,
However, the improvement to be gained is limited by the
amount the drum node contributed to the response time., The
drum node contributes a minimum of 180 msec,, for‘N=1, and a
maximum of 281 msec,, for N>40, Thus if the drum were in-
finitely fast, it would reduce response time by at most 281
msec, The 281 msec, is the asymptotic expected waiting time

at the drum as N»o
Performance Envelope

There is considerable empirical evidence that time-
sharing systems are very sensitive to the loads their users
place on them, This behavior is generally observed when one
or more users usurp a very large proportion of a system
resource: memory, the CPU, disk channel, etc. The perfor-
mance of the system seems to degrade to a surprising degree,
considering the incremental load added to the system, It 1is
for this reason that we have suggested the use of perfor-
mance and load envelopes in the modeling process, The load
envelope should be bounded by the expected bounds on user
behavior. The performance envelope is then computed by solv-

ing the model for the load envelope bounds,

Chapter V - Example Model

- 113 -

In Fig 5-16 this principle is illustrated for the
model of Fig 5-2, The high envelope was derived assuming:
(1) The mean think time had decreased from 15 to 10
seconds,
(2) The mean number of disk operations requested in one IR
cycle increased from 1,5 to 3,5 operations,
(3) The mean amount of CPU time used per IR cycle in-
creased from ,5 to 1,0 seconds,

With these changes incorporated in the model, the
saturation point was computed to be 11,3 users, This is as
opposed to 31,4 users in the original model, The response
time curve for this model is labeled "HIGH ENVELOPE" in Fig
5-16,

The low envelope was derived by making the following
changes in the load parameters:

(1) The mean think time increased from 15 to 20 secohds.

(2) The mean number of disk operations requested in one IR
cycle decreased from 1.5 to 1,0 operations,

(3) The mean amount of CPU time used per IR cycle
decreased from ,5 to .3 seconds,

In this configuration of the network, the saturation
point increases from 31.4 to 61,8 users,

The magnitude of these changes in the user behavior
parameters (in either direction) does not seem to be too

large, Changes of this magnitude might well occur in an

Chapter V - Example Model

- 114 -

3d0T3IAN3 3WIL 3ISNOLS3H :91-S 914

(N) SH3SN 40 H39WNN

00°08 00°0L 00°08 00°0S 00 °Oh 00°0€ 00°02

00°

[l 4 —d
L} ¥ T L LE

-

SH3asN 8°19 = NOI 1HHN1YS
3d013AN3 MO

sH3eN h 1€ = NOILLibuYNIWS
71300W ENIOIHO

gHyasn €°11 = NOILBYNLHS
3d0713AN3 HIIH

00°S

00°2Y

L
A]

0081
(SONOJ3S) 3IWIL 3SNOLS3IH 03133dX3

A
¥

00°he

00°0¢

Chapter V - An Example Model

- 115 ~

actual time-sharing system, either as a result of a change
in the user mix, or changes in the behavior of the attached
users, Yet the range in system performance (as measured by
the response time) between the upper and lower bounds of the
envelope is very large, For N = 40, the expected response
time for the low bound of the envelope is 1.7 sec, while for
the high bound it is 31,0 sec. This sort of spread is in
part‘reSponsible for the seeming lack of success in modeling
or "seat of the pants” estimating of system performance
before the system is built, Slight miscalculations of the
system load (user behavior) can snowball into orders of mag-
nitude differences in the predicted performance measures, We
will return to this problem, with some concrete evidence of

the shifts in user behavior, in the next chapter,

k>
o]
]
o=t
4
e
n
rrs
e
IQ
(o
'
0
<
2]
B
l‘a

As a final example in this chapter, we present a
balanced version of the system/model we have been using, In
an actual system the options for balancing the system are
limited, A continuum of processor speeds is not available.
At best the options are to acquire another unit of some type
- processor, channel, memory, etc. Being unconstrained by
such practical problems, we have developed an almost-

balanced model from the original model of Fig 5-2, To do

Chapter V -~ Example Model

- 116 -

this, another identical processor was added (making node 3 a
2-server node), and the mean service times at the disk and
drum nodes were arbitrarily increased to 170 and 245 mil-
liseconds respectively. The resulting model is diagrammed in
Fig 5-17. In this confiquration the values of the xi/ni, the
parameters which determine the system balance, are 0, ,9609,
.9804, 1,000 respectively for nodes 1,2,3,4, The terminal
node always has a limiting xi/u1 of zero, since we assume
the number of servers at that node is always equal to N,

The statistics for this model are presented in Fig
5-18 and Fig 5-~19, The computed saturation point for this
system (by the method of Chapter III) is 206 users, This
high saturation point is due to the number of customers
absorbed by the CPU node and drum node before the disk
utilization reaches 100%, For example, at 150 customers, the
expected response time is 23,8 seconds (a point reached at
78 users in the original model), Thus, the derived measure
of saturation is not as intuitively satisfying for a
balanced system as it was for an unbalanced system, In a
sense the model counts balance as a positive factor in the
saturation measure, Thus it is a sort of combined measure of
efficiency and throughput, We can increase the saturation
point by either adding more "power to the system, in terms
of faster servers, or we can balance the system better, in-

creasing the utilization of the available resources,

Chapter V - Example Model

- 117 -

Terminals Drum

Fig 5-17: Initial Model Modified for Balance

Chapter V - An Example Model

NOTL1HZITILN 300N W31SAS G3ONHH8 :81-S 914

| (N} SH3SN 40 Y3GWNN
00°0hY 00°021 00001 00°08 00°09 00°0h 00°02

- 118 -

L LA L§ L L L L4

300N TUNIWH3L /

300N WNHO / J

300N ¥SIOa

300N Nd3J

00" °

L
\J

00°02

00°0h
NOILHZITILN 300N IN33Y3d

00°09
Chapter V - An Example Model

00°08

00°001

- 119 -

SHI1IN3T 3N3N0 03133d4X3 W3LSAS O3INBHE :61-S 914
(N} SH3SN 40 Y3GWNN

00 °0Ohl 00°021 00°001 oo.mvw 00°09 oo.@r 00°0¢

h 300N WNHO

)

300N Nd2 _f
300N MSIO

300N “IBNIWH3L

00°

00°02 00°0t

00°0¢

'
\J

00*0h
HLIN31 3n3INB 03133dXd

00°0S

00'09

Chapter V - An Example Model

Chapter VI

A Model for MTS

In this chapter we develop a network model for the

University of Michigan Terminal System(MTS)[M4]. We give

first a brief description of the system structure, though

other references are available[A4,A5,M4] . The rest of the

chapter is divided into three major sections,, covering the

actual modeling process, and consisting of:

(1) Development of the model from knowledge of the system

(2)

(3)

structure and available statistics., The statistics
yield information both about user behavior and the
actual performance of hardware modules.

Validation of the model, comparing the predicted
performance of the system with its empirical perfor-
mance, We will be able to investigate a number of per-
formance measures, as well as the concepts of system
balance and system saturation developed in Chapter 1V.
Investigation of possible changes in the system
structure and prediction of the system performance
outside the normal operating range of the system. In
view of the limited number of alternatives for the
hardware configuration, it will also be possible to
search for an optimal configquration within given con-

straints,

- 120 -

- 121 -

1, A Brief Description of MTS

MTS is a large-—scale time-~sharing system, developed
at the University of Michigan., The system provides both
batch and terminal services to the students and faculty at
the university, as well as to a number of research pro jects,
The system can be partitioned”, so that not all the equip-
ment is operating at one time (and in fact this is not in-
frequently the case)., The full system configuration is
diagrammed in Fig, 6-1. The discussion which follows out-
lines the system structure from a hardware and operating
system point of view, It assumes the entire configuration of

Fig., 6=1 is operational,

Processors(CPUs): 2-1IBM 360/67 processors,
The 360/67 processor is basically a Model 65 with seg-
mentation and paging hardware added[A6]. The segmenta-
tion and paging (as used by MTS) alldﬁ the user a
virtual addressing space of 1280 pages, or about 5
million bytes, The limitation is imposed by the op-
erating system, not the hardware, Actual average pro-
gram size is in the order of 30 pages[A5]. The inter—
nal cycle time of the processor is 200 nanoseconds.
The processors are identical; there is no master—-slave

relationship in terms of hardware or software. Major

Chapter VI - A Model for MTS

WYdIVId %4308 WILSAS SIW :1-9 314

saul
S423ul4d yoleg saul| 4 saull 09 saul| 02
¢onI-4 aj0wdy ¢ nyv c0Le 8-dad

=

S9A14Q 9de] 3ep oa—

a|npop 8 D [NPOW 8 WEELH:N
11¢2 H1¢e

| |

L 19de3eq

- 122 -

{atnpon 8
) h1¢l

! 1

Chapter VI - A Model for MTS

{auuey) 4oxadil|nw T lauuey)y Joxaldil|nw 1
s |auuey) 403109135 g siauuey) 40303198 ¢
S S —
SS920k | 931AQq-8 °Bwil 90AD °*suj 06/ Sa|nNpow] 21Ag Y967-9] Aaowdp 340)

1 1 T

10Ss32044g
L9/09¢

- 123 -

system software components are reentrant, allowing

them to be executed simultaneously by both processors,
Core Memory: 6 — 256K byte modules,

Access to the memory is independent for each of the
six modules, allowing considerable interleaving in
memory accesses, In addition there is two-way inter-
Ileaving within each 256K byte module, Each access to
memory fetches a double word (8 bytes). Memory cycle
time is 750 nanoseconds., Under these circumstances,
processor speed degradation because of memory access
conflicts is not a serious problem,

Of the 385 available core memory pages,
approximately 36 are allocated to the supervisor and a
number of other resident support routines. Another 34
pages are allocated to shared, reentrant programs.
They may be paged out, but most are effectively
resident, The rest of core memory is available for

dynamic allocation to tasks,

Input/Output Channels: 2 Multiplexor and 10 Selector Chan-

nels,

In the 360 system architecture, the multiplexor chan-
nels are used to simultaneously manége a number of low

speed input/output devices, such as printers, card

Chapter VI - A Model for MTS

- 124 -

equipment, terminals, etc, The selector channels
attach the drums, mass storage devices and tape drives
to the system, Since there are as many channels as
devices, channel contention is not a problem., Thus the
channel structure will be ignored in modeling MTS: we
8imply consider each I/0 device of Fig 6-1 as having

its own path to memory.

Paging Storage: 2 - IBM 2301 Drums,

The primary residence device for pages swapped out of
core are the 2301 drums, They are used only as paging
storage, Their capacity is 900 pages each, The rewlu-
tion time of the drum is 18 milliseconds, It is pos-
8ible to write 4,5 pages in one revolution, Because
there are not an integral number of pages written
around the drum, it is often more convenient to treat
the drum as having a revolution time of 36 mil-
liseconds, and 9 pages written around it (9 sectors).
If the drum space is exhaustéd, paging
activity may also take place on one or more 2314 disk
modules, This overflow procedure is currently neces-
sary only under abnormal conditions, as the usual

system load does not exceed the drum capacity.

Chapter VI - A Model for MTS

- 125 -

File Storage Devices: 3 - IBM 2314 Disk Sioraqe Units
2 - IBM 2321 Datacells

Each 2314 contains 8 disk modules, Each module is
accessed by an independent arm. Each module stores
about 28 million characters, The rotation time is 25
milliseconds, The arm movement time ranges from 25
milliseconds for a one cylinder seek to 135 mil-
liseconds for a full 200 cylinder seek, 140,000
characters can be accessed from one arm position of
one module, There is one data transmission path from
each 2314 unit to memory. Arm movement may be in pro-
gress on all modules simultaneously, since this
requires no data transmission,

Larger capacity storage, at slower speeds, is
provided by the 2321 Datacells, They have a capacity
(together) of about 800 million characters, stored on
magnetic strips which can be retrieved, wrapped on a
drum, and read automatically by the 2321, Access time
ranges from 95 to 600 milliseconds, There is one path

to memory from each 2321.

Chapter VI - A Model for MTS

- 126 -

Terminal Equipment

Batch

The majority of terminals are low-speed hard-copy
devices suéh as teletypes or IBM 2741-like type-
writers, There are 80 available lines for such ter-
minals, There are also 6 lines for terminals in the
1200-2000 baud speed range, Four lines to an audio
response unit allow touch-tone phones to be used as
terminals, T™wo on-line displays (IBM 2260°s) may also
be used as terminals,

Terminals may connect to MTS through IBM com-
munications equipment or through a greatly augmented
PDP-8[M3], The PDP-8 (called the "Data Concentrator)
serves as a buffering device, and also performs a num-
ber of communication services such as line editing,

code translation and so forth,
Support

Batch service, which is carried on in parallel with
terminal user support, is controlled by a spooling”
program called HASP which queues batch job card decks
on the 2314, Printed and punched output is also placed
on the 2314 before actual processing by the unit

record equipment, Thus all the printers, card punches,

Chapter VI - A Model for MTS

Other

- 127 -

and card readers are operated by HASP, not by user
programs, The unit record equipment available consists
of 4 high speed printers, 3 - 1000 card per minute
card readers and a single card punch, HASP also sup-
ports up to five 2000 baud remote batch terminals op-
erating on the switched network., They are treated as

extensions of the local unit record equipment.

Equipment

Other peripheral equipment attached to the system may
be allocated to terminal or batch tasks on request,

These devices include 10 magnetic tape drives, a paper
tape reader, and two paper tape punches (both operated

as peripherals of the Data Concentrator),

System Operation

What is normally called a "procees" in most

literature on time-shared operating systems is called a

"task” in MTS, We shall adopt the "task” terminology, since

it is

consistent with other documentation, The reader should

feel free to think process every time he sees "task if

that concept is more familiar to him, Tasks come in two

ma jor

varieties in MTS: virtual memory tasks and real memory

tasks, Real memory tasks are primarily "overhead” tasks such

as the tasks which manage HASP (the spooling system), tasks

Chapter VI - A Model for MTS

- 128 ~

which handle paging, and so forth. The real memory tasks are
resident and cannot be paged, though they may acquire
additional real memory for their use, reducing the number of
core pages available for other tasks. The real memory tasks
represent a relatively constant overhead in temms of system
demand, They operate primarily on dedicated peripherals and
use fairly fixed percentages of real core and processor
time, Therefore we shall ignore them in the modeling pro-
cess, since their effect is simply to make the effective
real memory somewhat smaller and the processors seem slower.
The virtual memory tasks consist primarily of ter-

minal and batch tasks, There is one task for each terminal
user, and one task for each batch job. Once the task has
been started, the system does not make any distinction
between a batch—-job-task and a terminal-user-task. No
attempt is made to discriminate for or against either type
of task in terms of resource allocation., There is however
discrimination at task startup time. MTS may run anywhere
from 1 to 10 batch tasks simultaneously. The number to run
is based on the system load factor. The load factor is a
number which is computed from the following system
statistics:

(1) Average CPU queue length and CPU utilization,

(2) Average number of page—in operations per

second,

Chapter VI - A Model for MTS

- 129 -~

(3) Average number of disk operations per second.
(4) Number of virtual memory pages allocated.

If the load factor is computed to be 85, for ex-
ample, at most three batch tasks will be run simultaneously.,
If the load factor is over 100, only 1 batch task is run,
Further discussion of the load factor concept may be found
in the Appendix, Only the last two statistics sessions
occurred after the installation of this feature, so its
strong stabilizing effects were absent from the bulk of the

statistics,
Processor Scheduling.

The processors are scheduled on a preemptive basis
with a quantum of 27 msec, Each task, when it becomes
ready to use a CPU, generally preempts the current
task, and is assigned the CPU until it in turn is pre-
empted, or its quantum is exhausted, When the quantum
is exhausted, the task is placed at the end of the CPU
dqueue and receives a new quantum, Tasks which preempt
the processor are not assigned a new gquantum, but con-
tinue to decrement their current one., Much of the
motivation for the CPU scheduling algorithm is to give
fast service to real memory tasks controlling unit-
record equipment such as card readers and printers.,

These tasks require fast access to the CPU to ensure

Chapter VI - A Model for MTS

- 130 -

high utilization of the devices they service,

A special case is made for the scheduling of
tasks with very high virtual/real memory demands, This
case is covered in the virtual memory management sec-
tion following, All other tasks (including real memory
tasks) are treated uniformly without regard to type or

other characteristics,
Virtual Memory Management

The paging policy is relatively simple, Pages are
brought in on demand, that is whenever a program
attempts to access a page which is currently swapped
out, Normally any such page request is serviced im-
mediately (or queued for service immediately). Tasks
which have exceeded a paqge threshold are treated
specially, The page threshold is dynamically deter-
mined by the supervisor, When the real pages allocated
to a task pass the page threshold, the task is placed
in the privileged state, There is a single queue of
privileged.tasks. Only a small number of them (based
on the current system configuration) are allowed to be
active at one time., The currently active privileged
task is allowed to make (and is granted) arbitrary
page requests until a special quantum runs out, This

quantum is about 200 milliseconds of CPU time, Tasks

Chapter VI - A Model for MTS

- 131 -

which have exceeded the page threshold and are cur-
rently being prevented from competing for system
resources are called non-privileged. When a privileged
task’s quantum expires, the task is placed at the end
of the privileged task queue, and the next privileged
task begins its quantum of special treatment,

Actual page-in requests are handled by a sepa-
rate real memory task, the paging _drum processor(PDP),
In addition to swapping in requested pages, the PDP
also writes out inactive pages, makingvroom in memory
for pages requested more recently, For a complete
discussion of the operation of the PDP, see
Alexander(a4].

The 2314 disk is used as a paging device only
if the drums are full, Page-out operations initiated
when the drum is fully allocated automatically go to
the disk, No attempt is currently made to select
particular pages for disk paging, No significant
amount of disk paging took place during any of the

statistics gathering sessions,

Chapter VI - A Model for MTS

- 132 -

File Management

Files are stored on disk or datacell at the request of
the user creating the file, The files are allocated,
read, and written by shared reentrant subroutines, not
(as in the case of the PDP) by a separate and in-
dependent task, This means that no queue of file op-
erations is maintained, A task wishing to perform a
file operation waits until the appropriate module‘is
free, initiates the desired operation, then waits un-
til its operation has completed, All files are random-
ly accessed and buffered in core. Buffer space
allocated to a file ranges from 2 to 5 pages,

All permanent files, public or private, reside
on the 2314°s or datacells, Most public (library)
files are kept on the 2314°s, Compilers, utility
routines, subroutine libraries, etc, are all kept as
relocatable object modules on the 2314°s, This (as we
shall see) generates considerable 2314 traffic during

the normal processing of an MTS task,

Chapter VI - A Model for MTS

- 133 -

Terminal Management

Terminals are managed directly by the MTS task
associated with each device, Shared reentrant code is
used and appears in the address space of each task,
This is in direct contrast to the method proposed for
MULTICS [D6] . There seems to be no obvious advantage of
one scheme over the other, as long as reentrant code
is used, No queueing or buffering is done for ter-
minals, except for those connected to the data con-
centrator, in which case queueing facilities are pro-
vided in the PDP-8 memory. There is little difference
in the treatment of the various types and speeds of
terminals, except those necessitated by any dif-
ferences in functional capabilities, In particular, a
device connecting to MTS through a 2000 baud line is
indistinquishable (from a resource allocation view-

point) from the usual 110-150 baud range terminals,
Devices

In this context, "other devices” means magnetic and
paper tape equipment, Printers and card equipment are
managed exclusively by HASP, and rarely addressed
directly by MTS tasks, Tape equipment 1is assigned

dynamically to individual tasks on request, It

Chapter VI - A Model for MTS

- 134 ~

receives most of its usage from batch users, rather
than terminal users, All these devices are charac-
terized by the fact that the device is dedicated to a
single task, Thus no queueing takes place at these
devices: waiting times are determined completely by
the operation requested, not by other activity in the
system, There is one exception to the preceding state-
ment: there are only two paths from memory to the 10
tape drives, so channel queueing may occur, even
though the device itself (the drive) is dedicated to a

single task,

24 MTS Model Development

There are two inputs” to the modeling process when
one is modeling an actual time-sharing systeﬁ. One is the
structure of the system, This structure is essentially that
imposed by the hardware characteristics and the operating
system policies, The structural component of MTS was out-
lined in the previous section, We now proceed to integrate
that information with the "stochastic” element of the model-
ing input: the user behavior, We use the term broadly enough
to include both the actual behavior of the users, such as
how long it takes them to type in an input line and the

"behavior” of the process the user invokes in the system,

Chapter VI - A Model for MTS

- 135 -

A basic characteristic of a general purpose time-
sharing system is the stochastic nature of the knowledge
about a user’s process, In a 'dedicated” or "real-time” (a:
opposed to "general—purpose") system the future course of a
process or task is generally well known, In fact the system
is often carefully designed to take advantage of this highly
predictable behavior, For instance, in an airline reserva-
tion system, knowledge about the limited types of possible
input requests may make it possible for requests of a
particular kind to he gathered and processed simultaneously
for efficiency, In a general-purpose system (such as MTS),
on the other hand, the operating system generally makes no
fixed assumptions about the future demands a given process
will make on the system, When assumptions are made they are
made probabilistically on the basis of information on the
- past behavior of the process, In systems in which the future
demand is fairly well known or in which deadlines must be
met, the modeling techniques suggested here may well prove
unsatisfactory, |

The rest of this chapter depends heavily on
statistics gathered about the operation of MTS, These
statistics were collected during fifteen "statistics ses-
sions”, at various times and under various loads, A complete
discussion of the statistics gathering procedure is pre-

sented in the Appendix, A summary of some of the relevant

Chapter VI - A Model for MTS

- 136 -

statistics from each of the sessions is presented near the

end of this chapter, in Fig 6-19,
Deciding on the Nodes

The first decision to be made in modeling MTS is
that of the system resources to be modeled in the network,
We view the interaction-response cycle (IR cycle) of a user
in the system as consisting of two major parts, The interac-
tion portion consists of the period while the user is typing
in his next service request at the terminal, and is making
little or no demand on system resources, The second, or
response, portion of the cycle covers the period while the
system is fulfilling the request indicated by the input line
(or triggered by the input line), It can itself be broken
into several sub-segments: periods when a resource is in use
and periods when a resource is needed, but unavailable, The
response time is the sum of these queueing and service
delays, The candidates for the nodes then are the queueing
points in the system, the points at which a process may be
delayed for some reason: either waiting for the resource to
be made available, or using the resource, In MTS, such
delays may occur for any one of the following reasons:

(1) cpPU wait
The process is waiting for a CPU, or is currently

using one,

Chapter VI - A Model for MTS

- 137 -

(2) Input/Output Wait
The process is waiting for some input/output opera-
tidn to complete, or for a device to become
available so that an operation may be initiated, The
wait may be for disk, datacell, magnetic tape, etc,

(3) Page Wait
The process is unable to continue because a needed
page of virtual memory is unavailable, The page may
be unavailable because (1) there is no real memory
available to assign to the virtual page, (2) the
requested page has not yet been read in from the
drum or disk, or (3) The process has been relegated
to the non-privileged state, making it ineligible to
acquire further real memory.

(4) Lock Byte
The process is waiting for the state of some byte in
memory to change, This indicates that some other
task is currently using some resource which is non-
shareable, and may be a file, subroutine, table in
memory, etc, An example is the "accounting lock"
which prevents more than one process from modifying

the system accounting file at any given time,

There are certain other more esoteric types of waits

- for instance a wait for a certain amount of (real) time to

Chapter VI - A Model for MTS

- 138 =~

pass - but these occur infrequently enough in MTS processes
to be ignored here,

A number of alternatives were considered for the set
of resources to be represented in the model, Some choices
were clear, but in cher cases experimentation was neces-
sary., It is not possidble to simply represent each possible
cause of delay in the system as a separate node ~ exact
solution to such a large problem would be impractical, even
with computer techniques, Thus some sort of "minimal” model
which still provided satisfactory results was sought. When
any serious question arose, both alternatives were tried,
and if the simpler alternative proved satisfactory, it was
adopted, Eventually a model was developed which proved
adequate and contained nodes representing the following
system resources?

(1) The CPU

(2) The 2314 Disks

(3) The 2301 Drums

(4) Terminal Output and Other Delays
(S) Terminal Input

Each of the atove resources will be represented by
one or more nodes in the network model of MTS, Since they
may not be represented by a single node, we will refer to
the set of nodes representing a resource as a meta-node.

Thus, as we shall see, the terminal input behavior of the

Chapter VI - A Model for MTS

- 139 -

system users will be represented by two nodes, and these
nodes together will be called the "terminal input meta-
node" .,

The relationship between these nodes and the various
causes of delays in the system are now discussed separately

for each of the nodes,
The CPU Node

Except for the preemptive scheduling algorithm used
for CPU scheduling, the CPU queue and service are fairly
well represented by a 2-server facility with exponential
service time distribution, This is not surprising since in-
terrupts often cause preemption of the CPU, and there are
generally 50-60 independent potential interrupts (mostly I/O
operations) outstanding at any one time, These interrupts
are likely to arrive in something resembling a poisson pat-
tern, yieldihg exponential inter—arrival times, since the
superposition of a large number of independent stochastic
processes will appear to be poisson, |

The observed distribution of CPU ‘active intervals’
is shown in Fig 6-2, An active interval is defined as the
length of time the processor was continually allocated to a
single task, It should be noted that under certain circum-
stances, a task may be active on both CPU’s at once, with

the supervisor performing some service for the task on one

Chapter VI -~ A Model for MTS

RUN « MEAN STD.DEV. SAMPLE SIZE
1 S.641 7.791 S8
p - \ 8 5.392 7.596 101201
— \ 10 4.4s3 5.073 187317
— ! {1 5.925 9.016 53259
7p) - 1§ 4.650 4.892 157090
Z 0
L) e 4
D .
>
—
Pt
1
H(D
D3
a .
s
o
aC
o
o -
o 4 ‘ 4 4 Y ’ ‘
‘.00 S5.00 10.00 15.00 20.00 25.00 30.00 35.00
INTERVAL LENGTH (MILLISECONDS)
FIG 6-2: CPU SERVICE TIMES (ACTIVE INTERVALS)
L RUN « MEAN sm.oev swx.e SIZE
. 1 16.387 19681
8 16.392 73 y 30683
10 17.149 227.1 46807
11 19.397 135.623 13094
14 16.969 SH.941 37517

PROBABILITY DENSITY

.00 10.00 40.00 %0.00 60. 00
LENGTH OF INTEHVRL (MILL ISECONDS)

FIG 6-3: REQUESTED CPU ACTIVE INTERVALS

Chapter VI - A Model for MTS

- 141 -

CPU, and the user task running on the other, In this case an
active interval is computed for the use of each CPU,

In Fig 6-2, and in many of the subsequent presenta—
tions of empirical density functions, the observed density
curves for four or five of the statistics gathering sessions
are graphed as solid lines, The only reason for not present-
ing more of the 15 density functions available (see the
Appendix) is that the graphs become increasingly in-
decipherable, Summary data for all 15 sessions is presented
in Fig 6-19 of this chapter and in the Appendix,

The means of the active intervals tend to decrease
with an increase in the system load, as one might expect
with a preemptive scheduling algorithm, It would be possible
to represent this directly in the CPU meta-node of the net-
work model by making the service rate depend on the queue
length, However, in view of the results of the previous
chapter, another alternative is possible, We may compute the
service rate parameter at the CPU meta-node on the basis of
refudo{9yRA(4 CPU intervals, This is what the distribution o
the active intervals would have been if the scheduling
algorithm was FCFS and not preemptive., The observed dis-
tribution of the requested active intervals is given in Fig
6~-3, Note that the effect of the preemptive scheduling of
the CPU’s is to increase the number of task switches by a

factor of 2 to 4, but that the gquantum limitation of 27 mil-

Chapter VI - A Model for MTS

- 142 -~

liseconds is not often reached, even in the requested inter-
val distribution, The dashed line in the figure is an ?xr
ponential density function with the same mean as the Session
#10 density.

For our initial model, we will use the actual
(rather than the requested) CPU active intervals to compute
the model parameters. As Fig 6-2 shows, the mean and
standard deviation in each of these distributions is
approximately equal. Thus the CPU meta-node in the MTS model
consists of a single node with two exponehtial servers, one

representing each of the CPU’s
The 2314 Disk Node

The 2314 disks were chosen for separate representa-
tion because of the heavy use of the 2314°s by MTS tasks.
The total observed causes of input—output delays in MTS

tasks (over all statistics sessions) were as follows:

Cause of Wait Numbe r Percentage
Disk (2314) 152,087 51,7
Drum (Pagewait) 67,163 22,8
Datacell (2321) 8,837 3.0
Terminal Output 37,392 12.7
Texminal Input 9,975 3.4
All Others 18,916 6.4

It seems clear then, that if any I/0 devices are to

Chapter VI - A Model for MTsS

- 143 -

be represented individually, one should be the 2314’s, Deci-
sions for representation were not made completely on the
basis of such subjective judgements, If there was any ques-
tion about the importance of some system resource Oor cause
of delay, a version of the model was run with and without
the questionable representation, and the results compared
for significant differences,

The 2314 operation time distributions are not well
represented by an exponential distribution, as can be seen
from the observed density functions plotted in Fig 6-4, for
five of the statistics runs. Despite the rather strange
appearance of the density functions, note that the mean and
standard deviation of each of the densities are
approximately equal, Thus to match the first two moments of
the distribution, a satisfactory choice is a simple exponen-
tial, We thus represent the 2314’s in the network model by a
single node, with 3 servers, representing the 3 simultaneous
paths available from the 2314°s to memory.

Actually, it is not possible to access each of the
twenty—-four modules from each of the three channels, Each
set of 8 modules is served by a single path to memory.
However, because of the relatively large number of modules
and the fact that arm movement may take place simultaneously
with data transmission, channel interference is not normally

a significant problem, If it were a problem, the 2314 meta-

Chapter VI - A Model for MTS

PROBABILITY DENSITY

- 144 -

RUN « MEAN

ST0.DEV. SAMPLE SIZE
24.271 5746
23.582 14407
21.767 18685
23.712 5882
37.934 13238

20.00 40. 00

60.00

80. 00 100. 00

INTERVAL LENGTH (MILLISECONDS)

FIG 6-4: 2314 OPERATION TIME DENSITY

DRUM META-NODE

Fig 6-5:

From CPU Node

To CPU Node

Representation of Drum in Model

Chapter VI - A Model for MTS

- 145 -

node could be constructed from three nodes, each with a
single server, The transition probabilities to each of the
nodes could be chosen on the basis of the observed transi-
tion probabilities, or assumed random,

The availability of the statistics of Fig 6-4
removes the need for a model of the 2314 system to predict
operation time distributions, If such statistics were not
available, we might use the model of Abate{A2] to predict

this distribution,
The Drum Node

The node(s) in the network which represent the drum
must in fact represent the entire paging process and virtual
memory management, Since it is not possible to represent
real memory as a resource, the drum meta-node also serves to
represent any delays incurred due to conflicts over the
availability of real memory, as well as the actual paging
mechanisms, |

The operation of the MTS virtual memory management
was studied by Pinkerton[P4] and is described by
Alexander[A4]. We represent a page fault in a task by the
occurrence of a transition to the drum meta-node, Since the
transition probabilities in the network are fixed, the page
fault rate must be linearly related to the rate at which

customers exit from the CPU node. The validity of this

Chapter VI - A Model for MTS

- 146 -

assumption is considered at the end of this section when the
transition probabilities for the network are developed.

In addition to the page-in operations requested by a
page fault, MTS must also write pages out to free real
memory for incoming pages, The algorithm used to do this iz
designed to cause as little interference as possible with
the page—in operations[A4]. There is considerable evidence
that virtually all the page—out operations are done at times
when the drum channel would otherwise be idle, Thus we may
effectively ignore the page—out process in modeling the pag-
ing process,

The rate at which pages are read from the drum
depends heavily on the length of the operation queue., The
drum in MTS is treated as a 9-sector drum, with separate
queues fdr each sector, For the discussion of the perfor-
mance of such drum scheduling schemes see any one of Denn-
ing[D2,D8], Coffman([C4] or Pinkerton[P4].

We model the drum as two nodes each with a single
server whbse service rate parameter varies with the length
of the queue at the node, Since there are two drums, on
separate channels, we represent each drum as a node (Fig
6-5), The probability of entering either one of the
identical nodes in the meta-node is one half, This is an
assumption which the page placement policy of MTS is

designed to make valid, The rotation time for the drum is 18

Chapter VI - A Model for MTS

- 147 -

milliseconds and there are 4,5 sectors in one revolution,
Thus the maximum page transfer rate per drum is
approximately 250 pages per second, or 1 pﬁge every 4 mil-
liseconds, We will use a linear approximation to the in-
crease in transfer rate with queue length predicted by Denn-
ing[D2], The mean service rates, “1(“1) at each drum are

then as follows:

]

ui(ni) 0250(ni/9’ 0<n1<9

“1(n1) «250 9sn,

There are a number of discrepancies between our
model of the drum and its actual operation in MTS, For ex~-
ample, a‘minimum of 4.0 msec, is required to transfer a page
from the drum, This lower bound on the service time cannot
be represented in the network without an arbitrarily long
series of exponential servers appearing at the drum meta-
node,

An alternative structure which is also more
realistic is to represent each drum by nine parallel nodes,
one for each of the drum sectors, This is in fact the
organization which exists in MTS, where a separate queue is
maintained for each node, The service rate parameter at each
node would then reflect the logical rotation time of the
drum, which allows the transfer of one page every 32 mil-

liseconds for a given sector,

Chapter VI - A Model for MTS

- 148 -

The MTS network model was run with three alternative
structures, one being the 9-parallel-node representation
just discussed., The other two were the final one, discussed
at the beginning of this section, and an Erlang-4 version
used to achieve a more deterministic service time. All three
representations yielded virtually identical results, so the
simplest version — two identical parallel nodes - was
chosen, If the drum node received heavier use in MTS, one of

the more accurate representations might be required,
Terminal Output and Other Delays

This meta-node serves as a catch all” to represent
all the other possible delays incurred by a process in the
system, These may be of several types, and we list them here
with their observed probability of occurrence (combining
again all statistics runs):

Terminal Output 63.1%
Datacell Operation 10,5%
Magnetic/Paper Tape 5.6%
Lock Byte A%
Other 20,7%

The overwhelming ma jority of these miscellaneous
waits are clearly for terminal output, The "other entry
(20,7%) covers some waits which may have been actually for

one of the preceding entries, but were not classifiable on

Chapter VI -~ A Model for MTS

- 149 -

the basis of the information available on statistics tapes,
It also includes those waits caused by the occasional use of
unit record equipment (printers, primarily) by terminal
tasks,

We will represent the service here as occurring in
parallel fashion to all customers at the node (i.,e, — the
service rate is proportional to the number of customers at
the node). The service rate parameter is simply the weighted
average of the waiting times for each of the various delay
causes listed above,

The parallel service structure implies that we must
ignore any queueing effects occurring at the resources
represehted by this node, For terminal output, of course,
there is no queueing, since the terminal is a dedicated
device assigned to the user. The same is true for magnetic
and paper tapes.,

The only causes of waits at this node which might
involve queueing are the datacell and lock byte. These waits
occur infrequently enough so that the probability of an |
actual queue developing is extremely small, and we may ig-
nore the queueing effects, If this were not the case, it
would be necessary to represent the datacell (for example)
by a separate meta-node in the network; as we did with the
2314 disks,

Not surprisingly, the composite density function for

Chapter VI - A Model for MTS

- 150 -

terminal output and other waits has a standard deviation
higher than the mean, It is a mixture of distributions with
very different means. Terminal output operation time means
are in the order of 1-2 seconds, while datacell and other
waits are in order of ,1 to .2 seconds (Fig 6~19). To get a
more accurate fit to the observed distribution variance, a
hyper~exponential service time distribﬁtion was used in the
model., A hyper—exponential distribution is a mixture of two

exponential functions, with the density function given by:
£(t) = pu1e""it+(1-p)u2e'“2t

where 0 = p s 1 and By and B, are both positive., The
representation of such a service time distribution in a net-
work model requires two nodes and is straightforward.

We will then set the service time mean at this

meta~node as:
1/pi(ni) = (.631T+.105D+.056M+.001P+.207R)‘ni

where T is the mean wait for a terminal output op-
eration, D is the mean wait for a tape (magnetic or paper)
operation, P is the mean length of a process interlock and R
is the mean time for other delays., Since the teminal output
operation time dominates this node, we present the observed

teminal output operation time density function in Fig 6-6.

Chapter VI - A Model for MTs

.15

-
'S
L]

22

PROBABILITY DENSITY (X102)

07

PROBABILITY DENSITY (X103)

.27

.21

.14

.97

- 151 -

RUN « MEAN STD.DEV. SAMPLE SIZE
1512 1398 340

1

8 1585 1321 4103
10 1852 3227 4263
11 1559 1959 5377
14 1352 1851 Heu7

-

[
Q
v, Aol e

| ‘__:;60.00 :;;;66?BZZ_-.T300.00 B ’00:66 _ 500.00
INTERVAL LENGTH (MILLISECONDS) (X10-1)

’ N

FIG 6-6: TERMINAL OUTPUT OPERATION TIME DENSITY

RUN « MEAN STD.DEV. SAMPLE SIZE
20825 27845 424
19929 28215 1081
14134 23931 1339
1 6454 28359 553
18082 25718 1044

e OCh

—a
———
ned Pond Pt

100.00 _ 200.00 __ 300.00 400.00 500.00 600.00
INTERACTION TIME (MILLISEONDS) (X10-2)

FIG 6-7: TERMINAL INTERACTION TIME DENSITY
Chapter VI -~ A Model for MTS

- 152 -

The Terminal Input Node

To complete the network model we must represent the
terminal input process — the interactions of the users., The
basic scheme for doing this has already been presented in
the examples of the previous chapter, It is the cycle times
of customers in the network, the time it takes them to
return to the terminal node after leaving it, that will pro-
vide us with our basic performance measures,

Coffman and Wood[C9] have studied the interaction
time distribution in the SDC time—-sharing system, and found
it well~-fitted by a hyper—exponential distribution. In MTS a
hyper—exponential provides a good match for the first two
moments Oof the distribution, though the actual "fit" is not
too good, Fig 6-7 shows some representative observed ter—
minal interaction time densities and a hyper—exponential fit
to one of the curves, The peaks occurring in several of the
densities were caused by the regular, patterned, interac-—
tions of terminals” which were actually small remote com-
puters connected to MTS through 2000 baud phone lines,

Since the hyper—exponential distribution provides an
acceptable approximation, we shall take the approach taken
in the "terminal output and other delays" node and let the
terminal input meta—-node consist of two nodes, with service

rate parameters proportional to the number of customers at

Chapter VI - A Model for MTS

- 153 -

the node, The parameters at the nodes will be computed from

the mean and variance of the interaction time of the users.

The structure of the MTS model, as it has been
developed to this point is diagrammed in Fig 6-8. The dotted
boxes represent the groupings of nodes into meta-nodes. The
actual nodes are represented by circles, For example, two
circles (nodes) appear in the box (meta-node) marked ' ter-
minal input", indicating these two nodes together represent
the interaction process of MTS users.,

To complete the model specification we must yet
determine:

(1) Numerical service rate parameters at each node.

(2) values for the transition probabilities between nodes,

(3) The number of customers for which the model is to be
solved,

We delay for a moment the assignment of actual num-~
bers to the parameter values, and consider the general means
by which such numeric values can be assigned to the transi-
tion probabilities from statistics available about the

system,

Chapter VI - A Model for MTS

- 154 -

IJ

S

weadei(y IBPOwW Siw

IpON=-BI I

— — sAe|a(
1} 43Yy3Q pue

"¢ 9pPON-BId¢

¥s1a

anaing
| teuiuaiay

18-9 814

1 — ——
|
|

n apon |
-233K wnag

L — =

¢ 9PON

-€33W IdJ

T SPON-B3I3
Indu| [BUlWJd]

- 155 -

Transition Probabilities

With the available statistics there are several
algorithms for assigning transition probabilities to the
paths in the network, The most obvious is the direct method:
record the actual transition probabilities occurring in MTS
tasks, and transfer these to the model, This information is
available from MTS statistics so that method can be used
(see Fig 6-15 and Fig 6-16 below). However, if such detailed
information were not available, alternative procedures could
be used,

If one can measure the number of times a task
appears at each node during an interaction, then approximate
transition probabilities can be computed from this informa-
tion, For instance if it is known that the average task per-
forms 7,2 disk operations, causes 6,3 page faults and goes
through the CPU queue 25 times in a response cycle, one can
compute transiticon probabilities such that these numbers are
matched, The assignment may not be unique, Sut as we showed
(by example) in the previous chapter, these sorts of dif-
ferences seem unimportant to the network performance.

A third possible method for assigning transition
probabilities requires Knowledge of the service rates at
each node and the amount of time spent by a customer at each

node during an interaction, Given this information the ex~-

Chapter VI - A Model for MTS

- 156 -

pected number of times the customer will visit each node
during an interaction can be computed, and the problem

reduces to the previous case,
Assigning Numeric Values to the Model Parameters

We have avoided assigning numeric values to model
parameters up to this point for a good reason, We must
decide which of the available values might best be assigned,
The statistics sessions revealed that many of the measured
statistics such as the transition probabilities were not
particularly stable; they varied significantly from session
to session, This is illustrated by the user behavior
statistics of Fig 6-19 below,

The example of Fig 5-16, in the previous chapter,
showed that fairly small changes in user behavior can lead
to large changes in system performance measures (and we
might add, in system performance itselfl), Thus if we choose
some "representative" set of parameters, a set of
"representative” performance predictions can be obtained.
These statistics unfortunately may be meaningless, however,
since wide variance from the representative load may be the
rule rather than the exception (see Fig 6~20),

When we are interested in predicting system perfor-—-
mance then, we will use again the idea of a load envelope,

determined from the range of observed values of service time

Chapter VI - A Model for MTS

- 157 -

means and transition probabilities,

On the other hand, for model validation we use the
data from a single statistics run to compute the model
parameters, Then we can ask whether the performance of the
system predicted by the model on the basis of these
statistics from a single run agrees with the performance

observed during the session.

3, Model Validation

For initial validation of the model we use the
statistics from session #10 (see Fig 6-19 and the Appendix).
The statistics gathered at this session were gathered under
fairly typical conditions, with an average of 47 terminal
users and a number of batch jobs ranging from 1 to 3 running
during the period, This provided an average equivalent load
of 69 users during the session., (See the Appendix for a dis-
cussion of the treatment of batch jobs during the statistics
gathering process, and their mapping into "equivalent
users).

The statistics gathered during Session #10 were used
to choose numeric values for the parameters of the MTS net-
work model of Fig 6-8, The values of these parameters are
tabulated in Fig 6-9, This model was then solved for N = 69,

The results of this solution are reproduced in Fig 6-10, The

Chapter VI - A Model for MTS

1A
1A 0,0

18 0,0

2A 0,0045

From 3A 0,0
Node 4A 0,0
48 0,0
5A 0,0

5B 0,0

Bypln)
Boa (1)
Bq,(n)
Bgpln)
Bya(n)

Bga(n)

- 158 -

Transition Probabilities

To Node
1B 2A 3A 4A
0.0 1.0 0.0 0.0
0.0 1.0 0.0 0.0

0.,0030 0.,7880 0,1065 0,0275

0.0 1.0 0.0 0.0
0.0 1.0 0.0 0,0
0.0 1.0 0.0 0.0
0.0 1.0 0,0 0.0
0.0 1.0 - 0,0 0.0

4B
0.0

0,0

5A
0.0

0.0

0,0275 0,0305

Service Rates (Customers per Millisecond)

1}

-
-

n/20825 1 g(n)

| B,a(n)
n/30,710 (ns3) u3A(n) = 3/30,7
pap(n) = .25(n/9) (0<n<9)
Bep(n) = .25 (92n)

n/1552 uSB(n) = n/50,.,3

1/4.453

0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0,0
= n/4098

10

Fig 6-9: Parameters for MTS Model

Chapter VI - A Model for MTS

2/4.453 (n>1)

(n23)

5B

0.0
0.0
0.0120
0.0
0.0
0.0
0.0

0.0

LR R

NUMBER OF USERS = 69

SINGLE SESSION MNDEL

- 159 -

FOR SESSION #10 *wx

PRUM(S)

26.311

TERMINAL CPU(S) DISK(S)
MEAN WAIT AT NODE
(INCLUDES SERVICE) 14134.000 14,535 42.000
MEAN SERVICE TIME
AT THIS NODE 323.291 2.400 17.645
MEAN QUEUE LENGTH
(INCLUDES THOSE 1IN
SERVICE) 43.719 5.057 1.380
MEAN NUMBER OF TIMES
THROUGH NODE (IN 1
INTERACTION) —-- 125.000 13.375
UTILIZATION FACTOR
FOR THIS RESOURCE 0.634 0.861 0.424
FXPFCTED CYCLE TIME
FOR THIS NODE 8481.548 166.389 1648.882 3
UEMAND PER INTERACTION
FROM THIS NODE 14134,000 1816.909 561.749

17.245

0.526

6.875

0.367

263.223

180.891

STEADY-STATE QUEUE LENGTH DISTRIBUTIOMS

CUSTOMERS TERMINAL
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

-
HOOVONOWVMEWN RO

=
W N

CPUC(S)

0.07215
N.13396
0.12259
0.11055
0.09821
0.08594
0.07405
0.06282
0.05245
0.04309
0.03482
0.02768
0.02163
0.01661

NISK(S)

0.27001
0.34852
0.22242
0.09354
0.03886
0.01595
0.00646
0.00258
0.00102
0.00040
0.00015
0.00006
0.00002
0.00001

DRUM(S)

N.63328
0.24388
0.09285
0.02465
00458
.00067
.00008
.00001
.00000
.00000
.00000
.00000
0.00000
0.00000

D000 0COoOOO

OTHEP

.00000
.nnnon
.00000
.00000
.00002
.00007
.NNN25
.00073
.00189
.00431
.00877
.01611
.02690
.04108

DO0ODDODDO0OTDODODDODIDIDOOD

Fig 6-10: Program Output for MTS Model

Chapter VI - A Model for MTS

OTHFR

1128.00

f1.57

18.31

5.25

0.26

3179.72

5y22 .00l

- 160 =~

results for the individual nodes have been condensed into
results for meta-nodes in this figure. The results for the
limiting performance (under this load profile) are not given
in the figure, The limiting results indicated a saturation
point of 89,5 customers., The CPU node is the limiting node,
as is already obvious from the results for N = 69, The
values of the xi/u.i vector were CPU = 1,000, Disk = ,491,
Drum = ,100, These values for the xi/ui vector were fairly
typical of those for all sessions for which models were in-
dividually developed. In every case, the CPU node was in-
dicated as the saturated node, though the saturation point
varied considerably from session to session (see Fig 6—19).

Having solved the model with these parameters and N
= 69, we can compare the performance predicted by the model
with the actual performance statistics gathered during the
session, The following statistics were computed and com-
pared:

(1) Density function of CPU time and 2314 time used
during an interaction (Fig 6-12 and Fig 6-13). Both
these densities are assumed to be exponential by the
model.

(2) Density function of the number of visits to the 2314
and CPU meta-nodes (resources) during an interaction
(Fig 6-14 and Fig 6~15). This density is assumed to

be geometric by the model,

Chapter VI - A Model for MTs

- 161 -

SESSION «10
MEAN STD.DEV. SAMPLE SIZE
1l OBSERVED: U456.8 2163.1 1339
. PREDICTED: Y9i.u4 Hou. 4
>
-
DEL
E L]
Q
>
P
Do)
m L[]
("
o
o
@«
0.
=
b= g—-—:5=~ + e e e ——————
.00 20.00 40.00 60.00 80.00 100.00

3

PROBABILITY DENSITY (X103)

.28

17

2t

AMOUNT OF CPU TIME USED (MILLISECONDS) (X10-1)

FIG 6-11: CPU TIME USED PER INTERACTION

SESSION =10
MEAN STD.DEV. 7% AT O SAMPLE SIZE
OBSERVED: 391.4 1586.1 69 1339
PREDICTED: 362.3 362.3 8

A j l

. <D0

00 40.00 100. 00 120.00
- 2314 WAITING TIHE (MILLISECONDSJ (X10-1)

20.

FIG 6-12: 2314 TIME USED PER INTERACTION

Chapter VI - A Model for MTS

- 162 -

SESSION «10
MEAN STD.DEV. SAMPLE SIZE
OBSERVED: 110 u28 1339
PREDICTED 111 11t
S
’— g L ol
H []
—
[—
(am]
cC
=
£
V\N\«,,~—————\\\‘
O
o4 —t it e - ——
‘.00 20.00 40.00 60.00 80.00 100.00

NUMBER OF INTERVALS

FIG 6-13: NUMBER OF CPU ACTIVE INTERVALS PER INTERARCTION

SESSION #10
MEAN STD.DEV. ¥% AT O SAMPLE SIZE
% OBSERVED 12 50 69 1339
~%T PREDICTED: 12 12 8
=)
o=t
X
7]
T
,-—
Yot
=
m
(v
M
QT
(1
a.
81
g 4 + + 7 ;
.00 20.00 40.00 60.00 80.00 100.00

NUMBER OF OPERRTIONS

FIG 6-14: NUMBER OF 2314 OPERATIONS PER INTERACTION

Chapter VI - A Model for MTS

- 163 -

(3) Correlation of transitions from node to node. One of
the éssumptions in the model develdpment was that
customer transitions from node to node were Mar-
kKovian, and independent of the path leading to their
arrival at the node. This assumption is certainly not
likely to be valid for a given task, For example, a
task which has been "cycling" in the CPU queue for a
long period, without doing any input or output, is
likely to continue doing so in the near future. This
implies that the probability a customer exiting from
the CPU node will return immediately to that node is
higher if that is how the customer arrived at the CPU
node for his current service., This intra-tagk cor-
relation is illustrated by Fig 6-15. 1In this figure
is given the probability of transitions to various
resources (nodes) in the system, from the CPU. The
transition probabilities given are unconditional (the
first column) and conditional probabilities based on
which node the task was at before it arrived at the
CPU. Remember that these transition probabilities are
for a single task, Markovian transitions would be in-
dicated by rows with equal entries all the way
across, However, the assumptions of independent
customer transitions made in developing the model

need not have been as strong as it was, If one obser-

Chapter VI - A Model for MTS

Abs,

CPU «725
Term, Input 004
Disk(2314) A41
Datacell .005
Page-in Wait ,074
Term, Output ,031

Other Delays ,020

- 164 -

CPU Term, Disk Data- Page— Term. Other

.818
«002
103
«003
040
024

012

Input

587
«195
014
«000
«104
.079

022

«506
+000
+448
.000
016
.001

.028

cell

«382
«000
007
«236
«053
«007

015

wait

«376
019
«026
«003
488
080

.008

out.

0562
002
021
004
172
237

003

Fig 6=15:; Intra-task Transition Correlations

Abs.

CPU «725
Term, Input .004
Disk(2314) o141
Datacell «005
Page-~in Wait L,074
Term, Output ,031

Other Delays ,020

CPU Term, Disk Data- Page- Term.

«690
004
169
006
.073
035

023

Input

«776
020
«071
.004
063
.047

.020

817
.002
+080
002
069
.018

012

cell

815
002
047
.026
071
.028

011

wait

«834
002
048
004
.089
016

.008

out,

794
.003
061
003
.088
034

019

Fig 6=16: Inter—task Transition Correlations

Chapter VI - A Model for MTS

269
.001
052
.001
.038
009

«331

Other

.818
.001
079
.001
052
018

031

- 165 -

ves the balance equations for the network (see
Chapter III), it is clear that we need only require
that there be no correlation of the next transition
in the system with the last transition in the system,
That is, the next node-to-node move of a customer
must not depend on the previous nodtho—node move of
a customer, In this case, we are statistically much
better off, as Fig 6~-16 illustrates, Here we have ex-
actly the same data as in Fig 6-15, but computed now
over all jobs,., That is, the sequence of transitions
is taken within the entire system, not just within a
single task, Note that in this case, the row entries
are approximately equal, with no indication of
significant correlations.,

The lack of agreement between the observed and pre-

dicted statistics of Fig 6-12 and Fig 6-13 can be easily ex-

plained, The expected exponential form of the densities is

predicated on an exponential service time distribution at

the node, This is clearly not the case for the 2314 (Fig

6-4) and is only approximately true for the CPU (Fig 6-2).

It is not surprising then that the form of the cumulative

distribution densities is not exponential,

The data of Fig 6-14 and Fig 6-15 can be explained

by the existence of non-homogeneous users, Heavy CPU and

disk users do in fact exist, They tend to increase the

Chapter VI - A Model for MTS

- 166 -

variance in these visits-per-interaction densities, The
small sample size involved in these empirical distributions
also tends to make the match look poor.,

We note however that the means of the observed and
predicted densities are in reasonable agreement in all four
figures,

A further statistic that might be of interest for
validation purposes is the utilization of each node - the
amount of time it is busy. In MTS, this information is
available only for the CPU, and tends to be very unstable.
We illustrate this instability of resource utilization in
Fig 6~-17. This shows the percentage utilization of the CPU
capacity averaged over 18 second intervals for a period of
10 minutes, Also shown are the average number of page-in op-
erations per second, again averaged over 18 second periods.
Given this pattern of behavior, it is not surprising that
there tend to be discrepencies between predicted and obser-
ved node utilization. With that disclaimer, the predicted
CPU utilization for Session #10 was 86%, while the observed
value was 97%. Note that some of the excess CPU utilization
can be accounted for by the overhead jobs (HASP, primarily),
which were not modeled but do use CPU time,

The overall system performance measure - response
time - was predicted to be 8,5 seconds and was observed to

be 7.9 seconds, an acceptably close agreement, This yeneral

Chapter VI - A Model for MTS

- 167 -

Time Average Average Number of Number
(Minutes) CPU Idle Page-in Terminal of Batch
Time(¥) Operations Users Users

per secC,
0,19 3,83 25 41 7
0,37 1.70 20 42 6
0.55 1.70 20 42 6
1.13 .00 27 40 7
1.31 64 21 41 5
1.49 05 10 42 3
2,07 05 10 42 3
2,25 .05 27 40 4
2,43 «03 12 39 4
3,00 1.14 16 39 4
3.18 36,42 8 40 5
3,36 30,54 7 41 3
3.54 58,67 12 40 3
4,11 39,09 8 41 3
4,29 14,55 9 41 4
4,47 10.21 13 40 3
5,05 2,63 11 40 3
5,23 19,25 7 40 4
5.41 22,81 1 40 3
5.58 «05 19 40 5
6.16 1.76 12 40 5
6.34 3.39 12 40 6
6.54 3,39 12 40 ()
7.10 13,14 13 40 4
7.28 9,65 15 38 6
7 .46 16,60 16 39 5
8,03 92 17 39 5
8.21 +09 16 38 5
8.39 .04 12 38 5
8.57 .00 17 39 5
9,32 1.63 7 38 5
9.50 2.18 8 39 4
10,05 72 11 40 3

Fig 6-17: System Utilization Statistics

Chapter VI - A Model for MTS

- 168 -

pattern repeats itself for other sessions, with quite close
agreement on means and expectations, but considerable dif-
ference in the distributions. The predicted and observed
response time and CPU utilization for each of the sessions

are tabulated in Fig 6-19,

4, Performance as a Function of N

Despite the fact that the number of users is not a
particularly good predictor of system performance, we now
develop a relation between the number of users and system
performanée as embodied in the expected response time mea-
sure,

The first question that must be asked is how con-
stant the model parameters — service rates and transition
probabilities - remain with changes in the number of users,
The statistics from the 15 sessions were subjected to cor-
relation analysis to see if there was a trend in the transi-
tion rates or service time means which correlated with
changes in the number of equivalent users, With the excep-
tion of the CPU active intervals, no significant correlation
was found, The CPU active interval length mean was found to
decrease with increasing numbers of users, as has already
been mentioned, Therefore to develop a model which was valid

for all N, we have used the requested CPU interval lengths

Chapter VI - A Model for MTS

- 169 -

(Fig 6-3), which were uncorrelated with N, in conjunction
with the requested CPU time per interaction, to compute the
CPU node parameters,

The load envelope was formulated from the data of
Fig 6-19, and the resulting parameter rangés are tabulated
in Fig 6-18, Instead of transition probabilities, the amount
of CPU time used per interaction, expected number of disk
operations per interaction, etc. are given, These figures
tend to be more meaningful, and from them unique transition
probabilities may easily be computed. The "average load”
column of Fig 6-18 gives the expected values of these
parameters as averaged over all the sessions,

Using the data of Fig 6-18, three models were con-
structed, One used the low envelope parameters, one the high
envelope parameters, and a third the expected parameters,
Each of these three models was then solved for N =
5,10,15,¢4.,140, This yielded three sets of statistics one
for each version of the model., In Fig 6-20 we present the
expected response time curve, as a function of N, for each
of the models, The computed saturation point for each model
is also listed, The saturated node in each case is the CPU,
In this figure, the terminal output delay times have been
subtracted from the response time so that only the delays in
response due to shared resources are shown.

It is unlikely that MTS would often operate at the

Chapter VI - A Model for MTS

CPU Time Used
per Interaction

Disk Operations
per Interaction

Mean Disk
Operation Time

Page~in Operations
per Interaction

Terminal Output
Operations per
Interaction

Terminal Output
Operation Time

Mean Interaction
Time

- 170 =

High
Envelope

853.18

22,21

32,33

10.22

2,89

1164.5

14134

% All times in milliseconds

Average
Load

649,97
15.25
30,36

6,73

3.75
1684,0

18653

Low
Enve lope

460,17

10.85

26,91

«01

5.82

2110,5

25070

Fig 6-18: Parameters for Performance Envelope Models

Chapter VI - A Model for MTS

Statistic
1« Interaction Time
Distribution (msec,)
2, CPU Active Interval
Distribution (msec,)
3. Disk Operation Time
Distribution (msec,)
4, Page-in Operation
Time Distribution (msec.)
5. Terminal Output
Wait Distribution (msec.)
6., Datacell Operation
Time Distribution (msec.)
7. Other Delays
Distribution (msecs)
8, Number of CPU Active
Intervals per IR Cycle
9, Number of Disk Operations
per IR Cycle
10, Number of Page-in
Operations per IR Cycle
11, Number of Terminal Output
Operations per IR Cycle
12, Datacell ops./IR Cycle
13, Other Delays/IR Cycle
14, Average Response Time
(msec.)
15. Predicted Response Time
16, Equivalent Users
17 . Predicted Saturation (Users)
18, CPU Utilization (Actual)

- 171 -

(percent) (Predicted)

Mean
SD

Mean
SD

Mean
SD

Mean
SD

Mean
SD

Mean
SD

Mean
SD

Mean
SD

Mean
SD

Mean
SD

Mean
SD

Mean

Mean

Mean
SD

Mean

Mean

Run #1

20825
27845

5,641
71,791

27,987
24,271

29,174
14,391

1512.2
1398

147,76
178,06

342,9
4354,3

135455
295,00

14,42
28,00

5.52
12,00

3.44
19,00

1,12
3,04

7686
22800

8718
41
70,0

84,5
56,5

Fig 6-19: summary of Statistics Sessions

Chapter VI — A Model for MTS

Run #2 Run #3
18529 23340
29411 56915
6371 10,100
8,773 27.568

27 .809 28,865

24,344 23,555

24.8817 16,112

11.454 8,041

1905.,3 1254,8

2307 1658

101.70 78,41

139,66 95,59
797.9 140.3

3140,.8 434 .0
93,91 64,04

261,00 135,00
12,39 16,36
26,00 29,00

2459 <01
4,00 0,00
3.41 4,02
7.00 8,00
«70 1.24
«63 e 16
7204 6804
21310 14245
8167 6267
50 18
88,9 91 .4
89,2 18.5
54,7 19.3

and Models

Stat.

1.

2.

3.

4.

6.

7.

8,

10,

1.

12,
13.

14,

15,
16,
17

18,

Fig

Mean
SD

Mean
SD

Mean
SD

Mean
SD

Mean
SD

Mean
SD

Mean
SD

Mean
SD

Mean
S

Mean
SD

Mean
SD

Mean
Mean

Mean
SD

act,
pre.

6-19: Surmary of Statistics Sessions and Models (cont,

Run #4

25670
33526

6.130
6.685

28,733
26,404

10,501

1851.5
2163 .0

119.24
144,75

761.6
2591 .6

129,42
288,00

17.59
26,00

2,63
3,00

3.57
4,00

22
1.11

8393
39250

/8800
40
87 .1

83,0
44,8

Run #5

16895
19337

6.323
9.094

29,348
29,158

25,131
11,603

2110,5
1725.,0

88,67
128,56

288,7
961 .0

126,25
414,00

15.11
31,00

2,49
4,00

3.17
7.00

2.13
1.05

917
28215

10189
59
61.8

89.9
87 .3

- 172 -

Run #6

16404
23054

5.172
6,422

28,276
22,026

28,671
13,922

1990,0
2659,0

132,76
167.12

519.1
140.0

133,51
332,00

16,08
39,00

6.45
9,00

3.88
8.00

71,2

81.9
85.1

Run #7

16163
19984

6,073
8.446

31,456
30.163

24,99
11.210

1420 .4
2482,0

231,20
318,63

506.0
1549,.3

100,49
478,00

10,85

28,00

2,63
4,00

2,89
21,00

79
10,94

7101
25360

6513
54
70.3

88,9
731

Run #8

19929
28215

5.392
7.596

29,800
23,582

25,708
11,433

1585.5
1321.0

180,57
276,81

504.,1
2609,5

86,28
198,00

14,75
34,00

3,38
5,00

3.80
10,00

.58
.78

8171
30794

7304
55
118,.,6

66 .0
45,6

Chapter VI - A Model for MTS

Run #9

20446
29557

5,048
5.443

26,907
23,037

39.424
254395

1164.5
1476,0

146,28
210,10

336,2
1279.2

181,67
588,00

22.21
124,00

8.34
12,00

5.82
18,00

1.59
1.58

11585
35437

14423
63
60,2

98,7
93.0

)

s

- 173 -

Stat, Run #10 Run #11 Run #12 Run #13 Run #14 Run #15

1. Mean 14134 16454 20345 16456 18082 18720
sD 23931 28359 33458 19568 25718 25470

2. Mean 4,453 5.925 3.738 5,914 4,650 4,810
SD 5,073 9,016 4,394 8,310 4,892 4,845

3, Mean 30,710 27,690 28,160 18,600 28,840 32,330
SD 27,767 23,712 23,073 26,762 37,934 43,013

4, Mean 28,610 21,180 103,320 21,090 36,670 32,650
SD 17,254 13,039 267.795 12,136 23,830 52,477

5. Mean 1852,0 1559.4 1741.6 1958,7 1351.,6 2038,8
SD 3227,0 1959,0 2306,0 1815.,0 1851.0 2476,0

6. Mean 110,80 155,84 151,33 112,09 107,27 171,87
SD 159,98 177.39 163,49 186,91 135,57 227,37

7, Mean 278,2 343,2 2028,5 852,.6 641.,9 1357.6
SD 881,9 1408,7 3992,1 2952,8 2445.4 15489,.1

8, Mean 134,96 77.67 121,83 144,27 131,35 144,03
SD 428,00 154,00 193,00 453,00 665,00 430,00

9, Mean 14,49 11.41 12,76 18,60 12,37 19,52

SD 49,00 23,00 26,00 46.00 33,00 42,00
10, Mean 7455 3,08 39,04 3.36 8,72 10,22
SD 14,00 4,00 66,00 8,00 15,00 18,00
11. Mean 3.18 3,48 3,90 4,45 4,45 3,09
SD 7.00 7.00 12,00 8.00 7.00 6.00
12. Mean .54 .33 .23 2.12 1.36 .48
13, Mean 2,07 .85 .58 1,58 1.45 1,90
14. Mean 7909 6573 19760 12084 10434 11892
SD 22971 20781 53593 32445 36894 40278
15, 8481 6757 11122 12648 8797 11096
16. 69 50 57 74 73 70
17, 74.7 98,8 64 .4 64,4 87.2 102.5

18, Actu 96,7 98,1 100.0 89,9 96,6 99,9
Pred 86,1 49,5 82,6 85.4 79,7 66,.4

Fig 6-19; Summary of Statistics Sessions and Models (cont,)

Chapter VI - A Model for MTS

- 174 -

3d0T13AN3 3IONUWHO4H3d SIW *0c¢-9 OId
SY3SN 40 YI8WNN

00°0¢1 00°001 00°08 00°09 00°0b 00°0¢c oo“
b t $ +- - L f =
x % —X
JONHWHO4Y3d aBO MO X
m
>
o
oM
o4
m
(]
)
m
Nxyo2
A v
JONUWHO4H3d QU0 HOIH o0
4
w
m
—
15z
m3
&
JONUWHOAH3d 39UH3IAY mw
lmm
0°Lh ‘0O HOIH SW
L°18 :0U01 3I9UHIAY d
0°2Le 040 MOT
NOI 18HN1HS
-

00°0€

Chapter VI - A Model for MTS

- 175 -

boundaries of the load envelope (and therefore, performance
envelope), Too many worst—-case conditions would have to
coincide, On the other hand, MTS does not often operate
close to the median performance line, as is indicated by the
X‘s in Fig 6-20, These X’s represent the observed response
time, plotted versus the number of equivalent users for the
15 statistics sessions., There is no strong correlation
between the number of users and the observed response time,
as we have previously mentioned.,

The implication of Fig 6-20 is not that there is no
hope for predicting system performance from a model., It is
rather that this performance cannot be predicted accurately
as a function of the number of users of the system, The num-
ber of users is useful as a load measure primarily because
it is easy to measure and is unmistakably correlated with
the system load. A better measure, as has already been sug-
gested, is a vector giving the load on each of the system
resources, In the case where a limiting resource is well
defined, it may be possible to accurately predict the form
of the performance curves (response time, for example),
based on some measure of the load on that resource. To get
absolute predictions for the performance measures, however,
a complete load vector is required, Thus, though the CPU is
the limiting resource, consider the average load MTS model,

For N = 80, the average load waiting time at the 2314 node

Chapter VI - A Model for MTS

- 176 -

per IR cycle was 639 milliseconds, and it remained
relatively constant all the way out to N = 140, Thus it con-
tributes little to any increase in the response time after
saturation is reached. However it does continue to con-
tribute 639 milliseconds to the absolute average response
time. One must be careful in concentrating on the limiting
resource to the exclusion of all other factors. Even well
into saturation, at N = 100 in the average load model, the
CPU node contributed only 40% to the expected response time
of 15 seconds., An expected .,656 seconds were spent at the
disk node, 7,5 seconds at the terminal output/other node and

+160 seconds at the drum node.

54 Balancing the MTS_Configuration

There are a number of ways in which to define an
"optimum configuration” for MTS., Within given constraints
(presumably financial) one could search for a minimal
response time configuration, based on a particular set of
statistics, However, this configuration will depend on N,
the number of users. For small loads (in the current MTS
configuration), the disks contribute most to the response
time delay, among the shared resources, As the load in-
creases, the CPU’s contribute more and more, eventually sur-

passing the disks,

Chapter VI - A Model for MTS

- 177 -

A more general optimality criterion is one involving
the concepts of balance and saturation, as discussed in
Chapters III and IV, So we ask what alternate MTS configura-
tion would be more balanced than the current one. There are
tﬁo options - delete current equipment or add more. Since a
reduction in equipment is rarely considered a viable alter-
native, we first consider the addition of equipment. The
obvious algorithm is simply to add another component to the
saturated node, In the case of MTS this means adding another
CPU, For the model developed for statistics session #10 (Fig
6-10), adding a third CPU yielded the following values for

the xi/p.i vector elements:

CPU = 4915
Disk(2314) = .736
Drum(2301) = ,074

The disk and CPU are more nearly in balance now (and
the saturation point increases from 89,5 to 121 usersl!), but
clearly the drum is still out of balance, Consider then a
second alternative: keep the two CPU’s, and discard the
drums all together. Instead, let paging take place entirely
on the disk. In this case, the only two non-zero components
of the-xi/p.i vector are those for the CPU and the disk, and
they have values of 1,05 and .744 respectively., The satura-
tion point is reduced slightly from the original configura?

tion model, to 76 users.

Chapter VI - A Model for MTS

- 178 -

Given the fairly limited space of feasible alter-
natives, it should be clear that most reasonable alter-
natives can be exhaustively tested for balance and satura-
tion to achieve an optimal configuration (on either basis),
For example, for MTS there are perhaps a dozen reasonable
configurations, considering only disks, drums and CPU{s.

We should also note, however, that caution must be
exercised in considering alternative system structures based
on the model, Are the parameters measured in the original
model still valid in the alternate configuration? In the
case of the 3-CPU modification to the MTS model, the answer
is probably yes. For the configuration in which we removed
the drumé, the answer is almost undoubtédly no.

There are several reasons to guestion the validity
of the no—d:um model., In the first place,'we admitted to ig-
noring the virtual memory management problem in the entire
modeling process, It would be necessary to investigate the
effects of increased page transit times (from the disks) on
the page faﬁlt rate, Since increased page transfer times
effectively decrease the size of real memory[D4], the effect
may not be easily predictable. Secondly, we ignored the pro-
blem of page—out operation because of the Xnown low paging
load in MTS, If the paging device (the disk now) were
heavily loaded, it would be necessary to reconsider this

assumption. In summary, the validity of the statistics

Chapter VI - A Model for MTS

- 179 -

available should be carefully considered before transferring
them to a model involving a new configuration.

It seems clear, however, that the addition of a
third CPU would greatly improve MTS performance. According
to the model, one might expect it to support 30 to 40 more
terminal users with no degradation in the current level of
performance, Adding a fourth CPU would (again according to
the model) make the disk node the saturated node (for the
average load). At this point though, the question of memory
conflicts becomes a serious one, Would a fourth processor
(or even a third) run at the same sSpeed as the first ones,
or would the memories become saturated, unable to deliver
information to the CPU’s at any faster rate? Once this con-
dition is reached, more CPU’s are of little use., The ques-

tion is unfortunately outside the scope of the model,

Chapter VI - A Model for MTS

Chapter VII

Conclusions

We have considered to this point only the use of
network models in modeling time—sharing systems. We have
presented examples of two time-sharing systems, with very
different structures, which can be satisfactorily modeled by
this approach, We now discuss the general applicability of
the technique,

We first admit that the limitations of the model are
such that it is not applicable to the modeling of all time-
sharing systems., One could probably take any time-sharing
system, operating under a given load, and develop a
reasonable network model for the system., This was essential-
ly what was done in the first part of Chapter VI, for
particular statistics sessions taken from MTS, This exercise
may provide some insight into the system operation, but it
is really useful only if the model developed is valid under
loads other than that for which it was developed., If this is
the case, then one can use the results which are a function
of N to get asymptotic measures of response time, balance
and saturation., Even in the case where the load did not cor-
relate well with the number of users, Wwe were able to
develop load and performance envelopes which gave some idea
of the region in which the system would operate,

When the model parameters, such as the transition

- 180 -

- 181 -

probahilities, change with the load, this approach cannot be
used, One may develop a model for each set of load
parameters one is interested in, but little new information
will be produced, The model predictions may not be valid
outside the range in which the actual performance measures
are already known, so that the predictions are not needed,
One case in which this sort of problem arises is in
virtual memory systems where the real memory is in some
sense the actual saturated resource, In ﬁhis cagse, as has
been pointed out by Denning[D7] and others, it is necessary
to limit the number of tasks allowed to cohpete for system
resources, and in particular the scarce resource: real
memory, Thus only some maximum number, K, of the tasks wish-
ing CPU service are actually allowed into the CPU queue, A
particular case of this sort of mechanism is the privileged
= non-privileged task distinction in MTS, In MTS, however,
enough real memory is available so that the number K is
almost always large enough to include all those tasks cur-
rently requesting CPU service, If this is the case, or if K
is large enough so that the probability 6f CPU idle time
occurring with K tasks in the system is very small, the
effect of this limitation may safely be ignored for modeling
purposes, In systems with less real memory (in particular,
for MTS operating with a smaller amount of real core), this

would not be true, This limitation on the number of tasks in

Chapter VII - Conclusions

- 182 -

the system causes CPU idle time to occur, and there is no
way to represent this limitation in a network model,

An extreme example of this sort of limitation occurs
in a non-virtual memory system of the type studied by
Scherr {S5] . Here only a Qingle task is allowed in memory at
one time -~ again a limitation which cannot be represented in
a natwork model, We should note, howeﬁar, that the model
Scherr did use with some success 1s a simple sub~case of the
network models studied here,

Within these limitations, though, network models
have general applicability to the study of time-sharing
systems, Certainly they provide far more flexibility in
representing the actual system structure than has been

available to date,
Other Areas of Applicability

Network models of the sort presented here were first
studied by J,R, Jackson[J1,J2] and Gordon and Newell[G3] in
connection with the scheduling of jobs through a shop, where
each job had to go through a randomly selected set of steps,
Thus there are obviously applications of this type of model
outside the computer field,

Within the computer field there is at least one
other application area which would appear to be quite fruit-

ful, That is the study of batch multiprogramming systems.

Chapter VII - Conclusions

- 183 -

Most of the concepts developed in this dissertation may be
carried over directly to such a study, with only minor
changes in definitions, N, the number of terminal users,
becomes the degree of multiprogramming (number of jobs mul-
tiprogrammed). Response time becomes turn—around-time. The
parameters of such a model could be determined in exactly
the same way they were determined for the MTS model. Some
further discussion of this problem may be found in the
Appendix, and (in a different context) in Kimbleton and
Moore [K2] . Many batch systems have the advantage (from a
modeling viewpoint only!) that they are not virtual memory
systems, and do not allow the dynamic acquisition and
release of real memory within a task, A task is not in-
itiated in this type of system unless sufficient memory for
all its needs is available. Thus the problem of storage
representation, which may occur in time-sharing system
modeling, does not arise,

However, the small number of batch‘jobs mul-
tiprogrammed (in the order of 5-10) in most systems, coupled
with some reduced constraints, make the variance in program
behavior in batch systems quite large, Terminal users in a
time-sharing system do not initiate very large jobs (either
of the computational or file-shuffling variety) simply
because they do not wish to sit at a terminal long enough to

let it finish., In a batch system a very patterned’ sort of

Chapter VII - Conclusions

- 184 -

program mix may exist for a long period of time. A payroll
program, for example, may access a tape regularly every 30
milliseconds for several minutes, Such non—-stochastic
behavior may be expected to reduce the validity of a network

model analysis, though to what extent it is hard to predict,
Further Work

The most successful aspect of the network model
approach is the ability to model the response portion of the
interaction-response cycle in a realistic and intuitive man-
ner. This allows one to talk about what is actually happen-
ing while the user is in the response segment of the cycle,
We have shown that a CPU model is not adequate. The average
customer, during statistics session #10, experienced a

response time of 7.9 seconds., The time was spent as follows:

* Receiving CPU service: « 556 seconds
Waiting for CPU service: 1.260 seconds
* Waiting for a memory page: 180 seconds

* Waiting for terminal output: 6,896 seconds
Waiting for a disk: «183 seconds
Waiting for a disk operation: ,.410 seconds
* Other delays: «022 seconds
The above " user profile" was reflected almost exact-~-
ly in the model, and in fact the starred(*) items formed the

basis on which many of the model parameters were determined.

Chapter VII - Conclusions

- 185 -

The ability to predict performance, at least in
terms of response time, from this set of statistics, leads
naturally to the evaluation of a vector of these measures
(averaged over all users) as the ' system load measure .

If we can construct such a load vector dynamically
for each customer, we have a chance to balance the system
dynamically., Instead of being disturbed by non—homogeneous
user behavior, we can take advantage of it,

Let us construct for each user a user load vector as
follows, Over some appropriate "window” - time period from
t-w seconds to t, where t is the present time, and w is the
window size - measure the percentage of time the user task
(process) was allocated each resource, For example, suppose
the window size was 10 seconds, and the user had used one
second of CPU time during this past 10 seconds. Suppose he
had also initiated disk operations requiring 400 mil-
liseconds to complete, Then in a one CPU system with a
single disk channel, this user has used 10% of the CPU
capacity and 4% of the disk capacity. If these were the only
two components of the load vector then (an over-simplified
case), it would be (.10,.04) for this user, The system load
vector then is simply the sum of all the user load vectors,
It will have a maximum value of 1,0 in any component. The
components of the load vector will vary from system to

system, but in general any shared resource which might be in

Chapter VII - Conclusions

- 186 -~

scarce supply should be included in the load vector. One
might well wish to include the percent allocation of real
memory to this user in the load vector,.for example,

‘Suppose now we have the ability to suspend any task
temporarily from competing for system resources, In the case
of MTS, this can easily be done by making the task non-
privileged, Let us assume the current load vector for a task
is a good short term predictor of its future load vector,
Then if we have enough tasks to choose from, we can prac-
tically guarantee near—-100¥ percent utilization of system
resources and at the same time a balanced system (no
saturated resource), To do this, the 6perat1ng system goes
through all the available tasks and chooses the set such
that the sum of the load vectors in that set (the system
load) is closest to 1,0 in every component, This is the set
of tasks which it "releases”, allowing them to compete for
system resources, The other tasks are suspended until the
next choice of an “optimal task set” is made,

This sort of idea is not entirely new, and a similar
approach has been suggested by Wulf[W4], There are also some
practical probiems involved in implementation, The overhead
in maintaining the load vectors must not be excessive, The
selection algorithm must also be constrained by some sense
of fairness -~ it cannot refuse indefinitely to allow some

task into the set of tasks allowed to compete for system

Chapter VII - Conclusions

- 187 -

resources, Particularly for terminal users, some minimal
service rate must be allowed the task, However, initial ex-
periments with a very primitive form of this scheduling
system (for batch tasks only), which has been implemented in
MTS, have proved very successful, The implementation is

described briefly in the Appendix,

In summary, we feel that though network models
certainly do not satisfy all modeling needs for computer
systems, they give satisfactory results in a number of
cases, and offer considerable insight into the functioning

of a time-sharing system,

Chapter VII - Conclusions

Appendix

Statistics Gathering and Model Computations

This appendix describes the means used to gather and
process the data used in the MTS model development of
Chapter VI, and the computer program written to compute the
solutions}for the network models presentéd in Chapters V and

vi.

1. The Statistics Gathering Facilities

The facilities available in MTS for performance
monitoring and statistics gathering are extensive., Primary
use in this dissertation was made of the instrdmentation
system developed by Pinkerton and Alexander, and described
in detail in the dissertation and two other papers of Pin-
kerton[P2,P3,P4] , In [P4], the overhead incurred by the
statistics gathering facilities and the details of its op~-
eration are described, What is collected is essentially a
very raw but detailed chronology of the system operation.
The information is buffered in memory and then written on
magnetic tape for later processing. The basic unit of infor-
mation recorded is the occurrence of an "event", the time
the event occurred, the task(s) affected, and perhaps a few

bytes of additional information, For example, a statistics

- 188 -

- 189 -

item is recorded every time a processor switches from one
task to another, The time of the switch, and the tasks
switched from and to are also recorded.

It is necessary to do further (computer) processing
of this data before it becomes meaningful, A'program was
written to do this by the author (other programs have also
been written by Pinkerton and others), Since the statistics
gathered are very detailed — a full 2400-foot reel could
easily be gathered in a half-hour under heavy system load -
subsequent processing of statistics requires about one
minute of 360/67 processor time for every minute of MTS
monitoring. A decision was thus made to limit collection
periods to 10-20 minute sessions, This limitation turned out
to have some interesting effects, revealing the basic in-
stability of the user behavior parameters (or the system
load, to use the more general term). Over longer periods
this instability might have been masked by the long averag-
ing period inherent in the statistics processingy, Yet the
sessions were long enough so that some sort of
"steady-state could be achieved with the given user mix.
That is, the measured system performance was not merely a
response to a momentary transient in the load, In fact, no
terminal was included in the statistics for a session unless
two separate and distinct input messages had been received.

The shorter periods also had the advantage that the user mix

Appendix - Statistics Gathering and Model Computations

- 190 -

remained relatively constant during a session, The change in
the number of users signed on over the period averaged a 10%
between maximum and minimum, though no statistics were kept
about changes in the actual set of customers signed on.

The sessions themselves were scheduled with no pat-
tern other than an attempt to avoid a pattern, except that
periods of very light usage were avoided. The sessions ex-
tended over a six month period from September 1970 to
February 1971. Fig A-1 lists all the statistics sessions and
their time and duration, The aéerage number of terminal and
batch users signed on during the session is also listed. TwoO
of the sessions deserve special comment, During session #9
the\system "crashed near the end of the period. The exact
state of the system in the moments preceding the crash is
unknown, so the statistics from the session are somewhat
suspect, Session #12 was taken on a partitioned system., Only
one processor, one drum, and two-thirds of the normal 6 core
boxes were available, The system was under a heavy load dur-
ing this session, as is obvious from the figures for this
session in Fig 6-19, Because both these sessions were atypi-
cal, they were omitted from most of the summary and average
statistics computed over all sessions,

No significant changes in hardware or the structure
of the system were made during this period, and only two

significant software changes were made, One software change

Appendix - Statistics Gathering and Model Computations

Run

w N

e 0 & O v b

12
13
14

15

Date

9/15/70
9/16/70
10/2/170
10/6/70
10/7/70
10/8/70
10/15/70
10/26/70
10/27/70
12/3/70
12/15/70
12/15/70
12/30/70
1/28/71
2/4/71

- 191 -

Aver—

Dura- age #

Time tion Termi-
of Day (sec.) nals

13:14 598 29
16335 554 29
18:12 1127 11
12:32 614 27
10:26 600 30
15:23 742 4s
11:41 511 25
16:30 868 39
17:01 634 34
14:01 719 47
10342 578 26
21:41 957 20
10:24 1318 17
14134 920 38
12322 1053 32

Aver-
age #
Batch
Jobs

2,0
2,8
1.8
3.7
1.2
4,2
2.0

4,7

6.3

6.8
5.4

6.9

Terminal
Jobs = 1
Batch Job
11.5
10.0
17.2

6,6

10,5
11.3

7.8

13.1

6.8

11.0

5.0

5.8

8.4

6.4

5.5

Fig A-1: History of Statistics Sessions

Inter-
actions
Observed
424

517

298

307

375

955

484
1081
554
1339
553

342

596
1044

906

Appendix - Statistics Gathering and Model Computations

- 192 -

was made to the paging algorithm, between Sessions #10 and
#11, The effect of the change was to reduce the average
waiting time for a page-in operation under low paging loads.
The need for the change was revealed by the paging
statistiés gathered in the first ten sessions. The effect of
the change can be seen in Fig 6-19, In sessions #1-#10, the
page—-in waiting time never averaged less than 23,48 mil-
liseconds, except for Session #3, during which only two
page—-in operations took place., After session #10, the
minimum average waiting time was reduced to about 21 mil-
liseconds, Since the drums in MTS are so lightly loaded, it
is not felt that this change affected system performance in
any significant way,

The second software change was made in February
1971, again partly in response to the information revealed
by the statistics gathered in the preparation of this dis-
sertation, The change made affected the number of batch jobs
run simultaneously with the terminal tasks, Before the
change, the number of batch tasks allowed to run was deter-
mined by the number of terminal users connected to the
system, This criterion has now been discarded in favor of a
weighted average of CPU utilization, number of paging opera-
tions per second, number of virtual memory pages in use and
CPU queue length, The components to be used in computing

this load factor are still being actively experimented with.

Appendix - Statistics Gathering and Model Computations

- 193 -

Even with the initial settings used, however, the system
load (as measured by the load factor itself!) showed a mar-
ked increase in stability, as well as increased batch job
throughput.. It is felt that this increased throughput has
been achieved at little or no cost in service to terminal
users (i.e. - no increased response time), though this con-

jecture is still in the process of being verified.,

2, Batctherminal Tagsk Equivalences

The general problem of the treatment of batch tasks
in the terminal modeling environment of Chapter VI was one
which could have proved difficult, In the case of MTS,
however, the potential problem proved amenable to a fairly
simple solution, The statistics gathered for batch and ter-
minal tasks were very similar, except for the interaction
times. Thus the statistics of Fig 6-19, exténded to cover
batch tasks during the same periods, would look much like
those for terminal tasks, except that the interaction time
is essentiaily zero for the batch tasks and terminal output
operations disappear from the list of delay causes in the
response cycle. Batch tasks merely need to fetch the next
input card image from a memory buffer (the usual case) or
the disks,

One noticeable difference is the increased variance

Appendix - Statistics Gathering and Model Computations

- 194 -

in the distributions, This is partly due to the smaller
sample size encountered, Only a few batch tasks were run
during most of the session, so that unusual behavior on the
part of one of the tasks could easily skew the distributions
significantly,

Given this basic similarity, we may'maké the follow-
ing equivalence between batch and terminal tasks, Suppose
the expected response time for a terminal task is X seconds,
while the expected user interaction time (for a terminal
task) is Y seconds, Further suppose an average temminal task
spends Z seconds waiting for terminal output during the
response segment of an interaction-response cycle. Then a
single terminal task spends a proportion (X-Z)/(X+Y) of its
time in the system, competing for system resources, On the
other hand, the batch task, with an effectively zero inter-
action time and no terminal output time, may bhe assumed to
be always competing for system resources, So the number of
terminal tasks equivalent to one batch task is just that
number K which yields an expectation of exactly one terminal

task competing for system resources at all times:

Appendix = Statistics Gathering and Model Computations

- 195 -

X+Y

K X~-Z

For example, if the average interaction time is 15
Beconds,“and the average response time is 6 seconds, 3
seconds of which is spent waiting for terminal output, then
one batch tésk is equai to (6+15)/(6=3) = 7 terminal tasks,

This equivalence measure has two interesting pro-
perties, Ohé is the generally low value of the ratio (see
Fig A-1), One would expect a batch task to put as much load
on the system as perhaps 15-20 users, in view of the fact
that time-—-sharing systems typically support 50-100
customers, while batch multiprogramming systems have a
degree of multiprogramming in the order of 4 or 5, This in-
teresting relation may well be unique to MTS, but it has
some interesting implications for the virtues of a virtual
memory structure for a strictly batch multi-programming en-
vironment,

The other interesting property of the equivalence
measure is that it is load dependent, As the load goes up,
the average response time goes up, SO thé ratio goes down,
For example, under a particular lbad, response time may
average 5 seconds and terminal output time 2 seconds while
interaction time averages 19 seconds. Thus 8 teminal jobs
are equivalent to one batch job, But suppose the load in-

creases, and response time becomes 10 seconds, Interaction

Appendix -~ Statistics Gathering and Model Computations

- 196 -

time is presumably unchanged (though one could question that
assumption) and now 3.625 terminal tasks equal one batch
task,

The general applicability of such measures and
criteria is open to question., It is suggeéted here primarily
as a tool allowing us to convert batch tasks to terminal
tasks for modeling goals, and served adequately for that

goal at least,

3. The Model Computations Program

Computer solution of the network model equations is
almost essential, For a 6-node network with 10 customers the
state SpaCe size is already 2376, and the probability cal-
culations for each state require 6 multipliéations.

The program written to perform the calculations for
this dissertation was written in FORTRAN and run under MTS,
The input to the program is the definition of a model struc-
ture, consisting of:

(1) The number of nodes,
(2) The transition probabilities between the nodes.
(3) The service structure at each node,

The service structure can be given as a specified

service time mean for each queue length at the node, i.e., -

as Di(1) = K1’ ﬂi(z) = KzoO'Oa %i(j) = Kjo Any number, j, of

Appendix —~ Statistics Gathering and Model Computations

- 197 -

service time means may be given, and the program
automatically assumes that for j < n s N, ui(n) is equal to
1#;(3). Alternatively the node can be specified as containing
j servers, each with a mean service time of K, Provision is
made for specifying an arbitrarily large number of servers,
as was the case at the terminal input and output nodes of
the MTS model.

The output of the program consists of two parts: the
solution of the model for the limiting case, consisting of
the asymptotic queue length distributions, waiting times at
the nodes, node utilization, etc.; secondly an exact solu-
tion for any desired values of N can also be requested,
e.dey N = 50, 55, 60, The program output is reproduced
directly in several of the figures in Chapter V
(5-2,5-6,5-9,5-11). Most of the other figures of Chapter V,
and many of those of Chapter VI were derived directly from
program output,

Since the program was fairly complicated and there
were some possibilities of round-off error causing inac-
curacies, a validation procedure for the program was
required. The procedure used was to solve several sub—-cases
of the general model, where alternative solution methods
were knowh. The finite-source, single-exponehtial—server
models of Kleinrock[K4], Scherr(s5], and others is one which

is a special case of a network model, but for which many

Appendix - Statistics Gathering and Model Computations

- 198 -

numerical results are available, These results were checked
against the program output when the program was given input
describing these models., These checks, alohg with some
built=-in internal checks in the program, were felt to
sufficiently validate the program, In addition, the program
always prints the model structure of the model it is solving
so that one can check and make sure that the model being

solved is the intended one.,

Appendix - Statistics Gathering and Model Computations

Al

A2

A3

A4

AS

A6

References and Bibliography

Abbreviations used:

ACM Association for Computing Machinery
AFIPS American Federation of
Information Processing Societies
CACM Communications of the Association
for Computing Machinery
Conf. Conference
FJCC . AFIPS Fall Joint Computer Conference
IBM Systems J. IBM Systems Journal
IEEE Institute of Electrical
and Electronics Engineers
IFIPS International Federation of
Information Processing Societies
JACM Journal of the Association
for Computing Machinery
Proc, Proceedings ;
ORSA Operations Research Society of America
SJCC AFIPS Spring Joint Computer Conference
Trans, Transactions

Abate, J. and Dubner, H. Optimizing the Performance of
a Drum-Like Storage, IEEE Trans_on_Computers C-18,11
(November 1969), 992-997,

Abate, J., Dubner, H. and Weinberg, S. Queueing Analy-
sis of the IBM 2314 Disk Storage Facility. JACM 15,4
(October 1969) 577-589,

Adiri, I, and Avi-Itzhak, B. A Time-Sharing Queue with
a Finite Number of Customers. JACM 16, 2 (April 1969),
31 5"‘3230 ’

Alexander, M.,T. Time-Sharing System Supervisor Pro-
grams, in Advanced_Topics in_Systems Programming, Un=—
iversity of Michigan Engineering Summer Conferences 7016
(June 1970),

Arden, B. and Boettner, D. Measurement and Performance
of a Multiprogramming System. Proc, 2nd ACM Symposium
on_Operating System Principles (October 1969) 130-146.

Arden, B.W., Galler, B.A,, O’Brien, T.C., and Wester—
velt, F.dH, Program and Address Structure in a Time
Sharing Environment, JACM 13, 1 (Jan 1966), 1-16.

- 199 -

B1

B2

B3

B4

BS

B6

c1

Cc2

C3

C4

Co

C7

- 200 -

Baskett, F., Browne, J.C., and Raike, W,M. The Manage-
ment of a Multi-Level Non-Paged 1memory System., AFIPS
Conf, Proc, 36, (1970 SJCC) 459-465,

Batson, A., J4, S.,, Wood, D. Measurements of Segment
Size, Proc, 2nd ACM Symposium on_ Operating System
Principles (October 1969), 25-29.

Belady, L.A. A Study of Replacement Algorithms for
Multiprogramming. IBM Systems J, 5,2 (1966), 78-101.

Belady, L.A. and Kuehner, C,J. Dynamic Space Sharing in
Computer Systems. CACM_12, 5 (May 1969), 282-288,

Belady, L.A., Nelson, R.A. Shedler, G,S. An Anomaly in
the Space-Time Characteristics of Certain Programs Runn-
ing in Paging Machines., CACM 12, 6 (June 1969), 349-353,

Bryan, G,E., and Shemer, J+E. The UTS Time-Sharing
System: Performance Analysis and Instrumentation. PEroc,
2nd ACM Symposium on Operating System Principles,

05 e i T > U

(october 1969) 147-156,

Calingaert, Peter., System Performance Evaluation:
Survey and Appraisal. CACM 10, 1 (January 1367), 12-18,

Chang, W. Single-Server Queuing Processes in Computing
Systems. IBM Systems J, 9, 1 (1970) 36-71.

Chang,'w. and Wong, D.J. Analysis of Real Time Mul-
tiprogramming. JACM 12, 4 (October 1965), 581-588.,

Coffman, E,G. Analysis of a Drum Input/Output Queue
under Scheduled Operation in a Paged Computer System,
JACM 16, (Jan 1969), 73-90,

Coffman, E.G. Stochastic Models of Multiple and Time-

Shared Computer Operations, Rep. No, 66-38, Dept., of
Engineering, UCLA, June 1966,

Coffman, E,G, and Kleinrock, L. Feedback Queuing Models
for Time-Shared Systems. JACM 15, 4 (October 19¢€8),
549-576,

Coffman, E.G., and Krishnamoorthi, R. Preliminary
Analysis of Time-Shared Computer Operation. SP-1719,
System Development Corp., Santa Monica, Calif. August,
1964,

References and Bibliography

c8

C9

c10

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

E1

- 201 -

Coffman, E,G, and Varian L,C, Further Experimental Data
on the Behavior of Programs in a Paging Environment,
CACM 11, 7 (July 1968), 471-474,

Coffman, E,G, and Wood, R,C, Interarrival Statisitcs
for Time Sharing Systems, CACM 9,7 (July 1966) 500-503,

Cox, D.R, and Lewis, P,A,W, The Statistical Analysis of
Series of Events. Methuen, London, 1966,

DeMeis, W,M, and Weizer, N, Measurement and Analysis of
a Demand Paging Time Sharing System, Proc, 24th National
Conf, ACM (1969), p. 201,

Denning, P,J, Effects of Scheduling on File Memory
Operations, AFIPS Conf, Proc, 30 (1967 sJcc), 9-21,

Denning, P.J., Equipment chfiguratibn_in Balanced

Computer Systems, IEEE Trans on Computers 18,11 (Nov
1969) 1008-1012,

Denning, P.J. Queueing Models for File Memory Opera-
tions, MIT Project MAC Technical Report MAC-TR-21
(October 1965, Master’s Thesis).

Denning, P,J. Resource Allocation in Multiprocess
Computer Systems, MIT Project MAC Technical Report
MAC-TR-50 %May 1968, pPh,D, Thesis).

Denning, P.J, A Statistical Model for Console Behavior

in Multi-User Computers, CACM 11, 8 (August 1968),
605-612,

Denning, P.,J. Thrashing: Its Causes and Prevention,
AFIPS Conf, Proc, 33, (1968 FJcc), 915-922,

Denning, P,J., Virtual Memory,., Computing Surveys 2, 3
(September 1970) 153-190,

Denning, P,J. The Working Set Model for Program
Behavior, CACM 11, 5 (May 1968), 323-333,

Dennis, J.B., Segmentation and the Design of Mul-
tiprogrammed Computer Systems, JACM 12, 4 (Oct 1965),
589-602,

Estrin, G, and Kleinrock, L, Measures, Models and
Measurements for Time-Shared Computer Utilities., Proc,
22nd National Conf, ACM, (1966), 85-96,

References and Bibliography

F1

F2

F3

F4

F5

G1

G2

G3

H1

J1

J2

J3

K1

K2

- 202 -

Fife, D.W, An Optimization Model for Time Shariny.
AFIPS Conf, Proc, 28 (1966 sJdcc), 97-104,

Fine, G,, Jackson, C,W,, and McIssac, P.V., Dynamic
Program Behavior under Paging, Proc, 21st National Conf.
ACM (1966), 223-228,

Ford, J.,R,Jr., and Fulkerson, D.R., Flows in Networks
Princeton University Press, Princeton, 1962,

Frank, W, Analysis and Optimization of Disk Storage
Devices for Time-Sharing Systems, JACM 16, 4 (Octobher
1969) 602-620, ,

Fuchel, 1K, and Heller, S, Considerations in the Design
of a Multiple Computer System with Extended Core
Storage, CACM 11, 5 (May 1968), 334-340,

Gavef, D.P, Jr, Diffusion Approximations and Models for

Certain Congestion Problems. J, Applied Probability S,
(1968) 607-623,

Gaver, D.P, Jr. Probability Models for Multiprogramming
Computer Systems, JACM 14,3 (July 1967) 423-438,

Gordon, W.,J., and Newell, G,F, Closed Queuing Systems
with Exponential Servers. ORSA_ Journal 15,2 (March 1967)
254-265, ‘

Howard, R.A., Dynamic Programming and Markov Processes.
MIT Press, Cambridge, 1960,

Jackson, J.R. Jobshop-like Queuing Systems, Management
Science 10, 1 (October 1963), 131-142,

Jackson, J,R, Networks of Waiting Lines, ORSA _Journal
5, 4 (August 1957), 518-521,

JaisWal, N.K, Priority Queues. Academic Press, New
York, 1968,

Karush, Arnold D, Two Approaches for Measuring the
Performance of Time-Sharing Systems. Software Age 4, 3
(March 1970), 10-13 and (April 1970) 15-20,

Kimbleton, S and Moore, C. A Probabilistic Framework
for Systems Performance Evaluation., Proceedings of the
ACM-SIGOPS Workshop on Systems Performance Evaluation
(April 1971).

References and Bibliography

K3

K4

K5

K6

K7

K8

K9

K10

L1

M1

M2

M3

M4

N1

P1

- 203 -

Kleinrock, L. Analysis of a Time-Shared Processor.
Naval Research Logqistics Quart, 11, 10 (March 1964)
5 9"73 o

Kleinrock, L. Certain Analytical Results for Time-

Shared Processors. Proceedings of IFIPS—-68 (August
1968) D119-D125,

Kleinrock, L. A Continuum of Time-Sharing Scheduling
Algorithms AFIPS Conf, Proc, 36, (1970 SJCC) 435-458,

Kleinrock, L. Communications Nets; Stochastic Message
Flow and Delay. McGraw-Hill, New York, 1964,

Kleinrbck, L. Sequential Processing Machines Analyzed
with a Queuing Theory Model. JACM 13, 2 (April 1966),
179-193,

Kleinrock, L. Time—Shared Systems: A Theoretical
Treatment, JACM 14, 2 (April 1967), 242-261,

Knuth, D.E., The Art of Computer Programming Vol. I.
Addison-Wesley, Reading, Mass,, 1968,

Krishnamoorthi, B. and Wood, R.C., Time-Shared Computer
Operations with both Interarrival and Service Times Ex-
ponential, JACM 13, 3 (July 1966), 317-338,

Lewis, P,A.W, A Computer Program for the Statistical
Analysis of Series of Events, IBM Systems J, 5, (1966),
202-225,

MacDouqall, M.H. Computer System Simulation: a Survey,
Computing Surveys 2, 3 (September 1970), 191-210,

McKinney, J.M, A Survey of Analytical Time-Sharing
Models, Computing Surveys 1, 2 (June 1969) 105-116,

Mills, D.L. The Data Concentrator. Proceedings of_ the

ACM Symposium on_Problems in_ the Optimization of Data
Communication Systems (October 1969) 291-316,

MTS: Michigan Terminal System, Vol, 1 to 9, University
of Michigan Computing Center,

Nielson, N.R. The Simulation of Time-Sharing Systems,
CACM 10, 7 (July 1967) 397-412,

Parzen, E, Stochastic Processes, Holden-Day, San
Francisco, 1962,

References and Bibliography

P2

P3

P4

P5

S1

S2

S3

S4

S5

S6

s7

S8

S9

S10

- 204 -

Pinkerton, T.B. The MTS Data_ Collection Facility, Univ.
of Michigan CONCOMP Proj. Memorandum No, 18 (August
1968),

Pinkerton, T.B. Performance Monitoring in a Time-Shar-
ing System. CACM 12, 11 (November 1969), 495-500,

Pinkerton, T. Program Behavior and Control in Virtual
Storage Computer Systems, Univ., of Michigan CONCOMP
Proj. Rep, No.4 (April 1968, Ph.D. Thesis),

Prabhu, N.U. Queues and Inventories., Wiley, New York,
1965.

Saaty, T. Elements of Queueinq Theory, McGraw-Hill, New
York, 1961,

Saaty, T. Stochastic Network Flows: Advances in
Networks of Queues, North Carolina_ Symposium on_Conges-—
tion Theory, Chapel Hill (1964) 86-105,

Saltzer, J.H. Traffic Control in a Multiplexed Computer
System, MAC-TR-30 (Thesis) MIT, Cambridge, Mass, July

1966,

Saltzer, J.H. and Gintell, J.W, The Instumentation of
MULTICS, CACM 13,8 (August 1970), 495-500,

Scherr, A.L. An Analysis of Time-Shared Computer
Systems, MAC-TR-18 (June 1965, Ph,D. Thesis) MIT, Cam-
bridge, Mass,

Shemer, J, and Gupta, S.C., On the Design of Bayesian
Storage Allocation Algorithms for Paging and Segmenta-
tion, ‘' 1EEE Trans, on Computers ¢-18,7 (July 1969)
644"'651 [

Shemer, J.E., Some Mathematical Models of Time-Sharing
Scheduling Algorithms, JACM 14, 2 (April 1967), 262-272,

Shemer, J. and Shippey, Bs Statistical Analysis of
Paged and Segmented Computer Systems, IEEE_Transactions
on Electronic Computers EC-15, 6 (Dec 1966) 855-863,

Smith, J.L. An Analysis of Time-Sharing Computer
Systems using Markov Models, AFIPS Conf, Proc, 28, (1966
sJcc) 87-95,

tevens, D,F, On Overcoming High-Priority Paralysis in
Multiprogramming Systems: A Case History. CACM 11, 8
(August 1968) 539-541,

References and Bibliography

- 205 -

511 Stimler, S, Some Criteria for Time-Sharing System
Performance, CACM 12, 1 (January 1969), 47-53,

T1 Takacs, L., A Single-Server Queue with Feedback, Bell
System Technical Journal, (March 1963) 505-519,

T2 Totschek, R,A, An Empirical Investigation into the
Behavior of the SDC Time-Sharing System, SP-2192,
Syst?ms Development Corp,, Santa Monica, Calif, (August
1965),

w1 wallace, V,L, and Mason, D,L., Degree of Multiprogramm-
ing in Page-on-Demand Systems, CACM 12,6 (June 1969)
305ff,

w2 Wallacé, V.L, and Rosenberg, R,S, Markovian Models and
Numerical Analysis of Computer System Behavior, AFIPS
Conf, Proc, 28 (1966 SJCC) 141-148,

W3 Weizer, N, and Oppenheimer, G, Virtual Memory Manage-

ment in a Paging Environment, AFIPS Conf, Proc, 34,

w4 WwWulf, W,A, Performance Monitors for Multiprogramming

Systems, Proc, 2nd ACM S ium on Operating System
Principles (October 1969§ 175-181,

References and Bibliography

Unclassified
Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author)

ISDOS Research Project/Performance Modeling Group

Department of Industrial Engineering
The University of Michigan

2a. REPORT SECURITY CLASSIFICATION
Unclassified

2b. GROUP

3. REPORT TITLE

Network Models for Large-Scale Time-Sharing Systems

4. DESCRIPTIVE NOTES (Type of report and, inclusive dates)

Technical Report

5. AU THOR(S) (First name, middle initial, last name)

Charles G. Moore III

6. REPORT DATE 7a. TOTAL NO. OF PAGESI 7b. é\l3o OF REFS
30 April 1971 205

g8a. CONTRACT OR GRANT NO. ga. ORIGINATOR'S REPORT NUMBERI(S)
NO0014-67~A-0181-0036 TR 71-1 (U)

b. PROJECT NO.

(NR 049-311)

[+

d.

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)

10. DISTRIBUTION STATEMENT

Reproduction in Whole or in Part is Permitted for any Purpose of the United States

Government

11. SUPPLEMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY
Information Systems Program
Office of Naval Research
Arlington, Virginia

13. ABSTRACT

This paper develops a class of analytical models for large computer time-
sharing systems. The models developed allow the various resources of the time-
sharing system, such as central processors, paging devices, and mass storage
equipment to be represented as independent queueing centers. The success of the
method depends on developing the queueing network so that it may be treated as a

time~continuous markov process.

Consideration is given to a number of proposed measures for system load
and system performance. These measures are examined in the light of the model.
In addition, concepts of system saturation and system balance are introduced and

defined in terms of the model.

As an example of the use of network models, a model is developed for the
University of Michigan Terminal System (MTS). Statistics available from that
system are used to develop and validate the model. Finally, possible changes in
that system's structure, in light of the insights gained from the model, are ex-

plored.

D for* 1473 (PAGE 1)

/N 0101-807-6811

Unclassified
Security Classification

A-31408

Unclassified
Security Classification

KEY WORDS

A

3 9015 04124 1608

A LINK B

LINK C

ROLE

wT ROLE wT

ROLE

Network Models
Time-share

Computers Systems Design
Queueing Networks
Multi-programming
Multi-processing
Analytic Models

Performance Evaluation

DD 7°"* 1473 (Back)

S/N 0101-807-6821

Unclassified

Security Classification

A-3140¢

